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Investigating Temporal Features of Carotid Intima-Media Thickness
from Ultrasound Imaging with Recurrent Neural Networks

Min Jing∗1, Kathryn Owen2, Brian Mac Namee3, Iab B. A. Menown2 and James McLaughlin1

Abstract— Measuring carotid intima-media thickness (cIMT)
of the Common Carotid Artery (CCA) via B-mode ultrasound
imaging is a non-invasive yet effective way to monitor and assess
cardiovascular risk. Recent studies using Convolutional Neural
Networks (CNNs) to automate the process have mainly focused
on the detection of regions of interest (ROI) in single frame
images collected at fixed time points and have not exploited
the temporal information captured in ultrasound imaging. This
paper presents a novel framework to investigate the temporal
features of cIMT, in which Recurrent Neural Networks (RNN)
were deployed for ROI detection using consecutive frames
from ultrasound imaging. The cIMT time series can be formed
from estimates of cIMT in each frame of an ultrasound scan,
from which additional information (such as min, max, mean,
and frequency) on cIMT time series can be extracted. Results
from evaluation show the best performance for ROI detection
improved 4.75% by RNN compared to CNN-based methods.
Furthermore, the heart rate estimated from the cIMT time
series for seven patients was highly correlated with the patient’s
clinical records, which suggests the potential application of the
cIMT time series and related features for clinical studies in the
future.

Clinical relevance— The temporal features extracted from
cIMT time series provide additional information that can be
potentially beneficial for clinical studies.

I. INTRODUCTION
Studies have shown that measuring the carotid intima-

media thickness (cIMT) of the Common Carotid Artery
(CCA) by B-mode ultrasound can help to visualise the
arterial walls, monitor the early stages of the atherosclerotic
process [1], and serve as an important risk marker for
ischemic stroke and myocardial infarction [2], [3]. Our recent
work has demonstrated that cIMT is a valuable predictor
of coronary artery disease (CAD) and an indication of its
severity [4], in which the regions of interest (ROI) (the
area of intima-media) was manually selected and cIMT was
measured by using the Phillips ultrasound software QLAB.

Traditional approaches for cIMT measurement have been
reviewed in [5] and include edge-detection, active contours,
dynamic programming, local statistics, Hough transform and
statistical modelling. Recently, some studies [6], [7] have
proposed deep learning approaches that use Convolutional
Neural Networks (CNN) for ROI detection in ultrasound
image patches. For example, a study [6] applied a CNN to
detect the ROI after cropping each ultrasound image into a
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small set of patches of size 75× 75 pixels. The region of
carotid far wall, however, was manually selected before ap-
plying CNN, so their approach was not fully automated. An-
other study [7] proposed a U-Net model combined with local
energy optimisation for segmentation of intima-media and
thickness measurement. Three types of patches were used to
train the U-Net including lumen-intima, media-adventitia and
background patches. These CNN-based approaches, however,
treated each frame of an ultrasound independently and did
not take advantage of patterns present in consecutive frames.
One early study [8] evaluated the IMT over the cardiac cycle
from ultrasound video but it was based on the conventional
model-based segmentation without deep learning involved.
Apart from these studies focused on the images, a study of
note [9] proposed a novel method for cIMT estimation based
on the decomposition of a radio frequency (RF) signal. In
their work, a matching pursuit signal decomposition of the
ultrasound RF signal was used to isolate the desired tissue
interface echoes, which provided a new perspective on the
problem and the potential for multi-modal data integration.

To date, most CNN-based work were applied only to
single frames, which did not explore the temporal features of
cIMT within ultrasound video sequences. The contribution of
this study includes: (1) a novel framework using Recurrent
Neural Networks (RNNs) that takes consecutive frames into
account for ROI detection; (2) investigation of the temporal
features of cIMT time series constructed from estimation
in each frame, which may provide additional information
valuable for clinical studies.

The remainder of the paper is structured as follows.
Data acquisition is introduced in Section II. The proposed
framework and cIMT estimation are explained in Section
III. Section IV provides the experimental results before
conclusions in Section V.

II. DATA ACQUISITION
This study was approved by the Health Research Authority

and the Southern Health and Social Care Trust (REC Refer-
ence:18/LO/2086). The subjects were recruited in adherence
with the Declaration of Helsinki [14] in the Craigavon
Area Hospital, Northern Ireland. Patients with a history of
ischemic-type chest pain or angina equivalent undergoing
Invasive Coronary Angiography or Computed Tomography
Coronary Angiography underwent high-resolution B-mode
ultrasound to measure cIMT and plaque. The images were
acquired using the Philips Affiniti 70G US, L12-3 Philips
transducers (with a frequency range of 3-12 MHz) and
Philips QLAB software. The data used in this study includes
47 ultrasound scans acquired from Left Distal CCA. The



Fig. 1. Overview of the proposed framework.

frame rate was 30 frame per second (fps) and 151 B-
mode frames were acquired from each ultrasound scan. More
details can be found in [11].

III. PROPOSED METHODS

A. ROI Detection via RNN

Fig. 1 illustrates the overview of the proposed framework:
(a) The original ultrasound scan was cropped to exclude
the text annotation and the final image size obtained was
360×420 pixels. Each frame was divided into 6×7 patches
and each patch size was 60 × 60 pixels. Each patch was
named with the index indicating its location at the original
image; (b) To take advantage of dynamic patterns presented
in ultrasound data, an RNN was used for ROI detection using
patch images from consecutive frames. This is framed as
a binary classification problem with any patches covering
a region of carotid intima-media considered a positive ROI
detection (examples of both positive and negative patches are
shown in Fig. 2); (c) To study the temporal features of cIMT,
after ROI detection, cIMT was estimated at each frame to
form a cIMT time series, from which further information can
be extracted for investigation.

Fig. 2. Examples of patch images for positive (Pos) and negative (Neg)
classes.

B. Estimation of cIMT
Fig. 3(a) shows a patch image containing the ROI from the

carotid far wall with annotations indicating the structure of
the carotid: lumen, lumen–intima (LI), and media–adventitia
(MA). The IMT is defined as the distance between the LI
and MA interfaces (as shown in red). Since the focus of this
study was not to improve the accuracy of cIMT estimation

Fig. 3. (a) A positive patch showing the structure of carotid far wall with
lumen, LI and MA; (b) a mask image created to estimate the cIMT at each
column.

but rather to explore the temporal information in cIMT time
series, we developed a simple approach for cIMT estimation.

From Fig. 2, it can be observed that positive patches have
a similar structural pattern, such that the lumen is positioned
above LI and MA. A threshold was applied to image frames
to obtain a binary mask for LI and MA. An initial threshold
was obtained using Ostu’s method [12], then multiplied by
a factor according to the image intensity (empirically in a
range of 0.5 ∼ 0.9). For example in Fig. 3(b), the mask was
based on a factor of 0.9.

In Fig. 3(b), non-zero values were detected first, and cIMT
was then estimated at each column. From the top to bottom,
after the first non-zero point, if any gap (zeros) was found,
then cIMT was determined by the distance between the first
non-zero point to the last zero point. If no gap was found
after the first non-zero point, cIMT was set as zero. The
final outcome of cIMT from one patch was the average of
all non-zero cIMT values.

IV. EXPERIMENTS & RESULTS

A. CNN-based ROI Detection
For CNN-based experiments, the first frame of each scan

was cropped to generate 1,974 patches. After selection,
154 positive and 198 negative patches were used in the
experiments. Image augmentation was applied to increase
the training data size by reflecting the image along the x-
axis (horizontally). The final data size and data partition for
CNN training and testing are presented in Table I. To take
advantage of well-known pre-trained image classification
networks, transfer learning was applied to fine tune six
networks, which include googlenet, vgg16, vgg19, resnet18,
resnet50, and resnet101. The performance of each resulting
model, measured using classification accuracy, is given in
Table II. The best performance was from vgg19 and resnet50
(94.85%) followed by vgg16 (93.38%).

B. RNN-based ROI Detection
RNN-based approaches, such as Long Short-Term Mem-

ory networks (LSTM) [10], have been used effectively
for image classification by taking the temporal information
within images into account [13]. Unlike CNNs which use
only a single frame, a number of consecutive frames were
used as input to the LSTM. As described in Section III.A,
after cropping, one frame was divided into 6× 7 patches,
for N frames, the dimension of the image array is 6×7×N.
There were 300 patches in total from the first frame (150 per



TABLE I
DATA PARTITION FOR CNN TRAINING & TESTING

Class Size Training
(70%)

Training After
Augmentation

Test
(30%)

Pos 154 108 216 46
Neg 198 108 216 90

TABLE II
RESULTS OF CLASSIFICATION BY CNN

Classifiers Number of
Layers

Training Time
(mins)

Accuracy
(%)

googlenet 144 12 91.91
vgg16 41 61 93.38
vgg19 47 87 94.85

resnet18 71 15 88.24
resnet50 177 78 94.85

resnet101 347 111 92.65

class), which were also used in the experiments for CNN.
The patches at the same location from subsequent frames
were concatenated to form the sequences used in LSTM
training and testing.

To study how the number of frames may affect the LSTM
performance, evaluation was carried out varying the number
of frames from 5 to 25 (since no significant improvement
was observed for more than 25 frames). The number of
sequences for LSTM training and testing under the different
numbers of frames are shown in Table III. The performance,
measured using classification accuracy, of LSTM models
using different numbers of frames and hidden layers (HDL)
are shown in Table IV. Overall LSTM models achieve
better accuracy than the CNN-based models and the best
performance improved 4.75% by LSTM. Furthermore, the
average performance is improved with the increase of the
number of frames from 5 to 15, then remains stable from 20
to 25, which suggests there might be the optimal number of
frames to maximise the performance of LSTM (this can be
further investigated in the future).

TABLE III
NUMBER OF SEQUENCES IN LSTM UNDER DIFFERENT NUMBERS OF

FRAMES

Frames 5 10 15 20 25
Training 1050 2100 3150 4200 5250
Testing 450 900 1350 1800 2250

TABLE IV
ACCURACY (%) BY LSTM UNDER DIFFERENT NUMBER OF FRAMES

AND HDL

HDL Number of Frames
5 10 15 20 25

2 94.67 96.44 99.04 94.94 95.42
5 97.11 97.78 99.56 97.83 98.22

10 98.22 99.67 99.78 99.44 99.60
25 99.33 98.67 99.56 99.83 98.71
50 99.33 99.00 99.70 99.28 99.91
75 98.89 99.33 100.00 99.83 98.62

Mean 97.93 98.48 99.60 98.53 98.41

Fig. 4. Examples of cIMT times series obtained from four scans.

C. Study of Temporal Information of cIMT
1) cIMT Time Series: In our recent study [4], ROI was

manually selected by a clinician, the cIMT was measured
from the frames at three peaks of R wave and then averaged
to provide one cIMT value for each scan. In this study, the
ROI was automatically identified by LSTM at the first frame,
then cIMT was estimated from the following 150 frames at
the same location of ROI patch, from which a cIMT time
series can be obtained and additional temporal features can
be extracted.

Fig. 4 presents four examples of cIMT time series obtained
from one identified ROI patch in each scan. The x-axis
shows the frame number, and the y-axis shows the mean
of cIMT estimated from the ROI patch per frame, which
was the average of all non-zero cIMT values estimated per
column in the patch (as described in Section III.B). Note
the unit of cIMT is pixel not mm because the focus of this
study was to extract the temporal features of cIMT, not to
improve the accuracy of estimation (which can be considered
in future work). It is observed that the time series are not
very smooth, which can be due to the inconsistency of the
ROI (such as change of image intensity or movement of ROI
location) in adjacent frames of the ultrasound sequence. For
improvement, adaptive threshold and ROI tracking will be
considered in the future.

2) Frequency of cIMT time series vs Heart Rate: From
cIMT time series Fig. 4, min, max, and mean can be
obtained. It is also noticed that the cIMT time series has
a similar pattern resembles the pulse wave. For instance,
time series from scan ID-003 has approximately a period
of 24 frames (0.8sec based on frame rate 30fps), hence a
frequency of 1.25, which is equal to 75 beats per minute
(bpm). The clinical record shows that patient (for scan ID-
003)’s heart rate is 76bpm. For further validation, Fig. 5
presents the seven patients’ heart rates (x-axis) compared
to those estimated from their cIMT time series (y-axis)
with corresponding values. The correlation coefficients is
0.95, which indicates that the cIMT time series may have a



Fig. 5. Comparison of patients’ heart rate with that estimated from the
cIMT time series.

similar dynamic pattern as the heart beat. The finding from
evaluation of cIMT over the cardiac cycle provide additional
information in the assessment of arterial dynamics, which
may potentially improve the risk assessment of CAD in
future work.

3) Distribution of cIMT Time Series: A boxplot for cIMT
time series from seven patients is given in Fig. 6 (scan ID-
015 and ID-016 belong to one patient), in which the time
points with zero cIMT values were excluded. It can be seen
that the cIMT values from ID-003, ID-015, ID-016 and ID-
165 are more tightly grouped (hence less variability) than the
others, except ID-003 has two outlier points. The observation
is accordant with their time series plotted in Fig. 4. The
reason for the lower value for ID-003 was image intensity
changes within the frames and a fixed threshold adjust factor
(0.9) used in this experiment here was not suitable for
the frame with relatively low intensity, which can result
in zero or low cIMT values. Adaptive thresholds or more
advanced approaches such as semantic segmentation by deep
learning will be considered in future. The reason for higher
values (in ID-009) was because the ROI detected at the first
frame shifted to other neighbour patches in the following
frames which caused poor cIMT estimation. Incorporating
ROI tracking within the consecutive frames will also be
considered in future work.

V. CONCLUSIONS
This study presented a novel framework to investigate the

temporal features of cIMT time series constructed from B-
mode ultrasound imaging. Unlike CNN-based approaches
based on patch images from single frames, we have proposed
using RNNs that can use consecutive frames to detect the
ROI for cIMT estimation, in which the best performance was
improved by 4.75% compared to CNN-based methods. From
the cIMT time series, not only additional information such
as min, max and mean of cIMT can be extracted, but also the
frequency of cIMT time series was found to closely correlate
with heart rate, which may further imply the potential values
and applications of cIMT time series for clinical studies.
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