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Abstract: Alzheimer’s disease (AD) is a complex neurodegenerative condition that is characterized by
the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining
the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown.
Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD
have been identified. To date, only eight AD drugs have ever gained regulatory approval, including
six symptomatic and two disease-modifying drugs. However, not all are available in all countries and
high costs associated with new disease-modifying biologics prevent large proportions of the patient
population from accessing them. With the current patient population expected to triple by 2050, it is
imperative that new, effective, and affordable drugs become available to patients. Traditional drug
development strategies have a 99% failure rate in AD, which is far higher than in other disease areas.
Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility
prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug
repurposing approach may address some of the limitations and barriers that traditional strategies
face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies
may expedite the discovery of alternative, effective, and more affordable treatment options for a
rapidly expanding patient population in comparison with traditional drug development methods.

Keywords: stratified medicine; personalised medicine; drug repurposing; Alzheimer’s disease

1. Introduction

In 1901, Auguste Deter, a 51-year-old female patient was admitted to a German asylum
after becoming increasingly jealous of her husband and experiencing progressive memory
loss. After her death in 1906, an autopsy was performed, and samples of her brain were
sent to Alois Alzheimer who noted that there were “tangles of fibrils” in place of neurons
and a “deposition of a special substance” throughout the cortex. Although Alzheimer noted
that there was an increasing number of similar cases [1,2], the disease was not named until
1910 when Emil Kraepelin used the term “Alzheimer’s disease” in a medical textbook [3,4].

In over a century since this first case of Alzheimer’s disease (AD), we have identified
that the “tangle of fibrils” and the “special substance” are the characteristic hallmarks of
the disease: neurofibrillary tangles of hyperphosphorylated tau protein and amyloid-beta
plaques. Despite our increasing understanding that AD is a complex neurodegenerative
disease, the underlying aetiology remains unknown. Since 1901, the number of cases of
dementia has risen to an estimated 55 million worldwide [5], with AD contributing to
approximately 60–70% of dementia cases [5,6].

Despite this, treatment options for AD remain limited, with only four drugs on the
market that target the symptoms of the disease being widely available [7]. Consequently,
there remains an unmet need for effective, affordable, and widely available treatments that
is not currently being met with traditional drug development strategies.
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2. Pathophysiology of Alzheimer’s Disease

While the underlying aetiology of AD is unclear and theories that have been suggested
remain largely unproven, pathophysiological understanding has increased in the last
hundred years. At the macroscopic level, there is moderate cortical atrophy that often
results in enlarged ventricles. The sulci of the frontal and temporal cortices appear to be
widened, and the overall brain weight is decreased in patients with severe disease [8]. At
the microscopic level, there is the formation of amyloid-beta plaques and neurofibrillary
tangles [2], neuroinflammation [9], N-methyl-d-aspartate receptor overactivation [10], and
a reduction in acetylcholine levels [11].

It has been suggested that amyloid-beta (Aβ) plaques are the earliest manifestation
of the disease, which have been identified up to 15 years before disease onset [12]. Aβ

plaques are formed from Aβ peptides that are derived from the proteolytic cleavage of
amyloid precursor protein (APP), which is not itself neurotoxic. APP is processed via
two pathways: the non-amyloidogenic pathway and the amyloidogenic pathway [13]. In
the non-amyloidogenic pathway, APP is broken down by alpha- and gamma-secretase
to produce a long-secreted form of APP (sAPPalpha) and C-terminal fragments (p3 and
ACID50) that may enhance neuronal survival and improve memory formation [13,14]. In
the amyloidogenic pathway, APP is cleaved by beta- and gamma-secretase to produce
APP intracellular domain (ACID) and Aβ. Aβ has several isoforms that range from 39 to
43 amino acids in length. When the ratio of insoluble Aβ42 to Aβ40 rises, extracellular Aβ

fibrils begin to form, which then aggregate to form plaques [15]. The amyloid hypothesis
for the aetiology of AD was first proposed in 1991, suggesting that the build-up of Aβ is
the underlying cause of disease [16]. However, some questions about this hypothesis have
been raised as Aβ plaques are also found in some cognitively healthy individuals [17]. It is
currently unclear if, given enough time, these individuals would go on to develop AD [18].
More research is necessary to establish whether the build-up of Aβ plaques is truly the
underlying cause of the disease.

The neurofibrillary tangles found in AD are composed of tau protein, which in healthy
individuals, plays a key role in the assembly and support of microtubules [19]. In AD, tau
becomes abnormally hyperphosphorylated, allowing it to dissociate from the microtubule
and aggregate into neurofibrillary tangles. Eventually, as more microtubules become
destabilised, cell death occurs [20]. Some studies report that tau pathology is the first to
appear in patients and that the development of tau tangles is what triggers the development
of Aβ plaques [21]. However, conflicting findings report that Aβ plaques occur first, and
this is what triggers the development of tau tangles [22]. A tau hypothesis explaining that
tau is the causative agent of the disease has also been suggested [23].

A third theory suggests that the overactivation of N-methyl-D-aspartate (NMDA)
receptors plays a key role in the development of AD [24]. Calcium homeostasis is necessary
for regulating the energy production that maintains neuronal plasticity and synaptic trans-
mission [25], and when functioning normally, NMDA receptors enable the correct levels of
calcium to enter the cell, which allows for normal memory and learning [26]. However, in
AD, there is an influx of Ca2+ through these receptors at rest, and this results in increased
intracellular levels of calcium, which eventually leads to the loss of synaptic function and
cell death due to excitotoxicity [24,27].

Neuroinflammation is also found in the brains of AD patients and appears to be caused
by multiple factors. Normally, microglial cells monitor pathogens or degenerating neurons,
but in AD, they become activated and are found at increased levels around plaques [28].
The initial acute inflammatory response is thought to help clear Aβ deposits, but factors
such as pathological ageing and genetic mutations promote a sustained response from
the microglia, leading to chronic neuroinflammation [9]. Chronically activated microglia
produce proinflammatory mediators such as reactive oxygen species and cytokines, which
further exacerbate inflammation, resulting in a vicious cycle of neurodegeneration and
increased microglial activation [29,30]. As microglia become less able to clear Aβ deposits,
peripheral macrophages may be recruited to help. However, it is likely that this further
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exacerbates neuroinflammation [31]. Over time, chronic inflammation results in structural
changes in neurons, eventually leading to neuronal degeneration, and the inflammation
both facilitates and exacerbates the development of plaques and tangles [9,31].

In healthy individuals, cholinergic neurons release acetylcholine into the synaptic
cleft, which interacts with cholinergic receptors on post-synaptic neurons. Acetylcholine
remains active until it is hydrolysed by either acetylcholinesterase or butyrlcholinesterase
into choline and other by-products [32,33]. In AD, there is a severe degeneration of the
cholinergic neurons in the Nucleus Basalis of Meynert, reducing the number of neurons
from ~500,000 in the healthy brain to less than 100,000 in severe AD [34]. The remaining
neurons exhibit a decreased level of choline acetyltransferase, leading to less acetylcholine
being synthesised [33]. As acetylcholine is essential for learning, memory, and attention [35],
the cholinergic hypothesis for the aetiology of AD suggests that the decrease in the level of
acetylcholine is responsible for the development of the disease [11,34,36].

3. Factors Contributing to Alzheimer’s Disease
3.1. Non-Modifiable Risk Factors

Although none of the theories describing the aetiology of AD have been proven,
several non-modifiable factors that increase the risk of developing the disease have been
identified. Currently, the AD patient population is stratified into two groups based on age
of onset. An arbitrary age of 65 years is typically used to determine strata, but as there is no
definitive cut-off: this value may vary depending on the individual study [37]. Within these
two groups, patients can be described as having either familial or sporadic AD; sporadic
AD dominates and is associated with 90–95% of all cases [38–41].

For late-onset AD (LOAD), three major non-modifiable risk factors have been iden-
tified [42]. Age is the greatest risk factor for LOAD, with incidence and prevalence
both drastically increasing with age. There are several ways in which ageing could con-
tribute to increased susceptibility to AD, including through alterations in amyloid-beta
metabolism [43,44], increased inflammation [45], and an increase in neurodegeneration
coupled with a decrease in the ability to regenerate the white matter that has been dam-
aged [46].

Sex is another non-modifiable risk factor, with women having a higher prevalence
of AD than men (7.13% compared with 3.31%) as well as a higher incidence rate than
men (13.25 compared with 7.02) [47]. Currently, it is unclear if women are also more
susceptible to early-onset AD (EOAD) than men [48]. This higher incidence and prevalence
may be partly explained by women on average living 4.5 years longer than men [49].
However, with 60% of all AD patients being post-menopausal women, it is possible that
hormonal changes may also contribute [50–52]. In animal and in vitro studies, oestrogen
was found to play several neuroprotective roles including promoting survival of cholinergic
neurons, metabolism of APP through the non-amyloidogenic pathway, and via antioxidant
properties [53]. Hormonal changes experienced in menopause can result in altered sleeping
patterns [54] and cognitive dysfunction [55]. Individually, these symptoms are risk factors
for AD, but in combination with decreasing oestrogen, they may explain why women are
at a higher risk of developing the disease than men [50,52].

The apolipoprotein E (APOE) gene on chromosome 19 also plays a role in the devel-
opment of LOAD [56]. There are three alleles of APOE in humans. APOEε3 is the most
common isoform and does not influence the risk of developing AD. APOEε2 is the rarest
isoform and is associated with a decreased risk of developing AD. APOEε4 is associated
with an increased risk of developing AD: one copy of this allele is associated with a three-
fold increase, while two copies increase the risk of developing AD twelve-fold [57–59].
Neuroimaging studies appear to agree with this observation, having shown that APOEε2
or ε3 carriers have fewer plaques than ε4 carriers [60].

Early-onset Alzheimer’s disease (EOAD) is considered to begin before the age of
65 years and contributes to an estimated 5–10% of all cases of AD [37]. The risk factors for
EOAD are primarily genetic, with three genes responsible for 10–15% of familial cases [61].
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Presenilin-1 and presenilin-2, encoded by PSEN-1 and PSEN-2, respectively, are components
of gamma-secretase [62]. While mutations in PSEN-1 are more common, it has been
suggested that mutations in either gene contribute to EOAD by altering the capabilities of γ-
secretase, which results in increased production of Aβ42 [63,64]. Mutations in the amyloid
precursor protein (APP) gene typically result in increased levels of plaque formation by
increasing the amount of Aβ present, but the Icelandic mutation is protective and reduces
levels of Aβ by up to 40% [65,66]. All three genes play a role in the amyloidogenic pathway,
and mutations result in either more amyloid being produced or a higher ratio of Aβ42
being produced, leading to increased formation of Aβ plaques [67].

As only a small proportion of EOAD cases can be explained by mutations in APP,
PSEN-1, and PSEN-2, and as a large proportion of remaining cases do not show a Mendelian
inheritance pattern, it is highly likely that other genes are also involved including SORL1
and TREM2 [37]. Mutated forms of the sortilin-related receptor gene (SORL1) are thought
to decrease the removal of Aβ peptides for clearance, while mutated forms of the triggering
receptor expressed on myeloid cells 2 gene (TREM2) are thought to affect the amyloid and
tau pathways [20,37,68,69].

3.2. Modifiable Risk Factors

In addition to the non-modifiable risk factors, several modifiable factors have also been
identified. A meta-analysis by Livingston et al. [70] identified 12 factors that, if controlled,
could potentially prevent or delay the onset of dementia in up to 40% of cases. This in-
cluded actions such as controlling diabetes and hypertension, preventing head injuries, and
reducing smoking, air pollution, and midlife obesity rates to reduce the build-up of neu-
ropathological damage. Other actions such as treating hearing loss, maintaining an active
social life, and achieving high levels of educational attainment were identified as helping
to increase and/or maintain the cognitive reserve. Some actions including maintaining
frequent exercise, reducing the occurrence of depression, and avoiding excess alcohol were
identified as beneficial in both reducing neuropathological injuries and increasing and/or
maintaining cognitive reserve. A combination of all these actions is needed to help reduce
the number of people affected by dementia [70].

Obesity, specifically mid-life obesity, is a risk factor for developing dementia. There
are several reasons for this including increasing insulin resistance and altered inflammatory
pathways, which contribute to neuroinflammation [71]. Obesity also increases the risk of
developing hypertension, which in and of itself is a risk factor for developing AD. It is
thought that hypertension causes damage to the vascular walls, leading to hypoperfusion
and ischemia, which increases neuroinflammation [72,73].

Obesity also increases the risk of developing type 2 diabetes, which is another risk
factor associated with AD [74]. Type 2 diabetes is thought to contribute to AD in several
ways; insulin resistance alters insulin signalling, which is normally neurotrophic and neu-
roprotective [75]. Hyperglycaemia may also contribute by altering neuronal activity and
contributing to higher levels of Aβ in the brain. Diabetes also likely activates multiple in-
flammatory pathways and therefore contributes to and exacerbates the neuroinflammation
occurring in AD [76].

Physical inactivity is also considered to be a risk factor for AD, with multiple studies
identifying regular exercise as an easily modifiable way to reduce the likelihood of devel-
oping dementia or AD [77–79]. Studies have also found that those who regularly exercise
have a larger hippocampus [80] and better spatial memory [81], while another study found
that women who regularly walk are less likely to experience a cognitive decline [82].

One way to control some of these metabolic risk factors would be to encourage
the uptake of the Mediterranean-DASH Diet Intervention for Neurodegenerative Delay
(MIND). The MIND diet is a blend of the Mediterranean and the Dietary Approaches to
Stop Hypertension (DASH) [83] diets, with a specific focus on increasing the consumption
of green leafy vegetables and berries while decreasing the intake of animal products [84].
Multiple studies have shown that the MIND diet can slow the rate of cognitive decline and
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that a higher adherence to the MIND diet is associated with a lower risk of developing
AD [84–86].

With treatment options for AD currently limited, public health initiatives to reduce
the number of new cases of AD and dementia would be extremely beneficial. While a
significant proportion of cases may be preventable, new treatments are still necessary for
the remaining patient population.

4. Approved Pharmaceutical Interventions

Despite the vast and rapidly increasing patient population, the number of approved
treatments for AD is limited, with only eight drugs ever gaining approval from a drug regu-
latory authority. Of these, only two are potentially disease-modifying, while the remaining
six act only to alleviate some of the symptoms that patients experience [87–94]. Some
drugs are not available worldwide and some have been removed from the market, further
limiting treatment options for patients [95]. Approved drugs and associated mechanism of
action, treatment type, disease stage, approval date, availability and cost are summarised
in Table 1.

4.1. Symptomatic Therapies
4.1.1. Cholinesterase Inhibitors

The oldest and largest class of drugs for AD are cholinesterase inhibitors, which work
to inhibit the action of acetylcholinesterase and/or butrylcholinesterase to increase the
concentration of acetylcholine in synapses [96,97].

Tacrine was first synthesised in 1945 with the aim of creating an antiseptic to treat
wounded soldiers [98,99], but in 1980, it was discovered that it acted as a cholinesterase
inhibitor [100]. Studies investigating its use in AD started in 1984, and it became the first
approved drug for use in mild to moderate AD by the Food and Drug Administration
(FDA) in 1993 [87]. Although studies suggest that tacrine provides small but significant
benefits to patients, it does not alter the disease course [101,102]. Regardless, tacrine was
withdrawn from the market in 2013 due to hepatotoxic side effects [103,104].

In 1983, Donepezil was developed in Japan [105], and in 1996, it was approved by
the FDA for use in mild to moderate AD. In 2010, the FDA approved a higher dosage
of 23 mg/day to treat moderate to severe disease [89]. Both tacrine and donepezil are
reversible inhibitors, but, unlike tacrine, donepezil is highly specific and only inhibits the
action of acetylcholine. Although the drug can provide mild relief from the symptoms of
AD, cognitive decline continues, and the disease progression is not altered [106].

In 2000, the FDA approved rivastigmine, a pseudo-irreversible selective inhibitor of
both acetylcholinesterase and butrylcholinesterase, to treat mild to moderate AD [107].
With gastrointestinal side effects being common with rivastigmine, administration via a
transdermal patch is recommended [108].

Galantamine was first discovered in 1947 when it was isolated from the common
snowdrop [109,110]. Synthetic forms were developed and first approved as a treatment for
AD in Sweden in 2000 [88]. The FDA later approved it in 2001 [93]. Galantamine works in
two ways: it acts as an inhibitor of acetylcholinesterase and as a potentiator of nicotinic
and muscarinic acetylcholine receptors [103]. Similar to other cholinesterase inhibitors,
galantamine only provides mild symptomatic relief and does not alter the course of the
disease [95].

4.1.2. N-Methyl-D-Aspartate Receptor Antagonist

Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist
that preferentially binds to open calcium channels. This reduces the influx of ions through
the NMDA receptors and prevents the pathological build-up of Ca2+ and associated exci-
totoxicity [95]. Memantine is considered a second-line treatment and was first approved
in Europe in 2002 and in the USA in 2003 [90,111]. Clinical studies have found that me-
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mantine provided small but significant benefits to patients [112,113]. However, similar to
cholinesterase inhibitors, it does not modify disease progression [114].

4.1.3. Sodium Oligomannate

In 2019, sodium oligomannate received conditional approval in China for use in
patients with mild to moderate AD [115,116]. Sodium oligomannate is an oligosaccharide
derived from brown algae that is thought to work by targeting multiple Aβ subregions
and inhibiting the aggregation of Aβ [92]. It may also benefit patients by restoring the
balance of the gut microbiome and reducing the levels of immune cells in the brain to help
inhibit neuroinflammation. Reportedly, these effects protect synaptic integrity and have
been found to improve cognition in vitro and in mouse models of disease [117]. Phase IV
trials are currently being conducted in China [118], while a phase III trial recruiting patients
across North America, Europe and China was suspended due to the impact of COVID-19
and will be restarted “at the right time” [119].

4.2. Disease Modifying Treatments
Monoclonal Antibodies

Aducanumab was first approved by the FDA in June 2021. It is a human immunoglob-
ulin G1 monoclonal antibody that has been reported to cross the blood–brain barrier (BBB)
and react with aggregated forms of Aβ to reduce the number of plaques in the brain [120].
The FDA’s decision to approve aducanumab has not been met without controversy due
to its decision being largely based on two phase III clinical trials (EMERGE and EN-
GAGE) [91,121]. Biogen, the manufacturer, prematurely halted these trials, stating that they
were unlikely to meet their endpoint goals [122]. However, several months later, Biogen
stated that upon closer analysis of the data, the slowing of cognitive decline was clinically
significant in the group receiving the highest drug dosage in one of the trials [123,124]. The
FDA was advised by an independent panel of neurologists and biostatisticians that these
results did not conclusively prove the benefits of the drug. Despite concerns, aducanumab
received FDA approval through the accelerated approvals pathway in the United States of
America [91,120,125–127].

The side effects of aducanumab are severe, with 35.2% of trial patients experiencing
brain oedema and 19.1% experiencing microhaemorrhages [128]. As a result, additional
costs and resources will need to be allocated to monitor for these effects in addition to the
USD 28,600 price tag per patient per year for the drug [129,130]. With an estimated 60% of
dementia patients living in low- and middle-income countries [131], this drug is unaffordable
for many. Availability is also an issue. Due to the yet unproven results and severe side effects,
the European Medicines Agency declined to approve the drug, stating that “the benefits of
Adulhelm [aducanumab] did not outweigh its risks” [132,133]. The Japanese Health Ministry
also declined approval in December 2021 due to inconclusive results [134]. In June 2022,
Biogen withdrew its application for approval in Canada following an indication from Health
Canada that its data were not sufficient to warrant approval [135].

Lecanemab is another G1 monoclonal human immunoglobulin antibody that targets
soluble Aβ that has become aggregated. In a phase II clinical trial testing the drug in
patients with early-stage AD, the 12-month endpoint goal of an 80% probability of at least a
25% reduction in the rate of cognitive decline was not met [136]. However, at 18 months of
treatment, it was shown that there was a reduction in brain amyloid levels. The drug was
generally well-tolerated, but like other amyloid-targeting drugs, some patients experienced
micro- and macrohaemorrhages in the brain [136]. In May 2022, an application was made to
the FDA based on phase II data. The FDA granted priority review status to the application
and granted accelerated approval to the drug on 6 January 2023 [137,138]. Lecanemab
then received traditional approval from the FDA on 6 July 2023 because a phase III trial
showed that Lecanemab reduced amyloid burden in early-stage AD and was associated
with a slower rate of cognitive decline [94,139]. Applications for approval have also been
submitted to European, Japanese, and Chinese regulatory boards [140].



Biomolecules 2024, 14, 11 7 of 26

Table 1. Table summarising the approved pharmaceutical drugs available for Alzheimer’s disease patients. The cost of the cholinesterase inhibitors and memantine
is variable due to the availability of generic versions.

Drug Name Mechanism of
Action Treatment Type Disease Stage Common Side Effects First

Approval Availability Cost (per Year) References

Tacrine Cholinesterase
Inhibitor

Symptomatic
therapy Mild to moderate

Hepatoxicity, liver enzyme
elevations, gastrointestinal
issues, dizziness, headache

1993 Withdrawn from
the market in 2013

N/A
(withdrawn from

market)
[103,141]

Donepezil Cholinesterase
Inhibitor

Symptomatic
therapy Mild to moderate

Agitation, dizziness,
gastrointestinal issues,

hallucinations, headache,
muscle cramps, sleep

disorders, syncope

1996 90+ countries ~GBP
£9.12–£1006.68 [95,103,142–144]

Rivastigmine Cholinesterase
Inhibitor

Symptomatic
therapy

Mild, moderate,
and severe

Anxiety, arrythmia,
depression, gastrointestinal

issues, headaches,
hypertension, syncope,

tremor

2000 80+ countries ~GBP £564.72 [95,103,143,145,146]

Galantamine Cholinesterase
Inhibitor

Symptomatic
therapy Mild to moderate

Arrythmia, asthenia,
depression, dizziness,
gastrointestinal issues,

hypertension,
hallucinations, headache,
muscle spasms, syncope

2000
European Union,

USA, Canada,
Japan, and more

~GBP
£478.80–£889.20 [95,103,143,147,148]

Memantine
N-methyl-D-

aspartate receptor
antagonist

Symptomatic
therapy Moderate to severe

Balance impairment,
constipation, dyspnoea,
headache, hypertension

2002
Europe, USA,

Canada, China and
more

~GBP
£19.20–£698.16 [95,103,149,150]

Sodium
Oligomannate

Amyloid-targeting,
restoration of gut

microbiome

Symptomatic
therapy Mild to moderate

Nasopharyngitis,
haematuria, elevated liver

enzymes and LDL
cholesterol

2019 China ~USD $6200 [115–117,151]

Aducanumab Amyloid-targeting Disease-modifying Mild Amyloid-related imaging
abnormalities 2021 USA USD

$28,600 [91,121]

Lecanemab Amyloid-targeting Disease-modifying Mild Amyloid-related imaging
abnormalities 2023 USA USD $26,500 [140,152]
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5. Alternative Therapies

With so few treatment options available for patients, it is understandable that patients
may turn to alternative therapies.

Huperzine A is an alkaloid that is isolated from the Huperzia Serrata plant. For cen-
turies, Huperzia serrata has been used in traditional Chinese medicine to treat schizophre-
nia and memory loss with extensive studies identifying Huperzine A as the molecule that
contributes to the effects of the treatment [153]. Huperzine A crosses the BBB and acts as a
reversible and selective acetylcholinesterase inhibitor. There is also evidence that it acts as
an NMDA receptor antagonist [154]. Several clinical trials have been conducted to deter-
mine the benefits of Huperzine A in the AD patient population, but the results have been
mixed, with some finding that Huperzine A provides some benefit to patients [155–157],
while another study found it was no better than placebo [158].

Currently, two medical foods have been specifically marketed for AD in the USA
and/or Europe that aim to relieve symptoms of the disease. According to the FDA, medical
foods are “a food which is formulated to be consumed. . .under the supervision of a physi-
cian and which is intended for the specific dietary management of a disease or condition for
which distinctive nutritional requirements. . .are established by medical evaluation” [159].

The first medical food for AD was launched in 2009 under the brand name Axona,
which aimed to target the metabolic deficiencies associated with AD. In early AD, brain
glucose metabolism and utilization appear reduced [160], possibly due to a reduction in the
expression of glucose transporters [161], forcing the brain to rely on other energy sources.
Axona is a powder mix made from medium-chain triglycerides (MCTs), which can be
metabolized into ketone bodies by the liver. It is thought that as ketone bodies can cross the
BBB, they can act as an alternative energy source for the neuronal mitochondria [162,163].
Results from a clinical trial found some benefits for APOEε4-negative patients [164]. How-
ever, in 2013, Accera, the manufacturer of Axona, drew criticism from the FDA, who
warned the company that their product was misbranded as a medical food as “there are no
distinctive nutritional requirements or unique nutrient needs for individuals with mild to
moderate Alzheimer’s disease” and instead, Axona should be classified as a drug [165].
In response, Accera set up a phase III clinical trial testing AC-1204, a product which has a
similar mechanism to Axona, but a different formulation. Unfortunately, AC-1204 failed to
improve cognition in patients with mild to moderate AD [166].

Souevenaid is another medical food created from a blend of docosahexaenoic acid,
eicosapentaenoic acid, and choline combined with vitamins and minerals, which the manu-
facturer suggests “strengthens synapses to support memory function long term” [167,168].
A meta-analysis of clinical trials showed that Souvenaid led to improvements in verbal re-
call in patients with early-stage AD but had no beneficial effects in patients with later-stage
AD [169]. However, other studies report that there are no benefits to patients [168,170].

In addition, other supplements and extracts claim to help with or prevent memory
loss, but currently, the evidence to support such claims is lacking [171,172]. With the verdict
on these alternative therapies being mixed, it is unlikely that they will address the need
for targeted pharmaceutical interventions. However, under the supervision of a physician,
some patients may benefit from alternative therapies alongside other treatment options.

6. Drugs under Development

As of January 2023, 141 drugs were being tested in 178 clinical trials, with the majority
of these being disease-modifying [173].

Donanemab is an immunoglobulin G1 monoclonal antibody that targets an N-terminal
truncated form of Aβ that is only found in established plaques. A phase III trial found
that there is a significant slowing of clinical progression in patients and that after 1 year of
treatment, 47% of patients receiving the drug had no disease progression in comparison
with 29% receiving placebo. Similar to other amyloid-targeting drugs, amyloid-related
imaging abnormalities were an associated side effect in patients [174]. An application for
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FDA approval has been submitted, and applications for approval with global regulatory
boards are underway [175].

Gantenerumab is a fully human G1 immunoglobulin antibody that binds aggregated
Aβ and clears plaques via Fc-mediated phagocytosis. A phase II trial found that subcuta-
neous doses of up to 1200 mg of gantenerumab administered every four weeks resulted in
significant reductions in Aβ burden in prodromal to moderate AD patients. A follow-up
from this study demonstrated that doses of the drug continued to reduce plaque burden
up to 36 months after treatment started [176]. However, two phase III clinical trials, GRAD-
UATE I and GRADUATE II, did not meet their clinical endpoint goals of slowing cognitive
decline in patients with early AD [177].

Despite the significant number of drugs in the development pipeline, many will not
progress to the clinic. Mirtazapine, an antidepressant, did not help with agitation in AD
patients and was associated with a potentially higher mortality rate [178]. Solanezumab, a
G1 monoclonal antibody that binds to Aβ, failed to significantly reduce cognitive decline
in a phase III clinical trial [179]. Toriluzole, a new formulation of riluzole, which treats
amyotrophic lateral sclerosis, did not perform better than a placebo in reducing brain
volume loss or reducing the symptoms of cognitive impairment [180]. With so many
failures in the search for a new treatment [181], it raises questions about why failure is
seemingly the rule rather than the exception.

7. Why Do Drugs for Alzheimer’s Disease Keep Failing?

The failure rate for new drugs is extremely high in all disease areas, with an estimated
90% failing to ever make it to the market [182], but in AD, this is considerably higher,
with over 99% of drugs failing to reach the market [181]. Between 2003 and 2019, no new
drugs gained regulatory approval for use in AD anywhere worldwide, despite hundreds
of clinical trials [183]. This has resulted in legitimate enquiry; why do drugs for AD keep
failing and what can be done to overcome this?

As the exact cause of AD is yet to be identified, it is difficult to know exactly which
pathological change should be targeted. Over the last decade, the most common target for
new treatments has been Aβ plaques, but with different isoforms and multiple termini,
choosing which to target to produce positive outcomes with minimal side effects has
proven difficult [184]. It is also unclear how beneficial it is to exclusively target one aspect
of the disease pathology. With increasing evidence that AD is a complex multifactorial
condition [185], it is likely that a combination of therapies targeting multiple pathways or
pathological changes will be needed.

It is also possible that drugs are being tested too late in the disease course. With evi-
dence that pathological changes associated with AD begin 10 to 20 years before symptoms
occur [8,12,186], it is possible that irreversible damage may have occurred in the brain by
the time the patient is diagnosed. With many clinical trials only including symptomatic
patients, it is possible that the disease is already too advanced for the drug, and this leads
to findings appearing less significant than they are.

Misdiagnosis could play a role in the high rate of failure, particularly in patients
with early-onset dementia (EOD) [187]. While AD is the most common cause of dementia,
it only accounts for one-third of EOD cases. It is thought that many EOD patients are
misdiagnosed, with anywhere from 30 to 50% receiving an inaccurate diagnosis [188]. An
accurate, timely diagnosis is essential; cholinesterase inhibitors are beneficial in EOAD
but worsen symptoms in frontotemporal dementia [189]. With diagnosis largely based on
symptoms, family history, and memory assessments, it is understandable that the high
degree of overlap between conditions leads to misdiagnosis [190]. However, for enrolment
in clinical trials, a definitive method to determine the cause of a patient’s symptoms would
ensure that the drugs are being tested on AD patients and that the results are not skewed
by the inclusion of participants with other forms of dementia.

Although biomarkers are used in AD research settings, they are not routinely used in
the clinical setting. Cerebral spinal fluid (CSF) biomarkers such as Aβ, phosphorylated tau,
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and total tau levels generally are not used due to the invasiveness of obtaining samples,
while amyloid positron emission tomography (PET) imaging is not routinely used due
to the cost [191]. While identifying various AD biomarkers that could be easily obtained
would be exceptionally beneficial for diagnosing, stratifying, and staging patients, several
potential issues need to be addressed first.

Firstly, the relationship between pathological burden and disease progression is un-
clear [192,193]. Evidence of Aβ deposits has been found up to twenty years before the
onset of the disease [12], but the presence of Aβ plaques in the brain is not a guarantee of
developing AD, as some cognitively healthy elderly individuals have been found to have
high levels at autopsy [192]. Levels of tau pathology seem to correlate more closely with
cognitive decline [194], but there are still exceptions to this [195]. With a lack of clarity on
what level of plaque and tangles constitute AD, it makes it difficult to determine diagnostic
and prognostic biomarker thresholds based solely on plaque and tangle pathology.

Even if we could identify what these thresholds might be, it is likely unwise to
rely solely on biomarkers to diagnose patients, and instead, phenotypic data should be
considered alongside this [193]. This is particularly relevant in elderly patients as pure
AD pathology is seen in less than 30% of patients, with most patients having evidence of
multiple proteinopathies [196]. It also raises questions about how to classify patients if they
have positive biomarkers for AD and other neurological conditions. Should one disease be
given a preferential diagnosis over the other [193]?

Investigation into why some patients have amyloid-beta and tau pathology or have
copies of the APOEε4 allele but are cognitively healthy could help identify protective and
predictive biomarkers for AD. Predictive biomarkers would enable early pharmaceutical
intervention before symptoms and irreversible damage occur and would also allow for
targeted lifestyle interventions, such as introducing the MIND diet to help protect cogni-
tion [84]. Delaying or preventing AD is particularly important due to the lack of drugs that
halt disease progression.

It would also be beneficial if we could identify prognostic biomarkers that could be
used to determine which stage of the disease a patient is in. Currently, AD patients are
placed into one of five categories: mild cognitive impairment (MCI), mild AD, moderate
AD, moderately severe AD, and severe AD [197,198]. Determining these stages is largely
based on cognitive assessments, such as the Mini-Mental State Examination [197], which
can be influenced by factors such as prior educational attainment and, therefore, a patient
may be easily placed into the wrong category [199]. Having a more definitive way to
determine staging would be beneficial for clinical trials as it would allow manufacturers to
determine if their drug is effective at different stages of the disease.

Currently, some clinical trials, particularly those looking at interventions in preclinical
AD, use biomarkers such as Aβ-PET imaging and CSF biomarkers to determine whether
a patient is eligible to take part. In addition to the cost and invasiveness of obtaining
these biomarkers, the high rate of failure in identifying eligible participants is a pressing
issue considering the already difficult nature of recruiting participants into trials. The
identification of more easily obtained biomarkers (e.g., blood-based) could potentially
encourage more participants to sign up for clinical trials, as it is likely that the invasive
nature of CSF biomarkers discourages individuals from signing up [200,201]. This would
potentially help to speed up the clinical trial process, a large proportion of which is spent
on patient recruitment [202]. This has the potential to allow drugs to reach the market
faster. In combination with better diagnostic biomarkers, enabling patients to be diagnosed
earlier, and better prognostic biomarkers, which allow disease course to be more effectively
monitored, could potentially benefit the lives of millions of patients globally.

8. Additional Barriers to Treatment

Even if a drug makes it to the market, there is no guarantee that it will be available to all
patients. With most countries having their own drug regulatory boards, approval of a drug
in one country does not guarantee approval in another. Aducanumab is currently available
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in the USA but has not been approved in Europe, Japan, or Canada [120,132,134,135]. While
the full benefits of the drug have not yet been confirmed, its potential benefits are being
limited to a small portion of the global AD patient population.

This is further complicated by the WHO’s estimate that 60% of dementia patients are
living in low- and middle-income countries [5], resulting in the cost of drugs, particularly
new biologics, being an issue. Aducanumab was initially marketed at USD 56,000 per
patient per year [130], but in December 2021, Biogen, the manufacturer, reduced this to
USD 28,600 per patient per year to improve access to the drug in the USA [129]. De-
spite this reduction in cost, the drug will still be unaffordable for many patients globally.
Additionally, amyloid-targeting drugs commonly have microhaemorrhages and brain
oedema as side effects, and patients may have to undergo additional tests to monitor
these effects [120,128,130]. Not only will this add additional costs to an already expensive
treatment, but it will need additional resources that may not be easily allocated or available,
depending on the capability of the local healthcare system.

With the number of AD patients expected to rise [6], and limited treatment options on
the market, it is essential that new treatment options are discovered. Additional barriers
further reduce the number of drugs available to patients and with it likely being years
before new drugs make it through the traditional drug development pipeline, there is a clear
unmet need for new, effective, and affordable treatment options for the patient population.

9. Drug Repurposing

Some barriers and limitations could potentially be addressed by drug repurposing.
Drug repurposing is a technique that finds new uses for drugs which have been approved
for use in other conditions [203]. In comparison with traditional drug development, there
are many advantages including a lower risk of failure, as the drug has already been
proven safe for use in humans. Early clinical trial phases can potentially be bypassed
due to pre-existing safety profiles, leading to a shorter development timeline and reduced
costs [203,204].

Traditionally, drug repurposing has occurred accidentally, for example, thalidomide,
an antiemetic drug, was approved to treat morning sickness in 1957 but was banned in
most countries by 1962 due to its teratogenic effects [205,206]. In 1964, a patient presented
with Erythema nodosum leprosum (ENL), a systemic condition that develops after using
leprosy treatments for several years, and was prescribed thalidomide as a sedative. Within
48 h, all the patient’s skin lesions had cleared up. Following this, multiple clinical trials
were conducted and found that thalidomide cleared up to 90% of skin lesions within days
and completely resolved the condition within two weeks. Thalidomide was approved by
the FDA to treat ENL in 1998 [203,207,208].

In silico pharmacology could be considered to have begun in the 1960s when the
relationship between the pharmacokinetics, pharmacodynamics, and chemical structure
of a drug was identified with computational means [209]. Since then, advances in com-
putational power, allowing researchers to work with larger data sets and to run more
resource-intensive algorithms with more efficiency and accuracy, have contributed to the
development of computational approaches to drug repurposing. This has resulted in a
more methodological approach to drug repurposing, with computational drug repurposing
broadly categorized as either disease-based or drug-based [210,211].

Drug-based approaches rely on information about drugs, such as how a drug af-
fects gene expression. The Connectivity Map (CMap) project was developed by The
Broad Institute in 2006 and was the first Gene Expression Connectivity Mapping (GECM)
software [212]. Since then, other GECMs such as sscMap [213], cudaMap [214], and
QUADrATic [215] have been developed. GECM takes a gene signature containing a list
of differentially expressed genes in a disease state and compares this against a library of
expression profiles from small molecules. A matching algorithm then identifies which small
molecules can enhance the effects of the gene signature as well as those that suppress the
action of the gene signature and can therefore potentially be used to treat the disease [216].
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This methodology has identified potential treatments for several disease areas including
obesity [217], cancer [218], and osteoporosis [219].

Disease-based approaches rely on information about the disease. One approach
involves phenotypic information. As the phenotypic expression of a drug’s side effects
may share the same underlying pathways as the phenotypic expression of a disease, it
is thought the phenome could be used to identify drug repurposing candidates. For this
approach to work, an in-depth knowledge of molecular mechanisms is necessary [210,211].

However, drug repurposing is not without its limitations. In silico drug repurposing
attempts are often limited by the library of drugs being tested. sscMap, for example, has
a reference library of just over 1000 small molecules [213]. While it would be impractical,
time-consuming, and expensive to test every available drug, by not doing so, it is likely that
repurposing candidates are being missed. Once a drug-repurposing candidate has been
identified and passed through the development pathways, existing patents can prevent it
from being able to reach the market. It may also be difficult to patent a repurposed drug,
and consequently, this may result in a lower profit margin for pharmaceutical companies,
making drug repurposing less attractive than traditional development strategies [203].

Despite such limitations, drug repurposing has had success in other disease areas,
particularly in cancer medicine [220]. Metformin, an antidiabetic drug, has been repurposed
as an anti-cancer drug [221]. There are several pathways through which metformin works
against cancer including through the activation of the PI3K-mTOR signalling pathway,
which inhibits the proliferation of cancer cells with insulin receptor expression. It also
activates the AMP-activated protein kinase pathway, which ultimately inhibits cell sur-
vival [222,223]. There have also been successes in other neurodegenerative conditions, such
as Parkinson’s disease (PD). Amantadine, an anti-viral drug, was identified as a potential
PD treatment after a patient with PD symptoms improved while on the drug and declined
after stopping. This led to the first clinical trial of amantadine in PD in 1968 and FDA
approval in 1973 [224–226]. There are three potential mechanisms identified through which
this drug benefits PD patients: activation of pre- and post-synaptic dopamine systems,
inhibition of NMDA receptors [227], and anticholinergic activity [228].

10. Drug Repurposing in Alzheimer’s Disease

The benefits of drug repurposing could address the need for new more efficacious
therapies in AD. As illustrated in Figure 1, drugs developed through the traditional pipeline
take an average of 10–15 years [182] to create with an associated average cost of USD
1.3 billion [229]. As a result, drugs designed this way often have an exceptionally high
price for manufacturers to recoup this initial investment. However, drugs developed via
a repurposing pathway are on average approved after 6.5 years and have a much lower
associated cost of USD 300 million [230]. Drugs developed in this way could be sold at a
lower price, allowing a higher proportion of the patient population access. With 60% of
dementia patients living in low- and middle-income countries [5], this is a moral imperative.

A shortened development timeline would also be beneficial. With an increasingly
older population, it is estimated that by 2050, the number of AD patients will triple without
any form of effective intervention [231]. A shortened development pipeline, coupled with
pre-existing safety profiles, could result in drugs making it to market faster and therefore
being available to patients earlier than drugs developed using traditional methods.

As drug repurposing candidates have already been approved for use in other condi-
tions, their safety profile and side effects are known and well documented. This shortens
the development pipeline and allows for a lower associated cost. Aducanumab was de-
clined approval in multiple countries that stated that the side effects of the drug were too
severe [132,134], but for repurposed drugs, a track record of safety and efficacy in humans
is likely to increase the chance that the drug will be approved globally, allowing more
patients to access potentially life-changing AD drugs.
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Figure 1. The traditional drug development pipeline (in green) takes an average of 10 to 15 years [183]
with an associated average cost of USD 1.3 billion [230]. It starts with thousands of potential drug
candidates and screens them out throughout the process. If a candidate makes it to regulatory
approval, some patients will benefit from the drug, while others will not. In comparison, the
stratified medicine drug repurposing pipeline will take considerably less time, with an average
drug-repurposing candidate taking 6.5 years to make it to market and an associated cost of USD 300
million [231]. As the drugs are targeted towards specific strata of the patient population, patients are
more likely to receive efficacious treatments with minimal side effects.

Drug repurposing has already been attempted in AD with multiple methodologies
used. Ballard et al. used a systematic literature review, combined with a Delphi consensus,
to identify priority drug repurposing candidates including fasudil, a selective inhibitor of
rho kinase 1 and 2 that acts as a vasodilator, phenserine, a cholinesterase inhibitor, and
antiviral drugs [232]. A phase II clinical trial testing fasudil in AD is ongoing [233].

Grabowska et al. queried PubMed to identify drug repurposing articles related to
AD published between May 2012 and May 2022. They included 124 relevant studies in
their analysis, which identified 573 unique drug repurposing candidates. Clozapine, an
anti-psychotic, was the most commonly identified candidate, appearing in six studies,
while nine other drugs including adenosine, risperidone, tamoxifen, and verapamil were
identified in five studies [234].

Kumar et al. utilised a virtual screening protocol that combined molecular docking,
Prime/MM-GBSA calculations, and a BBB permeability filter with molecular dynamic
simulations. Two candidates then underwent in vitro analysis due to a lack of pre-existing
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experimental evidence. They identified a total of six drugs with acetylcholinesterase
inhibitory activity that could potentially be repurposed for use in AD [235].

Lee et al. developed a proteotranscriptomic-based computational drug repurposing
methodology based on inverse associations between disease and drug-induced protein
and gene perturbation patterns for use in AD. They identified bupivacaine, topiramate,
selegiline, and iproniazid as potential drug-repurposing candidates [236].

Several clinical trials are currently evaluating drug-repurposing candidates for AD.
Metformin, an antidiabetic drug, was identified as having neuroprotective effects [237].
However, results from clinical trials are mixed, with some studies showing that metformin
reduces cognitive decline [238,239], while others have found that it could worsen cognitive
health [240–242].

Lithium, a mood stabiliser, commonly used in psychiatric disorders such as bipolar
disorder, has also been identified as a drug repurposing candidate for AD [237]. Lithium
directly inhibits glycogen synthase kinase 3β (GSK3β) [243], and this is thought to be
beneficial in AD as GSK3β plays a role in the hyperphosphorylation of tau [244]. Clinical
trials have found that lithium provides benefits to AD patients through a decrease in
cognitive decline [245]. More clinical trials are currently ongoing [246,247].

Sodium benzoate, which is a metabolite of cinnamon, a preservative, and is licensed
by the FDA to treat urea cycle disorders, is another potential drug repurposing candidate
for AD [238,248,249]. Some studies have been conducted on the benefits of sodium ben-
zoate in AD and found that the drug was beneficial in small subsections of the patient
population [250]. Notably, two studies found the drug to be most beneficial in female
patients [249,251]. While more research is needed, evidence of differential efficacy in differ-
ent populations shows that a more personalised approach to therapeutics may be needed
in AD.

11. Stratified Medicine in Alzheimer’s Disease

Stratified medicine aims to offer the right treatment to the right patient at the right
time. With such a heterogeneous patient population, it is possible that trying to target
the population as a whole is resulting in many failures in drug development. Instead,
stratifying the patient population and then targeting the more homogenous strata could
prove beneficial.

To date, limited stratification has occurred in AD. For entry into some clinical trials,
evidence of amyloid and tau biomarkers is required [252], but trials rarely go beyond this.
A phase II clinical trial investigating the long-term safety and efficacy of Allopregnanolone,
a neurosteroid metabolite of progesterone, is only recruiting APOE ε4-positive AD patients.
While the study will not be completed until late 2026 [253], it will be interesting to see if
this stratification leads to more positive outcomes.

Already, there is evidence of differential efficacy of the existing disease-modifying AD
drugs based on the APOE genotype. A modest increase in efficacy has been noted in APOE
ε4 carriers, compared with non-carriers, when treated with amyloid-targeting drugs [254].
It is likely that the efficacy of future disease-modifying treatments may differ in sub-groups
of the patient population and, as such, appropriate stratification could help identify patients
who would gain the most benefit from emerging disease-modifying therapies.

There are several possibilities for stratification in AD. One such way would be to
stratify the patient population into LOAD and EOAD. While considered to be the same
disease, EOAD patients typically present with similar memory-related symptoms to LOAD
but may experience a more aggressive disease progression and shorter relative survival
time [12]. This is likely due to the presence of higher levels of plaque and tangles in
comparison with LOAD patients [255]. Consequently, it is possible that EOAD patients
require a more aggressive form of treatment to slow the rate of cognitive decline than
LOAD patients.

EOAD patients could be further stratified based on genetic mutations. While APP,
PSEN-1, and PSEN-2 all play a role in the amyloidogenic pathway, they only account for 10–
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15% of familial cases of the disease [61]. With evidence that a substantial proportion of the
remaining cases do not show a Mendelian pattern of inheritance [37], the identification of
the genes involved would create new targets for drug development and drug repurposing,
as well as a way with which to stratify the patient population.

The three major contributors to the development of LOAD could also be used to
stratify the patient population. With postmenopausal women making up an estimated 60%
of AD patients [256], stratifying the patient population by sex could prove beneficial [254].
Although more research is required, several genes have been identified as potentially having
a sex-specific effect in AD. Female mouse models of AD, with mutations in TREM2, had
increased microglial responses to stimuli and performed worse on memory-related tasks,
while male mice with the same mutations had no such effects [257]. The brain-derived
neurotrophic factor (BDNF) gene produces BDNF, a neuroprotective and neurotrophic
factor that has a protective effect against Aβ. A SNP mutation in BDNF results in decreased
BDNF secretion, memory loss, and a decrease in hippocampal volume. An association
between this mutation and AD has been found in females but not in males [258]. Mutations
in the GRN gene, which encodes for granulin protein that plays key roles in neuronal
survival, are associated with AD in male patients but not in females [259]. It is possible that
by stratifying the patient population by sex and targeting sex-specific genetic mutations,
new treatments for AD could be identified for male and female patients.

APOE status is another way to stratify LOAD patients. With the different isoforms
associated with differential risk for developing AD [58], it is possible that patients may
benefit from different drugs, dependent on APOE status. Further stratification could also
occur, as APOE appears to have differential effects based on sex and age. Women with
APOE ε3/ε4 have a higher risk of developing MCI and AD compared with men with the
same genotype; however, men who are homozygous for APOE ε4 are at a higher risk of AD
than women who are homozygous for ε4 [59,260,261]. APOE alleles also influence when a
patient is likely to receive an AD diagnosis, with those who are homozygous for ε4 being
diagnosed at an average age of 68, those who are heterozygous for ε4 diagnosed at an
average age of 76, and non-carriers diagnosed at an average age of 84 [59].

Another option for the stratification of LOAD patients is by age, as the risk of develop-
ing AD increases with age. It is thought that as people age, the ability to clear Aβ decreases
and neurodegeneration begins to happen faster than regeneration [59]. It is possible that
there are some epigenetic changes that occur as a patient ages that also influence this
risk [262] and therefore could function as a target for future interventions.

While more research is required to determine the optimal strategy to stratify the pa-
tient population and to identify future therapeutic targets, combining stratified medicine
and drug repurposing strategies may be beneficial in AD. Although multiple drug repur-
posing studies have been conducted in AD, they tend to target the patient population as
a whole, and this results in some of the same limitations that traditional non-stratified
drug development faces. As such, an approach which combines stratified medicine and
drug repurposing could address many of the barriers and limitations that traditional drug
development and drug repurposing alone face. While drug repurposing addresses cost,
availability, and time-to-market-related barriers, stratified medicine approaches will en-
sure more appropriate targeting of interventions. A stratified medicine approach to drug
repurposing could reduce the failure rate of drug development in AD by targeting drugs
to susceptible populations and thus preventing beneficial drugs from being misclassified
as failures.

12. Conclusions

By combining stratified medicine and drug repurposing, some of the current challenges
in drug development in AD could be addressed. While much work will be needed to fully
address this, a stratified medicine approach to drug repurposing in Alzheimer’s disease
has the ability to provide more effective and more affordable treatment options to a rapidly
increasing patient population more quickly than traditional drug-development methods.
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