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Stakeholders such as urban planners and energy policymakers use building energy performance modeling and 
analysis to develop strategic sustainable energy plans with the aim of reducing energy consumption and emissions 
from the built environment. However, inconsistent energy data and the lack of scalable building models create a 
gap between building energy modeling and traditional planning practices. An alternative approach is to conduct a 
large-scale energy usage survey, which is time-consuming. Similarly, existing studies rely on traditional machine 
learning or statistical approaches for calculating large-scale energy performance. This paper proposes a solution 
that employs a data-driven machine learning approach to predict the energy performance of urban residential 
buildings, using both ensemble-based machine learning and end-use demand segregation methods. The proposed 
methodology consists of five steps: data collection, archetype development, physics-based parametric modeling, 
machine learning modeling, and urban building energy performance analysis. The devised methodology is tested 
on the Irish residential building stock and generates a synthetic building dataset of one million buildings through 
the parametric modeling of 19 identified vital variables for four residential building archetypes. As a part of the 
machine learning modeling process, the study implemented an end-use demand segregation method, including 
heating, lighting, equipment, photovoltaic, and hot water, to predict the energy performance of buildings at 
an urban scale. Furthermore, the model’s performance is enhanced by employing an ensemble-based machine 
learning approach, achieving 91% accuracy compared to the traditional approach’s 76%. Accurate prediction of 
building energy performance enables stakeholders, including energy policymakers and urban planners, to make 
informed decisions when planning large-scale retrofit measures.
1. Introduction

The operation of buildings accounted for 30% of global energy con-

sumption and 27% of total energy sector greenhouse gas emissions 
(GHG) in 2021 [1]. Within this context, 8% comprised direct emissions 
occurring within buildings, while 19% represented indirect emissions 
resulting from the production of electricity and heat used in buildings. 
To address these environmental concerns, the member nations of the 
European Union (EU) have established a legislative infrastructure to 
advance sustainable strategic planning initiatives and strengthen en-
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ergy efficiency within the building sector using the Energy Performance 
of Buildings Directive (EPBD). The primary objective of this directive 
is to facilitate the adoption of policies and measures that will enable 
the achievement of a highly energy-efficient and decarbonized building 
stock by the years 2030 and 2050, respectively [2].

The rise in annual energy consumption, especially in urban areas, 
is expected to increase carbon emissions significantly [1]. As a result, 
there is a growing focus on reducing energy use and emissions from 
the building sector. Urban planners and policymakers are exploring 
innovative strategies to make existing buildings more sustainable, in-
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Nomenclature

𝐵𝐸𝑀 Building Energy Modeling

𝐵𝐸𝑃𝑆 Building Energy Performance Simulator

𝐵𝐸𝑅 Building Energy Rating

𝐶𝐸𝐴 City Energy Analyst

𝐶𝑖𝑡𝑦𝐵𝐸𝑆 City Building Energy Saver

𝐶𝑆𝑂 Central Statistics Office

𝐷𝐸𝐴𝑃 Dwelling Energy Assessment Procedure

𝐷𝑇 Decision Tree

𝐸𝑃𝐵𝐷 European Union Energy Performance of Buildings Direc-

tive

𝐸𝑃𝐶 Energy Performance Certificate

𝐺𝐵 Gradient Boosting

𝐻𝐺𝐵 Histogram-Based Gradient Boosting

𝐻𝑉 𝐴𝐶 Heating Ventilation, and Air Conditioning

𝐾𝑁𝑁 K-Nearest Neighbor

𝐿𝐺𝐵𝑀 Light Gradient Boosted Machine

𝐿𝑅 Linear Regression

𝑁𝑁 Neural Network

𝑅𝐹 Random Forest

𝑆𝐸𝐴𝐼 Sustainable Energy Authority of Ireland

𝑆𝑉 𝑅 Support Vector Regression

𝑈𝐵𝐸𝑀 Urban Building Energy Modeling

𝑈𝑀𝐼 Urban Modeling Interface

𝑋𝐺𝐵 Extreme Gradient Boosting
cluding creating comprehensive sustainable energy plans. Furthermore, 
long-term renovation strategies are necessary to achieve a higher level 
of sustainability and reduce carbon emissions from buildings. These 
plans aim to minimize overall energy consumption and CO2 emissions 
by analyzing data on the energy performance of buildings on a large 
scale. As a result, the EU has implemented the aforementioned EPBD to 
ensure that member states develop the buildings database comprising 
Energy Performance Certificates (EPCs). However, even with this man-

date, building stock databases typically cover only 30-50% of the total 
building stock [3].

Moreover, available data are often inadequate for stakeholders such 
as urban planners, energy policymakers, utility planners, and manufac-

turers to create effective and sustainable energy conservation measures. 
Gathering accurate and comprehensive data for urban modeling poses 
a significant challenge [4]. The limited availability and accessibility of 
data at the urban scale make it difficult to understand the urban con-

text thoroughly. This poses a hurdle for researchers and practitioners 
who aim to develop accurate and reliable models that capture the com-

plexities of urban systems. Overcoming this issue requires innovative 
approaches and collaborations to improve data collection and sharing 
mechanisms, ensuring a more comprehensive and representative urban 
modeling and analysis. Similarly, estimating the energy performance of 
the entire building stock is challenging due to numerous factors that 
impact energy usage, including the building envelope, the geometry of 
buildings, the behavior of occupants, heating and cooling systems, and 
the weather conditions [5,6].

Generally, there are two main approaches to estimating building 
energy performance: physical and data-driven models [7]. Physical 
models are based on detailed building physics and are analyzed us-

ing simulation tools such as EnergyPlus, ESP-r, and TRNSYS [5]. The 
simulation of these tools requires extensive building characteristics, in-

cluding geometric and non-geometric information [6]. On the other 
hand, the data-driven approach predicts energy usage based on his-

torical data, employing statistical or machine learning algorithms [8]. 
Unlike the physical modeling approach, this method does not require 
a deep understanding of the building. This approach has gained signif-

icant popularity in the building energy sector because it allows pre-

diction and estimation of energy consumption with limited building 
information [6]. Similarly, data-driven models can uncover complex 
relationships between various characteristics of buildings and energy 
consumption, which can be challenging to identify using traditional 
methods.

In recent years, researchers implemented various data-driven ap-

proaches in building energy demand prediction. These approaches use 
historical data and employ statistical and machine learning (ML) al-

gorithms to develop data-driven models [6,9–12]. Machine learning 
algorithms can be broadly classified into supervised and unsupervised 
learning techniques, with supervised learning further divided into re-
2

gression and classification algorithms [13]. Supervised learning algo-
rithms commonly used in building energy demand prediction include 
a nearest neighbor, naive Bayes, rule induction, deep learning, Sup-

port Vector Machines (SVM), and neural networks [14,15,13]. On the 
other hand, unsupervised learning techniques are applied without any 
corresponding output variable for inputs [14]. Unsupervised learning 
algorithms commonly implemented in this domain include clustering 
and association rules of k means [16,11]. However, previous stud-

ies employing the data-driven methodology primarily concentrated on 
forecasting the energy consumption of individual buildings [17]. This 
limited focus is mainly due to the need for more high-quality and reli-

able data on a large scale. In addition, these studies have relied on only 
a few parameters to forecast the potential energy consumption of the 
building [18].

The novelty of this research lies in the integration of parametric 
simulations, ensemble-based machine learning approaches, and segre-

gation methods to predict building energy performance at an urban 
scale using limited resources. Parametric simulation techniques can cre-

ate synthetic data encompassing a wide range of relevant scenarios for 
stakeholders. This study implements ensemble-based machine learning 
algorithms to predict building energy performance on an urban scale by 
segregating end-use demands such as electricity, hot water, and heating. 
Furthermore, this research identifies the key building characteristics for 
each end-use demand prediction. The research additionally analyses the 
impact of retrofit measures and future stakeholder policies using histor-

ical and future weather data.

This paper is structured as follows. Section 2 describes an overview 
of the existing work done on the prediction of the energy performance 
of urban buildings. Section 3 outlines the methodology devised, includ-

ing an explanation of the steps followed in the development of the 
machine learning model. The results of the Irish case study are pre-

sented in Section 4, followed by discussions of possible implications 
and improvements in the case study in Section 5. Section 6 includes 
conclusions and potential challenges, and future work.

2. Literature review

Urban building energy modeling can effectively analyze building en-

ergy performance and facilitate sustainable energy planning. The most 
common modeling approaches, such as physics-based or data-driven ap-

proaches, differ based on implementation and data requirements, as 
described in the following sections.

2.1. Physics-based urban building energy modeling

The physics-based urban building energy modeling approach also 
referred to as the engineering or simulation approach, uses simulation 
techniques along with data related to building characteristics, construc-

tion, weather conditions, and data from heating-cooling systems to 

compute the consumption of end-use energy [19,20]. The physics-based 
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approach can simulate and estimate building energy usage or produc-

tion on site, incorporating renewable energy technologies [13]. These 
models determine the end-use energy consumption of each building by 
type and rating using measurable data [7].

In the context of cities, the bottom-up archetype method has been 
widely used to analyze the overall impact of energy efficiency strate-

gies and new technologies at a regional or national scale [5,21]. Each 
building archetype is modeled in the simulation engine to estimate en-

ergy consumption, with these estimates then scaled up to represent the 
regional or national building stock [22]. These approaches heavily rely 
on quantitative data obtained from building physics. These methods re-

quire various inputs, such as the thermal properties (U values) of the 
building components (walls, windows, roof, floor, doors), internal and 
external temperatures, heating system patterns, ventilation rates, ap-

pliance quantities, occupancy, schedules, and internal loads [7,6]. In 
addition, these models require numerous assumptions to establish the 
behavior of the occupants and a substantial amount of technical data to 
estimate energy consumption.

One of the most prominent projects, the City Building Energy Saver 
(CityBES), offers a platform for modeling and analyzing the thermal 
performance of different retrofit scenarios [23]. CityBES uses the En-

ergyPlus simulation engine to model buildings and analyze retrofit at 
the district or city scale [24]. Another project, The CitySim project, 
involves a decision support tool that assists energy planners and stake-

holders in minimizing energy usage and emissions while incorporating 
various optimization and retrofit analyses [25]. Urban Modeling Inter-

face (UMI) integrates the EnergyPlus simulation engines, Daysim, and 
a Python module for the operational energy, daylighting, and walk-

ability of urban buildings [26]. MIT’s UBEM (Urban Building Energy 
Model) platform uses the EnergyPlus simulation engine to model ap-

proximately 83,541 buildings by integrating official GIS datasets and a 
custom building archetype library [27]. URBANopt (Urban Renewable 
Building And Neighborhood Optimization) provides an EnergyPlus and 
OpenStudio-based simulation software development kit (SDK) to simu-

late the energy performance of low-energy districts and campus-scale 
thermal and electrical analyses [28].

One of the significant challenges in modeling at an urban scale is the 
availability of both building geometric and non-geometric data. Few re-

cent studies have focused on the generation of new building geometric 
data. UBEM.io, a novel web-based framework, automates the genera-

tion of urban-scale building geometries based on widely available inputs 
such as shapefiles, LiDAR, and tax assessor data [29]. Soroush et al. 
developed a detailed urban building energy model using the CityGML 
format for 3D urban geometry and employed spatial joining to incor-

porate the features required for archetype selection [30]. Ali et al. 
proposed urban building energy and microclimate modeling by gen-

erating 3D city models from sources such as Google Earth, Microsoft 
Footprints, and OpenStreetMap [31]. Irene et al. developed a model-

ing framework to assess the potential of creating energy communities 
by combining UBEM capabilities with the rooftops’ potential for solar 
generation [32].

With increased data availability and more sophisticated modeling 
techniques, it has become crucial to devise a generalized UBEM frame-

work and improve the existing work to facilitate the modeling and anal-

ysis of different use cases. Previous studies provide a limited view of the 
different building energy aspects in an urban setting. This stems mainly 
from the fact that simulating each building individually, along with 
their interdependencies, requires significant time and resources [33]. 
Furthermore, these methods usually deploy a physics-based simulation 
engine, which can be computationally demanding and time-consuming 
due to the intricate nature of urban systems”.

Data-driven urban building energy modeling can address the afore-

mentioned challenges by estimating building energy consumption using 
basic knowledge of the buildings’ features. However, this approach still 
3

has research gaps, as discussed in the next section.
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2.2. Data-driven urban building energy modeling

In urban energy modeling, a data-driven approach can predict and 
assess buildings’ energy usage by considering various factors related to 
the characteristics of the buildings [7,19]. This approach is based on the 
analysis of existing data sources that include building stock datasets, 
billing data (such as electricity and gas consumption), survey data, 
and socioeconomic variables [7]. Data-driven urban energy modeling 
is conducted mainly using machine learning and statistical approaches. 
Recent studies on urban energy have increasingly focused on using ma-

chine learning algorithms over traditional statistical techniques [7].

Rahman et al. used deep recurrent neural networks to predict 
medium- to long-term electricity use in commercial and residential 
buildings [34]. Meanwhile, Kontokosta and Tull devised statistical mod-

els to determine the energy consumption of electricity and natural gas 
in more than a million buildings in New York City [35]. Feifeng et 
al. proposed a semi-supervised learning method for predicting energy 
use intensity (EUI) using 34,456 unlabeled samples [36]. Zhang et al. 
proposed a data-driven framework for the prediction of energy usage 
and greenhouse gas emissions, which considered various factors such 
as building characteristics, geometry and urban morphology [37]. Sim-

ilarly, Seo et al. developed a data-driven model to predict the energy 
demand for heating of 10,000 low-income households in South Korea 
[38]. Razak et al. developed a machine learning model that forecasts an-

nual average energy use based on building design features in the initial 
development stages [18]. Ngo et al. used ensemble machine learning 
models to forecast building energy consumption over 24 hours [39]. 
Lastly, Wurm et al. developed a workflow for modeling the heat demand 
of building stock on an urban scale, using deep learning algorithms 
[40].

Although a significant amount of research has been conducted on 
predicting energy consumption in individual buildings using their spe-

cific characteristics, more studies have yet to explore using data-driven 
models for predicting energy consumption on a larger scale. The main 
challenge lies in the lack of high-quality data in sufficient quantities 
to train prediction models effectively. This underscores the need for a 
robust building energy modeling approach capable of accurately pre-

dicting the energy performance of entire building stocks, even when 
faced with limited resources for complex decision-making analysis. Fur-

thermore, previous research on predicting building energy consumption 
has been limited by considering only a small set of parameters ([18]). 
Fewer recent studies have started incorporating crucial factors such 
as U-values, HVAC systems, and renewable energy systems into their 
machine-learning algorithms to estimate better energy performance in 
buildings ([37]). However, only a few studies have specifically investi-

gated the impact of parameters such as U values, HVAC system types, 
and the presence of renewable energy systems on the estimation of 
the energy performance of buildings using machine learning algorithms 
([18,39–41]).

Predicting the energy performance of buildings at an urban scale 
poses a significant challenge for urban planners and policymakers. The 
accurate prediction of energy consumption and the identification of 
opportunities for enhancing energy efficiency are crucial for fostering 
sustainable development in cities. There is significant potential to ex-

pand current research and establish a comprehensive methodology for 
data-driven building energy modeling on an urban level.

However, one major issue that arises in an urban context is the avail-

ability of data. Obtaining comprehensive and reliable data at an urban 
scale can be challenging, as it requires collecting and integrating infor-

mation from multiple sources [4]. Addressing this issue is essential to 
enable effective energy planning and modeling techniques, empower-

ing stakeholders to make informed decisions and drive positive change 
in urban energy management.

These findings highlight the importance of adopting a holistic ap-

proach to building energy modeling, considering all relevant factors, 

to accurately predict building energy performance and align with the 
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Fig. 1. Overarching methodology for urban building energy performance prediction using machine learning.
objectives of various stakeholders. Therefore, this research proposes 
a methodology that combines and harnesses the strengths of physics-

based and data-driven approaches to accurately predict the energy per-

formance of buildings on an urban scale. In the physics-based approach, 
parametric simulation methods are employed to generate synthetic data 
that encompass all possible scenarios relevant to stakeholders. Sim-

ilarly, ensemble machine learning and end-use demand segregation 
methods are used in the data-driven approach instead of relying on a 
single model to achieve accurate predictions of building energy perfor-

mance on an urban scale.

3. Methodology

This study proposes a novel methodology that uses supervised ma-

chine learning algorithms to predict building energy performance on 
a large scale. This research aims to identify the most effective model 
using physics and data-driven approaches. The prediction methodol-

ogy for the energy performance of urban buildings involves five steps 
(Fig. 1).

1. The initial step involves collecting data from various sources such 
as building stock, census, weather, and geographical data.

2. The next step involves developing building archetypes using exist-

ing building stock data to identify representative baseline models.

3. The subsequent step focuses on parametric simulation to develop 
appropriate synthetic data.

4. The step of developing machine learning models predicts building 
energy performance on a large scale using an ensemble or segrega-

tion method.

5. Finally, the urban building energy performance analysis step an-

alyzes the modeling process results for planning and decision-

making purposes.

3.1. Data collection

The data collection process involves gathering various inputs for ur-

ban building energy performance prediction using machine learning, 
including building stock data, weather information, census data, reports 
on energy policies, and construction data [5].

The building stock data are necessary for conducting physics-based 
simulations that encompass buildings’ geometry and non-geometry 
data. This includes data such as building envelope specifications, 
shapes, number of floors, type of building, geometry, geographical po-
4

sition, and window opening ratios ([42]). Typically, the geometric data 
required for building energy modeling is gathered from building stock 
and energy performance certificate databases and existing construction 
databases such as TABULA, EPISCOPE, and building typology databases 
([43]).

Along with geometric data, non-geometric data are also required for 
modelings, such as user occupancy patterns, equipment loads, HVAC 
systems, and usage patterns also need to be modeled. One of the sig-

nificant challenges in this regard is the availability of non-geometric 
building information on a large scale. Non-geometric building data can 
be obtained through the building archetypes approach, using available 
national census databases, statistical surveys, and energy performance 
certificate data.

Weather data sets are essential to accurately model energy use in 
building thermal simulations ([44]). The most commonly used climate 
data sets, such as the typical meteorological year data (TMY), have 
been available for a long time and describe the local climate ([45]). 
Another helpful resource are EnergyPlus Weather format (EPW) files, 
which can be accessed online for more than 3,034 locations. These files 
are arranged by region and country of the World Meteorological Or-

ganization. Furthermore, this study incorporates future weather files 
to assess the impact of weather conditions on retrofit measures under 
various climate scenarios, aiming to achieve the energy policy targets 
set by policymakers, such as those for 2030 or 2050. The sources of 
these future weather files can vary, including resources like Meteonorm, 
WeatherShift, and CCWorldWeatherGen [46].

Similarly, the modeling process relies on additional sources such as 
census data, reports on energy policies, and construction data. These 
sources offer valuable insights into demographic patterns, energy con-

sumption trends, and infrastructure development, facilitating a more 
comprehensive analysis and meeting the requirements of urban systems.

3.2. Building archetypes development

Several buildings on an urban scale often share similar character-

istics and can be classified into building archetypes. In the context of 
urban building energy simulation, a building archetype, referred to as 
a reference building, is a representative model that captures the typ-

ical characteristics and performance of a specific category or group 
of buildings within a large building stock. The parametric simulation 
framework uses each building archetype as a baseline model. These 
data can be sourced from established national building stock databases, 
such as the TABULA or EPC databases [43]. Building archetypes or 
reference buildings serve as standardized models that simplify the simu-

lation process by providing a baseline or template for analysis. They are 

typically developed based on existing data collection, statistical analy-
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Fig. 2. Process of machine learning modeling to predict Energy Use Intensity (EUI) using machine learning models.
sis, and empirical studies of buildings within the target building stock. 
Moreover, simulating any building archetype requires geometric and 
non-geometric data for each baseline model. These building archetypes 
are the starting point for parametric modeling of different buildings to 
develop a synthetic stock.

3.3. Parametric simulation

Parametric simulation provides an optimal solution, mainly when 
only sparse data sets are available for energy modeling. To execute 
complex parametric simulations involving multiple parameters, a para-

metric tool is used to perform numerous simulations using a Building 
Energy Performance Simulator (BEPS) model ([47]). This study uses jE-

Plus as a parametric tool for energy simulations. Furthermore, jEPlus 
uses EnergyPlus for simulation and incorporates DesignBuilder con-

struction templates to integrate diverse parameter values. Parametric 
simulation using EnergyPlus presents a robust approach to assess the 
energy performance of buildings and investigate various design alterna-

tives. In the parametric simulation, EnergyPlus facilitates a systematic 
exploration of the design parameters, providing insights into their im-

pact on energy consumption, comfort, and other performance metrics.

The selection of parametric features plays a crucial role in devel-

oping parametric simulation-based models and generating synthetic 
datasets. The accuracy of the building energy model is highly depen-

dent on the careful selection of each parameter in this process. These 
parameter values, which encompass the necessary variations for syn-

thetic data generation, can be obtained from literature surveys that are 
specific to the relevant climate environments ([48,3]).

In the parametric simulation process, various essential parameters 
are commonly used that include construction characteristics such as 
walls, windows, floors, roofs, internal gains, occupancy density, and 
heating or cooling systems. They all contribute to the overall energy 
performance assessment and are integral to the parametric simulation. 
By considering these parameters and their variations, parametric simu-

lation enables the exploration of different design alternatives and their 
impact on energy consumption, comfort levels, and other performance 
metrics. It allows for a comprehensive evaluation of the energy effi-

ciency of the building and helps to make decisions about design op-

timizations. Therefore, selecting the appropriate parameters and their 
values, based on literature surveys and specific climate environments, 
is crucial to create accurate and representative synthetic datasets and 
ensuring the reliability of parametric simulation-based models.

However, dealing with the complexity of many parameters makes it 
nearly impossible to generate simulated data for all possible combina-

tions. Sampling methods such as Simple Random Sampling (SRS) and 
Latin Hypercube Sampling (LHS) are used to generate synthetic data 
to address this challenge ([49,50]). Simple Random Sampling (SRS) is 
a straightforward method in which each sample is randomly and in-

dependently selected from the population. On the other hand, Latin 
Hypercube Sampling (LHS) is a more advanced sampling method that 
aims to achieve a more uniform distribution of samples across the entire 
range of the data. LHS ensures that each parameter value combination is 
5

balanced, allowing for a more comprehensive design space exploration. 
These methods allow for generating representative synthetic datasets 
encompassing a range of parameter combinations, facilitating a more 
comprehensive analysis of design alternatives and optimizing energy 
modeling outcomes.

3.4. Machine learning modeling

This process involves formulating machine learning models to es-

timate the building energy performance (Fig. 2). Synthetic building 
stock data, generated from the parametric simulation step, is intended 
to serve as input for the development of machine learning models.

3.4.1. Data preprocessing

The process begins with data preprocessing, during which inconsis-

tencies within the dataset are identified and eliminated before the data 
are used for further analysis and model development.

3.4.2. Data splitting

The pre-processed data is divided into two subsets to ensure optimal 
training of the model: a training dataset used for training the model 
and a test dataset for evaluating the performance of the trained model. 
Two standard techniques for data splitting are random data splitting 
and cross-validation.

Random data splitting is a straightforward method in which data 
is randomly divided into training and testing datasets, typically in an 
80-20% split ratio. However, this method may cause problems with 
uneven data distribution, and an incorrect selection of training and 
testing datasets can also adversely affect the machine learning model’s 
performance [51]. On the other hand, cross-validation is a more sophis-

ticated method that is often used to strike a balance between minimal 
bias and variance in the trained model. This study adopts the k-fold 
cross-validation algorithm for data splitting to prevent overfitting or 
underfitting the model.

3.4.3. Non-segregation models development

This paper implements and compares three different machine learn-

ing model approaches to predict building energy performance, namely: 
the single model approach, end-use demand segregation method, and 
ensemble-based segregation method. In the single model approach, also 
referred to as the “non-segregation” method, this study conducts a com-

parative analysis of various machine learning algorithms, assessing their 
predictive accuracy, efficiency, and suitability for building energy per-

formance modeling. Over recent years, machine learning models have 
garnered considerable attention in data-driven modeling. Among the 
most frequently used models are Linear Regression (LR), Neural Net-

work (NN), Decision Tree (DT), Random Forest (RF), K-Nearest Neigh-

bor (KNN), Gradient Boosting (GB) and Support Vector Regression 
(SVR) [7]. Some of the popular implementations of gradient boosting in-

clude XGBoost (Extreme Gradient Boosting), Histogram-Based Gradient 
Boosting (HGB), and LGBM (Light Gradient Boosted Machine). These 
algorithms have demonstrated exceptional performance in energy fore-

casting and prediction, particularly in the context of energy modeling, 

due to their extensive use and success in previous studies ([17,11]). By 
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Fig. 3. Methodology for end-use demand segregation modeling to predict Energy Use Intensity (EUI) using machine learning.
assessing the effectiveness of these models, this study aims to discern 
the most efficient approach to predict building energy performance us-

ing machine learning techniques.

3.4.4. End-use demand segregation models development

End-use demand segregation methods use different machine learn-

ing models to predict each end-use demand. This strategy diverges 
from the traditional approach of employing a single machine-learning 
model. This modification aims to achieve superior predictive perfor-

mance (Fig. 3). The workflow includes developing distinct regression 
machine learning models for each end-use demand, such as heating, 
cooling, lighting, and hot water. The predictions of these end-use de-

mands are aggregated to calculate the final energy performance of the 
building, measured in terms of Energy Use Intensity (EUI). The predic-

tion for each end-use demand is multiplied by its corresponding primary 
energy factor. The resulting values for heating, cooling, equipment, 
lighting, and hot water are then aggregated and photovoltaic energy 
generation is deducted from them to calculate the total energy con-

sumption of the building. This cumulative total is then divided by the 
building area to calculate the Energy Use Intensity (EUI), a measure of 
the energy performance of the building as defined in Equation (1). Fi-

nally, the EUI is classified into an Energy Performance Certificate (EPC) 
label or rating,

𝐸𝑈𝐼 =
(𝐸heating × 𝑃𝐸𝐹heating) + (𝐸cooling × 𝑃𝐸𝐹cooling)

𝐴total

+
(𝐸lighting × 𝑃𝐸𝐹lighting) + (𝐸equipment × 𝑃𝐸𝐹equipment)

𝐴total

+
(𝐸hotwater × 𝑃𝐸𝐹hotwater) − (𝐸PV × 𝑃𝐸𝐹PV)

𝐴total

(1)

where 𝐸ℎ𝑒𝑎𝑡𝑖𝑛𝑔 , 𝐸𝑐𝑜𝑜𝑙𝑖𝑛𝑔 , 𝐸𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 , 𝐸𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝐸ℎ𝑜𝑡𝑤𝑎𝑡𝑒𝑟, and 𝐸𝑃𝑉 rep-

resent the energy consumption (or generation for 𝐸𝑃𝑉 ) for each re-

spective category in kilowatt hours per year (kW h/year).𝑃𝐸𝐹ℎ𝑒𝑎𝑡𝑖𝑛𝑔 , 
𝑃𝐸𝐹𝑐𝑜𝑜𝑙𝑖𝑛𝑔 , 𝑃𝐸𝐹𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔 , 𝑃𝐸𝐹𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡, 𝑃𝐸𝐹ℎ𝑜𝑡𝑤𝑎𝑡𝑒𝑟, and 𝑃𝐸𝐹𝑃𝑉 are 
the primary energy factors (PEFs) for each respective category. 𝐴𝑡𝑜𝑡𝑎𝑙

represents the total floor area of the building in square meters (m2).

3.4.5. Ensemble and segregation models development

The workflow further implements ensemble machine learning meth-

ods to test multiple learning algorithms and obtain better predictive per-

formance. Ensemble techniques are commonly used in machine learning 
to enhance model accuracy by mitigating overfitting and increasing 
generalizability. By leveraging the complementary strengths of mul-
6

tiple models, ensemble learning provides more stable predictions and 
improves accuracy compared to the conventional approach of using a 
single model. There are two main ensemble learning techniques that 
differ mainly by kind of model, data sampling, and decision function. 
Therefore, ensemble learning techniques can be classified as stacking 
and voting techniques.

The stacking method, also known as stacking generalization, was in-

troduced by Wolpert [52]. The goal is to reduce the generalization error 
of different machine learning models. The final Meta-Model comprises 
the predictions of an “n” number of machine learning-based models 
through the k-fold cross-validation technique. On the other hand, the 
voting ensemble method is one of the most intuitive and easy to under-

stand. The voting ensemble method comprises a number “n” of machine 
learning models, and the final prediction is the one with “the most 
votes” or the highest weighted and averaged probability. Generally, en-

semble learning techniques use multiple best-prediction performance 
machine learning models. The study implements a stacking-based en-

semble method to predict each end-use demand, enhancing model ac-

curacy and predicting building energy performance. This method com-

bines predictions from multiple models by training another model to 
consolidate its output, often resulting in more accurate and robust pre-

dictions compared to the voting ensemble method (Fig. 4).

3.4.6. Models performance

To evaluate the effectiveness of machine learning models, commonly 
used performance indices such as R-Squared (𝑅2), Mean Absolute Error 
(MAE), and Root Mean Squared Error (RMSE) are employed ([7,11]). A 
model with the lowest RMSE and MAE values and a 𝑅2 value near-

est to 1 is deemed superior among all models. Finally, in order to 
assess the model’s accuracy, the predicted value of EUI (expressed in 
kW h/(m2*year)) is transformed into an Energy Performance Certifi-

cate (EPC) label or rating. Furthermore, precision and recall are crucial 
metrics used for a detailed analysis of each class. Precision assesses 
the accuracy of positive predictions made by the model, whereas recall 
quantifies the model’s capability to detect all positive instances within 
the dataset [3].

3.4.7. End-use features extraction

The final step of this process is to find the importance of features 
for each end-use demand using the developed machine learning model. 
Feature importance refers to the determination of the relevance or con-

tribution of individual features in a machine learning model to make 
accurate predictions. It helps in understanding which features have the 
most significant impact on the model’s predictions.

One popular method for calculating feature importance is SHAP 

(SHapley Additive exPlanations). SHAP values provide a unified mea-
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Fig. 4. Methodology for ensemble machine learning modeling approach for enhanced predictive performance in machine learning models.
sure of feature importance by considering the contribution of each 
feature value to the prediction for a specific instance while also ac-

counting for interactions between features. By using SHAP values, we 
can gain insight into which features impact the model’s predictions the 
most. This information can be valuable for understanding the underly-

ing relationships in the data and identifying the key drivers or factors 
that influence the target variable.

3.5. Urban building energy performance analysis

In the final phase of the methodology, the developed machine learn-

ing model predicts the energy performance of the entire building stock. 
The availability of comprehensive building stock data can help stake-

holders analyze the building stock at an urban scale and successfully im-

plement sustainable energy policies. Furthermore, the developed model 
can be applied to practical application scenarios, such as implementing 
and evaluating proposed retrofit measures as part of national-level pol-

icy decisions. These measures, often proposed at the national level, aim 
to improve the energy performance of existing buildings through mod-

ifications and improvements. For example, this could include installing 
heat pumps or integrating renewable energy systems like solar panels. 
The proposed models can evaluate their impact before implementa-

tion and identify potential energy savings. This predictive capability 
reduces the risk of implementing ineffective or inefficient measures, en-

suring that resources are used optimally. It also helps fine-tune such 
measures to fit better the specific needs and constraints of the building 
stock.

In general, the developed model offers a holistic approach to urban-

scale energy management and policy implementation, creating a more 
sustainable built environment. Using modeling outcomes, stakehold-

ers can navigate the complexities of urban building stock analysis and 
energy policy implementation, even without extensive knowledge of 
building dynamics. This empowers policymakers and stakeholders alike 
to make informed decisions when retrofitting existing building stock to 
improve energy efficiency and mitigate environmental impact.

4. Case study

The primary objective of this case study is to test the proposed 
methodology by calculating the energy performance of Ireland’s resi-

dential building stock. This methodology seamlessly integrates a data-
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driven approach with parametric simulation modeling to predict the 
energy performance of buildings on an urban scale. This case study fol-

lows the same structure as the proposed methodology discussed in the 
previous section, with subsequent subsections following the same order.

4.1. Data collection

Collecting urban-scale building stock data is challenging as indi-

vidual building information is often unavailable [4]. The data collec-

tion process involves acquiring raw building data from various sources 
to implement the proposed methodology, including building stock 
datasets, building census datasets, weather data, and data from energy 
policymakers’ reports. See Table 1.

In Ireland, building stock data are available as Energy Performance 
Certificates (EPCs) maintained by the Sustainable Energy Authority of 
Ireland (SEAI). The EPC (also called the Building Energy Rating (BER) 
certificate) dataset of the Irish residential stock represents the measured 
building stock and comprises more than 200 building characteristics. 
These features include building fabric, heating systems, estimated end-

use, CO2 emissions, and estimated delivered and primary energy con-

sumption. Each entry in the Irish EPC dataset contains an energy rating 
for the respective building, ranked its energy performance on a graded 
scale from A1 to G based on the estimated energy consumption per 
square meter per year [53]. In 2023, the Irish EPC dataset contained 
approximately 1,126,817 residential buildings, with a significant pro-

portion of building ratings within the range of C1 to D2 (Fig. 5). The 
dataset’s most common types of buildings are semi-detached and de-

tached houses.

The Irish census, conducted every four years by the Central Statis-

tics Office (CSO), collects various data points on the building where 
the respondent resides. Therefore, the census provides the number of 
buildings in each geographic area [56]. According to the CSO 2022 
dataset, Ireland has approximately 1,841,152 residential buildings. Sim-

ilarly, the GeoDirectory database provides statistical and geographical 
information on Ireland’s entire building stock [54]. The Q4 2022 GeoDi-

rectory report, published by An Post (Irish Postal Service) and Ordnance 
Survey Ireland, comprises geocoded addresses of 2,100,905 residential 
buildings in Ireland. Detached dwellings remained the most prevalent 
type of residence (30.7% of the national total), followed by terraced 
dwellings (28.2%) and semi-detached dwellings (24.7%). This study 
focuses on Dublin City in Ireland and the Dublin EPC dataset, which 
includes 339,494 of the 624,758 residential buildings, representing the 

highest proportion of the entire Irish building stock. This suggests that 
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Table 1

Building data requirements and associated data sources for Irish case study.

Data Type Case Study Data Source Publisher

Building Stock Irish EPC (BER) Database [53] SEAI

Geographic data GeoDirectory [54,55] An Post/ Ordnance Survey Ireland

Census Irish Cenus database [56] Central Statistics Office

Weather Dublin EPW File [45] EnergyPlus and Meteonorm

Energy policymakers’ Reports Irish Climate Action Plan [57] Government of Ireland

Fig. 5. Irish EPC building energy rating chart used to determine building energy performance, percentage of total EPC vs. Non-EPC residential buildings.

Fig. 6. 3D geometry of Irish residential building archetypes for energy parametric simulation [44,48].
EPC data are available for only approximately 54% of the residen-

tial building stock of Dublin City ([53]). This study employs machine 
learning algorithms to predict the energy rating of the remaining 46% 
stock using limited variables (Fig. 5). Furthermore, the weather data 
for Dublin are obtained from the default EnergyPlus dataset, which in-

cludes historical data and also incorporates future weather files for 2030 
by Meteonorm. This allows us to assess the impact of weather conditions 
on retrofit measures in various climate scenarios.

Similarly, energy policy reports are necessary to explore future sce-

narios. Irish national reports, such as the Climate Action Plan 2023, are 
used to test scenarios in this case study. This provides valuable insight 
into future plans and strategies for Irish residential buildings. These 
reports outline the goals, roadmaps, and goals set by policymakers to 
address climate change, reduce greenhouse gas emissions, and improve 
energy efficiency in the residential sector [57].

4.2. Building archetypes development

The parametric simulation framework uses each building archetype 
as a baseline model. In this case study, four building types are consid-
8

ered as archetypes of the Irish residential building stock [44]. These 
types are selected to represent the primary variations of building types 
based on data from the CSO, Irish EPC, and GeoDirectory datasets. 
These building archetypes serve as the starting point for the paramet-

ric modeling of different buildings, helping to develop a synthetic stock 
representation. These four different types of residential buildings also 
exist in the GeoDirectory database, namely terraced houses, detached 
houses, semi-detached houses, and bungalows (Fig. 6).

Building archetypes require both geometric and non-geometric data 
to model each baseline model. The initial step involves identifying the 
non-geometric and geometric parameters associated with the existing 
building stock of Dublin. This information is essential for performing 
a parametric simulation using the archetypes. Geometric information 
collected from various types of Irish buildings is based on existing stud-

ies and Irish building regulations guidelines. However, non-geometric 
parameters are determined using current building energy performance 
databases and literature surveys. For example, the Irish EPC provides 
values for essential building physics parameters, such as U-values for 
walls, roofs, floors, and windows, along with their respective ranges. 
Other relevant non-geometric parameters that impact the energy perfor-

mance of the Irish building stock have been identified based on previous 

research [44,48]. The geometric and non-geometric parameters of base-
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Table 2

Geometric and non-geometric parameters of baseline archetypes used in the Irish case study.

Geometric Parameters (Default Model Values)

Parameters Unit Terraced Detached Semi-detached Bungalow

Total Floor Area m2 91.66 130.81 107.69 85.91

Net Conditioned Area m2 91.66 130.81 107.69 85.91

Gross Roof Area m2 65.66 115.68 81.76 130.43

Window to Wall Ratio on NWSE facades % 0.4/0/0.4/0 0/0.5./0/0.5 0.4/0/0.4/0 0.4/0/0.4/0

Number of Stories (Height 2.7 meters) Numeric 2 2 2 1

Number of Zone Numeric 10 13 10 8

Orientation degree 0 90 0 0

Non-GeometricParameters (Default Model Values)

Wall U-value W/m2 K 0.5 0.5 0.5 0.5

Window U-value W/m2 K 3 3 3 3

Floor U-value W/m2 K 0.5 0.58 0.5 0.58

Roof U-value W/m2 K 0.33 0.33 0.33 0.33

Door U-value W/m2 K 2.041 2.041 2.041 2.041

Lighting Density W/m2 2.92 2.95 2.92 3.025

Occupancy Person 3 4 3 4

Equipment Density W/m2 1.47 1.61 1.47 1.56

Heating setpoint °C 21 21 21 21

Heating setback °C 12 12 12 12

HVAC Efficiency/ COP Numeric 0.8 0.8 0.8 0.8

DHW l/m2/day 1.5 1.5 1.5 1.5

ACH Numeric 0.94 0.87 0.94 0.74

Renewables W 2400 2400 2400 2400

Table 3

Parameters needed for parametric simulation of archetypes.

No Parameters Unit Minimum Maximum Source

P1 Building type Categorical Semi Detached, Detached, House,

Terrace, Bungalow

[53]

P2 Location Categorical Dublin [56]

P3 Weather Categorical Historical, 2030 EPW

P4 Wall U-value W/m2 K 0.09 2.4 [48,58]

P5 Window U-value W/m2 K 0.73 5.7 [48,58]

P6 Floor U-value W/m2 K 0.15 1.23 [48,58]

P7 Roof U-value W/m2 K 0.07 2.3 [48,58]

P8 Door U-value W/m2 K 0.81 5.9 [48,58]

P9 Orientation degree 0 315 [48,58]

P10 Lighting density W/m2 1 9 [48,58]

P11 Occupancy Person 1 6 [56]

P12 Equipment density W/m2 1 21 [48,58]

P13 Heating setpoint °C 18 23 [48,58]

P14 Heating setback °C 10 14 [48,58]

P15 HVAC efficiency or COP 0.45 to 4 0.3 4.5 [53]

P16 Domestic hot water l/m2/day 0.5 3.5 [48,58]

P17 Air changes per hour Numeric 0.35 3 [59,53]

P18 Window-to-wall ratio % 30 70 [48,58]

P19 Renewables W Yes/No [53]
line archetypes with default values used for the Irish case study are 
shown in Table 2 [44,48,62,63].

4.3. Parametric simulation

The selection of parametric features is pivotal in developing physics-

based models based on parametric simulation and generating synthetic 
datasets after the archetype development process. The accuracy of the 
building energy model relies on the careful selection of each input 
and output parameter in this process. These parameter values embody 
the necessary variations for synthetic data generation. In this study, 
19 input parameters are used to simulate Irish residential building 
archetypes. The selection of these parameters is based on existing stud-

ies on residential buildings [48,3]. However, these previous studies do 
not include certain advanced features. Therefore, several additional 
parameters, including HVAC systems, are incorporated to conduct a 
complete analysis of HVAC systems, primary heating factors, and re-

newable parameters (Table 3). Furthermore, this study employed a 
9

building feature reduction approach by integrating Design-Builder con-
struction templates and reducing the number of dependent features. For 
instance, building elements require material features such as thickness, 
conductivity, density, and specific heat. In this study, existing templates 
were used, and U-values were used to represent these features. This ap-

proach ultimately results in a reduction of the required parameters as 
inputs to the UBEM and further reduces the model computing time by 
eliminating dependent parameters.

One of the primary output parameters in this study is the Energy 
Use Intensity (EUI), also referred to as the final primary energy use 
per building’s total floor area per year, measured in kW h/(m2*year). 
Irish EPC data provide information on building energy performance or 
certificate ratings in terms of EUI (kW h/(m2*year)), which is further 
interpreted on an A1 to G rating scale. An A1-rated building demon-

strates the highest level of energy efficiency, typically associated with 
the lowest energy consumption and CO2 emissions. On the other hand, 
a building with a G rating represents the least energy-efficient rating 
(Fig. 5). Furthermore, this study focuses on the end-use demand seg-
regation method to calculate the Energy Use Intensity. Therefore, each 
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Fig. 7. Distribution of 1 million residential buildings synthetic data in terms of the Irish building energy rating labels.

Table 4

Comparative analysis of machine learning models to predict end-use demand in kW h/yr using 
RMSE metrics.

Models Heating Interior Lighting Interior Equipment Photovoltaic Power Water Systems

XGB 683.17 0 0 0.02 0

LGBM 801.69 0 0 0 0

HGB 1256.58 0.02 0.06 0.06 0.21

GB 2809.86 67.72 193.83 16 13.56

RF 1613.23 0 0 0 0

NN 3400.93 1.01 18.94 6.85 16.78

DT 2430.7 0 0 0 0

LR 5162.23 181.24 546.94 172.78 6440.26

KNN 5106.97 175.26 483.64 310.06 5629.45

SVM 7330.98 192.2 575.37 175.56 7976.76
end-use demand, including heating, lighting, equipment, photovoltaic, 
and hot water, is considered an output parameter in the parameter sim-

ulation process.

This study employs jEPlus as a parametric tool for physics-based 
parametric simulation. A jEPlus uses the capabilities of EnergyPlus for 
thermal simulation and integrates DesignBuilder construction templates 
to incorporate diverse parameter values. A sample of 1 million buildings 
is generated using the Latin hypercube sampling (LHS) method to con-

struct a reliable machine learning model. This sampling process ensures 
that the resulting distribution covers all energy rating data for Irish 
buildings (Fig. 7).

4.4. Machine learning modeling

This process involves formulating an urban-scale building energy 
performance machine learning model. The process begins with gener-

ated synthetic building stock data from the previous step, which are 
preprocessed to remove outliers and improve the data set’s quality be-

fore implementing machine learning models. Subsequently, the data is 
divided into two subsets to create training and testing datasets. This 
study uses a 10-fold cross-validation method during data division to 
mitigate the risk of overfitting, rather than using a random data selec-

tion for training and testing.

Ten different machine learning algorithms are analyzed to assess 
their abilities to predict EUI building energy performance based on 
a given dataset. These regression algorithms have shown exceptional 
performance in energy forecasting and prediction, particularly within 
10

the context of energy modeling ([17,11,7]). The algorithms include 
XGBoost (XGB), LightGBM (LGBM), Gradient Boosting (GB), Histogram-

based Gradient Boosting (HGB), Random Forest (RF), Neural Network 
(NN), Decision Tree (DT), Linear Regression (LR), K-Nearest Neighbors 
(KNN) and Support Vector Machine (SVM). The performance of each de-

veloped model is evaluated using metrics such as R-Squared (𝑅2), Mean 
Absolute Error (MAE), and Root Mean Squared Error (RMSE). A model 
is considered superior if it achieves values closer to zero for RMSE and 
MAE and values close to zero for 𝑅2. The target feature is EUI, which is 
used to predict building energy performance using regression models. 
Furthermore, the final predicted EUI is also converted into an energy 
rating based on the Irish EPC rating (Fig. 5). Finally, the model’s per-

formance is further tested using an accuracy estimation of the energy 
rating, with the model producing the highest accuracy being considered 
the best learning model.

This study conducts a comparative analysis of three different ma-

chine learning models proposed in this research to evaluate which one 
is best suited for predicting building energy performance. These ap-

proaches include the single-model approach (non-segregation method), 
the end-use demand segregation method, and the ensemble-based seg-

regation method. In the non-segregation method, EUI predicted using 
all ten machine learning models. Similarly, the workflow then develops 
learning models using the segregation method for each end-use demand, 
such as heating, interior lighting, photovoltaic power and water systems 
in the interior equipment. The process implemented and tested ten ma-

chine learning models for each end-use demand (Table 4). The results 
show that the XGB model showed the best performance in predicting 
the demand for heating with an RMSE of 683.17. For interior lighting, 

interior equipment, photovoltaic power and water systems, the XGB, 



Energy & Buildings 303 (2024) 113768U. Ali, S. Bano, M.H. Shamsi et al.

Table 5

List of important features with rank that affect end-use demand machine learning models using SHAP 
method.

Rank Heating Lighting Equipment Photovoltaic Water Systems

1 Air changes per hour Lighting density Equipment density Renewables Building type

2 Heating setpoint Building type Building type Orientation Domestic hot water

3 Wall U-value Weather

4 Building type

5 Occupancy

6 Window U-value

7 Equipment density

8 Weather

9 Roof U-value

10 Lighting density

11 Heating setback

12 Floor U-value
LGBM, RF and DT models reported an RMSE of 0, indicating excellent 
performance.

In addition, models such as LR, KNN, and SVM exhibited relatively 
higher root mean square errors (RMSE) in all categories, indicating 
less accurate predictions. The results demonstrate that the RMSE for 
most end-use demands is nearly 0. This can be attributed to the fact 
that end-use demands calculated in EnergyPlus are derived using static 
calculations, meaning that values are determined based on fixed param-

eters and equations without accounting for variability or randomness. 
Therefore, machine learning models can easily learn and map these 
fixed relationships between input features and end-use demands, re-

sulting in a near-perfect fit to the data. Furthermore, the SHAP method 
is employed to gain further insight into the main features that affect the 
model output (Table 5). The findings reveal significant factors that af-

fect energy consumption in buildings. The rate of air changes per hour 
emerged as the most influential feature, highlighting the importance of 
ventilation in determining heating demand. The heating setpoint and 
wall U-value also ranked high, underscoring the importance of tem-

perature control and insulation in regulating energy usage. The type 
of building appeared consistently throughout the ranking, indicating its 
substantial influence on overall energy demand and usage patterns. The 
relevance of orientation and weather in photovoltaic power generation 
emphasizes the need to consider building direction for optimal energy 
production. These results provide valuable information for stakehold-

ers to understand these critical features and design effective strategies 
aimed at reducing energy consumption, improving energy efficiency, 
and promoting sustainability in the built environment.

Finally, the prediction of each end-use demand is multiplied by 
its respective Irish primary energy factor, and these values are then 
summed to determine the total energy consumption of the building. 
This cumulative total is then divided by the area of the building to cal-

culate the EUI, a measure of the energy performance of the building. 
The results illustrate the significant improvement in the performance of 
various machine learning models in predicting EUI with and without ap-

plying segregation methods (Fig. 8). Firstly, non-segregation scenario, 
the XGB model demonstrates the best performance on all metrics, boast-

ing an RMSE of 13.89, MAE of 9.72, and an accuracy of 76% in terms 
of building rating. LGBM follows closely in performance. However, as 
we move down the table, the performance degrades, with the SVM hav-

ing an RMSE of 71.96, MAE of 50.98, R-squared of 0.76 and accuracy 
of 29%. This suggests that the Gradient Boosts models, such as XGB and 
LGBM, are better suited for this problem of non-segregation.

Secondly, when considering the EUI Segregation scenario, there is 
a notable enhancement in the performance of several models. Specifi-

cally, the XGB and LGBM models excel with good R-squared values and 
substantially lower RMSE and MAE values compared to those without 
the segregation method. These models achieve substantially higher ac-

curacy, with XGB reaching 89% and LGBM reaching 87%. This signifies 
that segregation could efficiently capture the underlying data patterns, 
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aiding these models in making more precise predictions. However, it 
is essential to note that some models, such as NN, LR, KNN, and SVM, 
continue to demonstrate suboptimal performance even in the segrega-

tion scenario. The Neural Network (NN) model shows relatively less 
improvement compared to other models, which might suggest that it 
does not benefit as much from segregation in this particular context. 
The poor performance of SVM persisted even with segregation, indicat-

ing that this model might not be suitable for this dataset irrespective of 
the data processing method.

These results indicate that incorporating segregation in the analy-

sis improves the performance of most models, particularly XGB, LGBM, 
and HGB. These findings highlight the importance of considering seg-

regation in the machine learning process to obtain more accurate pre-

dictions for EUI values and emphasize the potential for future research 
to explore novel approaches to improve the performance of models that 
are lagging.

The modeling process is further improved using ensemble learning 
techniques to combine the best-developed models (XGB, LGBM, and 
HGB) based on performance. By comparing the interpretation of these 
models, this study seeks to identify the most effective approach for 
predicting building energy performance using machine learning tech-

niques.

These results highlight the importance of EUI segregation and the 
effectiveness of ensemble modeling in improving the accuracy of end-

use demand prediction (Table 6). In general, non-segregation method, 
the XGB model achieved an RMSE of 13.89, with an accuracy of 76%. 
On the contrary, the XGB model segregation method results in a sig-

nificantly lower RMSE of 7.69, indicating reduced prediction errors 
compared to the previous method. The accuracy improves to 89%, sug-

gesting more accurate predictions in most cases. Finally, the ensemble-

based segregation approach, combining the XGB, LGBM, and HGB mod-

els, achieves the lowest RMSE of 6.48, demonstrating a further reduc-

tion in prediction errors compared to the previous methods. Accuracy 
reaches 91%, indicating a higher level of correct predictions than the 
other methods. The confusion matrix shows that the model performs 
well with all energy ratings of the building (Fig. 9). The findings sug-

gest that the combination of models can enhance prediction capabilities 
and provide more reliable estimates for decision-making processes.

4.5. Urban building energy performance analysis

In the urban building energy performance analysis phase, the devel-

oped model is applied to practical application scenarios, implementing 
retrofit measures outlined in Ireland’s National Climate Action Plan 
2023. The objective is to retrofit existing residential buildings with 
below B2 ratings and install heat pumps. Two different scenarios are 
developed, improving the U values of windows, walls and roofs as rec-

ommended by Part L of the Irish Building Regulations and upgrading 
the HVAC system from a boiler to a heat pump. Additionally, the sce-
narios include options with and without renewables (Table 7).
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Fig. 8. Comparative analysis RMSE and accuracy of machine learning models using with and without end-use demand segregation method to predict EUI.

Table 6

Comparative analysis of method and machine learning models for predicting EUI 
using model performance metrics.

Methods Models RMSE MAE R-squared Accuracy

Non-Segregation XGB 13.89 9.72 0.99 76%

Segregation XGB 7.69 4.67 1 89%

Ensemble Segregation XGB, LGBM, HGB 6.48 3.9 1 91%
Both retrofit scenarios are applied to a dataset of 10,000 buildings 
with ratings below B2 and boilers as the HVAC system. This dataset size 
of 10,000 buildings allows for a sufficiently large sample to analyze and 
apply retrofit scenarios effectively, covering all inefficient building rat-

ings from B3 to G. In general, there is a significant improvement in the 
distribution of energy ratings in buildings. Furthermore, implementing 
both retrofit scenarios in sample buildings resulted in a notable im-

provement, as indicated by the change in the distribution curve from 
lower energy ratings to higher ones (Fig. 10). However, the results 
indicate that in Scenario I, where the heat pumps are installed with 
windows, walls, and roofs refurbished, only 2,725 buildings achieved a 
rating of B2 and above.

In contrast, Scenario II, which included renewable installations, 
showed a slight improvement, with 3,467 buildings reaching higher rat-

ings. These results demonstrate that both scenarios could only improve 
the higher rating of a relatively small percentage of buildings, ranging 
from 27% to 34%. It highlights the need for deeper retrofitting mea-

sures to achieve higher ratings, including heat pumps and renewables 
(Fig. 10).

The results are further examined using historical and future weather 
12

conditions, utilizing a 2030-year weather file. The emission scenarios 
considered in this study are based on a Representative Concentration 
Pathway (RCP), which is a greenhouse gas concentration trajectory 
adopted by the IPCC [60]. The 2030 weather file is based on RCP 
4.5, described by the IPCC as an intermediate scenario and the most 
probable baseline scenario, considering the exhaustible nature of non-

renewable fuels. The study shows no significant differences when using 
the future weather file. However, due to global warming and projected 
average temperature increases of 1–1.6 °C, heating demand is expected 
to decrease in the future, potentially leading to an improvement in 
building energy ratings [61]. Furthermore, the rating distribution for 
buildings is expected to change, primarily through using photovoltaics 
as renewable energy sources (Fig. 11).

The results demonstrate that the proposed methodology helps ur-

ban planners, energy policymakers, utility planners, and manufacturers 
in evaluating the implementation of retrofit measures on a large scale. 
Additionally, this case study highlights that fabric renovation in build-

ings is insufficient as a standalone solution. In conjunction with the 
installation of the heat pump, it is crucial to address other factors such 
as the airtightness of the building and the control of the heating to ef-

fectively improve the energy performance of the building, as evidenced 

by the importance of the characteristics.
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Fig. 9. Confusion matrix shows the performance of the ensemble-based segregation model for each building rating. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Table 7

Retrofit scenarios to analyze the pre or post-effect on building energy performance at urban scale.

Retrofit Scenarios Window U-value Wall U-value Roof U-value HVAC Renewables

Scenario I 1.4 0.21 0.16 Heat Pump No

Scenario II 1.4 0.21 0.16 Heat Pump Yes

Fig. 10. Impact on the distribution of 10,000 building sample pre or post-retrofit scenarios.
5. Discussion

The proposed data-driven methodology offers a potential solution by 
enabling the analysis of the energy performance of residential buildings 
on a large scale, facilitating the decision-making process. The method-

ology uses limited available data to generate a synthetic dataset of 
1 million buildings. This dataset is then used to develop a machine-

learning model explicitly designed for the urban context. However, the 
data required to implement the proposed methodology, such as build-

ing geometry and non-geometry data, census information, and weather 
data, originate from various sources and come in different formats, 
leading to data inconsistencies. Consequently, due to these inconsisten-
13

cies and the absence of standardized urban-scale data, available data 
present a significant and ongoing barrier to accurately implementing 
urban-scale modeling. The developed model allows for the prediction of 
various retrofit scenarios, even with limited resources. Segregation and 
ensemble-based methods improve the overall performance of the model, 
resulting in a significant 15% improvement. However, it is essential to 
note that the accuracy and implementation of the model depend on the 
quality and availability of input data and may vary in different contexts 
and countries. Moreover, developing synthetic data for different build-

ing archetypes in other contexts might require additional computational 
time.

Furthermore, the study identifies the key characteristics that in-

fluence the building demand for end-use. This finding enables policy-
makers to prioritize these influential features when considering retrofit 
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Fig. 11. Impact of historical and future weather conditions on the post-retrofit scenarios.
measures. By focusing on these critical factors, policymakers can ef-

fectively allocate resources and implement targeted retrofit strategies 
to improve building energy efficiency. However, it should be acknowl-

edged that the importance of characteristics may differ for different 
sample data, weather conditions, or urban contexts.

Finally, the proposed solution is a valuable tool for urban planners, 
energy policymakers, utility planners, and manufacturers in evaluat-

ing and implementing retrofit scenarios at the urban scale. However, 
the models inherently depend on the quality of the data input. There-

fore, incorrect synthetic data that do not closely represent real-world 
conditions might not accurately capture the complexities and uncer-

tainties of the actual urban context. Furthermore, machine learning 
models are often considered ‘black boxes,’ which could lead to a lack 
of understanding of the underlying reasons behind the predictions. This 
lack of knowledge makes it difficult for policymakers and planners to 
trust and fully understand the recommendations. Additionally, the com-

plexity and computational requirements of machine learning models 
and parametric simulations can be prohibitive, necessitating significant 
computational resources.

6. Conclusion and future work

Stakeholders analyze the energy performance of buildings on an 
urban scale to develop effective policy measures that reduce energy 
consumption and CO2 emissions. However, collecting and analyzing 
building energy performance data on a large scale is complex and time-

consuming, requiring multiple resources. To address this challenge, we 
propose a novel methodology that uses machine learning algorithms 
to predict the energy performance of an entire urban building stock. 
This methodology allows stakeholders to make informed decisions and 
implement targeted interventions to promote sustainable urban devel-

opment. In this paper, we implement the end-use demand segregation 
method and the ensemble-based approach to develop a robust learning 
model to predict building energy performance. This approach improves 
the predictive performance of machine learning and supports informed 
decision-making in building energy performance assessment.

The methodology tested on Dublin City by developing a synthetic 
building dataset of 1 million residential buildings using parametric anal-

ysis of 19 key parameters identified from four building archetypes. The 
results show that the segregation method is highly effective for predict-

ing EUI based on the given dataset, compared to the traditional single 
model approach. Among the ten different machine learning algorithms 
compared, variations of the Gradient Boosting algorithm (XGB, LGBM, 
and HGB) are found to be the most efficient and accurate models to 
predict building energy performance. Furthermore, the ensemble-based 
approach further improved the results, achieving an accuracy of 91%. 
Comparing the ten different models revealed that the ensemble-based 
segregation method is highly effective in predicting EUI, with an im-
14

provement in the energy rating of the building resulting in an increase 
in accuracy 15%. Accurate prediction of building energy performance 
enables stakeholders, such as energy policymakers and urban planners, 
to make informed decisions when planning large-scale retrofit mea-

sures.

In general, the proposed methodology offers valuable information 
and tools to support urban planners and energy policymakers in ad-

dressing the challenges of sustainable planning and energy efficiency on 
an urban scale. The data-driven approach, coupled with feature analysis 
and predictive modeling, empowers decision-makers to make informed 
choices and drive positive change in urban energy systems. The findings 
of this study offer valuable assistance to energy policymakers and urban 
planners by providing information that can contribute to the develop-

ment of effective retrofit measures. These measures aim to decrease 
building energy consumption and mitigate carbon emissions. By in-

corporating the knowledge gained from this study, policymakers and 
planners can make well-informed decisions that facilitate sustainable 
urban development and address the pressing issue of climate change. 
Furthermore, the study helps policymakers and urban planners eval-

uate the feasibility and impact of implementing retrofit measures on a 
larger scale. This comprehensive approach supports the formulation and 
execution of strategies to address energy efficiency and environmental 
concerns.

Future research directions could investigate the influence of dif-

ferent mid-rise or high-rise apartments and non-residential archetype 
models on the predictive performance of machine learning algorithms. 
Furthermore, the integration of cloud computing parametric simulation 
could further enhance the research results. Currently, this research fo-

cuses on annual energy use and could be expanded to analyze seasonal 
and monthly variations.
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