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Abstract

Sagittal synostosis is a condition caused by the fused sagittal suture and results in a nar-

rowed skull in infants. Spring-assisted cranioplasty is a correction technique used to expand

skulls with sagittal craniosynostosis by placing compressed springs on the skull before six

months of age. Proposed methods for surgical planning in spring-assisted sagittal cranio-

synostosis correction provide information only about the skull anatomy or require iterative

finite element simulations. Therefore, the selection of surgical parameters such as spring

dimensions and osteotomy sizes may remain unclear and spring-assisted cranioplasty may

yield sub-optimal surgical results. The aim of this study is to develop the architectural struc-

ture of an automated tool to predict post-operative surgical outcomes in sagittal craniosyn-

ostosis correction with spring-assisted cranioplasty using machine learning and finite

element analyses. Six different machine learning algorithms were tested using a finite ele-

ment model which simulated a combination of various mechanical and geometric properties

of the calvarium, osteotomy sizes, spring characteristics, and spring implantation positions.

Also, a statistical shape model representing an average sagittal craniosynostosis calvarium

in 5-month-old patients was used to assess the machine learning algorithms. XGBoost algo-

rithm predicted post-operative cephalic index in spring-assisted sagittal craniosynostosis

correction with high accuracy. Finite element simulations confirmed the prediction of the

XGBoost algorithm. The presented architectural structure can be used to develop a tool to

predict the post-operative cephalic index in spring-assisted cranioplasty in patients with sag-

ittal craniosynostosis can be used to automate surgical planning and improve post-operative

surgical outcomes in spring-assisted cranioplasty.

1. Introduction

Sagittal synostosis is the most common type of cranial anomaly comprising around 50% of cra-

niosynostosis conditions [1]. It is caused by the fused sagittal suture and results in a narrowed

skull [2]. In sagittal synostosis, bossing in the forehead occurs due to longitudinal skull growth

and narrowing [3, 4].
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Endoscopic methods in sagittal craniosynostosis are used to correct skull deformities over

time therefore they rely on skull growth [1]. Endoscopic strip craniectomy can be used in

patients with sagittal craniosynostosis between 4 and 6 months with subsequent helmet ther-

apy [5] to improve cosmetic and functional outcomes. The cephalic index may remain subop-

timal in comparison to open surgical techniques due to rapid skull growth [5]. However, open

surgical methods to correct sagittal synostosis are preferred after 6 months old [6]. Spring-

assisted cranioplasty is another method being used to correct sagittal craniosynostosis, how-

ever, the outcome of both endoscopic and spring-assisted methods remain similar [7] whilst

spring-assisted cranioplasty corrects the skull over time, therefore, the outcome of this proce-

dure depends also on the skull growth [8].

Computational methods such as finite element analysis have been proposed to predict the

outcome of craniosynostosis correction to improve surgical outcomes. For instance, Borghi

et al. [9] used numerical simulations to evaluate spring-assisted cranioplasty in a patient-spe-

cific sagittal craniosynostosis model. Bozkurt et al. [10] utilised finite element analyses to

evaluate different options in the correction of unicoronal craniosynostosis. An in-silico

modelling platform was developed and used to predict spring-assisted posterior vault expan-

sion [11]. Computational modelling was also used to predict outcomes of spring-assisted cra-

nioplasty in lambdoid craniosynostosis [12]. Different correction techniques for sagittal

craniosynostosis were also compared using computational simulations in patient-specific

skull models [13]. Although finite element analyses can simulate displacements for different

correction techniques they also require validation or iterative simulations for optimal surgi-

cal settings. Therefore, the efficiency of finite element models predicting surgical outcomes

in craniosynostosis may be compromised and must be improved. Machine learning methods

offer opportunities as diagnostic and surgical planning tools in medicine [14]. For instance,

Knoops et al. [15] developed a machine learning framework for automated diagnosis in plas-

tic surgery. The use of machine learning algorithms has also been proposed in neurosurgery

as preoperative surgical planning tools [16]. Machine learning methods have also been used

to evaluate the effect of metopic severity on the aesthetic outcome of fronto-orbital advance-

ment in metopic craniosynostosis [17]. A similar approach can also be implemented in finite

element models to increase the efficiency of the simulations and predict surgical outcomes

more accurately in the correction of sagittal craniosynostosis. Moreover, novel automated

surgical planning tools based on machine learning and computational simulations can

improve the outcome of personalised treatment where there is limited data for rare diseases

such as sagittal craniosynostosis. Therefore, the aim of this study is to develop the architec-

tural structure of an automated tool to predict post-operative surgical outcomes in sagittal

craniosynostosis correction with spring-assisted cranioplasty using machine learning and

finite element analyses.

2. Materials and methods

There is no human data in this manuscript. A statistical shape model for representing average

skull shape in sagittal craniosynostosis patients was used to develop finite element models and

the statistical shape model can be found on Zenodo, an open-access database [18].

Six different machine learning algorithms were tested using a finite element model which

simulated a combination of various mechanical and geometric properties of the calvarium,

osteotomy sizes, spring characteristics, and spring implantation positions. The finite element

model was developed using a parametric 3D solid model which represents a calvarium with

sagittal craniosynostosis. The workflow of the developed modelling and machine learning

architectural structure is given in Fig 1.
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2.1. Parametric skull model and finite element simulations

The developed architectural structure starts with 3D modelling and parametrisation of a cal-

varial model. This model is then meshed and mechanical properties, boundary conditions and

spring forces are defined. The solution is obtained through finite element analyses and the

results are processed. The processed results were used to tune hyperparameters and train the

machine learning algorithms. The post-operative cephalic index was predicted using an aver-

age template which was obtained through statistical shape modelling and the prediction was

validated using finite element analyses.

A 3D calvarial model was developed considering average length, width, height, and anterior

and posterior curvatures for infant skulls around 5-month-old with sagittal craniosynostosis

Fig 1. The workflow of the developed modelling and Machine Learning (ML) architectural structure.

https://doi.org/10.1371/journal.pone.0294879.g001
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[19, 20] using Solidworks 2021 (Dassault Systèmes, Vélizy-Villacoublay, France). The 3D cal-

varial model is given as a S1 File. The cephalic index (CI) in the developed calvarial model was

calculated as given below.

CI ¼
Skull Width
Skull Length

� 100 ð1Þ

The length, width and height of the skull model were modelled as 165 mm, 116 mm and

87 mm considering data given by Heutinck et al. [20]. The cephalic index in the skull model

was 0.70. Hexahedral quadratic elements were used to discrestise the created calvarial geom-

etry in MSC Marc 2022 (Hexagon, Stockholm, Sweden). Coronal and lambdoid sutures and

anterior fontanelle were created considering the anatomical features of a skull affected by

sagittal craniosynostosis around 5 months of age [21] in MSC Marc 2022. Around two hun-

dred ten finite element simulations were performed to obtain training data for the machine

learning algorithms using the developed finite element analysis. Mechanical properties of the

bony parts in the skull, skull thickness, width and length of the osteotomy, position, and

number of the implanted springs, and spring diameter were selected as the variables in the

simulations.

The elastic modulus of parietal bones in skulls with sagittal craniosynostosis changes

between 1000 MPa and 4500 MPa in children around 5 months old [22]. However, relatively

low values for elastic modulus bone elastic modulus have been reported in the literature [23,

24]. Therefore, the range of the bone elastic modulus was changed between 100 MPa and 3000

MPa in the simulations. Values such as 0.22 or 0.28 have been reported for Poisson’s ratio of

the bones in infants [25, 26]. Therefore, the range of bone Poisson’s ratio was defined between

0.2 and 0.3 in the simulations. The thickness of parietal bones changes between 1.5 mm and 3

mm in children around 6 months old [27] whereas the mean bone thickness in parietal bones

and frontal bones in infants between 0 to 6 months old is around 3.4 mm and 3.7 mm respec-

tively [28]. Therefore, the range of the skull thickness was set between 2 mm to 4 mm in the

simulations. The width of the osteotomy in Borghi et al. [9] was 20 mm whereas 10 mm wide

osteotomies have also been performed [29]. Therefore, the width of osteotomy sizes varied

between 10 mm to 20 mm in the simulations. Osteotomy is performed between coronal and

lambdoid sutures to insert the springs [30]. The length of osteotomy in the simulations is

defined using the distance from the sutures. The distance between the sutures and osteotomy

varied between 0 mm to 40 mm in the simulations. Two or three springs were simulated con-

sidering the number of the implanted springs in patients [31]. Springs are positioned 30 to 40

mm from the sutures [29] whereas a 10 mm spring distance from the sutures has also been

used in clinics [32]. Therefore, the range for the distance of the springs from the sutures was

defined between 10 mm and 40 mm. Three different spring characteristics depending on the

wire diameter were simulated as described by Borghi et al. [33]. Also, the 3D skull model was

scaled to simulate different calvaria sizes. The range of the skull length and width were

changed between 153 mm and 170 mm and 107 mm and 120 mm [8, 20] respectively. The

range of the variables in the finite element simulations which were used to train and test the

machine learning algorithms is given in Table 1.

The variables within the defined range were generated randomly to simulate the training

data. Elastic modulus and Poisson ratio of sutures and anterior fontanelle were set to 16 MPa

and 0.49 in all the simulations [9, 12]. Fixed displacement boundary conditions were used at

the base of the skull model.
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2.2. Machine learning algorithms

Linear regression, support vector regression, decision tree, random forest, gradient boosting,

and XGBoost machine learning algorithms were used to predict the post-operative cephalic

index in spring-assisted sagittal craniosynostosis correction.

Linear regression uses a linear relationship between the input variables (x1, x2,. . .,xn) and

the output variable (ŷ) [34].

ŷ ¼ b0 þ b1x1 þ b2x2 þ . . .þ bnxn ð2Þ

Support Vector Regression utilises support vectors to approximate the function that best

fits the training data. It is the summation of the product of support vector coefficients (αᵢ) and

the kernel function (K) applied to the input vectors (xᵢ) and the test instance (x), along with a

bias term (b) [35].

ŷ ¼
XN

i

ai � Kðxi; xÞð Þ þ b ð3Þ

Decision trees partition the feature space into regions and assign a constant value (cᵢ) to

each region. The predicted value (ŷ) is determined by averaging the values of the training

instances falling into the corresponding region [36].

ŷ ¼
XN

i

ðciÞ=N ð4Þ

Random Forest combines multiple decision trees to make predictions. Each tree produces a

predicted value (ŷᵢ) based on a subset of features and training instances. The final prediction

(ŷ) is obtained by averaging the predicted values of all the trees [37].

ŷ ¼ 1=N
XN

i

ðŷiÞ ð5Þ

Gradient Boosting builds an ensemble of typically decision trees sequentially. Each learner

tries to correct the mistakes made by the previous learners. The final prediction (ŷ) is the sum

of the predictions of all the learners [38]. eXtreme Gradient Boosting (XGBoost) is an

Table 1. Range of the variables in the finite element simulations which were used to train and test the machine

learning algorithms. E and ν represent Elastic modulus and Poisson’s ratio of the bones, tskull represents the skull

thickness, wost and lost represent the width of the osteotomy and the distance between the sutures and osteotomy, nspring

is the number of the springs implanted in the skull, xspring is the distance between the springs and both ends of the

sutures, lskull and wskull represent skull length and width.

Parameter Range References

E [Mpa] 1000–4500 [22–24]

v 0.2–0.3 [25,26]

tskull [mm 2–4 [27,28]

wost [mm] 10–20 [9,29]

Iost [mm] 0–40 [30]

lskull [mm] 153–170 [8,20]

wskull [mm] 107–120 [8,20]

xspring [mm] 10–40 [29,32]

nspring 2–3 [31]

https://doi.org/10.1371/journal.pone.0294879.t001
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optimised implementation of gradient boosting. It follows a similar approach as gradient

boosting but incorporates additional regularisation techniques to enhance performance [39].

Output (ŷ) in gradient boosting and XGBoost is described in the same way.

ŷ ¼
XN

i

FiðxÞð Þ ð6Þ

The machine learning algorithms were trained using data obtained from the finite element

simulations, and the hyperparameters were tuned accordingly to ensure that the algorithms

would perform well in test data. Hyperopt package in Python was used to tune hyperpara-

meters [40]. A search space that specifies the range and type of hyperparameters to optimise

was defined. An adaptive Tree of Parzen Estimators was used to find the optimum hyperpara-

meters in the search space. Through multiple iterations, Hyperopt refined the search space

and converged towards the optimal hyperparameters for the machine learning task. The per-

formance of the machine learning algorithms was evaluated using root mean squared error

and coefficient of determination (R2). Scikit-learn library in Python was used to run the

machine learning algorithms. In total two hundred and twelve finite element analyses were

performed to obtain training and test data. Simulation results from one hundred seventy simu-

lations were used to train the machine learning algorithms whereas forty-two simulation

results were used as test data. The parameters extracted in the machine learning algorithms

were used as features using the training set. The test data were the target variables results

obtained from the finite element simulations.

2.3. Validation of machine learning predictions via a statistical skull model

and finite element simulations

A statistical shape model for sagittal craniosynostosis available on Zenodo open access data-

base [18, 41] was used as test data to verify the performance of the machine learning algo-

rithms with finite element models. The average age of the patients in this model was around 5

months old. The length, width, and height of the skull model were around 160mm, 114 mm,

and 99 mm resulting 0.71 cephalic index. Elastic modulus (E) and Poisson Ratio (ν) of the

bone and sutures were 41 MPa and 16 MPa and 0.22 and 0.49 respectively [9]. The skull thick-

ness was 2 mm. An osteotomy was modelled by removing the elements from the coronal

suture to lambdoid suture resulting in an around 97 mm long cut whereas the width of the

osteotomy was 20 mm. Two 1.2 mm diameter springs were positioned at 34 mm distance from

the sutures. Compressed spring forces were modelled considering the data given by Borghi

et al. [33]. The post-operative cephalic index was used to compare the prediction in the

machine learning algorithms and the finite element model simulating spring-assisted cranio-

plasty in the statistical shape model for sagittal craniosynostosis. The geometric calvarium

model, finite element model for the pre-operative skull, and finite element model with osteot-

omy and springs and the statistical shape model for sagittal craniosynostosis and the finite ele-

ment model with osteotomy and springs to validate the machine learning algorithms are given

in Fig 2.

2.4. Mesh sensitivity analysis

Around 7500 hexahedral quadratic elements with 42000 nodes were used in the simulations

after evaluating the mesh dependence in the model. The finite element simulations to evalu-

ate mesh sensitivity were done using 421 MPa and 0.22 elastic modulus and Poisson’s ratio

in the bones, 16 MPa, and 0.49 elastic modulus and Poisson’s ratio in the sutures. The skull
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thickness was 2 mm. The width of the osteotomy was 20 mm whereas the osteotomy was per-

formed from the coronal suture to the lambdoid suture. Two springs made of 1.2 mm wire

were positioned at 34 mm distance from the sutures. Results for the mesh sensitivity test are

given in Fig 3.

3. Results

Displacement map for a range of elastic modulus, osteotomy distances from the sutures, skull

thickness, and spring positions for 20 mm osteotomy and two springs made of 1.2 mm wire

are given in Fig 4.

Fig 2. A) The geometric calvarium model, finite element model for the pre-operative skull, and a finite element model with osteotomy and springs (L,

W, and H represent length, width, and height), B) The statistical shape model for sagittal craniosynostosis and the finite element model with osteotomy

and springs to test the machine learning algorithms.

https://doi.org/10.1371/journal.pone.0294879.g002

PLOS ONE Automated surgical planning in spring-assisted sagittal craniosynostosis correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0294879 November 28, 2023 7 / 15

https://doi.org/10.1371/journal.pone.0294879.g002
https://doi.org/10.1371/journal.pone.0294879


Maximal displacement in the skull model decreased with the increasing elastic modulus.

Longer osteotomy sizes resulted in higher displacements in the skull model. Also, relatively

low skull thickness allowed higher displacement in the skull. Positioning springs closer to the

sutures also resulted in relatively large displacements in the skull model. Correlations between

Fig 3. Mesh sensitivity in the finite element model a) number of elements in the simulations with hexahedral linear

elements b) number of nodes in the simulations with hexahedral linear elements, c) number of elements in the

simulations with hexahedral quadratic elements d) number of nodes in the simulations with hexahedral quadratic

elements.

https://doi.org/10.1371/journal.pone.0294879.g003

Fig 4. Displacement map for a range of elastic modulus, osteotomy distances from the sutures, skull thickness,

and spring positions.

https://doi.org/10.1371/journal.pone.0294879.g004
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the simulated and predicted post-operative cephalic index for each machine learning algo-

rithm are given in Fig 5.

Root mean square errors in Linear Regression, Support Vector Regression and Decision

Tree algorithms were around 0.20 or higher whereas the coefficients of determination (R2) in

these algorithms were lower than 0.90. Root mean square errors and coefficients of determina-

tion (R2) in Random Forest, Gradient Boosting and XGBoost were 0.20, 0.20 and 0.12 and

0.91, 0.91 and 0.97 respectively The displacement map in the finite element model simulating

spring-assisted cranioplasty in the statistical shape model for sagittal craniosynostosis is given

in Fig 6.

The maximal displacement in the statistical skull model after spring implantation was

around 5.3 mm. Also, the post-operative cephalic index was around 0.723 in the finite element

model simulating spring-assisted cranioplasty in the statistical skull model for sagittal cranio-

synostosis. The percentages of error for the predicted post-operative cephalic indexes by each

machine learning algorithm are given in Fig 7.

The percentage of the error was the highest in the Support Vector Regression algorithm

whereas the XGBoost algorithm predicted the post-operative cephalic in the statistical shape

model index with minimal error. Errors in the cephalic index predicted by the other machine

learning algorithms were also higher than the error in the cephalic index predicted by the

XGBoost algorithm.

Fig 5. Correlations between the simulated and predicted post-operative cephalic index for the machine learning algorithms (RMSE and R2

represent root mean square error and coefficient of determination).

https://doi.org/10.1371/journal.pone.0294879.g005
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4. Discussion

In this study, the performance of six different machine learning algorithms which were used to

predict post-operative cephalic index after spring-assisted correction of sagittal craniosynosto-

sis was evaluated. A parametric 3D solid model representing calvarium was used to simulate

spring-assisted correction of sagittal craniosynostosis utilising finite element analysis. The

finite element simulations were performed to generate training data for the machine learning

algorithms. A statistical shape model of sagittal craniosynostosis was used as the test model

and the predicted post-operative cephalic index by each algorithm was validated using finite

element analysis.

Fig 6. The displacement map in the finite element model simulating spring-assisted cranioplasty in the statistical

shape model for sagittal craniosynostosis.

https://doi.org/10.1371/journal.pone.0294879.g006

Fig 7. The percentages of error for the predicted post-operative cephalic indexes by each machine learning

algorithm (LR, SVM, DT, RF, GB, and XGB represent linear regression, support vector regression, decision tree,

random forest, gradient boosting, and extended gradient boosting respectively).

https://doi.org/10.1371/journal.pone.0294879.g007
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The parametric solid model used in this study allowed changing the geometric parameters

such as thickness within the anatomical range for patient age considered [27, 28] and osteot-

omy length and width as in the reported literature [9, 29]. Craniosynostosis is a rare disease

with different phenotypes [42], therefore, the parametric model was also used to populate

training and testing data by considering the mechanical properties of infant skull affected by

sagittal craniosynostosis until six months of age [22]. Our analysis showed that the XGBoost

algorithm predicts the post-operative cephalic index with a very low error outperforming the

other machine learning algorithms tested in this study. Error in the predicted post-operative

cephalic index was relatively high in the other tested machine learning algorithms.

In this study, the outcome of the spring-assisted correction in the cranial model was evalu-

ated using the cephalic index, therefore, machine learning algorithms were trained to predict

the cephalic index. Total and compartmental cranial volumes have also been suggested to

quantify head shape and outcomes after cranioplasty in sagittal craniosynostosis [43]. The rea-

son for evaluating the cephalic index was because the aesthetic success of surgical intervention

in sagittal synostosis is measured using the cephalic index [44]. The average post-operative

cephalic index in sagittal synostosis is between 70% and 72% [8]. Clinical data show that the

cephalic index increases between 3% and 9% after removal of the springs in patients with sagit-

tal synostosis [45]. However, the increase in the cephalic index depends on the cranial bone

properties as well as the thickness of the bones [45]. Another study shows that one-year post-

operative outcomes show that the cephalic index increases around 3% after spring-assisted

correction of sagittal craniosynostosis [46]. The post-operative cephalic index values in the

finite element simulations which were used to test the machine learning 70% and 72.5%. In the

patient-specific skull model, the cephalic index increased by more than 1% after spring inser-

tion. However, the simulated results show the immediate post-operative effect of the spring

forces on the cephalic index. The relatively high increase in the cephalic index reported in clin-

ical data shows the effect of skull growth and spring forces over time.

Proposed tools to plan patient-specific surgeries in craniosynostosis correction include

tools such as computed tomography imaging [47], rapid prototyping [48, 49] or finite element

simulations [50]. Nonetheless, finite element analyses require iterative simulations to find opti-

mal surgical parameters such as spring positions or the size of the osteotomy whereas 3D-

printed templates do provide information about the post-operative surgical outcome. The pre-

sented architectural structure with a machine learning algorithm has the potential to overcome

the aforementioned challenges. Spring-assisted cranioplasty in sagittal craniosynostosis can be

planned after training and testing the machine learning algorithm. The machine learning algo-

rithm can predict surgical outcomes such as the cephalic index. Finite element analyses can be

performed to simulate displacements on the skull and validate the prediction following the

simulations from the machine learning algorithm. The proposed workflow will reduce the

number iterative finite element simulations whilst automating the surgical planning in spring

assisted sagittal craniosynostosis correction.

In this study, six different machine learning algorithms were used. Each algorithm has

shortfalls. For instance, although linear regression is a simple and interpretable model, it

assumes a linear relationship between input features and the target variable and may not cap-

ture complex non-linear patterns in the data, potentially leading to reduced predictive accu-

racy [51]. Selecting appropriate hyperparameters can be challenging, and improper tuning

may result in suboptimal performance in Support Vector regression [52]. Decision trees are

prone to overfitting, especially when the tree depth is not properly controlled. They may create

overly complex models that do not generalise well to unseen data [36]. Although random for-

ests mitigate the overfitting issue of decision trees by aggregating multiple trees, they can be

computationally expensive. Training numerous decision trees may lead to longer training
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times and increased memory usage [53]. Gradient boosting methods are susceptible to outliers

in the data. Outliers can have a significant impact on model performance, requiring robust

preprocessing techniques [54]. XGBoost is known for its robustness and efficiency. However,

like other ensemble methods, it may require careful tuning of hyperparameters, such as the

learning rate and tree depth, to achieve optimal results [39]. XGBoost may be a suitable algo-

rithm to train and utilise to plan spring-assisted sagittal craniosynostosis correction and will

likely perform better than other approaches in a future clinical study. The results were not vali-

dated using clinical data and validation of the results which is a limitation of the study will be a

future task.

5. Conclusion

The presented architectural structure to predict the post-operative cephalic index in spring-

assisted cranioplasty in patients with sagittal craniosynostosis has the potential to automate

surgical planning. An automated surgical planning tool will improve post-operative surgical

outcomes in spring-assisted cranioplasty.
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