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Abstract— The task of tactile object recognition is an ever-

evolving research area comprising of the gathering and 

processing of features related to the physical interaction between 

a robotic system and an object or material. For a robotic system 

to be capable of interacting with the real-world, the ability to 

identify the object it is interacting with in real-time is required. 

Information about the object is often strongly enhanced using 

tactile sensing. Recent advancements in time series classifiers 

have allowed for the accuracy of real-time tactile object 

recognition to be improved, therefore generating opportunities 

for enhanced solutions within this field of robotics. In this paper, 

improvements are proposed to the state-of-the-art time series 

classifier ROCKET for analysis of tactile data for the purposes 

of object recognition. A variety of classifier heads are 

implemented within the ROCKET pipeline; these models are 

then trained and tested on the PHAC-2 tactile dataset, achieving 

state-of-the-art performance of 96.3% for single-modality tactile 

object recognition while only requiring 11 minutes to train. 

I. INTRODUCTION 

Many researchers are investigating the potential of robotic 
systems to interact with humans and the environment in a 
growing manner. One way to aid in improving this interaction 
is to perform tasks such as object recognition and material 
classification. When physically interacting with objects, a 
robotic system can gather and utilise an extremely rich and 
dense collection of physical properties of the object through 
the use of haptic interaction and tactile sensing. 

Due to the nature of gathering these physical properties at 
successive times, the data can be referred to as time series [1]. 
One of the challenges associated with gathering and 
processing time series data is the sheer volume of data 
gathered during physical contact, and the time required to 
physically gather this data. As such, object recognition has 
been a difficult task due to a lack of publicly available datasets 
that have sufficient data that can be utilised for training models 
with a high degree of accuracy. 

This paper addresses a current research gap, where single-
modality tactile object recognition systems are typically not 
trained and tested on multiple classes of objects. This work 
utilises the PHAC-2 dataset and is the first study to implement 
a variety of classifier heads into the ROCKET architecture to 
investigate the impact on the task of object recognition using 
tactile data on a dataset with a large number of objects (60 
objects). This modified ROCKET implementation achieves 
state-of-the-art object recognition performance on the PHAC-
2 dataset while only requiring a single modality to achieve 
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peak performance, ensuring that both training and testing 
times are not compromised when utilising a complex dataset, 
enabling the proposed system to run in real-time. 

II. RELATED WORK 

A. Tactile Datasets 

Gathering tactile data is often an extremely time 
consuming and manual process [2]. As a result, many 
researchers opt to collect and use small-scale datasets which 
are subsequently not available for public usage [3]; as such, 
there is currently a lack of publicly available rich and dense 
tactile datasets. 

VibTac-12 [4] is a collection of 12 texture classes of 
various household objects such as sandpaper, Velcro strips and 
rubber bands. The dataset features 20 second recordings for 
each texture sampled at 200Hz. The dataset also features 
corresponding audio data samples at 8kHz. The main 
limitations of this dataset when performing tactile research is 
that it only contains 12 classes, with each class only having 
one 20 second sample. This makes VibTac-12 unsuitable for 
any models requiring a large amount of data. 

Penn Haptic Adjective Corpus 2 (PHAC-2) [5] is a visual-
tactile multimodal dataset featuring a variety of data gathered 
on 60 different household objects. The tactile data within 
PHAC-2 is gathered by two individual Syntouch BioTac [6] 
tactile sensors mounted on a robotic gripper. Each class 
features 10 independent tactile readings and corresponding 
high-resolution images. Each class also includes related haptic 
adjectives which were determined by a selection of human 
participants. PHAC-2 is generally utilised for the training and 
testing of multimodal object recognition systems such as [7], 
where the visual data is combined with the tactile data to 
achieve higher performance.  

B. Tactile Driven Classification 

There are a variety of high performing time series 
classification models which are capable of functioning with a 
wide range of data; many of which focus on deep learning 
approaches. Schmitz et al. [8] developed a method utilising 
deep learning and dropout for the task of tactile object 
recognition; a multi-fingered hand combined with a shallow 
ANN to perform multimodal object recognition using the data 
from a TWENDY-ONE robotic hand [9]. Although the 
approach in this research performed well, there are some 
conditions for the performance of the model to be competitive. 
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Firstly, the data from four independent grasps is utilised, with 
each grasp lasting 20 seconds. Secondly, the reported 
performance of 88% is achieved on a 20 object dataset, a third 
of the object classes that is available in a dataset such as 
PHAC-2 

Pastor et al. [10] also investigated the use of convolutional 
neural networks (CNN) by developing TactNet3D [11]. This 
research utilises two parallel grippers and a modified Tekscan 
tactile sensor to gather dense tactile information; this 
information is then fed to a 3D CNN. Again, this approach 
scales significantly with the number of grasps, achieving a 
performance of ~80% with only one grasp on a custom dataset 
containing 24 classes. 

Prado da Fonseca et al. [12] also proposed a multi-grasp 
method of tactile object recognition driven by exploratory 
procedures. Multiple machine learning methods were tested, 
including Support Vector Machines [13] and Random Forests 
[14]. This approach scales significantly with the number of 
grasps, with the computational cost increasing greatly with 
each grasp. A peak performance of ~93% is achieved, 
however, the dataset consists of only six objects. 

Huaping et al. [15] combined extreme learning machines 
and kernel sparse learning. Utilising the PHAC-2 dataset and 
tests a variety of models including support vector machines. 
This research focuses on determining the adjectives associated 
with each tactile reading in the PHAC-2 dataset and consists 
of several pre-processing steps, e.g., three of the 24 adjectives 
from the PHAC-2 dataset were removed and the data was split 
into 21 independent training and testing sets. While this 
approach achieved a mean accuracy of ~90%, it is not 
comparable to other state-of-the-art approaches as each model 
was trained to only detect one adjective, providing a solution 
that is not generalisable. 

C. Multi-modal Classification 

As aforementioned, PHAC-2 is a multi-modal dataset, 
containing multiple tactile modalities as well as visual data 
relating to each object. As such, there is a variety of 
implementations where multiple modalities are utilised for the 
task of adjective prediction and object recognition. Gao et al. 
[16] implemented a multi-modal approach utilising the PHAC-
2 dataset to predict the haptic adjectives associated with input 
data. This implementation, which utilised multiple tactile 
modalities in a CNN alongside a GoogleNet image processor 
achieved a peak accuracy of 85.9%. Liu et al. [17] utilised a 
latent pairing matrix to perform multimodal fusion for object 
recognition with the PHAC-2 dataset. A variety of 
combinations of modalities were tested, and a peak 
performance of ~83% was achieved when fusing visual and 
tactile data. Notably, experimental work was also completed 
on a haptic-only object recognition method, where the 
accuracy ranged from 65% to 79%. 

Abad et al. [18] utilised a GelSight [19] sensor combined 
with visual images and UV markings to perform object 
recognition on a collection of coins. This proposed method 
utilises AlexNet [20] for processing of the features and 
achieves a performance of 93.4% when evaluating a custom 
dataset containing only 5 coins. 

Existing research into tactile object recognition currently 
has some major limitations. The majority of the existing 
models are trained and tested on custom datasets, and many of 
these datasets are extremely small, making comparisons 
between models difficult as the data they are trained and tested 
on is not comparable due to the extremely large variance in the 
quality of the dataset. In addition to this, many of the tactile 
object recognition models require multiple grasps with more 
than one tactile sensor gathering information. This approach 
has two main downsides; firstly, the time required to gather the 
tactile data for both training and testing will grow drastically 
with the required number of grasps. Secondly, the 
computational overhead required to process the rich tactile 
data gathered from multiple grasps combined with multiple 
sensors will consequently mean that many of these approaches 
will be unable to run in real time. As evident by the decrease 
in peak performance in multi-modal approaches, the task of 
creating one modal which can classify all 60 objects in the 
PHAC-2 dataset is considerably difficult when compared to 
models which are tested on much smaller and less complex 
datasets. 

III. METHODOLOGY 

A. Dataset Selection 

It was decided to utilise the PHAC-2 dataset for this 
research. The rich and dense data gathered from the BioTac 
sensors provides an excellent source of information for tactile 
object recognition. Furthermore, PHAC-2 it is often selected 
within this field as a benchmark dataset for robotic tactile 
object recognition, introducing rigour due to the inclusion of a 
large set of object classes. In contrast to other work utilising 
PHAC-2, it was decided that all 60 objects would be included; 
providing a model capable of recognising an extremely varied 
number of objects. It should be noted, the haptic adjectives and 
visual data associated with each object are not utilised in this 
research as the focus is placed on the physical tactile data 
gathered from the two BioTac sensors. 

PHAC-2 features a variety of modalities corresponding to 
the modalities captured by the BioTac sensors, including 
fingertip deformation, pressure, vibration and temperature 
readings. In this research, a focus was placed on the 
temperature and pressure readings due to the vibration and 
fingertip deformation modalities containing an extremely 
increased volume of data to process. For example, a vibration 
sample is 19 times the size of a temperature sample.  

PHAC-2 contains tactile data gathered from two 
independent BioTac Sensors (BioTac-1 & BioTac-2), these 
sensors were mounted on a WillowGarage PR2 [21] gripper 
and in turn, gathered tactile data from opposite sides of the 
same object. There is a wide range of objects available for 
training, with each sensor gathering 600 total samples, 
generated from 10 individual samples for all 60 objects. This 
ensures that there is sufficient data to counteract overfitting. 

Fig. 1 displays the readings generated from both BioTac-1 
and BioTac-2 for two modalities, Thermal Flux (TAC) and 
Static Pressure (PDC). The readings across the two BioTac 
sensors are similar, but there are some noticeable differences. 
The more rounded peaks during the two points of contact 
indicate that BioTac-2 contacts the object slightly before 
BioTac-1, as well as maintaining contact for a longer period of 



  

time. Alongside this, the TAC reading drops significantly 
more for BioTac-2 than BioTac-1 after this point of contact. 
The variance in the values reported from BioTac-1 and 
BioTac-2 outline the potential advantages which could be 
achieved by merging the datasets generated from these 
sensors, as the values are similar but not identical. 

PHAC-2 was partitioned to create a 70/30 training/testing 
split. As each object class has 10 unique samples, the testing 
split was created by taking three samples from each class, 
ensuring that both the training and testing subsets contained 
perfect data balance with no overlap. This was completed 
independently for the samples in BioTac-1 and BioTac-2. 
These two independent datasets were then merged to create a 
third unique dataset, referred to as BioTac-1&2, containing 
1200 samples, 20 from each class. 

B. Model Selection 

Due to the tactile data presented in the PHAC-2 dataset being 
treated as a collection of time series data, a focus was placed 
on finding an effective and efficient time series classifier 
which could be used for the task of tactile object recognition. 
Due to the nature of the tactile data being analysed, it was 
decided the Random Convolutional Kernel Transform 
(ROCKET) [22] family of models was chosen for integration 
into the proposed tactile object recognition pipeline.  
ROCKET is a state-of-the-art method of time series 
classification, utilising random convolutional kernels 
modelled upon the structure of CNNs. The kernels within the 
ROCKET model are randomised on the basis of length, 
weights, bias, dilation and padding [23]. Fig. 2 displays the 
proposed processing pipeline, where the features extracted 
from the random kernels are fed through to the chosen 
classifier, where output predictions are evaluated.  

ROCKET has a variety of theoretical advantages when 
compared to other high performing time series classification 

methods. The main advantage of ROCKET is the greatly 
reduced computational cost, and hence reduction in both 
training and inference time compared to other CNN 
implementations. It is noted that ROCKET can train in a 
fraction of the time required by other state-of-the-art classifiers 
such as TS-CHIEF [24]. 

ROCKET does have some disadvantages which may make 
it unsuitable for specific time series classification tasks. The 
current implementations of ROCKET only support one 
modality during training, meaning if the user wishes to avail 
of multiple modalities simultaneously, it may be more suitable 
to investigate other models. Another disadvantage is that all 
time series samples are required to have the same number of 
steps, usually requiring some pre-processing of the data before 
presenting it to the model. 

It was required to perform initial pre-processing of the 
PHAC-2 data, to ensure it is compatible with ROCKET. As 
aforementioned, ROCKET requires the steps in each time 
series sample to be identical lengths. This is not the default 
case in PHAC-2 as the time taken to collect each sample may 
vary. To ensure compatibility with ROCKET, it was required 
to downsample each sample to the same length as the shortest 
sample in the dataset. 

C. Classifier Selection 

Traditionally, a standard linear classifier head is used at the 
final stage of the ROCKET pipeline to perform the 
classification task on the features generated by the randomised 
kernels within the model. Within the proposed tactile time-
series data processing pipeline, exploration of replacing the 
standard linear classifier with a variety of alternative 
classifiers was implemented, with the aim of evaluating the 
impact this will have on tactile data classification. Key 
characteristics of each of the classifiers utilised as part of the 
Head of the ROCKET pipeline are detailed below. 

Logistic Regression is implemented as a linear model for 
classification. With Logistic Regression, regularisation is 
implemented by default and a variety of solvers are utilised 
depending on whether it is a binary or multi-class classification 
problem. 

Ridge Classifier [25] converts binary targets to -1, 1 and 
then treats the problem as a regression task. Ridge Classifier 
uses a MSE + L2 penalty loss function; the advantage of this 
classifier is that it can effectively shrink coefficient estimates 
reducing overfitting on complex datasets. Ridge Classifier CV 
[26] is a modified version of Ridge Classifier which features 
in-built leave-one-out cross-validation. 

Random Search [27] implements a fit and score method, 
where randomised searches are performed over parameters. A 

Fig 2. Proposed Processing Pipeline for Tactile Object Recognition 

   

    

    

    

    

    

    

 
  
 
 
  
 
  
 
  
  
 
 
  
  
  
 

         

                                                         

                    

Fig 1. Comparison of PDC and TAC Values from BioTac-1 & BioTac-2 

 



  

Random Search classifier can be implemented by adding a 
variety of epsilon values to a Logistic Regression classifier. 
Random Search can be used on functions that are not 
differentiable or continuous, and as such, the main advantages 
are the ease of tuning with little-to-no increase in 
computational cost. 

Alongside these classifiers, two further classifiers that 
utilise a neural network structure to perform more significant 
processing of the features were selected, namely FastAI 
Classifier and XGBoost. 

FastAI Classifier, developed by Howard et al. [28] is a 
neural network head which utilises linear framework and a 
ReLU [29] activation function. As this head is based on a 
neural network containing multiple layers, it is required to 
perform multiple epochs of training to achieve peak 
performance, requiring significantly more training time than 
the three previously selected classifiers. 

XGBoost is an open-source tree boosting head developed 
by Chen et al. [30]. XGBoost utilises tree boosting combined 
with a sparsity-aware algorithm and weighted quantile sketch 
for tree learning. Like the FastAI Classifier, XGBoost will 
require training across multiple epochs which will 
considerably increase the training time. 

IV. EXPERIMENTS & RESULTS 

An individual ROCKET model was developed for all five 
classifier heads previously outlined: Logistic Regression 
(default head), Ridge Classifier CV, Random Search, FastAI 
Classifier and XGBoost. It should be noted that all classifiers 
utilise their standard variables. In the case of FastAI Classifier 
and XGBoost, these models require multiple epochs of 
training, so are trained until peak accuracy is achieved.  

The data from two independent BioTac sensors were 
utilised within these experiments. Firstly, the models were 
trained and tested only on the data gathered from BioTac-1. 
Following this, the models’ weights were reset, and they were 
then trained and tested on the data from BioTac-2. The final 
experiments involved combining the data from both BioTac-1 
and BioTac-2, creating an augmented dataset consisting of 
1200 samples. During training and testing, the proposed 
models treated these 1200 samples as if they came from the 
same BioTac, i.e., not processing these samples in parallel.  

 Table I outlines the initial experimental results using the 
data from BioTac-1 for training and testing. Thermal Flux 
(TAC) is a filtered version of the DC temperature; it can be 
measured as the heat flow between the heated BioTac and the 
object. Temperature (TDC) refers to the heat difference 
between the object and the BioTac but does not measure heat 
flow, while Fluid Pressure (PDC) refers to the average static 
pressure of the sensor, increasing linearly with fluid pressure.  

 Training time refers to the total training time including 
feature generation and classifier training. The training time is 
measured in minutes and seconds,  and all models were trained 
on a Nvidia V100 GPU. The default ROCKET head, Logistic 
Regression, is italicised and all reported accuracies for TAC, 
TDC and PDC are the accuracies calculated when the 
proposed ROCKET model was tested on the entire 30% 
training split of the outlined BioTac data. 

TABLE I.  BIOTAC-1 EXPERIMENTAL RESULTS 

Table I shows that a peak accuracy of 93.3% is achieved 
when ROCKET is combined with a Ridge Classifier CV 
trained and tested on PDC. On average, it is also clear that 
ROCKET performs significantly higher with PDC data when 
compared to both TAC and TDC. This is a notable 
improvement of 6.6% over the standard ROCKET head with 
no computational cost impact. 

Across the five classifiers, it is evident that the neural 
network based approaches, i.e., the FastAI Classifier and 
XGBoost do not perform as well as the other selected 
classifiers. This is due to the number of samples not being 
large enough to facilitate training these networks, as there are 
only 600 samples available from the BioTac-1 data. Another 
disadvantage of the neural network approaches is the 
significant increase in computational overhead required. As 
can be seen in Table I, training times increase from 5 minutes 
with the top performing Ridge Classifier CV, to over 70 
minutes with XGBoost, while demonstrating a loss of 15% 
accuracy. Based on this computational cost alongside the 
severe drop in accuracy, classifiers based on neural networks 
cannot be recommended for the processing and classification 
of tactile data in a relatively small dataset. 

Table II presents the results from the experimental work 
completed on BioTac-2 data only across all proposed 
ROCKET heads on the PHAC-2 dataset. As can be seen in 
Table II, the results mirror what was discovered during the 
initial experiments on BioTac-1. The training times for each 
model across both BioTac datasets were identical, which is to 
be expected as the datasets are the same size. 

The peak performance for the same models trained and 
tested on BioTac-2 are slightly lower, achieving a peak 
accuracy of 92.5% when combining a Ridge Classifier with 
the PDC data. This is marginally lower than the 93.3% that 
was achieved using the BioTac-1 data. The improvement 
achieved over the standard Logistic Regression was 7.5%, 
similar to the improvement seen in Table I. The two neural 
network based classifiers again fell short in both accuracy and 
training time when compared to the more heavily used 
standard classifiers. However the disparity between these 
types of classifiers was not as large as it was with data 
collected from BioTac-1. 

The accuracies for almost all classifiers are noticeably 
higher on both the TAC and TDC sections of the dataset when 
compared with Table I. This likely indicates that the position 
of the BioTac-2 sensor is much more suited to gathering 
temperature data when compared with BioTac-1. 

Classifier 
TAC 

Accuracy 

TDC 

Accuracy 

PDC 

Accuracy 

Training 

Time 

(min:sec) 

Logistic Regression 0.783 0.508 0.867 5:34 

Ridge Classifier CV 0.850 0.583 0.933 5:20 

Random Search 0.767 0.542 0.891 8:33 

FastAI Classifier 0.508 0.583 0.833 24:47 

XGBoost 0.758 0.458 0.783 72:01 



  

TABLE II.  BIOTAC-2 EXPERIMENTAL RESULTS 

The temperature sensor is located near the tip of the BioTac, 
so it is assumed that BioTac-2 is making contact with the 
object at a much more suitable angle for the thermistor to 
collect BioTac-1 data. 

Table III displays the results from the final experiments, 
where the data from both BioTac-1 and BioTac-2 are 
combined to create a unique set of data – this will be referred 
to as BioTac-1&2. The models will not treat this data as two 
independent input signals, but rather as one input signal with 
twice as many samples. Mirroring the results from Table I and 
Table II, the highest performing combination across the 
previous experimental work, Ridge Classifier CV and PDC, 
achieving an accuracy of 96.3% across all 60 objects while 
only requiring a training time of 11 minutes. This demonstrates 
state-of-the-art performance for object recognition on the 
PHAC-2 dataset and far exceeds other object recognition 
models due to the vast number of objects which can be 
detected at this accuracy using tactile data only. Not only does 
the best performing combination of ROCKET and Ridge 
Classifier CV see improvements, but all combinations of 
classifier and data type see improvements when the data from 
both BioTacs are used in unison. Improvements are as large as 
37.5% are evident when comparing to the FastAI Classifier 
utilising TAC. More commonly, there are improvements in the 
range of 8-15% with examples across all classifier and data 
combinations. 

 One important note is that the classifiers which benefit 
most from the increased size of the dataset due to the 
amalgamation of BioTac-1 & BioTac-2 are the neural network 
based classifiers: FastAI Classifier and XGBoost. This is to be 
expected as it was theorised that these models performed 
worse in earlier experiments due to a lack of sufficient data 
when only utilising the data from one BioTac sensor. Merging 
BioTac-1&2 effectively doubles the amount of data available 
for the models to train on. Importantly, not only are the 
accuracies of the models trained on the culmination of BioTac-
1&2 higher, but the models themselves can be assumed to be 
more robust as the data gathered from each BioTac occurred 
on separate sides of the same object, helping to alleviate 
overfitting. The training times for the more simplistic 
classifiers, Logistic Regression, Ridge Classifier CV and 
Random Search scale linearly with dataset size.  

In the case of FastAI Classifier and XGBoost, this is not the 
case. The neural network classifiers, FastAI Classifier and 
XGBoost on average triple in training time, from 25 to 65 
minutes and 70 to 220 minutes respectively. However, both 
classifiers see a substantial accuracy improvement of 10.8% 
for FastAI Classifier and 13% for XGBoost during testing 

TABLE III.  BIOTAC-1&2 EXPERIMENTAL RESULTS 

It is believed the increase in performance achieved by 
implementing the Ridge Classifier CV head is due to the nature 
of the dataset. The data gathered from the BioTac sensors 
presented in the PHAC-2 dataset is relatively complex and 
highly correlated, demonstrating the advantages of this 
specific classifier. Furthermore, the current limitation of the 
neural network heads, FastAI Classifier and XGBoost is the 
number of samples. While PHAC-2 is a large dataset when 
compared to other publicly available tactile datasets, it is still 
small relative to other time-series datasets such as those in the 
UCR [31] collection.  

Across all experimental work completed, the combination 
of ROCKET paired with a Ridge Classifier CV head was 
consistently the top performing model, achieving accuracy 
improvements over the standard Linear Regression head of up 
to 7.5% with virtually no increase to the computational 
overhead. The proposed single-modality model outperforms 
existing state-of-the-art multi-modal models for the task of 
object recognition, and it is assumed the computational costs 
are notably reduced as only one modality is utilised. Alongside 
this, the proposed model can be implemented on any dataset 
derived from the BioTac sensor. Therefore, based on the 
findings of this research, researchers seeking to perform tactile 
object recognition are advised to consider utilising the 
proposed ROCKET pipeline. 

V. CONCLUSION 

The detailed experimental work concluded during this 
research allows for a variety of conclusions to be drawn: 

- PHAC-2 is an excellent dataset to be used for the task 
of tactile object recognition training and testing. 

- If utilising the PHAC-2 dataset, it is beneficial to 
combine the samples from BioTac-1 & BioTac-2 to 
create a dataset twice the size discouraging overfitting 
of models while improving accuracy. 

-  ROCKET is an effective algorithm for processing 
time series tactile data to generate features in an 
efficient manner which can be used to train a variety 
of classifiers. 

- Standard classifiers are still measurably more efficient 
and effective at the task of tactile object recognition 
when paired with ROCKET to generate features than 
with the use of neural network based classifiers. The 
use of neural network and deep learning-based 
classifiers is not recommended without a suitably rich 

Classifier 
TAC 

Accuracy 

TDC 

Accuracy 

PDC 

Accuracy 

Training 

Time 

(min:sec) 

Logistic Regression 0.800 0.600 0.850 5:03 

Ridge Classifier CV 0.883 0.617 0.925 5:47 

Random Search 0.842 0.617 0.842 8:48 

FastAI Classifier 0.842 0.650 0.808 25:23 

XGBoost 0.725 0.500 0.767 70:14 

Classifier 
TAC 

Accuracy 

TDC 

Accuracy 

PDC 

Accuracy 

Training 

Time 

(min:sec) 

Logistic Regression 0.900 0.725 0.921 10:57 

Ridge Classifier CV 0.883 0.688 0.963 11:09 

Random Search 0.898 0.700 0.929 20:02 

FastAI Classifier 0.883 0.713 0.938 65:19 

XGBoost 0.792 0.642 0.875 220:27 



  

and dense dataset for training, or the use of a suitable 
transfer learning approach. 

- ROCKET, paired with a Ridge Classifier CV achieves 
state-of-the-art tactile object recognition performance, 
achieving an accuracy of 96.3% on the PHAC-2 
dataset while training for approximately 10 minutes 
on a V100 GPU. 

 A variety of future work is planned, continuing the 
research into the ROCKET family of models for tactile 
research. Firstly, research will continue on the implementation 
of multimodal tactile object recognition. PHAC-2 is a rich 
dataset consisting of many modalities which would pair well 
together such as a combination of the TAC and PDC data. 
Secondly, the development of a novel classifier which pairs 
well with a variety of these ROCKET-based models will be 
investigated. From this research it appears that neural network 
approaches will not pair well with the randomised backend of 
ROCKET without an adequate dataset to support this which is 
not yet publicly available.  
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