

Concurrent Skill Composition using Ensemble of Primitive Skills

Dhakan, P., Kasmarik, K., Vance, P., Rano, I., & Siddique, N. (2023). Concurrent Skill Composition using
Ensemble of Primitive Skills. IEEE Transactions on Cognitive and Developmental Systems, 15(4), 1879-1890.
https://doi.org/10.1109/TCDS.2022.3177691

Link to publication record in Ulster University Research Portal

Published in:
IEEE Transactions on Cognitive and Developmental Systems

Publication Status:
Published (in print/issue): 11/12/2023

DOI:
10.1109/TCDS.2022.3177691

Document Version
Author Accepted version

General rights
Copyright for the publications made accessible via Ulster University's Research Portal is retained by the author(s) and / or other copyright
owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these
rights.

Take down policy
The Research Portal is Ulster University's institutional repository that provides access to Ulster's research outputs. Every effort has been
made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in
the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk.

Download date: 12/01/2024

https://doi.org/10.1109/TCDS.2022.3177691
https://pure.ulster.ac.uk/en/publications/9beca141-f05f-41bd-bf73-3dc05ef47712
https://doi.org/10.1109/TCDS.2022.3177691

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

1

Concurrent Skill Composition using Ensemble of
Primitive Skills

Paresh Dhakan, Kathryn Kasmarik, Philip Vance, Iñaki Rañó and Nazmul Siddique

Abstract—One of the key characteristics of an open-ended cu-
mulative learning agent is that it should use the knowledge gained
from prior learning to solve future tasks. That characteristic
is especially essential in robotics, as learning every perception-
action skill from scratch is not only time-consuming but may
not always be feasible. In the case of reinforcement learning,
this learned knowledge is called a policy. The lifelong learning
agent should treat the policies of learned tasks as building
blocks to solve those future tasks. One of the categorizations of
tasks is based on its composition, ranging from primitive tasks
to compound tasks that are either a sequential or concurrent
combination of primitive tasks. Thus, the agent needs to be able
to combine the policies of the primitive tasks to solve compound
tasks, which are then added to its knowledge base. Inspired by
modular neural networks, we propose an approach to compose
policies for compound tasks that are concurrent combinations
of disjoint tasks. Further, we hypothesize that learning in a
specialized environment leads to more efficient learning; hence,
we create scaffolded environments for the robot to learn primitive
skills for our mobile robot-based experiments. We then show how
the agent can combine those primitive skills to learn solutions
for compound tasks. That reduces the overall training time of
multiple skills and creates a versatile agent that can mix and
match the skills.

Index Terms—Compositionality, Open-Ended Learning, Cur-
riculum Learning, Lifelong Learning, Self-Generation of Tasks.

I. INTRODUCTION

A key characteristic of an open-ended lifelong learning
agent is that it can learn to perform multiple tasks of increasing
difficulty. For that, it should be able to determine what tasks
it should learn [1] [2], when it should learn them [2], and
autonomously learn the skills with minimal external interven-
tion. That has been a focus area of intrinsically motivated
open-ended learning [3] research where the tasks to learn are
identified using the concept of novelty [4] or curiosity [5], the
skills are acquired cumulatively using a hierarchical structure
for complex skills [6], and the learning is bootstrapped by
measuring the current competency of the agent [7]. In addition,
the agent should also be able to exploit the learned knowledge
to improve the performance of the task at hand [8]. Since
such an autonomous open-ended learning agent does not know
in advance what skills it will require to learn, typically, the
solution is to learn those skills from scratch. However, in many
robotics applications, this is not only time-consuming but also
impractical. When an agent is considered a monolithic entity,
any change to its sensors or actuators requires relearning skills.
Since such monolithic entities tend to have a larger internal
representation of the world, the learning is much slower. Thus,
for autonomous, open-ended, and continuous learning, the

agent must be able to reuse the learned knowledge and do
so in a modular fashion and mix and match skills as required.

Reinforcement Learning (RL), where an agent learns by in-
teracting with its environment, is most suitable for open-ended
learning. However, in many cases, the amount of interaction
needed to learn a task is relatively large [9], since the agent
has to find itself in a similar situation to be able to explore
other available actions, making it impractical for many robotics
applications. To overcome this, sample efficient algorithms
such as [10] are continuously being developed. Also, different
approaches, such as imitation learning [11] [12], and transfer
learning [13] [14], are used. However, further benefits can be
gained by reusing the previously learned knowledge to create a
solution for future tasks. In RL, a solution to achieve the task is
called a policy, which is a mapping from states to action. Two
or more policies can then be combined to learn solutions for
compound tasks. Existing literature reveals two common ways
of combining RL policies: (1) Sequentially [15] [16] – where
the policies for the subtasks that may or may not be organized
in a hierarchy are invoked in a sequence to solve a more
complex task. This technique broadly falls under hierarchical
reinforcement learning. (2) Concurrently [8] [17] – where the
policies of the subtasks are merged to form a combined policy
that is used to solve the complex task. This technique is
termed compositionality. Although compositionality exists in
literature, its potential as an alternative approach for sample
efficient RL has not been adequately investigated.

When tasks are concurrently combined, their solution space
can be complementary, contradictory, or disjoint. This article
focuses on a concurrent combination of disjoint tasks with
some initial comments on the other task categories mentioned
in the future work section. Inspired by the modular neural
networks [18], we propose an ensemble method of composing
RL policies represented by neural networks. Once the tasks
are identified either by novelty, technique detailed in [19],
or other task generation techniques and the corresponding
policies learned, those policies can be combined to form
solutions for future tasks. Such reuse of knowledge and its
integration with the continuous learning cycle is an essential
alternative to sample efficient RL and a logical extension to
lifelong learning agent architectures such as those proposed in
[20] [21]. That learned knowledge used as a building block
is typically learned in the same non-scaffolded, i.e., non-
specialized environment as the other complex skills resulting
in inefficiently learned primitive skills. Hence, we hypothesize
that skill composition is more effective when the constituent
primitive skills are learned in a scaffolded environment. The
scaffolded environment is a special environment suited to

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

2

learning a specific primitive skill and can be constructed
autonomously as shown in [22]. Our hypothesis is based on
the premise that the scaffolded environment provides the agent
with a better learning opportunity. Thus, we create scaffolded
environments for the robot to learn primitive skills. Using
mobile robot-based experiments, we demonstrate how the
composition of primitive skills learned in a scaffolded envi-
ronment can be used as a skill for a more complex task. We
compare the results of primitive skills learned in the scaffolded
versus non-scaffolded environment to demonstrate learning
effectiveness in a scaffolded environment. The primitive skills
are then combined to generate the skills for the compound
tasks. These composed skills are compared with the skills
learned from scratch to demonstrate the effectiveness of the
proposed skill combination method.

Thus, this article’s contributions are: i) two variants of
a method to compose policies for compound tasks that are
concurrent combinations of disjoint tasks, ii) a comparison
of the performance of skills learned in scaffolded and non-
scaffolded environments, and also a comparison of skills
learned from scratch with the composed skills, and iii) exper-
imental evaluation of the proposed skill composition method
on a mobile robot. The rest of the article is organized as
follows: Section 2 reviews the literature and details the related
work. In Section 3, we propose how primitive skills can be
concurrently combined. Section 4 then describes the setup
of our experiments, the scaffolded and the non-scaffolded
environments, and details the results of the experiments with
the composed skills. Finally, in Section 5, we provide our
concluding remarks and highlight potential future directions
for this research.

II. METHODS OF COMBINING SKILLS

The RL-specific literature review shows several approaches
to reusing previously learned knowledge to create a solution
for future tasks. Since we aim to apply this to the lifelong
learning agent, we limit this review’s scope to approaches
where the RL policies for simpler tasks are combined to form
a policy for a more complex task. In particular, we consider
the sequential and concurrent combination of skills. Consider
that a mobile robot has to pick up an object from destination
A and deliver it to destination B. Both these tasks have to be
carried out one after the other in order. To form a compound
skill, the skill to solve the first task is sequentially combined
with the skill to solve the second task. That is an example of a
sequential combination of skills. Consider that a mobile robot
is following a track on the floor and comes across an obstacle.
It navigates around the obstacle and again starts to follow the
track. That is an example of a modular combination where
the robot stops using the first skill when the second skill is
triggered. Finally, consider that the mobile robot has to follow
a moving target while avoiding obstacles along the way. That
is an example of a concurrent combination of skills where
both the skills are active simultaneously.

A. Sequential Combination of Policies
In this approach, the policies are combined in sequential

order, i.e., the policies are executed one after the other. That

is akin to a planning problem where the previously learned
policies are sequenced to accomplish a complex task. The
tasks may or may not be hierarchically structured; however,
the same concept of sequentially combining the policies can be
applied to both. Hierarchical RL [23] aims to decompose the
task into subtasks, learn the policies for each of the subtasks,
and then treat that policy as a macro action. The solution to
the complex task is a policy that sequentially invokes these
macro actions. An ‘option’ [24] is a well-defined macro action
that is denoted by an initiation set of states I , termination
condition β, and the closed-loop policy π. The option is
like a subroutine that gets called when the agent is in one
of the specific set of states. When invoked, it follows the
policy and ends when the termination condition is satisfied.
There has been extensive research in this area, ranging from
auto-generation of options [25] to integrating this with the
core RL algorithm to form algorithms such as option-critic
[26]. MAXQ [27] introduces mechanisms for abstraction and
sharing for RL to solve tasks that have complex hierarchical
structures. The concept exploits the regularities found when
a complex task is decomposed. Modular RL is similar to the
sequential combination of RL policies in that it switches from
one policy to another; however, the decision to sequence the
policy is made at a run time based on the initiation trigger
or termination state. Modular RL [28][29] decomposes a task,
and each module solves a portion of the task. For the final
solution, a selector then selects the policy of the subtask.

B. Concurrent Combination of Policies

In this approach, the RL policies are combined concurrently,
i.e., all the policies are combined simultaneously to form a
single policy that solves all individual policies’ tasks. This
concept is termed compositionality [17] [30] [31]. The RL
policy, which is a mapping that enables the selection of action
when in a specific state, can be represented as a Q-table
or a neural network. When the policies are represented as
a Q table, the compound task’s Q function is generated by
averaging the constituent Q functions. When the policies are
represented as a neural network, the literature review shows
that the combined policy is generated using voting, a Mixture
of Experts [32] [33] [34], policy distillation [35] [36], and
action selection using a Gaussian Mixture Model [37]. Using
a robotic manipulator arm, Haarnoja et al. [38] demonstrate
that a policy to move an object along a vertical axis and
a policy to move the object along a horizontal axis can be
combined to form a policy for the robot to be able to move
the object to the intersection position of the two axes. Todorov
[39] [34] developed a theory of compositionality applicable
to a general class of stochastic optimal control problems.
Simpkins et al. [40] propose a composable modular RL that
combines the concept of compositionality with modular RL. In
their case, the final policy is generated by combining multiple
policies concurrently. Niekerk et al. [8] apply the concept of
compositionality to the lifelong learning agent. Using a high-
dimension video game use case, they demonstrate how an
agent can combine skills from its library of already learned
skills to solve a new task. Niekerk et al. conclude that learning

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

3

a multimodal policy for a composite task can be difficult
because of the tendency to collapse into a single mode without
exploring the alternatives. Hence, it is better to learn the
unimodal policies first and then combine them to produce
optimal multimodal solutions.

Unlike the case of the sequential combination of poli-
cies where the technique of ‘options’ is commonly used,
there is no common method for the concurrent combina-
tion of skills. Also, ‘options’ can be integrated with multi-
skills/lifelong learning frameworks [41][20][21]. However, the
methods found in the literature for the concurrent combination
are either not task-independent or not abstract enough to be
easily integrated with such frameworks. The method proposed
in this article offers the simplicity of combining Q-table based
policies while maintaining the scalability provided by the
neural network based policies. Also, since it does not require
any specific neural network architecture, it can be easily
integrated with the frameworks mentioned above.

III. CONCURRENT COMBINATION OF SKILLS
REPRESENTED BY NEURAL NETWORKS

The standard practice in RL is to train an agent from scratch
for each new task. That is time-consuming and may not always
be possible since the agent may need to be reset to an initial
state, or the agent has to find itself in the same situation
to try different actions. RL’s very nature relies on several
similar learning opportunities so that agents can explore other
available actions. That is a significant challenge in RL. In
the case of a lifelong learning agent, it continuously learns
and enhances its knowledge base with additional skills. So, a
logical next enhancement for lifelong RL agents is to combine
the learned primitive skills to solve future tasks. At the very
least, such a combined policy can be used as a starting policy
by the agent and then further refined.

Fig. 1. The agent’s state space is represented by the collection of four grey-
colored hexagons, and each of the four skills for the four disjoint tasks is
represented using a different colored hexagon.

A compound task can be considered as a sequential or con-
current combination of the constituent primitive tasks. Further,
a concurrent combination can be an ‘AND’ or an ‘OR’ combi-
nation. In an ‘AND’ combination, for successful execution, all
the constituent tasks are executed simultaneously. Whereas, in

an ‘OR’ combination, the execution is considered successful if
one of the constituent tasks is executed successfully. That is,
the combined policy can solve either of the constituent tasks,
but not all simultaneously.

In this article, we limit the scope to a concurrent combina-
tion of tasks using the ‘AND’ combination of disjoint tasks.
When learning multiple tasks, the two tasks can be said to
be ‘competing’ if the actions required to accomplish one task
are opposite to the actions necessary to accomplish another
task. The tasks are said to be ‘complementary’ if the actions
required to accomplish one task are the same as the actions
necessary to accomplish another task and ‘disjoint’ if they
are neither competing nor complementary. The skill (i.e., the
learned RL policy for a task) for the disjoint tasks can be
represented as shown in Fig. 1. Like any other multi-task
learning method, the limitation of the proposed approach is
that the tasks should not be contradictory. Since, for such
contradictory tasks, the actions may be competing in nature.

For example, consider a set of disjoint primitive tasks for a
vacuum cleaning robot: i) detect the dirt, ii) clean the dirt, iii)
avoid obstacles, and iv) detect an edge on the floor to keep
the robot from falling off the stairs. A compound task with
an ‘AND’ combination would be the combination of all the
tasks, i.e., the robot detects the dirt, cleans the floor, avoids
obstacles, and avoids falling off the stairs.

Consider that a lifelong RL agent must learn several tasks,
both primitive and compound ones. Consider the primitive
tasks p1, p2, · · · , pn and a compound task C which is a com-
bination of those primitive tasks. This compound task can be
represented in terms of primitive tasks as C = p1∧p2∧· · ·∧pn
where ∧ represents an ‘AND’ combination that means to carry
out all the constituent tasks simultaneously. Further, consider
that π1 is the policy for the task p1, π2 is the policy for the
task p2 and so on, and the policy for the compound task is πC .
Since the compound task is a combination of the constituent
tasks, the policy πC can be used as a starting policy for the
compound task and refined as and when the agent gets an
opportunity to learn more regarding a particular region of its
state space.

We assume that the reward for each of the primitive tasks
is within the same range and r1(s, a, s′) is the reward for the
task p1, r2(s, a, s′) is the reward for the task p2 and so on,
where s, a and s′ are the agent’s current state, the agent’s
action in the current state and the resulting state of the agent
when that action is taken. Thus, the reward for the compound
task can be represented as a summation of the rewards [42], as

rC(s, a, s
′) = 1/n

n∑
i=1

ri(s, a, s
′). The policy for task C can

be represented as a sum of all constituent policies [17], as

πC = 1/n
n∑

i=1

πi. When the policies are represented as a Q

table, the Q function for the compound task can be generated
by averaging the constituent Q functions [38], as QC(s, a) =

1/n
n∑

i=1

Qi(s, a).

Another way to represent an RL policy is by using neural
networks, such as RL’s DQN [43] and A2C [10] algorithms. In
the actor-critic RL algorithm, the actor is implemented using
a neural network. This actor, represented by π(s, a, θ) outputs

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

4

an action at in state st, receives reward r(t+1) and lands in
a new state s(t+1). Based on the reward r(t+1), the critic,
which is also implemented as a neural network, represented
by q(s, a, ω) calculates the value of how good it was to take
that action, adjusts the weights ω of the critic network. This
is then provided as feedback to the actor, which updates the
weights θ of the actor-network.

We propose an ensemble technique similar to the average
model weight ensemble [44] [45]. While the technique pro-
posed in this article will work for single neural network based
algorithms such as DQN, we use an actor-critic algorithm to
show that the proposed ensemble technique differs from the
existing techniques of averaging the Q values. We propose that
a compound task’s RL policy can be formed by averaging
the learnable parameters of the constituent task’s policies.
Consider that the actor and critic networks for the task p1 are
actor1, critic1 respectively and the actor and critic networks
for the task p2 are actor2, critic2 respectively and so on. To
create the actor and critic networks for the compound task C,
we average the learnable parameters of the constituent actor
networks and the constituent critic networks, as shown in Eq
(1) and Eq (2).

actorC = 1/n
n∑

i=1

actori (1)

and

criticC = 1/n
n∑

i=1

critici (2)

The actorC and criticC networks can then be used to
construct an actor-critic RL agent for the compound task C.
That construction of the RL agent for the compound task can
be done in one of the following two ways:

Method #1: For disjoint tasks, in effect, the states where
the actions matter for each of the skills do not overlap. Hence,
when such tasks are represented using the same state vector
(representation #1), a compound skill can be constructed by
effectively stacking all the constituent RL policies. A graphical
representation of this is shown in Fig. 2. It shows four skills,
with its state space represented by a colored and a grey area
and the composed skill at the bottom of the diagram. In the
diagram, the neural network based RL policy for the skill
is a combination of actor and critic neural networks. Both
networks take the agent’s state vector as the input. The actor
network’s output is the probability for each of the actions in
the agent’s action space, and the output of the critic network
is the feedback to the actor indicating how good it was to take
a particular action in that state.

Method #2: When skills are represented using a task-
specific state vector (representation #2), the combined skill
can be generated by aligning the constituent state spaces and
using the AND combination of the constituent skills. Fig. 3
shows a graphical representation of this. Same as in Method
#1, the neural network based RL policy for the skill shown is
a combination of actor and critic neural networks. However,
the state-space of each task (shown using different colored
pieces) depends on the skill being learned. This mechanism is

Fig. 2. Skill composition method #1 – same state vector for all tasks
(representation #1)

Fig. 3. Skill composition method #2 – task-specific state vector (representa-
tion #2)

particularly beneficial in multi-agent RL, where each agent is
responsible for learning a particular skill.

While each composition method has its own merits and
demerits, both lead to reduced compound skills training time.
That is not just because the agent is not required to learn the
skill from scratch but also because different agents can learn
the constituent policies in parallel. Algorithm 1 details the
pseudo-code for skill composition. The constituent networks’
learnable parameters are averaged to construct a new combined
actor-critic RL agent to solve the compound task.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

5

Algorithm 1 Skill Composition
/*Assumption*/
Input: We have an array of learned policies for the primitive skills in policy[]

/*Initialize variables*/
Initialize combinedActorParams, combinedCriticParams

/*Ensemble of actor and critic networks*/
for i = 1 to numberSkills do

actor i params = getLearnableParameters(actor i policy)
combinedActorParams = combinedActorParams+ actor i params
critic i params = getLearnableParameters(critic i policy)
combinedCriticParams = combinedCriticParams+ critic i params

end for

/*Calculate average of learnable parameters*/
combinedActorParams = combinedActorParams/numberSkills
combinedCriticParams = combinedCriticParams/numberSkills

/*Create combined agent*/
combinedAgent = Create RL Agent(combinedActorParams, combinedCriticParams)

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

For our experiments, we use Webots to simulate an e-puck
mobile robot. We use MATLAB RL Toolbox’s A2C algorithm
to implement the RL agent as a control program for the e-
puck. Typically, experiments in the area of developmental
robotics use the iCub robot [7]. The usage of mobile robots
for such experiments is still a novel application. Further, as
detailed in the following subsection, we create scaffolded
environments for the e-puck to learn primitive skills. Those
environments are designed to provide maximum opportunity
for the robot to learn those primitive skills. Also, we create
non-scaffolded environments to test and compare the skills for
compound tasks learned from scratch with the skill generated
by combining previously learned primitive skills.

A. Setup of the Experiments

Mobile Robot: An e-puck, shown in Fig. 4(a), is a small
differential wheeled mobile robot. It has eight infrared distance
sensors with a range of 6 centimeters that we label in a
clockwise direction as Right-Front, Right-Diagonal, Right,
Right-Back, Left-Back, Left, Left-Diagonal, Left-Front. It has
three ground sensors that we label as Left, Center,Right. E-
puck also has a 52x39 pixels resolution color camera. Thus, the
mobile robot state in our experiments is a vector represented
by [pFR, pRD, pR, pRR, pRL, pL, pLD, pFL, gL, gC , gR, c], as
shown in the labeled e-puck diagram Fig. 4(b). The action
space of the RL agent (detailed below) consists of the follow-
ing: turn left, step forward and turn right.

In Webots, the proximity sensor value ranges from 0 to
2000, with a high value indicating that an object is nearby. The
ground sensor value ranges from 0 to 1000, with a high reading
indicating that the sensor is detecting dark area / black color
on the ground. The proximity sensor values, ground sensor

(a) (b)

Fig. 4. (a) e-puck mobile robot, (b) A plan view of e-puck with labeled state
attributes

values, and camera output were discretized to binary values
in the experiments. For the proximity sensor, if there was no
object in the vicinity, the sensor reading was considered 0, and
when there was an object in the vicinity, it was considered
1. The proximity sensor’s binary value was considered 1 if
the actual sensor reading was greater than 500, otherwise
considered 0. For ground sensors, the value 1 indicated that
the sensor is detecting black color, and 0 indicated that it
is detecting white. The ground sensor’s binary value was
considered 1 if the actual sensor value was greater than 300,
otherwise considered 0. Regarding the camera identifying the
randomly moving blue colored robot, we use Webots API
for the recognition. API returns the number of blue-colored
objects recognized in the frame. When the blue-colored robot
was in view and recognized, the camera output was considered
1 and 0 otherwise.

Arenas: Several arenas were created in Webots simulation

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

6

(a) (b)

(c)

Fig. 5. (a) Training arena with obstacles (Training Arena 1), (b) Training
arena with randomly moving blue robot (Training Arena 2), (c) Training
arena with a colored pattern on the floor (Training Arena 3).

software. Fig. 5(a), 5(b), and 5(c) are the scaffolded training
arenas used to train the e-puck to learn the specific primitive
skill. Fig. 5(a) is a 2m x 2m walled arena with scattered
obstacles. In this arena, e-puck can learn primitive skill such
as avoiding obstacles/walls. Fig. 5(b) is a 2m x 2m walled
arena with a blue-colored robot. This blue robot moves in
a straight line, and when it detects an obstacle, it changes its
direction and continues moving in a straight line. In this arena,
the e-puck can learn primitive skills such as following the blue
robot. Fig. 5(c) is a 2m x 2m arena in which the robot can
learn primitive skills such as following a track on the floor or
avoiding certain regions on the floor. Such a specialized set of
environments allows us to investigate the performance of our
algorithm under controlled conditions.

Fig. 6(a), 6(b), 6(c), and 6(d) show the 2m x 2m test/non-
scaffolded arenas. Fig. 6(a) is a walled arena with several black
regions on the floor and a few scattered obstacles. Fig. 6(b)
is a walled arena with black regions on the floor and has a
randomly moving blue robot. Fig. 6(c) is a walled arena with a
few scattered objects and a randomly moving blue robot. Fig.
6(d) shows a walled arena with black regions on the floor, a
randomly moving blue robot, and a few scattered obstacles.
It is an arena that contains all the aspects that we want to
demonstrate with our experiments.

RL algorithm: RL consists of algorithms that are either
value-based methods where the agent learns the value function
that determines how good it is to take a particular action in
a specific state and policy-based methods where the agent
directly optimizes the policy by sampling several rollouts of
the episode. The actor-critic family of algorithms is a model-
free and on-policy algorithm. They are a hybrid approach
where the critic is trained to estimate the value function and
provide feedback to the actor to optimize the policy. The A2C
uses the ‘Advantage’ instead of the ‘Value’ function, which

(a) (b)

(c) (d)

Fig. 6. (a) Test arena with black regions on the floor and obstacles
(Test Arena 1). (b) Test arena with black regions on the floor and randomly
moving blue robot (Test Arena 2), (c) Test arena with obstacles and randomly
moving blue robot (Test Arena 3), (d) Walled arena with black regions on the
floor, randomly moving blue robot, and scattered obstacles (Test Arena 4).

leads to learning stability. In our experiments, the learning
rate parameter was set to 0.01. The EntropyLossWeight, the
parameter that promotes exploration, was set to 0.03. The
actor and the critic networks were created using the same
architecture. The networks consisted of an input layer (with
the number of nodes depending on the state vector), a fully
connected layer, and a ‘leaky RELU’ layer followed by a fully
connected layer.

Primitive and Compound Tasks: For the experiments,
we manually select the primitive tasks listed in Table 1.
The compound tasks are then formed by combining those
primitive tasks, as shown in Table 1. The primitive tasks are
the elemental tasks, whereas the compound tasks show the
constituent tasks’ composition. The column ‘Task Id’ shows
the notation used to represent the task. Prefix ‘p’ is used
to represent a primitive task, and ‘C’ is used to represent
a compound task. Column ‘Task Composition’ details the
compound task composition. The ‘Task Description’ column
describes the task. ‘Arena where Trained’ column details the
arena in which the training of the task took place.

The compound task C1 is an ‘AND’ composition of p1
(avoid obstacles) and p3 (avoid black region). The compound
task C2 is an ‘AND’ composition of p2 (follow blue robot) and
p3 (avoid black region). The compound task C3 is an ‘AND’
composition of p1 (avoid obstacles) and p4 (follow blue robot).
The compound task C4 is an ‘AND’ composition of p1, p2,
and p3. Shown below are the state vectors for the primitive
and the compound tasks for the two ways of skill composition
proposed in this article.

B. Results

Results for Primitive Tasks Table 2 shows the results of the
training for primitive tasks. The training consisted of running
50 episodes of 20,000 steps each. The tasks are considered

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

7

TABLE I
HANDCRAFTED PRIMITIVE AND COMPOUND TASKS

Task Id Task Composition Task Description Arena where Trained

p1 N/A Avoid obstacles Scaffolded environment – Fig. 5(a).
Non-scaffolded environment – Fig. 6(d).

p2 N/A Follow the randomly moving blue robot Scaffolded environment – Fig. 5(b).
Non-scaffolded environment – Fig. 6(d).

p3 N/A Avoid the black regions on the floor Scaffolded environment – Fig. 5(c).
Non-scaffolded environment – Fig. 6(d).

C1 p1 AND p3 Avoid obstacles AND avoid the black regions on
the floor.

Fig 6(a).

C2 p2 AND p3 Follow the blue robot AND avoid the black regions
on the floor.

Fig. 6(b).

C3 p1 AND p2 Avoid obstacles AND follow the randomly moving
blue robot.

Fig. 6(c).

C4 p1 AND p2 AND p3 Avoid obstacles AND follow the blue robot AND
avoid the black regions on the floor.

Fig. 6(d).

Fig. 7. State vector details for skill composition method #1 (skills represented
using representation #1, i.e. same state vector for all the tasks).

Fig. 8. State vector details for skill composition method #2 (skills represented
using representation #2, i.e. task-specific state vector).

‘maintenance’ tasks [46], i.e., the aim of the agent is to
maintain the task state. Hence, unlike in the ‘achievement’
task type, the episode does not end once the agent reaches the
desired state. So the term ‘episode’ merely means a collection
of 20,000 steps. The task is learned in a scaffolded and non-

scaffolded environment with the same vector for all the tasks
(representation #1). Also scaffolded and non-scaffolded with
task-specific state vector (representation #2). ‘Average Reward
per Episode’ was used to measure agent performance. This is
the average cumulative reward for an episode of 20,000 steps.
The experiment for every task was run 10 times with different
start positions of the e-puck mobile robot, and the standard
deviation was calculated. The figure number shown in the
square bracket is the training arena where the training for the
primitive task took place. The table also shows results from
a statistical comparison of the training in scaffolded versus
non-scaffolded environments for state vector representation #1
and scaffolded versus non-scaffolded environments for state
vector representation #2. Since the results data is not normally
distributed, we ran a non-parametric method to compare the
data points. The status quo or the Null hypothesis H0 is
that the cumulative reward received by the agent training
in the non-scaffolded environment will be greater than or
equal to that received by the agent training in the scaffolded
environment. That is to say, a scaffolded environment does
not lead to better training. We ran Mann-Whitney U-Test on
the 50 data points (an average of 10 runs for each episode)
to determine if this hypothesis should be rejected or not. The
alpha value for this statistical test was 0.05. The Null H0 and
the alternative H1 hypothesis can be represented as:
H0: average cumulative reward in the non-scaffolded en-

vironment ≥ average cumulative reward in the scaffolded
environment
H1: average cumulative reward in the non-scaffolded en-

vironment < average cumulative reward in the scaffolded
environment

Table 2 shows a statistically significant difference in the
agent’s performance for the scaffolded versus non-scaffolded
environment for all the tasks. Results in bold show the best
performance for the primitive task. The Mann-Whitney U-Test
results show that for tasks p1, p2, and p3 tasks represented us-
ing state vector representation #1, data support the alternative

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

8

TABLE II
RESULTS OF THE LEARNING PHASE FOR THE PRIMITIVE TASKS. AVERAGE REWARD PER EPISODE MEASURED FOR TEN TRIALS IN THE SCAFFOLDED AND

THE NON-SCAFFOLDED ENVIRONMENT AND COMPARED USING MANN-WHITNEY U-TEST.

Task
Id

Average reward
per episode
for training
in scaffolded
environment
and state vector
representation #1.

[Training
Arena]

Average reward
per episode
for training in
non-scaffolded
environment
and state vector
representation #1.

[Training
Arena]

Mann-Whitney
U-Test of the
results shown in
the previous two
columns.

Reject H0

hypothesis?

Average reward
per episode
for training
in scaffolded
environment
and state vector
representation #2.

[Training
Arena]

Average reward
per episode
for training in
non-scaffolded
environment
and state vector
representation #2.

[Training
Arena]

Mann-Whitney
U-Test of the
results shown in
the previous two
columns.

Reject H0

hypothesis?

p1 14816 ±3450
[Fig. 5(a)]

11077 ±1594
[Fig. 6(d)]

p-value = 1.00,
Reject H0

15976 ±471
[Fig. 5(a)]

15880 ±566
[Fig. 6(d)]

p-value = 0.79,
Reject H0

p2 13117 ±2445
[Fig. 5(b)]

-1369 ±4366
[Fig. 6(d)]

p-value = 1.00,
Reject H0

11796 ±2346
[Fig. 5(b)]

8255 ±688
[Fig. 6(d)]

p-value = 1.00,
Reject H0

p3 11799 ±5337
[Fig. 5(c)]

11077 ±1594
[Fig. 6(d)]

p-value = 0.97,
Reject H0

13206 ±4764
[Fig. 5(c)]

19885 ±51
[Fig. 6(d)]

p-value = 0.00,
Fail to Reject H0

hypothesis H1 that training in a scaffolded environment leads
to better learning. That is because the scaffolded environment
minimizes triggering the non-skill specific sensors and allows
the agent to focus on learning just one skill.

Fig. 9. Reward hacked for task p3. E-puck seen at the top left corner of the
arena has stumbled upon a situation where it keeps pushing itself against the
wall to gain a positive reward.

For tasks represented using state vector representation #2,
Mann-Whitney U-Test results show that the data for p1 and p2
also supports the alternative hypothesis H1, i.e., training in a
scaffolded environment leads to better learning. Task p3, where
the agent performance in the non-scaffolded environment
seems better, is an anomaly. Upon closer examination, it was
seen that it was a case where the agent had come up with an
unexpected way of gaining the reward. As shown in Fig. 9,
the agent found a way to push itself against a wall while on
the floor’s non-black region. In this case, both wheels keep
turning to move forward (and it is on the non-black region,
i.e., task p3); albeit, the wall does not allow forward motion.
Once the agent stumbles upon such a situation, it exploits it by
remaining in that situation. Even though the agent accumulates
a high reward, it does not learn the skill to avoid black regions
on the floor. That cannot happen in a scaffolded environment,
and for this reason, we do not use the skills learned in the

non-scaffolded environment for skill composition in the next
set of experiments.

In the scaffolded environment, the agent gets more opportu-
nities to learn the skills. Although the same is true for the state
vector representation #2, the advantage is not as pronounced.
While the environment can trigger non-skill specific sensors on
the e-puck, those sensors are not part of the agent’s state vector
and do not interfere with the agent’s learning of the skill. For
the compound task experiments in the following subsection,
only the state vector representation #1 is used.

Results for Compound Tasks Firstly, to check the validity
of the composed skills, the performance of the combined
policies was first tested in the test arenas. Fig. 9(a), 9(b), and
9(c) show the trajectory of the e-puck robot executing the
combined policies for tasks C1, C2, and C3, respectively. For
this qualitative visual validation, the primitive skills learned in
a scaffolded environment were combined using method #1.

The combined policy for C1 shows the behavior of avoiding
obstacles as well as the black region. Fig. 10(a) shows the
top view of the test arena with black regions on the floor
and obstacles with the trajectory of the e-puck shown in navy
color, starting from the ‘start’ position. It shows that the e-
puck is avoiding obstacles as well as black regions on the
floor. The combined policy C2 shows the behavior of the e-
puck following the blue robot and avoiding the black region.
Fig. 10(b) shows the top view of the test arena with randomly
moving blue robot and black regions on the floor with the
trajectory of the e-puck shown in navy color starting from the
position marked ‘start’. It shows that the e-puck is avoiding
the black region and following the blue robot at the same
time. The combined policy for C3 shows the behavior of the
e-puck following the blue robot while avoiding obstacles. Fig.
10(c) shows the top view of the test arena with obstacles and
a randomly moving blue robot with the trajectory of the e-
puck shown in navy color starting from the position marked
‘start’. It shows that the e-puck is following the blue robot

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

9

TABLE III
RESULTS FOR COMPOUND TASKS. AVERAGE REWARD PER EPISODE MEASURED FOR TEN TRIALS WITH STANDARD DEVIATION SHOWN. MANN-WHITNEY

U-TEST BASED COMPARISON OF THE SKILL LEARNED FROM SCRATCH AND USING THE COMPOSED SKILL.

Task
Id

Task Composition Average reward per
episode during the
learning phase for
the skills learned
from scratch.

[Training Arena]

Average reward
per episode during
the test phase for
the compound skill
learned from scratch.

[Tested in the arena
shown in Fig. 6(d)]

Average reward per
episode during
the test phase
for skills learned
in a scaffolded
environment and
combined using
method #1.

[Tested in the arena
shown in Fig. 6(d)]

Mann-Whitney
U-Test of the
results shown in
the previous two
columns.

Reject H0

hypothesis?

C1 p1 AND p3 9059 ±7675
[Fig. 6(a)]

16338 ±45 15018 ±60 p-value = 1.00,
Fail to Reject H0

C2 p2 AND p3 -5023 ±3638
[Fig. 6(b)]

203 ±1537 1141 ±632 p-value = 0.00,
Reject H0

C3 p1 AND p2 3875 ±1016
[Fig. 6(c)]

7027 ±376 4071 ±182 p-value = 1.00,
Fail to Reject H0

C4 p1 AND p2 AND p3 642 ±2990
[Fig. 6(d)]

1673 ±796 3065 ±702 p-value = 0.00,
Reject H0

(a) (b)

(c)

Fig. 10. (a) Trajectory of e-puck executing the combined policy for C1

(avoiding obstacles and avoiding black regions on the ground), (b) Trajectory
of e-puck executing the combined policy for C2 (following blue robot and
avoiding black regions on the ground), (c) Trajectory of e-puck executing the
combined policy for C3 (following blue robot and avoiding obstacles).

and avoiding obstacles.
Following the visual validation of skill composition, the

RL agents’ training was carried out for the compound tasks
C1, C2, C3, and C4. The third column of Table 3 shows the

results of the agent learning the compound task from scratch.
The column ‘Task Composition’ shows the compound task’s
composition, and ‘Task Description’ describes the task. The
training for the compound tasks constituted 50 episodes of
20,000 steps each. Ten iterations were run for each task with
different start positions of the e-puck mobile robot every time.
The standard deviation for ‘Average Reward per Episode’ was
generated as shown in Table 3. The experiments were run on a
Dell G3 machine with Intel 10th Gen I7 6-core CPU and 16 Gb
RAM. Webots was used in the ‘Fast Mode’ with no graphical
rendering resulting in 16x the real-time speed. The compound
tasks’ average learning time was approximately 35 minutes for
each 50 episode run of 20000 steps, i.e., 560 minutes if the
experiment was run at the real-time speed (which would be
the case for a real robot).

For further validation, the learned compound skills were
tested for 50 episodes, each comprising 20000 steps for
compound tasks C1, C2, C3, and C4. Each test was run
10 times, and for each run, the starting position of the e-
puck was different. The fourth column of Table 3 shows
the results for the test phase of the compound skill learned
from scratch, and the fifth column shows the results of the
test phase of the composed skills learned in the scaffolded
environment. The last column shows if the results for a
compound skill learned from scratch and the composed skill
show a statistically significant difference or not. Since the
result data is not normally distributed, we ran a non-parametric
method to determine if the data shows a statistically significant
difference. The status quo or the Null hypothesis H0 is that the
reward received in the test phase by the agent using the policy
learned from scratch is greater than the composed policy. That
is to say, the agent using composed policy will not perform
as well as the agent using the policy learned from scratch. We

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

10

(a) (b)

(c) (d)

Fig. 11. (a) Episode reward plot for C1 (avoid obstacles AND avoid the black regions on the floor), (b) Episode reward plot for C2 (follow the blue robot
AND avoid the black regions on the floor). (c) Episode reward plot for C3 (avoid obstacles AND follow the blue robot), (d) Episode reward plot for C4

(avoid obstacles AND follow the blue robot AND avoid the black regions on the floor)

ran Mann-Whitney U-Test on the 50 data points (an average
of 10 runs for each episode) to determine if this hypothesis
should be rejected or not. The alpha value for this statistical
test was 0.05. The Null H0 and the alternative H1 hypothesis
can be represented as:
H0: average cumulative reward for the policy learned from

scratch > average cumulative reward for the composed policy
H1: average cumulative reward for policy learned from

scratch ≤ average cumulative reward for the composed policy
Fig. 11(a), 11(b), 11(c), and 11(d) show the graphical

representation of Table 3, columns 4 and 5 results. The shaded
plot in red is the episode reward during the test phase for the
policy learned from scratch, and the shaded plot in blue is
the episode reward during the test phase for the agent using
the combined policy (primitive skills learned in the scaffolded
environment and combined using method #1).

Mann-Whitney U-Test results show that for C1 and C3,
the data supports the H0 hypothesis, i.e., the policy learned

from scratch is better than the composed policy. However,
for C2 and C4, the test shows that the data suggests the
rejection of the H0 hypothesis, i.e., statistically, there is no
difference between the policy learned from scratch and the
composed policy and that the alternative hypothesis H1 should
be accepted. Tasks vary in complexity, resulting in a difference
in skill acquisition. Generally, the hyperparameters such as
the learning rate and EntropyLossWeight are tuned to ensure
optimal results or policy convergence. In our experiments,
however, the hyperparameters were the same for all the tasks.
That may be why, in some cases, the skills of the task learned
from scratch are better, and for other tasks, the composed skills
are as good as those learned from scratch. Regardless, the aver-
age episode reward value for the composed skills is significant
for all compound tasks, indicating that the agent demonstrates
the correct behavior. Thus, the composed skill is as good as the
skill learned from scratch in a good case scenario. In the worst-
case scenario, the composed skill can be used as a starting

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

11

policy that can then be refined further, and such a partially
learned policy will lead to reduced learning time [47]. In either
case, the composition of skills results in time saved in learning
the compound task’s skill, thus demonstrating the advantage of
using the proposed skill composition. When integrated with the
lifelong learning architecture, such skill composition enables
the agent to mix and match the learned skills to create skills
for future tasks.

V. CONCLUSION AND FUTURE WORK

Learning every skill from scratch is time-consuming, and
even with RL’s ever-improving sample efficiency, it remains
a problem, especially for robotics applications. The logical
next step for a lifelong learning agent is to use the learned
knowledge to enable faster learning of future tasks. That
learned knowledge used as a building block is typically learned
in the same non-scaffolded environment as the other complex
skills resulting in inefficiently learned primitive skills. This
article hypothesizes that skill composition is more effective
when the primitive skills are learned in specialized/scaffolded
environments. We compare the results of primitive skills
learned in the scaffolded versus non-scaffolded environment to
demonstrate the learning effectiveness in a scaffolded environ-
ment. Further, we propose two variants of a skill composition
method for RL policies represented by neural networks. The
proposed technique provides an alternative to the concurrent
skill composition techniques found in the literature. It offers
the simplicity of combining Q-table based policies while
maintaining the scalability provided by the neural network
based policies. We show how the RL policies for compound
tasks can be generated by a concurrent combination of the
policies for primitive disjoint tasks. Those primitive skills that
are the constituent skills of the composed skill are learned
in a scaffolded environment. Using a mobile robot-based
experiment, we then show how the combination of primitive
skills could be used as a solution for a compound task with
little or no additional training. A statistical comparison is
used to demonstrate the effectiveness of the proposed skill
combination method. In the best-case scenario, the composed
policy is as good as the policy learned from scratch, and in
the worst-case scenario, it can be used as a starting policy for
further training providing a good trade-off between optimal
solution and learning time. In either case, such reuse of the
previously learned knowledge reduces the overall training time
of multiple skills. That also results in a versatile system that
can mix and match the skills, an essential requirement for
a lifelong learning agent, especially in the robotics domain,
where it may not always be feasible to learn solutions to all
the tasks from scratch autonomously.

However, the contribution of this article forms a relatively
small sub-system of an open-ended lifelong learning system,
and the following are some of the future directions of this
research described in the order of specific to general. Firstly,
this article combined three primitive skills. In order to de-
termine the limitation of the proposed method, it remains to
be investigated if there is a maximum number of skills that
can be combined before the performance of the combined

skill deteriorates significantly. We hypothesize that a limit
does exist, and the deterioration would be gradual. Secondly,
this article limits the experiments to disjoint tasks. It would
be interesting to see the results of the proposed method
applied to the complementary and contradictory tasks. We
hypothesize that when the policies for the contradictory tasks
are combined, they will cancel each other out in the worst-
case scenario, leading to a ‘neutral’ combined policy that will
fail to execute either of the primitive tasks. For the comple-
mentary tasks, since the two policies agree on an action, the
composed policy will be closer to the optimal policy [38]. The
experiments in this article were designed for tasks that have
disjoint state space. To test other types of tasks would require
a different experimental setup. Also, as detailed in [48] [17],
additional action arbitration infrastructure would be required to
construct the combined policy. Thirdly, the proposed method
should be tested on different types of robots, especially those
with a much larger state and action space. In theory, the
proposed composition techniques should scale; however, that
remains to be investigated. Finally, this article investigated
skill composition in isolation and that too with predetermined
primitive tasks and scaffolded environments. For an open-
ended learning system, the tasks to learn are not known
upfront, and hence it is not possible to determine the design of
the scaffolded environments. For such a system, the proposed
skill composition method provides a partial solution to ‘how to
learn’. That should be integrated with a task generation method
that provides the solution to the question ‘what to learn’ [19]
and when to learn which skill [49][50][51]. Another aspect is
whether these tasks are generated procedurally [19] or using
intrinsic motivation [4][5]; even a relatively small number
of primitive tasks will result in a combinatorial explosion
of compound tasks. A potential solution suggested in [21]
is to use a knowledge management module responsible for
maintaining the list of tasks and skills. Furthermore, when
such a lifelong learning system has built up its knowledge
base of primitive skills, it should autonomously be able to
select which skills should be combined and how. Those are
some of the future directions of this research.

REFERENCES
[1] F. Dignum and R. Conte, “Intentional Agents and Goal Formation,” Agent Theories,

Architectures, and Languages, pp. 231–243, 1997.
[2] A. Hsissi, H. Allali, and A. Hajami, “Metacognitive Scaffolding Agent Based

on BDI Model for Interactive Learning Environments,” International Journal of
Computer and Communication Engineering, vol. 3, no. 2, pp. 97–100, 2014.

[3] V. G. Santucci, P. Y. Oudeyer, A. Barto, and G. Baldassarre, “Editorial: Intrinsically
motivated open-ended learning in autonomous robots,” Frontiers in Neurorobotics,
vol. 13, no. January, 2020.

[4] J. Schmidhuber, “What’s Interesting,” pp. 1–23, 1997.
[5] P.-Y. Oudeyer, “Intelligent Adaptive Curiosity: a source of Self-Development,” pp.

127–130, 2004.
[6] M. Mirolli and G. Baldassarre, “Functions and Mechanisms of Intrinsic Motiva-

tions. The Knowledge Versus Competence Distinction,” in Intrinsically Motivated
Learning in Natural and Artificial Systems, 2013, pp. 49–72.

[7] V. G. Santucci, G. Baldassarre, and M. Mirolli, “GRAIL: A goal-discovering robotic
architecture for intrinsically-motivated learning,” IEEE Transactions on Cognitive
and Developmental Systems, vol. 8, no. 3, pp. 214–231, 2016.

[8] B. van Niekerk, S. James, A. Earle, and B. Rosman, “Composing Value Functions
in Reinforcement Learning,” in International Conference on Machine Learning,
2019.

[9] F. Tanaka and M. Yamamura, “An approach to lifelong reinforcement learning
through multiple environments,” Proc. of the 6th European Workshop on Learning
Robot (EWLR-6), pp. 93–99, 1997.

[10] V. Mnih, A. P. Badia, L. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3177691, IEEE
Transactions on Cognitive and Developmental Systems

12

in 33rd International Conference on Machine Learning, ICML 2016, vol. 4, 2016,
pp. 2850–2869.

[11] B. Price and C. Boutilier, “Accelerating reinforcement learning through imitation,”
Journal of Artificial Intelligence Research, vol. 19, pp. 569–629, 2003.

[12] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE Robotics and
Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[13] A. Lazaric, Transfer in Reinforcement Learning : a Framework and a Survey.
Springer Berlin Heidelberg, 2012.

[14] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Domains
: A Survey,” Journal of Machine Learning Research, vol. 10, pp. 1633–1685, 2009.

[15] S. Singh, “Transfer of Learning by Composing Solutions of Elemental Sequential
Tasks,” Machine Learning, pp. 323–339, 1992.

[16] Y. Lee, S.-h. Sun, S. Somasundaram, E. Hu, and J. J. Lim, “Composing Complex
Skills by Learning Transition Policies,” in International Conference in Learning
Representations, 2019, pp. 1–19.

[17] A. H. Qureshi, J. J. Johnson, Y. Qin, B. Boots, and M. C. Yip, “Composing Ensem-
bles of Policies with Deep Reinforcement Learning,” in International Conference
in Learning Representations, 2020, pp. 1–16.

[18] G. Auda and M. Kamel, “Modular neural networks: a survey,” International journal
of neural systems, vol. 9, no. 2, pp. 129–151, 1999.

[19] P. Dhakan, K. Kasmarik, I. Rano, and N. Siddique, “Open-Ended Continuous
Learning of Compound Goals,” IEEE Transactions on Cognitive and Develop-
mental Systems, vol. 13, no. 2, pp. 274 – 285, 2019.

[20] A. Stout, G. D. Konidaris, and A. G. Barto, “Intrinsically Motivated Reinforcement
Learning : A Promising Framework For Developmental Robot Learning,” in In
Proceedings of the AAAI Spring Symposium on Developmental Robotics, Stanford
University, Stanford, CA., 2005, pp. 1–6.

[21] P. Dhakan, K. E. Merrick, I. Rano, and N. Siddique, “Intrinsic rewards for
maintenance, approach, avoidance, and achievement goal types,” Frontiers in
Neurorobotics, vol. 12, no. October, 2018.

[22] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, “Paired Open-Ended Trailblazer
(POET): Endlessly Generating Increasingly Complex and Diverse Learning
Environments and Their Solutions,” arXiv, pp. 1–28, 2019.

[23] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier, “Hierar-
chical Solution of Markov Decision Process using Macro-actions,” in Fourteenth
conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers
Inc, 1998, pp. 220–229.

[24] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning,” Artificial Intelligence,
vol. 112, no. 1, pp. 181–211, 1999.

[25] M. Stolle, “Automated discovery of options in reinforcement learning,” Ph.D.
dissertation, McGill University, 2004.

[26] P. L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” 31st AAAI
Conference on Artificial Intelligence, AAAI 2017, pp. 1726–1734, 2017.

[27] T. Dietterich, “An Overview of MaxQ Hierarchical Reinforcement Learning,”
International Symposium on Abstraction, Reformulation, and Approximation, pp.
26–44, 2000.

[28] Z. Kalmár, C. Szepesvári, and A. Lorincz, “Module-Based Reinforcement Learning:
Experiments with a Real Robot,” Autonomous Robots, vol. 5, no. 3-4, pp. 273–295,
1998.

[29] E. Uchibe, M. Asada, and K. Hosoda, “Behavior coordination for a mobile
robot using modular reinforcement learning,” in IEEE International Conference
on Intelligent Robots and Systems, vol. 3, 1996, pp. 1329–1336.

[30] C. Drummond, “Composing functions to speed up reinforcement learning in a
changing world,” in European Conference on Machine Learning, 1998, pp. 370–
381.

[31] È. Pairet, P. Ardón, M. Mistry, and Y. Petillot, “Learning and Composing Prim-
itive Skills for Dual-Arm Manipulation,” in 20th Annual Conference of Towards
Autonomous Robotic Systems, vol. 11649 LNAI, 2019, pp. 65–77.

[32] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor, “A Deep
Hierarchical Approach to Lifelong Learning in Minecraft,” 31st AAAI Conference
on Artificial Intelligence, AAAI 2017, pp. 1553–1561, 2017.

[33] B. Wu, J. K. Gupta, and M. J. Kochenderfer, “Model Primitive Hierarchical Life-
long Reinforcement Learning,” in 18th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2019), 2019.

[34] P. Tommasino, D. Caligiore, M. Mirolli, and G. Baldassarre, “A Reinforcement
Learning Architecture That Transfers Knowledge Between Skills When Solving
Multiple Tasks,” IEEE Transactions on Cognitive and Developmental Systems,
vol. 11, no. 2, pp. 292–317, 2019.

[35] G. Berseth, C. Xie, P. Cernek, and M. Van de Panne, “Progressive Reinforcement
Learning with Distillation for Multi-Skilled Motion Control,” in International
Conference on Learning Representations, 2018, pp. 1–15.

[36] W. M. Czarnecki, S. M. Jayakumar, M. Jadcrbcrg, L. Hasenclever, Y. W. Tch,
S. Osindero, N. Heess, and R. Pascanu, “Mix and match - Agent curricula for
reinforcement learning,” in 35th International Conference on Machine Learning,
ICML 2018, vol. 3, 2018, pp. 1761–1773.

[37] X. B. Peng, M. B. Chang, G. Zhang, P. Abbeel, and S. Levine, “MCP: Learning
Composable Hierarchical Control with Multiplicative Compositional Policies,” in
Advances in Neural Information Processing Systems, 2019, pp. 3686–3697.

[38] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Composable
Deep Reinforcement Learning for Robotic Manipulation,” in 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), no. 1, 2018, pp. 6244–6251.

[39] E. Todorov, “Compositionality of Optimal Control Laws,” in Advances in Neural
Information Processing Systems, 2009, vol. 3, 2009, pp. 1856–1864.

[40] C. Simpkins and C. L. Isbell, “Composable Modular Reinforcement Learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp.

4975–4982.
[41] K. E. Merrick and M. L. Maher, Motivated reinforcement learning: Curious

characters for multiuser games. Springer Berlin Heidelberg, 2009.
[42] S. Russell and A. L. Zimdars, “Q-Decomposition for Reinforcement Learning

Agents,” in 20th International Conference on Machine Learning, 2003, pp. 656–
663.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
pp. 529–533, 2015.

[44] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approximation by
averaging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838–
855, 1992.

[45] D. M. Tax, M. Van Breukelen, R. P. Duin, and Josef Kittler, “Combining multiple
classifiers by averaging or by multiplying?” Pattern Recognition, vol. 33, no. 9,
pp. 1475–1485, 2000.

[46] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal representation for
BDI agent systems,” in Second International Workshop on Programming Multiagent
Systems: Languages and Tools, 2005, pp. 9–20.

[47] J. Kober and J. Peters, “Policy search for motor primitives in robotics,” Machine
Learning, vol. 84, no. 1-2, pp. 171–203, 2011.

[48] H. Sahni, S. Kumar, F. Tejani, and C. Isbell, “Learning to compose skills,” in
Advances in Neural Information Processing Systems, 2017.

[49] S. Blaes, J.-j. Zhu, and G. Martius, “Control What You Can Intrinsically Motivated
Task-Planning Agent,” in Advances in Neural Information Processing Systems,
no. 32, 2019.

[50] G. Santucci, G. Baldassarre, and E. Cartoni, “Autonomous Reinforcement Learning
of Multiple Interrelated Tasks,” in 2019 Joint IEEE 9th international conference
on development and learning and epigenetic robotics (ICDL-EpiRob), 2019.

[51] C. Colas, P. Fournier, O. Sigaud, M. Chetouani, and P.-Y. Oudeyer, “CURIOUS:
Intrinsically motivated modular multi-goal reinforcement learning,” 36th Interna-
tional Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 2372–
2387, 2019.

Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on September 29,2022 at 10:50:16 UTC from IEEE Xplore. Restrictions apply.

