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Abstract—When deploying robots in shallow ocean waters,
wave disturbances can be significant, highly dynamic and pose
problems when operating near structures; this is a key limitation
of current control strategies, restricting the range of conditions
in which subsea vehicles can be deployed. To improve dynamic
control and offer a higher level of robustness, this work proposes
a Cascaded Proportional-Derivative (C-PD) with Feed-forward
(FF) control scheme for disturbance mitigation, exploring the
concept of explicitly using disturbance estimations to counteract
state perturbations. Results demonstrate that the proposed con-
troller is capable of higher performance in contrast to a standard
C-PD controller, with an average reduction of ≈ 48% witnessed
across various sea states. Additional analysis also investigated
performance when considering coarse estimations featuring in-
accuracies; average improvements of ≈ 17%% demonstrate the
effectiveness of the proposed strategy to handle these uncertain-
ties. The proposal in this work shows promise for improved
control without a drastic increase in required computing power;
if coupled with sufficient sensors, state estimation techniques
and prediction algorithms, utilising feed-forward compensating
control actions offers a potential solution to improve vehicle
control under wave-induced disturbances.

Index Terms—Feed-forward Control, Disturbance Compensa-
tion, State Estimation, Dynamic Control, Underwater Vehicles.

I. INTRODUCTION

ADVANCED control of marine vehicles is sharply be-
coming an industrial necessity rather than an academic

exercise, with the offshore sector seeking higher levels of
autonomy with respect to intervention tasks, inspection tasks
and similar [1]. An industry section where increased autonomy
would be highly beneficial is offshore, in particular the marine
renewable sector, as the transition to cleaner energy sources
begins to accelerate and harsher environments become the
subject of exploration for power generation [2]. Remotely
Operated Vehicles have become a solidified aspect of many
subsea procedures, but operation near the free-surface or in
shallower waters remains a challenge when the sea state
is not calm, owing to the significant influence of surface
waves which often limits the deployment of piloted strategies
[3]. Specifically with respect to marine renewable devices,
situation within a turbulent environment is critical to generate

This work was supported by the EPSRC under grant No. EP/R513209/1.

sufficient power; thus, a greater level of robustness, reliability
and precision is required with regards to vehicle control if
autonomous operation is to become a reality [4].

Attempts to develop automatic disturbance compensation
control algorithms have varied, with early implementations
investigating vision-based solutions [5], [6]. In calmer envi-
ronments these strategies can be effective, but there is a lack of
robustness due to the dependence on visibility and being feed-
back based. To tackle this, alternative solutions have suggested
inherently robust methods in the form of sliding mode and
adaptive controllers [7], [8], which account for hydrodynamic
loading by considering this as a set of generalised system
disturbances. For small-magnitude disturbances this can im-
prove performance sufficiently, but a question remains over
stability and performance guarantees when loading increases,
for example low-depth operation under large wave heights.

Handling time-varying and unsteady disturbances remains
an open challenge, but a proposition which holds promise lies
in exploiting forecasting methods [9], [10]; for wave-induced
disturbances which are largely predictable in nature, utilising
preview information can assist in disturbance compensation
[11]. Given that wave predictions can be deduced through
time-history data, this lends itself to being applicable to a
wider range of disturbances than other proposals. Furthermore,
the development of state estimation methods [12] coupled
with a hydrodynamic loading model [13], [14] allows the
formulation of a feed-forward (FF) control action to reduce
state error, in conjunction with an establish feedback controller
for set-point regulation. Likewise, the formulation of a single
additional control action ensures computation requirements
remain low, a major benefit in relation to alternative predictive
solutions [15] for these highly dynamic scenarios.

With respect to the above, this work proposes the use
of a Feed-Forward (FF) control element which models the
wave disturbances as a product of added inertia and hydrody-
namic drag, coupling this with a Cascaded Position-Velocity
Proportional-Derivative Controller (C-PD) to counteract wave
disturbances. The vehicle state is estimated through an Ex-
tended Kalman Filter (EKF), which determines the corrective
control action in the feedback loop. The controller is simulated
under several wave conditions when the disturbance estimation
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is both well-known and features significant uncertainty, show-
ing that the proposed FF+C-PD controller outperforms a stan-
dard C-PD controller in all cases. These findings demonstrate
that even coarse predictions of environmental disturbances can
prove useful in mitigating state error of subsea vehicles, thus
improving the accuracy of dynamic control tasks.

II. MODELLING

Throughout this work, the vehicle is considered to possess
3DoF and is restricted to a planar case; therefore the presented
model considers the surge, heave and pitch motions only.
Analogously, the ocean waves are modelled according to
2nd-order planar theory and are assumed to propagate uni-
directionally.

A. Vehicle Rigid-Body Dynamics

The kinematics of the rigid-body are described by consid-
ering two co-ordinate frames; the earth-fixed and body-fixed.
As depicted in Fig. 1, these are related by a transformation
according to [18]:

η̇ = J(η)ν (1)

where η is a state vector describing the position and orientation
of the vehicle, ν is a state vector of linear and angular
velocities and J ∈ R3×3 is the transformation matrix relating
the two frames.

Given the above kinematic representation, the vehicle dy-
namics exhibit nonlinear behaviour and are defined according
to:

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τE (2)

where M = MRB + MA ∈ R3×3 is an inertia matrix,
C(ν) = CRB(ν)+CA(ν) ∈ R3×3 is a matrix of Coriolis and
centripetal terms, D(ν) = DL(ν)+DQ(ν)�|ν| ∈ R3×3 is a
hydrodynamic damping matrix and g(η) ∈ R3 is a vector of
hydrostatic restoring forces. In the above, subscripts RB and
A relate to contributions from rigid body and added inertial
effects, with:

MRB =

m 0 0
0 m 0
0 0 Iy

 MA =

Xu̇ 0 Xq̇

0 Zẇ 0
Mu̇ 0 Mq̇

 (3)

where m is the vehicle dry mass, Iy is a rotational inertia
and Xq̇ , Zẇ, and Xu̇ = Mu̇ are added mass coefficients. The
Coriolis and centripetal terms are derived in accordance with
Eq. 3 [18] and the damping matrix is specified as:

DL =

Xu 0 0
0 Zw 0
0 0 Mq

 DQ =

Xu|u| 0 0
0 Zw|w| 0
0 0 Mq|q|


(4)

where Xu, Zw and Mq are linear damping coefficients
whilst Xu|u|, Zw|w| and Mq|q| are quadratic damping coef-
ficients. All hydrodynamic parameters are defined in Table II.

Finally, τ ∈ R3 is a vector of control forces and moments
whilst environmental disturbances are lumped within the vec-
tor τE ∈ R3. As this work is concerned with mitigating the
effects of surface waves on vehicle behaviour, disturbances

Fig. 1: The two frames, earth-fixed and body-fixed, and the re-
lating transformation for the BlueROV2 Heavy configuration.

arising from ocean currents are assumed negligible and τE is
formulated to purely describe wave-induced loading, according
the model presented in the following section.

B. Wave-Induced Disturbances

To form a temporal history of the wave elevation, a 2nd-
order model was adopted utilising the principle of superpo-
sition. The sea state is therefore described by a spectrum
of N monochromatic components, each with a unique wave
amplitude A, wave period, T , and phase offset ε. It follows
that at a point x and at time t the wave elevation is described
by [18]:

ζ(x, t) =

N∑
i=0

Aicos(κix− ωit+ εi)

+

N∑
i=1

1

2
κiA

2
i cos2(κix− ωit+ εi) (5)

where κ and ω are the wave number and circular frequency
respectively. These additional parameters are deduced by solv-
ing the dispersion relation:

ωi =
√
gκi tanhκid (6)

where g and d are the gravitational constant and approximate
seabed depth. In Eq. 5, the wave amplitude is related to the
spectral density function S(ω) by A2 = 2S(ω)∆ω where
∆ω is the difference between successive frequencies. Several
models exist to describe the spectral density function [18];
in this work the JONSWAP spectrum is adopted owing to
the relation with the North Sea, an area of interest for this
application. The spectral density function is therefore:

S(ω) =
αg2

ω5
exp

[
−5

4

(ωp

ω

)4
]
γΓ (7)



Fig. 2: Block diagram of the proposed feed-forward disturbance mitigation technique, with the grey blocks representing the
generation of the additional compensating control actions.

where ωp is the spectral peak frequency, γΓ is a peak enhance-
ment factor and

α = 0.0081

σ =

{
0.07, if ω ≤ ωp

0.09, if ω ≥ ωp

Γ = exp

[
(ω − ωp)2

2ω2
pσ

2

]
Spectral information can also be exploited to deduce the

fluid particle motions at a point beneath the surface z, which
for 2nd-order theory produces [19]:

up(x, z, t) =

N∑
i=1

gHi

2c

coshκi(z + d)

coshκid
cos(κix− ωit+ εi)+

3

16
cκ2

iH
2
i

cosh[2κi(z + d)]

sinh4 κid
cos[2(κix− ωit+ εi)]

(8)

wp(x, z, t) =

N∑
i=1

gHi

2c

sinhκi(z + d)

coshκid
sin(κix− ωit+ εi)+

3

16
cκ2

iH
2
i

sinh[2κi(z + d)]

sinh4 κid
sin[2(κix− ωit+ εi)]

(9)

where c is celerity, defined according to seabed depth to
wavelength ratio [20]. This facilitates deduction of the wave-
induced hydrodynamic loads (XE , ZE and ME for the surge,
heave and pitch respectively) acting on the body; here, a
low-order model is employed which has been experimentally
validated in previous work [13], [14], [22], [23]:

τE =

XE

ZE

ME

 =

Xu̇ν̇p,x + {Xu +Xu|u||νp,x|}νp,x
Zẇν̇p,z + {Zw + Zw|w||νp,z|}νp,z∫ L/2

−L/2
ZE(x′, z′, t)x′dx

 (10)

where νp = [νp,x, νp,z]
T

= Ry(θ) [up, wp]
T (Ry(θ) is a

rotation matrix). Also, L is the vehicle body length and (x′, z′)
refers to points along the vehicle axial length within the local
frame.

III. CONTROL METHODOLOGY

Obtaining spectral knowledge of the immediate ocean en-
vironment around the vehicle is key in deducing the magni-
tude of disturbances when applying the model described by
Eq. 10. Several methods have been proposed for predicting
impending waves and wave loads, including but not limited
to in-situ sensor fusion [16], auto-regressive models [9] and
deterministic methods [10], the latter in particular focusing
on utilising spectral information. These have been applied
successfully in the context of wave energy converters, there-
fore an analogous deployment with respect to an underwater
vehicle holds adjacent potential. It is therefore postulated here
that exploiting knowledge of wave disturbances to formulate
a feed-forward control action can assist in reducing state
perturbations, improving station keeping performance and
widening the range of deployable conditions. The control law
is therefore formulated as a Cascaded Proportional-Derivative
(C-PD) with feed-forward (FF) action:

τ = τmax [Kp,v{ν − (Kpe + Kdė)}]︸ ︷︷ ︸
C−PD

(11)

+ {MAν̇p + D(νp)(−νp)}︸ ︷︷ ︸
FF

where Kp and Kd are the position PD gains, Kp,v is the
velocity P-gain and e is the state error. Also, τmax ∈ R3 is a
vector describing the maximum torque available in each DoF.
As the heave and pitch states are controlled via the horizontal
thrusters, a thrust allocation algorithm is embedded within the
control architecture to generate the appropriate control inputs



(a) (b)

Fig. 3: Map showing the (a) various locations of buoys around
Scotland, circling the buoy selected for this analysis and (b)
an enlarged map of the Moray Firth buoy location.

to deliver the required forces and moments. Inclusion of the
motor time-delay as a first-order response yields:

µ =
[(

1− e−∆t/tm
)
K−1
τ

]
B†µτ (12)

where B†µ is the Moore-Penrose pseudo-inverse of the thrust
allocation matrix Bµ, Kτ is a force co-efficient matrix and
∆tm is the motor-time constant. Eq. 12 produces a solution
µ ∈ R8 to be allocated to each thruster.

A. State Estimation

Deploying automatic control in practice requires knowledge
of the vehicles location to be known or at minimum a
reasonable estimation to be inferred; to add an additional layer
of realism to the simulations, we employ an EKF as a state
estimator to track the vehicle state. The EKF algorithm has two
update phases; the predictor phase and the corrector phase.
The predictor phase considers the initial estimates and projects
the error covariance and state, P and x̂, ahead in time such
that:

P−k = AkPk−1A
T
k + Qk−1 (13)

x̂−k = F (x̂k−1,µk−1,w) (14)

where A = dF
dx |x=x̂ is the linearised state transition matrix, Q

is the process error covariance and w represents the process
noise. Here, F represents a nonlinear function for the vehicle
dynamics. From this, the corrector phase proceeds to compute
the Kalman gain:

Kk = P−k H
T
k (HkP

−
k H

T
k + Rk)−1 (15)

where Hk is a positional measurement and Rk is the mea-
surement error covariance, before updating the estimate with
a measurement yk

x̂k = x̂−k + Kk(yk −Hkx̂
−
k ) (16)

TABLE I: Case assignments and parameters for the analysed
wave spectra.

.

Case Reference Peak Period (s) Significant Wave Height (m)

W1 7.1 2.78
W2 9.5 3.47
W3 11.1 3.24

TABLE II: BlueROV2 Heavy dimensions and hydrodynamic
parameters; data based on [24]–[26].

Parameter Nomenclature Value

Weight W 112.8 N
Buoyancy B 114.8 N

Rotational Inertia, y Iy 0.253 kgm2

Added Inertia Coeff. Xu̇, Zẇ 6.36, 18.68 kg
” Mq̇ 0.135 kgm2

” Xq̇ , Mu̇ 0.67 kgm
Linear Drag Coeff. Xu, Zw 13.7, 33 kg/s

” Mq 0.80 kgm2/s
Quadratic Drag Coeff. Xu|u|, Zw|w| 141, 190 Ns2/m2

” Mq|q| 0.47 Nms2

Centre of Buoyancy rB [0, 0, 0.028]m
Maximum Thrust Tmax 35 N
Thruster Offset α 45o

Similarly, the error covariance is also corrected in this stage
before looping back to Eq. 13 and repeating for every time-
step k, where I is an identity matrix:

Pk = (I−KkHk)P−k (17)

IV. SCENARIO CONFIGURATION

Given the intended application of the proposed disturbance
mitigation method is for improved performance during inspec-
tion and maintenance of devices/structures in wave-dominated
environments, the vehicle was simulated under three different
sea states to analyse performance relative to varying wave
parameters. Spectral data was sourced from the online repos-
itory of the Centre for Environmental Fishes and Aquaculture
Science (Cefas) [27], collected by a wave buoy situated off the
coast of Inverness, Scotland in the Moray Firth. The location
of the buoy is shown in Fig. 3 where d = 54m; offshore wind
farms are typically located within areas of this depth [28],
[29], thus emulating the conditions of a typical inspection or
maintenance task. The selected wave fields and assigned case
references are given in Table I with all vehicle parameters
given in Table II.

The controller was tasked with performing station-keeping
at a depth of z = 5m and for a temporal segment of 600s with
a resolution of ∆t = 0.05s, exposing the vehicle to significant
magnitude wave disturbances for a prolonged period of time.
It should be noted here that station-keeping refers to both
positional and attitude regulation, during which the controller
attempts to maintain a reference set-point xr = [xr, zr, θr]T .
Throughout all analysis, sensor noise is considered which is
mitigated by the inclusion of an EKF to estimate the vehicle



Fig. 4: Temporal segment of the (a) wave in case W3. showing
the (b) surge position, (c) heave position and (d) pitch attitude.

state. Comparisons are drawn between the FF controller and
a standard C-PD controller as a baseline reference which also
exploits the EKF to monitor state error.

V. SIMULATION RESULTS

Performance of the proposed control scheme was analysed
by considering the Root-Mean-Square-Error (RMSE) and ab-
solute maximum error witnessed across the 600s simulation;
the power consumed during the station keeping mission was
also recorded and analysed.

A. Station Keeping Performance

A temporal segment for case W3 is displayed in Fig. 4
which evidently shows the FF compensation having a positive
impact on the station keeping error, relative to the C-PD
controller. The preview knowledge of the wave is seen to
reduce RMSE by up to 58.6%, with this specific value relating
to the pitch motion for case W1. For the surge and heave,
the maximum reductions were also related to case W1 which
returned a 47.5% and 48.2% improvement respectively. This is
an indicator that for lower peak period spectra the inclusion of
FF compensation is more critical, however this could be owed
to the causal effect of larger pitch perturbations in contrast to
cases W1 and W2.

Fig. 5: Temporal segment for case W3 during noise analysis;
here, SNR0 is the encountered wave by the vehicle where as
SNR15 is the expected wave by the controller used to generate
compensating control actions.

In terms of the maximum displacement recorded during the
simulations, the greatest improvement was also related to the
pitch, reducing attitude error by 50.1% on average. This was
much lower for the other DoF, with the surge and heave only
showing 22% and 11.8% reductions; it is suspected that this
is due to a brief section of the simulated waves subjecting
the vehicle to sharp, high magnitude disturbances which the
control was unable to correct for. Behaviour similar to this
can be seen in Fig. 4 at ≈ 315s, where the traces for the
control scheme undergo similar magnitude displacements for
the largest wave height in the segment. Across all cases there
was a mean reduction in RMSE of ≈ 48% and ≈ 28% in
maximum error; all absolute values are shown in Fig. 6.

B. Sensitivity to Noise

Each case was analysed when both the disturbance feed-
forward term is deemed to be accurate (denoted SNR0) and
feature imprecisions (denoted SNR15); the latter attempts to
provide insight into controller performance when the vehicle
encounters disturbances that differ from those anticipated by
the FF controller. To achieve this, spectral noise with a SNR of
15 was injected directly to the spectral component amplitude
and phase offset to alter the wave (and thus FF compensation
calculations) significantly and randomly as shown in Fig. 5.
These results are also compiled within Fig. 6.

When the disturbance is considered to be inaccurate, there
is still improvement in station keeping accuracy across all
cases with respect to RMSE and the majority of cases with
respect to maximum error; only case W3 returns higher
maximum error in the surge and heave and in these specific
instances the difference is marginal with increases of < 1%
and 5% respectively. The average reduction in RMSE of 17%
supports the claim that these instances are at isolated periods
in time and not a regular occurrence; similar to above, the
pitch experienced the highest improvement in error of 14.2%.
Overall these results clearly show that even utilising a spectral
estimation that features inaccuracies can offer a noticeable
improvement in state regulation, implying that well established
methods can be applied with confidence at this end of the
control pipeline.



Fig. 6: State error for each control method during the station
keeping simulation, showing the (a)(c)(e) RMSE and (b)(d)(f)
absolute maximum error recorded.

C. Station Keeping Efficiency

Given the improvement in performance and additional con-
trol action generated by the FF component, it was anticipated
additional power would be required. To confirm this, the
power consumed during the mission was modelled according
to manufacturer data such that [21]:

P = 0.0011τ 3 + 0.02078τ 2 + 0.297τ (18)

where P ∈ R3 is the power consumed by the control actions in
each DoF. This was modelled according to a nominal operating
volage of 16V and the results are displayed in Fig. 7.

The power does increase when employing the FF scheme,
but interestingly less power was consumed when considering
noisy disturbance estimations. It is likely that this is attributed
to the FF controller anticipating lower magnitude disturbances
for the majority of the simulated mission, which would explain
the increase in error that is shown in Fig. 6. Similarly, the
segment displayed in Fig. 5 demonstrates this behaviour at
various instances, for example at 120s where the disturbance
is significantly underestimated. This supports the connected
data in relation to the positional and attitude RMSE/maximum
error. For large magnitude waves it can be argued that this

Fig. 7: Power consumed during the station keeping mission
for each case and control method.

increased power expenditure is utilised well to reduce station
keeping error significantly, thus in situations where this is
paramount it becomes less of a burdening factor.

VI. CONCLUSIONS

This paper has proposed active wave-induced disturbance
rejection for underwater vehicles based on the inclusion of
a feed-forward control action. An extensive simulation study
demonstrated the capability of the proposed control to sig-
nificantly reduce state regulation error in both position and
attitude, highlighting performance improvements of up to
56.8% over three sea states with varying parameters. Similarly,
the maximum error (which is arguably the critical factor in
these scenarios) was also reduced substantially, with more
prominent reductions witnessed for the vehicle pitch. Given
the availability of wave prediction tools, these results provide
evidence of the real potential related to the incorporation of
modelled wave-induced loads directly within the control to
improve performance. Considering this, an interesting avenue
for exploration would be to develop a preview of wave-induced
disturbances along a future time-horizon; this would facilitate
the development of different forms of model predictive control,
potentially improving performance even further by evaluating
an optimal control sequence, rather than a one step control
action.
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