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Neural network-aided receivers for soliton
communication impaired by solitonic interaction
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Institute for Imaging, Data and Communications, School of Engineering, University of Edinburgh,
Edinburgh, UK
*majid.safari@ed.ac.uk

Abstract: In this paper, different neural network-based methods are proposed to improve
the achievable information rate in amplitude-modulated soliton communication systems. The
proposed methods use simulated data to learn effective soliton detection by suppressing nonlinear
impairments beyond amplifier noise, including intrinsic inter-soliton interaction, Gordon-Haus
effect-induced timing jitter, and their combined impact. We first present a comprehensive study
of these nonlinear impairments based on numerical simulations. Then, two neural network
designs are developed based on a regression network and a classifier. We estimate the achievable
information rates of the proposed learning-based soliton detection schemes as well as two model-
based benchmark schemes, including the nonlinear Fourier transform eigenvalue estimation and
continuous spectrum-aided eigenvalue estimation schemes. Our results demonstrate that both
learning-based designs lead to substantial performance gains when compared to the benchmark
schemes. Importantly, we highlight that exploiting the channel memory, introduced by solitonic
interactions, can yield additional gains in the achievable information rate. Through a comparative
analysis of the two neural network designs, we establish that the classifier design exhibits superior
adaptability to interaction impairment and is more suitable for symbol detection tasks in the
context of the investigated scenarios.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The spectral efficiency (SE) of conventional standard single-mode (SSM) fibers is often constrained
by the Kerr nonlinearity, a signal-dependent effect that intensifies as the launch power increases
[1]. Predicted by Zahkarov and Shabat, the existence of the soliton pulse is first demonstrated
via numerical simulation by Hasegawa [2]. The stability of the soliton evolution in nonlinear
fiber shows its ability of balancing linear dispersion and Kerr nonlinearity, hence implying its
potential application as information carrier [3]. However, it was pointed out that the amplifier
noise will introduce Gordon-Haus timing jitter, which will limit the data rate of the proposed
on-off keying soliton communication [4].

It was not until the new emergence of nonlinear Fourier transform (NFT) that the soliton
communication started to regain some research interests. To potentially harness the nonlinearity
effects in long-haul fibers, many recent works have employed the NFT to map a fiber-propagated
optical signal from time domain to its degrees of freedom defined in the so-called nonlinear
frequency spectrum: the discrete spectrum (DS) and the continuous spectrum (CS) [5–9].
Specifically, the DS signifies the solitonic component of the optical signal, while the CS
corresponds to the non-solitonic radiation.

In a lossless and noise-free nonlinear fiber, the nonlinear channel effect governed by nonlinear
Schrödinger equation (NLSE) becomes linearized in the nonlinear frequency domain. The
eigenvalues of the DS remain invariant, while the evolution of both the norming constants of DS
and CS can be described using a linear phasor [5]. Based on this property, nonlinear frequency
division multiplexing (NFDM) has been proposed as a promising candidate to overcome the
limitations imposed by nonlinearity [6]. The NFDM system encodes information in the nonlinear

#499296 https://doi.org/10.1364/OE.499296
Journal © 2023 Received 17 Jul 2023; revised 20 Sep 2023; accepted 10 Oct 2023; published 7 Dec 2023

https://orcid.org/0000-0001-5604-2590
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.499296&amp;domain=pdf&amp;date_stamp=2023-12-07


Research Article Vol. 31, No. 26 / 18 Dec 2023 / Optics Express 43290

frequency domain, similar to orthogonal frequency division multiplexing (OFDM). In particular,
using invariant eigenvalues as information carriers has attracted interest within the community.
However, determining the capacity of such an eigenvalue communication system, such as an
amplitude-modulated (AM) single soliton transmission system, remains an open challenge. The
complexity arises from nontrivial signal-dependent noise and other nonlinear impairments,
including the Gordon-Haus effect and inter-soliton interaction.

In long-haul fiber transmission, the necessity of using optical amplifiers inevitably introduces
amplifier spontaneous emission (ASE) noise. The ASE noise, which is added to the optical signal
in the time domain, gives rise to a non-trivial signal-dependent noise in the received eigenvalue,
i.e., in nonlinear frequency domain [10,11]. Further complexities arise when a sequence of
solitons is transmitted. Intrinsic forces between solitons can result in inter-soliton interactions
when they are temporally proximate [12], potentially causing interference between neighboring
symbols and, consequently, errors in communication. The situation is further exacerbated by the
ASE noise-induced Gordon-Haus timing jitter [4], which increases the chances of neighboring
solitons becoming temporally close, thereby intensifying their interactions. Unfortunately, to the
best of our knowledge, the existing literature offers inadequate investigation of these compounded
impairments.

Based on the perturbation theory, the transmission of an amplitude modulated soliton pulse
in isolation can be described by a signal-dependent noise model [10]. In addition, variance
normalizing transform (VNT) can be used to effectively approximate such signal-dependent noise
models with equivalent unit-variance additive white Gaussian channels (AWGN) [10,11,13].
However, it has been observed that as the operational power escalates, inter-soliton interaction
starts to dominate over the signal-dependent noise, rendering the isolated soliton channel model
ineffective [13]. Research has suggested that significant improvements in the detection of soliton
sequences can be achieved by exploiting the correlation between the eigenvalue and the CS [14].
Furthermore, an intriguing concept of beneficial interaction has been introduced, proposing that
a specially designed signaling scheme, that allows for precise post-interaction soliton position
swaps, can be advantageous [15].

In addition to the aforementioned conventional detection schemes, machine learning has shown
promising gains in detecting signals within highly nonlinear channels where precise channel
models are unavailable. For example, the bidirectional long short-term memory (BLSTM)
network has been found effective in CS-modulated NFDM systems where the exact channel
model with memory remains unknown [16]. A two-stage neural network receiver scheme has
been proposed for performing joint channel equalization in both the time and nonlinear frequency
domains before and after the NFT, resulting in improved error performance [17]. In [18], an
autoencoder design based on unsupervised neural networks was utilized to adaptively adjust
the DS modulation scheme in response to data generated according to the NLSE model of the
optical fiber channel. Classifier neural networks have been employed in DS NFDM systems to
detect high-order solitons corresponding to two distinct eigenvalues [19]. In [20], a regression
neural network was employed as an equalizer to compensate for channel perturbations in a b
coefficient-modulated multi-eigenvalue DS NFDM systems. A comparison was made between
classifier and regression networks in [21]. This comparison study highlights that, in high-accuracy
systems, the use of a classifier network design with a non-smooth cross-entropy loss function can
lead to learning problems such as gradient vanishing, thus limiting the achievable information
rate (AIR) of the network. It was also suggested that implementing a regression network with a
smooth mean square error (MSE) loss and early stopping criteria may overcome these learning
problems, achieving superior error performance and AIR.

In this study, we develop different neural network based soliton detection schemes, analyze
their performance in terms of achievable information rate, and demonstrate their superiority
against best existing model-based techniques. The key contributions of the paper are listed below:
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• We present a numerical study of the effect of intrinsic inter-soliton interaction using
numerical simulations, followed by an examination of the Gordon-Haus effect and finally
their combined impact.

• Noting that the inter-soliton effects either individually or combined with Gordon-Haus
jitter are nonlinear, complex and non-tractable, we propose two neural network designs
based on regression and classification BLSTM networks for soliton detection and optimize
their design by adjusting the different network parameters.

• We estimate the achievable information rates of the two proposed neural network designs
and compare them with two model-based soliton detection schemes, where our analysis
suggests a distinct preference for classification neural network design.

• Our AIR results reveal that both classifier and regression network designs of the BLSTM
network for soliton detection can outperform benchmark model-based schemes, potentially
reaching the upper bound of the SE in low-to-mid power regimes. However, in higher
power regimes, the expected gains over the benchmark methods are modest, indicating its
struggle to cope with the increased interaction and noise.

• Beyond the standard hyperparameter analysis (e.g., different quantities of hidden units and
BLSTM layers), we analyze the length of the training soliton sequences, which unveils the
memory size of the underlying nonlinear channel, further contributing to our understanding
of these systems.

2. System model

Adopting the normalization scheme as presented in [13], the unitless stochastic NLSE, that
precisely models the propagation of optical signals over nonlinear long-haul fibers, is given by

jqz(t, z) = qtt(t, z) + 2|q(t, z)|2q(t, z) + n(t, z), (1)

where q(t, z) (normalized by
√︂
|β2 |/γT2

0 ) is the normalized complex envelope of the optical field
with the subscript z and tt denotes the first and second order partial differentiation with respect to z
and t, respectively, while n(t, z) represents the normalized ASE noise. The variables t and z denote
unitless time (normalized by T0) and propagation distance (normalized by 2T2

0/|β2 |), respectively.
The autocorrelation of the normalized ASE noise is given by E[n(t, z)n∗(t′, z′)] = σ2δ(t−t′)δ(z−z′),
where σ2 = αhν0KT

2γT3
0

|β2 |2
. The parameters α, β2 and γ describe the fiber loss, group velocity

dispersion and Kerr nonlinearity, respectively. Furthermore, hν0 denotes the photon energy,
while KT is the phonon occupancy factor.

The NFT transforms the time domain signal into scattering data which evolves linearly
in the nonlinear NLSE channel. The scattering data includes the CS, ρ(λ, z), and the DS,
{λm(z)Mm=1, Cm(z)Mm=1}. The DS contains eigenvalues λm and corresponding norming constants
Cm pairs. If only the imaginary part of a single eigenvalue is employed and the soliton is centered
at time zero, the solution of (1) is known as a first order soliton, given by

q(t, 0) = 2Asech(2At), (2)

where A = ℑ(λ1)>0 with the norming constant of −2A at transmitter z = 0. Note that the soliton
pulse (2) contains a sech hyperbolic shape in both time and frequency domains, dependent on its
amplitude A. For practical implementation of the soliton, the pulse should be truncated within
the symbol period timewidth of [− tw

2 , tw
2 ]. Letting δ define the fraction of the soliton energy that
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is outside [−
tw
2 , tw

2 ], the relationship between tw, δ, and the soliton amplitude, A, can be written
as [13]

tw(A, δ) =
1

2A
ln

(︃
2
δ
− 1

)︃
. (3)

Similarly, the bandwidth of the soliton that preserves (1 − ϵ) of energy could be defined as

fw(A, ϵ) =
2A
π2 ln

(︃
2
ϵ
− 1

)︃
. (4)

The (1 − δ) timewidth in (3) and (1 − ϵ) bandwidth in (4) effectively define the resources
occupied by a single soliton pulse with amplitude A. The description of occupation of time and
spectral resources for a single soliton amplitude can be extended to a constellation of soliton
amplitudes, where the timewidth and the occupied bandwidth for the signaling are determined by
the minimum and maximum amplitude of the constellation, Amin and Amax, respectively. Similar
to [14], we consider a fixed time-bandwidth product to estimate the system performance with
limited resources.

To fully utilize available resources and maximize the SE, constellation shaping can be applied
to achieve an optimal constellation. The optimization problem corresponding to such shaping
approach is formulated as

C = sup
PA(a):A∈{0}∪[Amin,Amax]

I(A; R), (5)

where I(A; R) indicates the mutual information (MI) between transmitted and received eigenvalues
A and R. Based on the perturbation theory and the assumption of isolated soliton pulse
transmission, the channel between A and R can be described by a noncentral chi-squared model
[10]. However, applying the VNT transformation T(u) = 2

√︁
2u/σ2l as in [13], where l denotes

the unitless propagation distance, allows us to simplify the estimation of the mutual information
I(A; R) = I(T(A), T(R)) = I(X; Y) assuming that the VNT transformed channel between X and Y
is approximately Gaussian and independent of input. This assumption is validated in [13] by
showing that the Kullback–Leibler (KL) divergence between the approximated AWGN channel
and the VNT transformed noncentral chi-squared channel is close to zero in the regime of interest.
Note that the range of soliton amplitudes is defined by the effective time-bandwidth product,

TB(Amin, Amax, δ, ϵ) =
1
π2

Amax
Amin

ln(
2
δ
− 1) ln(

2
ϵ
− 1), (6)

where the energy truncation factors δ and ϵ could be independently selected. In this work, unless
stated otherwise, we set δ and ϵ to be 10−2, which means 99% of the soliton energy should
be preserved in both time and frequency domains. Given the time-bandwidth product TB and
available bandwidth fw, (6) allows for the calculation of Amin and Amax, which define the range
of symbol amplitudes comprising the constellation excluding the zero symbol. Note that the
inclusion of zero symbol as part of the constellation is a reasonable design choice that expands
the source entropy without affecting TB. In addition, the NFT detection of the zero symbol
would be highly resilient against ASE noise, which does not commonly exceed the threshold
to support the generation of an erroneous eigenvalue [5]. Finally, the zero symbol could also
provide effective guarding between its neighbor solitons, potentially reducing the overall impact
of inter-soliton interaction.

3. Impairments beyond additive noise

In much of the existing literature, solitons are typically assumed to be transmitted with ample
separation between each other, resulting in the dominant perturbation being additive signal-
dependent noise. However, in practical implementations of the AM soliton communication system,
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solitons are transmitted sequentially. This results in the potential for attractive forces between
solitons, even in the absence of ASE noise perturbation [12]. Such intrinsic interactions can soon
become dominant over signal-dependent ASE noise [13] at higher soliton transmission rates.
Given the non-tractable nature of the formulation of this problem, this section will first primarily
focus on a numerical study of this impairment in the absence of ASE noise. In the numerical
visualization of the impairments, the fiber with dispersion coefficient of β2 = −2.1 × 10−26

s2/m, nonlinearity factor of γ = 1.27 × 10−3 /W/m and Raman amplifier compensated loss of
α = 0.2 dB/km is simulated with split-step Fourier method. When signaling the solitons, the 99%
timewidth is chosen, and the number of samples per soliton is selected to be 64. Additionally,
note that the phonon occupancy KT of 1.13 and wavelength of 1.55 µm are selected.

To isolate and visualize the intrinsic interaction and separating it from the ASE noise
perturbation, we simulate the propagation of a sequence of three randomly selected solitons in a
noiseless NLSE channel. Using a simple 4-pulse amplitude modulation (PAM) constellation
of [0, 0.75, 1, 1.25] and tw(0.75, 10−2) as one of the possible scenarios, we generate a series of
example combinations of three-soliton sequences, as shown in Fig. 1(a) to 1(d). The constellation
considered in this set of examples ensures well-separated amplitudes, allowing effective guarding
intervals to be imposed for larger soliton amplitudes. It can be observed from Fig. 1(a) and
1(b) that when solitons with the smallest amplitude (i.e., widest pulse duration) are transmitted
successively, there is effectively no guarding interval between the solitons due to truncation.
In this case, the inter-solitonic force causes the solitons to collide after propagation over the
fiber, introducing a severe impact on the integrity of the soliton pulses. On the other hand, the
combination [1, 1, 1] sketched in Fig. 1(c) shows the neighboring soliton leaning towards the
center soliton due to the effect of the inter-soliton force, the solitons are overall less impaired by
the inter-solitonic force owing to the effective guarding intervals.

Fig. 1. Examples of intrinsic inter-soliton interaction occurs between three-soliton sequence
((a)-(d)) and five-soliton sequence ((e)-(h)). Blue lines indicate the transmitted pulses
while red lines denote the received pulses. The three-soliton sequences are drawn from
the constellation [0, 0.75, 1, 1.25], while the five-soliton sequences are drawn from a more
closely-spaced constellation [0, 1.05, 1.15, 1.25].

By implementing a more closely-spaced constellation that takes advantage of temporal
resources more efficiently and using a longer soliton sequence, we can observe more complex,
non-tractable interactions, as shown in Fig. 1(e) to 1(h). In this set of simulations, five solitons
are randomly drawn from a constellation [0, 1.05, 1.15, 1.25] with smaller spacing between
the non-zero constellation points. It becomes clear that the memory effect of the inter-soliton
interaction can easily exceed a soliton sequence length of three. Longer solitons and denser
constellations will result in more intricate interaction patterns. Note that although not shown
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in the example figure, it is demonstrated with the same simulator that when transmitted with
neighboring soliton amplitudes equal to zero, the information soliton is well preserved. This
suggests that the distortion shown in Fig. 1 is primarily generated by the soliton interaction.

The presence of ASE noise induces the Gordon-Haus effect, which occurs due to random
fluctuations in the group velocity of solitons, causing them to arrive at the receiver with random
timing jitter [4]. Hence, it introduces a constraint on the maximum allowable soliton transmission
rate for a given propagation distance [4]. To isolate the intrinsic inter-soliton interaction from
coupling with the Gordon-Haus effect, three-soliton sequences with the first and last solitons set
to zero are launched into an ASE noise-perturbed NLSE fiber. This experimental setup essentially
simulates the propagation of a single soliton centered at time 0 with neighboring zero solitons as
a guarding interval on both sides. By performing the NFT over the sampling window of 3tw,
which covers the entire soliton sequence, a single eigenvalue and its corresponding norming
constant can be extracted. The center of the received soliton is then estimated as [22,23]

tGH =
1

2R
log

|C1 |

2R
, (7)

where C1 denotes the detected norming constant for the single eigenvalue and R denotes the
estimated amplitude of the received soliton (i.e. the imaginary parts of the eigenvalue). Since the
soliton is initially centered at time 0 at the transmitter and there is no intrinsic interaction in the
simulation, tGH can be interpreted as the timing jitter introduced by the Gordon-Haus effect. The
amount of the Gordon-Haus timing jitter is estimated and depicted in Fig. 2. It is observed that
the amount of timing jitter introduced is dependent on the soliton amplitude, as larger variance of
tGH observed for larger solitons. The dependence on soliton amplitude has been shown to be
linear using perturbation theory over the general solution of a propagated single soliton [4,24].

Fig. 2. Histograms of the Gordon Haus timing jitter tGH of transmitting 0.75, 1 and 1.25
with zero solitons as guarding intervals on both sides. The NFT detection is performed on
the whole sequence with a 3tw sampling window.

The nature of the timing jitter is the added randomness of the position of the soliton. Such
random position can increase the probability of error via two mechanisms, which are referred to
as out-of-window error and enhanced interaction, respectively. In a practical implementation
of soliton communication, NFT is expected to be applied to a limited sampling window, while
the random timing jitter could shift the soliton away from such sampling window, resulting in
excessive error beyond the original ASE noise effect. Hence, this type of error is defined as
out-of-window error. To capture the isolated impact of the out-of-window errors here, NFT is
applied on both the information soliton (sampling window being tw) and the whole three-soliton
sequence (sampling window being 3tw). The two neighboring solitons are set to zero, similar
to the previous experiment, which ensures that the NFT over the whole sequence is free from
out-of-window noise. Meanwhile, the NFT over the tw sampling window provides a more realistic
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representation of practical NFT detection. Therefore, the difference between the results of these
two detection methods can be interpreted as the excessive out-of-window error introduced by
the random jitter. Denoting this excessive out-of-window error as Nw, the histograms of Nw
given different solitons are transmitted are illustrated in Fig. 3. In the fixed soliton interval
system considered in this work, larger solitons correspond to larger effective guarding intervals
compared to smaller solitons. Consequently, it is estimated that the out-of-window error power
for the smallest soliton of 0.75 is almost 100 times that of the largest soliton of 1.25 from the
constellation. Although not shown explicitly in this figure, the level of out-of-window error power
is less significant compared to the ASE noise power in the regime of interest in this study. Recall
that the capacity lower bounds estimated with isolated soliton transmission reported in [13] also
suggest that when there is no solitonic interaction, the data rate of the system is primarily limited
by the ASE noise rather than the out-of-window error introduced by the Gordon-Haus effect.

Fig. 3. Histograms of the out-of-window error Nw of transmitting 0.75, 1 and 1.25 with two
zero solitons as guarding intervals on both sides. The NFT detection is performed on both
the center soliton, with a tw sampling window, and the whole sequence, with a 3tw sampling
window, to estimate the Nw.

As mentioned, the timing jitter can also increase the probability of error via a second mechanism,
i.e., enhanced interaction, which occurs when the timing jitter drives the soliton towards its
successive solitons during sequential transmission. When combined with the intrinsic interaction
forces exerted between solitons, this leads to enhanced inter-soliton interaction. However,
visualizing such an effect is challenging due to the coupling between the intrinsic interaction
and Gordon-Haus induced interaction. Figure 4 illustrates 1000 transmissions of a three-soliton
sequence over a noisy NLSE channel using the constellation [0, 1.75, 1.9, 2.25], which has higher
power compared to the previously considered constellations. We selected two sequences as
examples: [1.75, 1.75, 1.75] to demonstrate the performance of a sequence with high intrinsic
inter-soliton interaction under both ASE noise and the Gordon-Haus effect, and [1.9, 1.9, 1.9]
as a representative of a sequence with less intrinsic inter-soliton interaction. For the sequence
[1.75, 1.75, 1.75], we observed that when coupled with the Gordon-Haus induced interaction, the
received pulse is more distorted compared to the noiseless received pulse, indicating the effect of
intensified interaction by Gordon-Haus effect. For the sequence [1.9, 1.9, 1.9], because of the
effective guarding intervals between solitons, less intrinsic interaction is observed by comparing
the transmitted pulse and received pulse under a noiseless channel. The effective guarding
intervals also allow the pulse to be less impaired by the Gordon-Haus enhanced interaction. As
demonstrated in the examples, it is observed that the intrinsic forces between solitons changes
the temporal position of each soliton deterministically, while the Gordon Haus effect would
induce a random temporal position shift. Such random jitter can increase or decrease the distance
among soliton pulses, which would in turn attenuate or amplify the intrinsic interaction effect.
Due to the strong nonlinear coupling between these random and deterministic effects, we mainly
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focus on the combined nonlinear behavior of the underlying system and employ a neural network
design that can learn the complexity of optimal detection in the presence of both Gordon Haus
and intrinsic interaction effects.

Fig. 4. Examples of transmitted and received three-soliton sequences through a noisy,
lossless nonlinear fiber with 4-PAM of constellation of [0, 1.75, 1.9, 2.25]. The received
pulse over a noiseless fiber is also included for reference, and the edges of each soliton
segment are highlighted with grid lines.

4. Soliton detection schemes

In this paper, we propose two learning based schemes for soliton detection and estimate their AIR
using suitable auxiliary mismatch decoding schemes [25]. Before introducing our NN-based
detection schemes, we describe two recently proposed soliton detection techniques that are used as
benchmarks in our AIR performance analysis in the next section. Note that soliton communication
using the energy detection scheme was a popular design choice before the development of NFT,
because of its simplicity in implementation. However, as the energy detection scheme is not as
efficient as the presented benchmark schemes, it will not be included in the discussion. The block
diagram of the soliton communication system employing the two proposed NN-based detection
schemes, and the two benchmark schemes is sketched in Fig. 5. The figure also includes an
example of a five-soliton sequence evolution along the fiber.

4.1. Direct NFT detection

The first benchmark detection scheme is direct NFT detection after applying VNT, which is used
to mitigate the signal dependency of noise [13]. In this detection scheme, the soliton sequence is
divided into segments of equal length based on the specified timewidth tw. The NFT is performed
on each segment to extract the eigenvalue R. Subsequently, VNT is applied as Y = T(R) to reduce
the signal dependency of noise [13]. The AIR for this scheme can be estimated as

Iiso = EX,Y

[︃
log

Q1(y|x)
Q1(y)

]︃
, (8)

where a unit-variance AWGN channel Q1(y|x) is used as the auxiliary mismatch channel and the
numerical expectation is taken over a large number of channel realizations. It has been shown
that the unit-variance AWGN channel provides a tight lower bound when solitonic interaction is
not taken into account [13].
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Fig. 5. The system block diagram for the three categories of detection schemes discussed.
Examples of transmitted and received soliton sequence pulse shape are presented along with
the corresponding pulse evolution.

4.2. CS assisted detection

The second benchmark detection scheme aims at exploiting the potential correlation between the
eigenvalue distortion (i.e., soliton amplitude noise) and the excessive CS generated at the end of
fiber [14]. The estimated correlation is then used to compute an affine minimum mean squared
error (AMMSE) estimation of the noise [14]. The AMMSE estimator consists of the weight W∗

and bias B∗ that minimize the mean squared error between the affine transformed CS and soliton
amplitude noise as

[W∗, B∗] = arg min
[W,B]

EA,R,ρ′ |(R − A) − (Wρ′(λ, l) + B)|2 , (9)

where the received CS spectrum ρ(λ, l) is rewritten as ρ′(λ, l) = [ℜ(ρ(λ, l)),ℑ(ρ(λ, l))] with the
dimension of 2NCS ×1 and NCS denotes the number of samples taken in CS domain. Using a large
number of channel realizations for more reliable correlation estimation, canonical correlation
analysis (CCA) is employed to identify the AMMSE estimator parameters [14]. If the AMMSE
estimated noise is removed from the received soliton amplitude R, the resultant received symbol
RCCA = R − (W∗ρ′(λ, l) + B∗) will have lower noise power, notwithstanding the effect of the
solitonic interaction [14]. To formulate a comparable performance metric for this scheme, the
AIR for this scheme could be estimated as

ICCA = EA,RCCA

[︃
log

Q2(rCCA |a)
Q2(rCCA)

]︃
, (10)

where a Gaussian channel with statistics estimated from the training data is selected to be the
auxiliary channel model Q2(rCCA |a), and the expectation should be taken on a different set of
channel realizations to show transferability. Note that the interaction of the soliton is not taken
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into account in Iiso since the auxiliary channel only characterizes the channel model for isolated
soliton communication systems. However, it was demonstrated that the AMMSE method could
take advantage of CS generated by interaction to some extent [14]. It should be noted that the
outputs of the benchmark schemes are interpreted as the combination of transmitted symbol and
noise, which requires further decision making scheme, such as maximum likelihood based on the
auxiliary channel to obtain the estimated transmitted symbols.

4.3. NN-based soliton detection

As discussed in the last section, the inter-soliton interaction effect either individually or when
combined with Gordon-Haus effect is non-tractable and highly nonlinear. Therefore, we propose
the use of NN-based soliton detection schemes using a BLSTM network classifier to learn
the nonlinear patterns of eigenvalue distortions when sequences of closely spaced solitons are
transmitted. In this scheme, the sampled time-domain soliton pulse is first fed into the sequence
input layer, which matches the number of extracted features. The input layer is then connected
to two BLSTM layers to further explore the relevant correlation between samples. Finally, the
outputs of the BLSTM layers are fully connected to a softmax layer. The output of the softmax
layer can be interpreted as the a posteriori probability Q3(A|q(t, l)), which implies the probability
of transmitting the symbol A given q(t, l) is received [21]. The detected symbol RCla can be
obtained after a hard decision by taking the maximum a posteriori probability among all. Note
that the other detection schemes will require additional mapping to individual symbols to obtain
the estimation of transmitted symbol. The a posterori outputs of the softmax layer could also be
interpreted as auxiliary mismatch decoding rules, which are then used to estimate AIR [21]. The
AIR of BLSTM classifier detector ICla can be calculated as

ICla = H(A) − EA,RCla

[︃
log

1
Q3(a|rCla)

]︃
, (11)

where H(A) denotes the source entropy and the expectation is also taken on a separate test set
that was not used in either the training or validation of the network.

The BLSTM network could also be designed to perform a regression-type task for estimating
the possible transmitted symbol from the received soliton pulse. It is highlighted that the training
of network could benefit from the better gradient behavior of the smooth loss function in the
regression network [21]. It has been shown that the regression network, with a Gaussian auxiliary
channel, could result in higher AIR over the classifier network, which adapts to the learning
data’s channel statistics, in some scenarios [21]. Therefore, the second proposed NN-based
detection scheme considered in this work is a BLSTM regression network detector. Compared to
the NN-based detection scheme with the BLSTM classifier, it shares the sequence input layer,
two BLSTM layers, and a fully connected layer. Information from the fully connected layer is
then fed into the regression layer to generate the estimated transmitted soliton amplitude Rreg.
Unlike the classifier output, where the detected symbol decision is determined by taking the
maximum softmax layer output, the regression network output Rreg requires additional mapping
following the mismatch decoding rules similar to the benchmark schemes. The AIR of this
detection scheme, IReg, is estimated similarly to the previous AMMSE scheme with a Gaussian
auxiliary channel [21]. The expression of the AIR is given as

IReg = EA,RReg

[︃
log

Q4(rReg |a)
Q4(rReg)

]︃
, (12)

where the Q4(rReg |a) is an auxiliary Gaussian channel whose statistics are generated from the
network behavior on the training data. It is important to note that the Gaussian channel here
is not necessarily the optimal auxiliary channel, and a better auxiliary channel could yield a
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higher AIR. In the next sections, we will present more detailed information about the training,
validation, testing, parameter optimization of the proposed NN-based techniques. Note that the
RCla is a discrete random variable as opposed to the continuous random variables Riso, RCCA and
RReg. This nature does not affect the effectiveness of the AIR estimated as the only the a posterori
probability outputs of the softmax layer are used for AIR estimation rather than the RCla itself
[21].

5. Achievable information rate analysis

This section presents a numerical AIR analysis for the four detection schemes introduced in the
last section. We employ a series of 8 and 16 PAM constellations in this work. These constellations
are optimally shaped by solving the optimization problem (5) under different peak amplitude
constraints, using the interior-point algorithm in MATLAB. Recall that the optimization problem
in (5) is simplified by performing VNT over the noncentral chi-squared channel to obtain an
equivalent AWGN channel. The transmitted symbols are randomly drawn from the probabilistic
and geometrically shaped constellation and encoded on a purely imaginary eigenvalue. Examples
of the optimally shaped constellation are shown in Fig. 6. It can be observed that the optimized
constellations make up quasi-uniform distributions due to the similarity between the optimization
problem (5) and the peak amplitude constrained problem in [26] and [13]. Furthermore, note that
the relationship between the Amax and the average power of the signal depends on the distribution
of the input and the choice of the signaling parameter δ. For the δ = 10−2 employed in this work,
the dynamic range of launch power for the shaped PAM constellation is estimated to be within
−4 to 10 dBm for Amax = 0.5 to 2.40.

Fig. 6. Examples of input constellation for Amax = 0.98, 1.34, 1.76 and 2.23 for the
geometric and probabilistic hybrid shaped 8 PAM and 16 PAM. Note that the mass point at
0 is omitted for simplicity.

Performing inverse NFT on the eigenvalue, the corresponding time domain pulse, i.e. a soliton,
are then obtained. The pulse evolution over a long haul fiber is simulated with the split step
Fourier method (SSFM), where an ideal distributed Raman amplified 2000 km fiber is assumed,
with parameters α = 0.2 dB/km, β2 = −2.1 × 10−26 s2/m, and γ = 1.27 × 10−3 /W/m. Moreover,
phonon occupancy KT of 1.13 and wavelength of 1.55 µm are used. As for the normalization
parameters, the normalization time T0 is selected to be 0.1 ns, leading to the normalization
length of 2T2

0/|β2 | = 910 km and normalization power of |β2 |/γT2
0 = 2.39 dBm. Subsequently,

the four detection schemes are employed. In the direct NFT detection and also the AMMSE
detection scheme, a fast NFT algorithm developed for MATLAB is used to compute the nonlinear
frequency spectrum efficiently [27]. According to insights from observing numerical simulation
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results and literature [14], only a fraction of the sampled CS is required for correlation estimation.
In this work, 1/4 of the CS samples are taken for AMMSE estimator if not specified otherwise.

For the BLSTM network detectors, the classifier network employed here consists of a sequence
input layer with an input size of 2 (real parts and imaginary parts of the pulse), and two BLSTM
layers, each with 100 hidden units. The BLSTM layers are followed by a fully connected layer
and a softmax output layer with 8 or 16 outputs, depending on the modulation format. In the
regression network, a regression layer with a single real output is connected after the fully
connected layer. Each of the training and validation channel realizations includes the transmission
of a 16-soliton sequence through the SSFM fiber with a step size of 200 m. In contrast, each of
the testing channel realizations includes transmission of a 256-soliton sequence, which is much
longer and more practical. The number of samples per soliton is rounded up to the next closest
power of 2, taking into account the 10 times oversampling of the 99% bandwidth. For instance,
99% and 99.9% timewidths would both require 64 samples per soliton. The BLSTM networks are
trained with 80000 channel realizations as the training set, and a different set of 80000 channel
realizations as the validation set. The validation set is used to avoid and monitor the possibility
of overfitting, and the criteria of stopping the training is when the validation loss ceases to
improve. The AIRs for both the classifier and regression detectors, ICla and IReg, are estimated
with 1000 test realizations. The neural network is trained with adaptive moment estimation
(ADAM) optimizer. The same training data are also employed to compute the AMMSE estimator,
and ICCA is also estimated with the same test data.

A fixed maximum and minimum soliton amplitude ratio of Amax/Amin = 1.24 is considered,
implying a fixed effective time bandwidth product of TB = 3.52 for δ = ϵ = 10−2. The AIRs are
estimated for varying maximum soliton amplitudes Amax, (corresponding to varying bandwidth),
as depicted in Fig. 7. Note that the SE could be calculated by dividing the AIR with the effective
time-bandwidth product TB. The results show that the inter-soliton interaction becomes dominant
compared to the signal-dependent noise of the isolated soliton channel. This dominance makes
the perturbative theory noncentral chi-squared channel model effectively invalid. Consequently,
the equivalent AWGN channel after VNT is no longer valid as well. This results in significant
degradation of the mismatch capacity lowerbound, Iiso, tending it to 0 and 0.041 bits/symbol
respectively, for 16-PAM and 8-PAM under lowest interaction at Amax = 0.5. Such degradation
of mismatch capacity is expected even at δ = 10−3 due to excessive interaction at higher launch
power as shown in [13]. Additionally, the AMMSE estimator can compensate for interaction to
some extent, achieving 2.93 bits/symbol at Amax = 0.51, which is very close to the limit of 8
PAM. However, ICCA decreases when the soliton amplitude increases. This decrease is attributed
to the AMMSE estimator’s inability to cope with the increasing interaction in the higher soliton
amplitude regime.

Figure 7 also shows that the BLSTM classifier network detectors can extend the AIR-increasing
power regime further. It is worth noticing that ICla saturates at 3 bits/symbol for Amax<0.98 for the
8 PAM constellation, due to the limit of the constellation size. This suggests that the interaction
can be fully compensated by the network within this operation regime. However, the BLSTM
regression network is not able to completely adapt to the channel model and is limited by the
misalignment between the auxiliary Gaussian channel model and the network equalized channel
model. It is observed that IReg reaches 2.99 bits/symbol at Amax = 0.68, which is slightly lower
than the 3 bits/symbol achieved by the classifier network. For 16 PAM where the constellation
points are distributed closer, the task becomes more challenging for the classifier network. A
clear peak at around Amax = 0.98 could be identified, and 3.87 bits/symbol could be achieved.
When Amax is less than 0.98, ICla could be improved by increasing the power, suggesting that the
system is more perturbed by noise in this regime. If the power is further increased, ICla could no
longer be improved, because the system becomes more interaction dominant in this regime. For
the regression network, similar trend could be observed with the peak appearing at Amax = 0.68,
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Fig. 7. AIRs of AM soliton communication system with probabilistically and geometrically
shaped 8 and 16 PAM.

achieving a lower AIR of 3.59 bits/symbol compared to the ICla. It is also seen that the AIRs
for both networks for 16 PAM degrade to 1.08 and 0.89 bits/symbol at Amax = 2.40 which are
lower than the 1.33 and 1.06 bits/symbol provided by 8 PAM. This is because of the dominant
soliton interaction having higher impact on the closer spaced constellation. Moreover, it is also
worth highlighting that the classifier could achieve the highest AIR of 3.87 bits/symbol for the 16
PAM at Amax = 0.98 showing significant gain over the other counterparts, where AIRs of 2.20,
1.07, and 0 bits/symbol are achieved by regression network, AMMSE estimator, and direct NFT,
respectively. In general, it can be concluded that the BLSTM classifier suits the system design
and power regime of interest in this work better than the regression network counterpart.

Previously, we discussed the AIRs in bits/symbol under certain time-bandwidth constraints,
and it was clear that the classifier network outperforms the regression network as well as the
other benchmark schemes. For a more practical insight, data rate in bits/second should also be
investigated for the BLSTM classifier detector. The data rate could be determined by the SE and
the timewidth of the pulse. In the AM soliton system considered in this work, the timewidth
of the pulse could be altered by selecting different time-domain energy truncation factors δ.
The sech pulse has a trailing edge that degrades to effectively zero, hence this is equivalent to
introducing guarding intervals between soliton pulses. Consequently, a gain in SE should be
expected due to lower interaction. This reveals a trade-off between SE and timewidth. Since the
optimal SE in the interested regime for classifier network occurs at Amax = 0.98, and the AIR for
8 PAM and 16 PAM approximately coincide at Amax = 1.34, the data rates at the two Amaxs are
investigated by selecting a smaller δ and shown in Table 1. Note that the two Amaxs correspond
to bandwidths around 10GHz and 14GHz respectively. As expected, reducing δ results in lower
interaction, allowing a higher AIR to be achieved. For example, an AIR of 2.96 bits/symbol and
a data rate of 6.17 Gbps could be achieved by the AMMSE estimator for 8 PAM at Amax = 0.98
and δ = 10−3. However, for the BLSTM classifier detector, the negative impact on the data rate
from extending the timewidth cannot be offset by the SE gain in the operational setup considered
in this work. For example, although a higher AIR of 3.83 bits/symbol could be achieved with 16
PAM and δ = 10−3 at Amax = 0.98, a lower data rate of 10.89 Gbps could be supported compared
to 11.72 Gbps with δ = 10−2. It’s worth noting that a higher time bandwidth product TB will be
consumed when a smaller δ is selected, making the employment of the BLSTM classifier network
detector with a more compact truncation δ = 10−2 a reasonable choice in the considered system.
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Table 1. Data rates in Gbps for BLSTM classifier and AMMSE
detectors

Amax = 0.98, BW = 10GHz Amax = 1.34, BW = 14GHz

PAM, δ RCla (Gbps) RCCA (Gbps) RCla (Gbps) RCCA (Gbps)

8, 10−2 8.95 3.34 10.87 3.12

8, 10−3 6.24 6.17 8.52 7.76

16, 10−2 11.56 3.21 11.72 2.80

16, 10−3 7.94 6.73 10.89 7.82

6. Hyperparameter analysis

The performance of the BLSTM network detectors is influenced by various hyperparameters.
Before examining the hyperparameters that determine the complexity of the neural network, the
channel memory should be investigated. Given the constraints of computational power, only a
limited number of realizations of the soliton propagation can be generated. On one hand, it is
essential to generate as many realizations of the practical NLSE channel as possible to ensure
the sample statistics accurately characterize the physical channel. On the other hand, as many
solitons as possible should be generated within each realization of transmitting a soliton sequence
over the NLSE channel to capture diverse interaction patterns.

To identify the shortest soliton sequence necessary to capture both the interaction patterns and
the randomness of the NLSE channel, the training and validation data should be prepared with
soliton sequences of different lengths. The network trained with each sequence length is then
tested with the previously used 1000 realizations of 256-soliton sequences. If the performance of
the network on the test data aligns with that on the validation data, it can be concluded that the
training and validation data sufficiently characterize the nonlinear stochastic channel.

Due to the signal dependence of the interaction, the largest Amax = 2.40 is selected in this
set of experiments to numerically estimate the longest memory of the channel in the sparse-
spaced interacted 8-PAM soliton transmission. To maintain a similar total number of soliton
transmissions, 26 × 104, 25 × 104, 24 × 104, 22 × 104 realizations of 3, 8, 16, 64-soliton sequences
are generated as training and validation data respectively. Focusing on the better-performing
classifier network, the trained network is then tested with the same 256-soliton sequence testing
data used previously. The performance of the network on both the validation set and test set is
illustrated in Fig. 8(a). The memory of the interacted channel can be estimated to be around 16,
as the AIRs on the validation set and test set start to converge. Note that the size of the channel
memory is dependent on channel parameters, including Amax, δ, and the order of constellation.
For example, for the closer-spaced 16-PAM constellation, we expect the channel memory to be at
least 16-soliton long.

The previous intrinsic interaction and soliton sequence length experiments clearly demonstrate
that the interaction soliton patterns are dependent on the neighboring solitons in a nonlinear and
dynamic manner. This suggests the potential of exploiting such a memory effect in detecting
interacted solitons. Without introducing extra communication overhead, a certain portion of the
previous soliton is included in the neural network’s input, along with the samples corresponding
to the target soliton. When the first soliton of the sequence is received, the memory buffer at
the receiver is filled with zeros, matching the number of samples of the specified portion of the
previous soliton. Let D denote the number of samples for each soliton and fmem denotes the
memory factor, which indicates the portion of previous soliton taken by the receiver to assist
detection. Then the size of the input vector is determined as (D+ ⌈fmemD⌋) × 2, where ⌈·⌋ denotes
the rounding operation and the factor 2 indicates that the real and imaginary parts are fed into the
network as two features of the input pulses. Using the same training, validation and test data,
both classifier and regression networks are trained for 16 PAM constellation with the additional
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Fig. 8. The AIRs achieved by (a) 8 PAM at Amax = 2.40 and BLSTM classifier network
trained with transmission of different length soliton sequence. (b) 16 PAM and BLSTM
classifier and regression networks with specified portion of the soliton received previously
as memory to assist the detection.

25%, 50% and 100% of the previous soliton. The estimated AIRs are then compared with the
results of the network without such memory, as illustrated in Fig. 8(b). A similar conclusion
can be drawn that even the best regression network with 100% of the previous soliton cannot
outperform the classifier network without memory in the regime of interest, indicating that the
regression is not as suitable for this particular application. As for the classifier network, it can
be concluded that the memory of the previous soliton is beneficial when the system is in the
interaction dominant regime. When Amax<0.98, the system is primarily limited by the ASE
noise as highlighted before, and increasing fmem to 1 only bring marginal improvement of 0.01
bits/symbol at Amax = 0.77. However, when the system becomes interaction dominant, larger
improvement can be expected, for example, improvement of 0.78 bits/symbol is achieved by
completely including the previous soliton at Amax = 1.47. Additionally, it is observed that the
AIR gain from including the previous soliton as memory also reduces due to the signal-dependent
interaction as observed at Amax = 1.91, where the AIR gain is reduced to 0.37 bits/symbol for
fmem = 1. When stronger interaction is encountered, more previous solitons might be required to
improve the accuracy of detection.

The aforementioned network requires two features to be extracted: the real and imaginary part
of the time domain pulses. It has been highlighted that implementing an AMMSE estimator
using the CS of the time-domain pulse could potentially improve performance. Therefore, the
real and imaginary parts of the CS are also included as two additional features for the network,
as indicated by the dash line connection in Fig. 5. This inclusion aims to identify a superior
nonlinear estimator that could potentially outperform the AMMSE estimator [14]. In Fig. 9(a),
the AIRs of both the BLSTM classifier and regression networks, using the real and imaginary
parts of both the time-domain pulse and CS spectrum, are illustrated and compared with the
AIRs achieved by networks that only leverage the time-domain pulse. It can be observed that the
additional CS feature does not provide any significant gain. This suggests that the network’s
structure might be sufficiently complex to learn the useful information provided by the CS of the
corresponding pulse.

The size of the training data can significantly impact the performance of the network. If the
training data set is small, it may not adequately characterize the target problem, leading to poor
performance when the trained network encounters test data. It is also worth investigating whether
providing more training data, given the availability of computational power, could enhance the
performance of the trained network. By selecting the 8 PAM constellation at Amax = 2.40, we
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Fig. 9. The AIRs achieved by (a) 16 PAM and BLSTM network detector with different
features of the input; (b) 8 PAM at Amax = 2.40 and BLSTM network trained with
transmission of different length soliton sequence; (c) 8 PAM at Amax = 2.40 and BLSTM
network with different number of hidden units within each BLSTM layer; (d) 8 PAM at
Amax = 2.40 and BLSTM network with different number of BLSTM layers.

intend to observe the potential improvements under the strongest interaction for a well-spaced
constellation. The estimated AIRs for networks trained with varying amounts of realizations in
the training data are sketched in Fig. 9(b). The results display a marginal AIR improvement of
0.01 bits/symbol for classifier network on the testing data when trained with 9.5× 104 realizations
of sequence transmissions, compared to training with 8 × 104 realizations.

The complexity of the neural network reflects its potential to replicate the target nonlinear
mapping relationship. Commonly, the number of hidden units within each BLSTM layer and
the number of BLSTM layers (also known as the depth of the network) are adjusted to alter
the network’s complexity. However, increasing complexity also raises the number of hidden
parameters needed to describe the network, thereby necessitating more training data. As illustrated
in Fig. 9(c), both networks demonstrate a gain in AIR with an increase in the number of hidden
units in each BSLTM layer, up to 63 hidden units. Beyond this point, the AIRs tend to saturate and
even decrease after 251 units. Regarding the network’s depth, a trade-off between complexity and
the required size of training data can be observed for the classifier network, while the regression
network maintains marginal AIR gain even with 3 BLSTM layers. Nevertheless, from all of the
above analysis, it is observed that the regression network with varied hyperparameters cannot
outperform its classifier counterparts for the constellation and operational regime of interest,
further demonstrating the suitability of the classifier within the discussed system.
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7. Conclusion

In conclusion, the application of data-driven learning techniques, such as regression and classifier
network detectors, in AM soliton communication systems with closely-spaced soliton transmission
can lead to significant gains compared to conventional DSP techniques, like the direct NFT and
AMMSE estimator. However, we also found that even the designed NN-based systems can enter
an interaction-dominant regime where the signal-dependent interaction surpasses the capability
of both networks. In the ASE dominant regime, the AIR of the system can be improved by
increasing the operational power, in contrast to the interaction dominant regime, where the system
shows performance degradation as power increases. Considering the signal-dependent signaling
timewidth, a trade-off between interaction and time efficiency is observed. From both the AIR
and hyperparameter analyses, we see the evidence that the classifier design of the network is more
resilient to interaction impairments than its regression counterpart. Furthermore, we explored
the use of channel memory introduced by the inter-soliton interaction to aid symbol detection,
demonstrating that incorporating the previous soliton into the detection process can enhance AIR
when the system is in the interaction-dominant regime. The dependence of the interaction on
the propagation distance remain less explored here; hence, one of the possible future research
directions is to investigate the effective design and training of NN techniques and their potential
achievable gains for different propagation distances.
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