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A B S T R A C T

Metabolic dysfunction-associated steatotic liver disease (MASLD), defined by the presence of liver steatosis
together with at least one out of five cardiometabolic factors, is the most common cause of chronic liver dis-
ease worldwide, affecting around one in three people. Yet the clinical presentation of MASLD and the risk of
progression to cirrhosis and adverse clinical outcomes is highly variable. It therefore represents both a global
public health threat and a precision medicine challenge. The use of artificial intelligence (AI) is being investi-
gated in MASLD to develop reproducible, quantitative, and automated methods to enhance patient stratifica-
tion and to discover new biomarkers and therapeutic targets in MASLD. This review details the different
applications of AI and Machine Learning Algorithms in MASLD, particularly in the context of analyzing elec-
tronic health record, digital pathology, and imaging data. Additionally, it also describes how specific MASLD
consortia are leveraging multimodal data sources to spark research breakthroughs in the field. Using a new
national level ‘data commons’ (SteatoSITE) as an exemplar, the opportunities as well as the technical chal-
lenges of large-scale databases in MASLD research are highlighted.
© 2023 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD),
previously termed non-alcoholic fatty liver disease (NAFLD), is char-
acterized by the presence of liver steatosis and at least one of the five
cardiometabolic criteria proposed in a multi-society Delphi consen-
sus statement [1]. Importantly, other causes of steatosis, including
increased alcohol intake, must be absent. Metabolic dysfunction-
associated steatohepatitis (MASH), previously termed non-alcoholic
steatohepatitis (NASH), is the progressive stage of the disease
distinguished by the presence of lobular inflammation, hepatocyte
ballooning, and an increased risk of liver fibrosis. In some instances,
fibrosis progression can lead to cirrhosis and the development of
hepatocellular carcinoma (HCC). The presence of certain genetic var-
iants, such as single nucleotide polymorphisms in patatin-like phos-
pholipase domain-containing protein 3 (PNPLA3), hydroxysteroid
17b dehydrogenase 13 (HSD17B13), or transmembrane 6 superfam-
ily member 2 (TM6SF2) genes has also been associated with an
increased risk of MASLD development, progression, and unfavorable
prognosis [2−4]. Currently, MASLD represents the main cause of
chronic liver disease and leading indication for liver transplantation,
affecting »30% of the global population [5]. Epidemiological model-
ing predicts a substantial increase in prevalence, clinical burden, and
socioeconomic costs in the coming years − a public health threat that
no country appears well prepared to address [6].

Crucially, the severity of the fibrosis in MASLD is strongly associ-
ated with an increased risk of overall and disease-specific morbidity
and mortality [7]. The most common cause of death in people with
MASLD is cardiovascular disease, followed by extra-hepatic malig-
nancy, then liver-related mortality [8,9]. These findings reflect the
range of comorbidities in MASLD and highlight the need for a multi-
disciplinary approach to the disease [1].

http://creativecommons.org/licenses/by/4.0/
mailto:Jonathan.Fallowfield@ed.ac.uk
https://doi.org/10.1016/j.aohep.2023.101278
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Despite substantial advances in our understanding of disease
pathogenesis, there are still no approved therapies for MASLD, and
many drugs have shown limited efficacy in clinical trials, especially
in patients with cirrhosis [10]. Given the complexity of disease patho-
genesis, combination drug therapy may be required to improve
patient outcomes [11], but the optimal combinations or treatment
regimens are unknown. Additionally, there is an unmet need for non-
invasive biomarkers to accurately diagnose, stage, and monitor the
progression of MASLD and reduce or obviate the necessity for a liver
biopsy in clinical practice and pharmacological studies. Moreover,
the heterogeneity in progression and prognosis of MASLD calls for
novel approaches to disease stratification and prediction of individual
risk of clinical outcomes; this may require a re-evaluation of MASLD,
viewed through the prism of the new nomenclature, with integration
of multimodal information including demographic, pathological,
genetic/multi-omic, environmental, and electronic health record
(EHR) data to understand patient trajectories and define discrete sub-
phenotypes to enable precision medicine in MASLD [12].

In this review, we discuss how large-scale patient data and
emerging artificial intelligence (AI) approaches are increasingly being
leveraged in the MASLD field, in the quest for new diagnostic bio-
markers, efficacious drug targets, and improved patient stratification
and prognostication methods. A national level multimodal database
− SteatoSITE [13] − is used as an exemplar to demonstrate the utility
and scope of an integrated data-driven approach, to highlight the
technical challenges, and to illustrate possible future directions.

2. Big data classes and their utility in MASLD research

AI is a large and rapidly growing field, using computer software
that mimics human cognitive abilities to perform complex tasks.
Machine Learning (ML) is an application of AI that enables computers
to learn and recognize patterns from data to make decisions and pre-
dictions (Fig. 1). The two broad categories of ML algorithms are:
supervised (the computer learns from both input data and corre-
sponding correct answers) and unsupervised (the computer only pro-
cesses input data). Their main advantage is that they can recognize
unique data patterns and include multiple components to create new
disease classifications and predictive models through linkage to out-
comes [14]. AI/ML applications in liver disease research has increased
in recent years, including in studies of MASLD to address the chal-
lenges of pathophysiological complexity and heterogeneity of pre-
sentation and patient outcomes.

2.1. Electronic health record data

Electronic Health Records (EHRs) are digital repositories of com-
prehensive patient health information, stored in standardized for-
mats for efficient retrieval and sharing among healthcare providers.
In both the United States (US) and the European Union, the adoption
of EHRs has become nearly ubiquitous in both acute hospital and pri-
mary care settings [15]. EHR systems typically encompass adminis-
trative and healthcare utilization data, demographic details,
diagnostic and procedural codes, laboratory results, pathology assess-
ments, and prescribed medications.

The increased accessibility of EHRs for research has opened new
avenues for large-scale observational studies and the application of
AI/ML in MASLD, especially for predicting the risk of MASLD develop-
ment or refining its diagnosis [16−21]. For example, Fialoke et al.
used one of the largest US-based EHR resources (from Optum Analyt-
ics), which integrates healthcare data from 50 provider organizations
treating more than 80 million patients, for a supervised ML classifica-
tion of MASLD patients to predict the health status of the patient
cohort. The inclusion of time-stamped data also facilitates longitudi-
nal profiling of candidate biomarkers and the identification of poten-
tial predictor variables associated with clinical outcomes. Typically,
2

EHR data is characterized by noisy, sparse, and irregularly timed
observations, which poses a challenge for phenotype discovery in
clinical data, although computational ingenuity can overcome this
[22−24]. To date, there are very few AI/ML-based studies in MASLD
that have leveraged temporally defined EHR data to gain insights into
disease progression or prognosis. Vandrome et al. [25] used data min-
ing techniques to search for MASLD subtypes in a hospital database
cohort of 13,290 patients, identified using electronic signatures of the
disease. Using hierarchical clustering, they identified five distinct
subtypes of patients. Notably, two of the major groups exhibited
fewer comorbidities and favorable outcomes, whereas a minority
within the three smaller subtypes displayed more severe comorbid-
ities and poorer outcomes.

2.2. ‘Omics data

While EHR-based studies involve a substantial number of
patients, none have integrated 'omics data to identify potential dis-
ease signatures for patient prediction and stratification. Despite this
gap, several smaller studies have made efforts to address the issue.

Utilizing datasets from the Gene Expression Omnibus (GEO) [26],
some researchers have conducted differential gene expression analy-
ses, followed by network analysis and the application of ML algo-
rithms. This methodology has enabled the identification of
parsimonious gene signatures with a good Area Under Receiver Oper-
ating Characteristic Curve (AUROC) for the diagnosis of MASLD
[27,28]. Sen et al. [29] employed transcriptomics of whole liver tissue
and serum metabolomics from a cohort based on genome-scale met-
abolic models to identify dysregulated glycosphingolipid pathways
across the disease spectrum. In the study by Luo et al. [30] the focus
was on identifying serum biomarkers associated with liver fibrosis in
patients with MASH. Although they identified key proteins linked to
fibrosis and liver injury, they were unable to establish a protein panel
capable of distinguishing between early and late fibrosis.

The investigation of interactions between MASH and other dis-
eases has yielded notable findings. Qian et al. [31] defined a 20-gene
signature predicting fibrosis progression in MASLD and HCV patients
over five years, validated with an AUROC of 0.86. They also identified
potential antifibrotic drug candidates and BCL2 as a therapeutic tar-
get. Additionally, Fujiwara et al. [32] developed a 133-gene signature
for MASLD patients developing HCC, validated in a separate HCC
cohort, and converted into a four-parameter blood-based panel
(comprising XCL1, GRN, ANGPT2, and MET).

More advanced models have also been explored. Conway et al.
[33] utilized ML on clinical trial data (STELLAR 3 and 4) to establish a
prognostic five-gene signature predicting progression to cirrhosis
and liver-related events in MASH patients, correlating with histologi-
cal features. Deep learning (DL) was also investigated, outperforming
other algorithms with an AUROC >0.80 in identifying genes associ-
ated with MASL to MASH progression [34]. Among the final 39 candi-
dates identified, 11 were linked to HCC and survival rate.

2.3. Imaging data

Non-invasive imaging techniques have been employed in MASLD
research and clinical settings. Advanced magnetic resonance imaging
(MRI), including proton-density fat fraction (PDFF) and MR elastogra-
phy (MRE), facilitates accurate quantification of steatosis and fibrosis
for MASH assessment [35]. Recent applications of supervised ML and
DL in medical imaging enhance automation, enabling more precise
diagnosis. Training these models can unveil abnormal patterns
beyond human perception, enhancing the efficiency of non-invasive
diagnostic procedures. Studies have utilized ML to predict MRE liver
stiffness, achieving an AUROC of 0.84 when combined with clinical
data [36]. In a study by Schawkat et al. [37] MRI was employed to
explore the viability of assessing liver scarring by integrating texture
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Fig. 1. Schematic representation of the relationship between Artificial Intelligence and Machine Learning (ML), with ML algorithm categories and their applications.
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analysis, a method for extracting information from grey-level inten-
sity within an image, with a supervised ML algorithm. Their results
demonstrated a classification accuracy of 87.7%, equivalent to the
performance level of MRE.

AI has also been utilized in the analysis of computerized tomogra-
phy (CT) scans, which can measure liver fat content. Currently, there
are no standardized approaches for manually delineating the region
of interest (ROI), although some proposals exist, as outlined in Stare-
kova et al. [38]. AI can facilitate automated liver segmentation, con-
tributing to standardized CT analysis methods for MASLD patients.
Several studies have already achieved this, demonstrating a robust
and significant correlation [39−41]. Notably, a semi-automated DL-
augmented method has been used on MRI-acquired 3D liver images
to facilitate modeling of resectional surgery for liver cancer [42].

Liver ultrasound scans are a standard non-invasive diagnostic tool
for chronic liver diseases, including MASLD, but are influenced by
examiner subjectivity and exhibit reduced sensitivity when the liver
contains less than 20−30% fat [43]. Limited studies on AI's application
for predicting and classifying MASLD patients indicate promising
results with excellent AUROC scores [44−46]. Additionally, ML algo-
rithms integrated with transient elastography (TE) have been
employed to predict liver fibrosis and MASLD in large clinical trial/
cohort studies [47−49].

2.4. Digital pathology data

Despite these promising results, the gold-standard for diagnosis of
MASLD and MASH requires a liver biopsy where steatosis,
3

inflammation, hepatocyte ballooning, and fibrosis are assessed. Whilst
a clinical histopathological diagnosis is made by a pathologist integrat-
ing all histological features, in a research setting there are two main
systems for ordinal scoring of the cardinal histological features. Fea-
tures of disease activity can be evaluated with the NAFLD Activity
Score (NAS) and the stage scored using the NASH Clinical Research
Network (CRN) system [50], or disease activity assessed using the SAF
(steatosis, activity, and fibrosis) system that scores ballooning and
inflammation using different criteria but incorporates the same NASH-
CRN stage. The architects of the NAS system explicitly state that a NAS
score should not be used to define a diagnosis of steatohepatitis,
although a NAS34 is often erroneously used for such a purpose. A sys-
tem based upon score assignment by an observer is inherently subjec-
tive with inter- and intra-observer variation. To make assignment of
disease activity or stage scores more reproducible, AI methodologies
are being developed to automate feature scoring.

HistoIndex (https://www.histoindex.com/) uses second harmonic
generation (SHG) and two-photon excitation (TPE) microscopy with
AI analysis to undertake histological assessment of unstained tissue
sections [51]. Computationally derived qFIBS scores [52], that are
analogous to the pathologist-assigned NAS components and NASH-
CRN stage, can be generated, and this tool was used in an interna-
tional multicentre study to assess lobular inflammation, steatosis,
fibrosis, and hepatocyte ballooning. qFIBS had a strong correlation
with each component of NAS (P < 0.001) and had an AUROC between
0.82 and 0.986 for each component.

PathAI (https://www.pathai.com) has developed a ML model that
uses the digital images of biopsies for automated and quantitative

https://www.histoindex.com/
https://www.pathai.com
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assessment of a disease. The team used DL to predict NAS and fibrosis
across three different clinical trials of advanced MASH [53]. Their
findings revealed a significant correlation between the NAS scores
and fibrosis and their ML model. Additionally, they also developed a
new metric called Deep Learning Treatment Assessment (DELTA)
Liver Fibrosis Score, designed to capture the change in fibrosis pat-
terns from before to after the implementations of a treatment.

MorphoQuantTM (https://biocellvia.com/) also uses standard
stained sections from biopsies to quantify the collagen fibres, as well
as the perivascular and septal percentage of collagen. It is AI-based
and relies on morphometric recognition with no training required.
MorphoQuantTM successfully quantified macrosteatosis, inflamma-
tion, and fibrosis in an automated manner in a mouse MASH model
[54].

While the models described above used hematoxylin and eosin
(H&E)-stained sections or unstained slides, PharmaNest (https://
www.fibronest.com) developed the FibroNest AI algorithm, capable
of analysing many different tinctorial stains to automatically quantify
fibrosis and inflammation. Specifically, it can quantify collagen
amount, structure, and the morphometric traits of their fibres,
thereby providing a complete evaluation of fibrosis. They successfully
predicted the development of HCC from MASLD through histopathol-
ogy imaging studies [55]. Moreover, they also used their AI tool to
assess fibrosis in a mouse study evaluating semaglutide [56]. Despite
not observing a significant change in total fibrosis, their AI-based sys-
tem revealed an amelioration of the collagen network architecture
after treatment. While the total area of collagen remained unaltered,
the treatment prevented its further accumulation.

In addition to tools to computationally replicate subjective ordinal
feature scoring, methods have been developed to quantify features
with continuous metrics. The earliest application of digital pathology
in this area was the quantification of scarring in stained sections
using simple colour thresholding [57], and AI-based classifiers have
subsequently been developed to undertake the same task and pro-
vide a metric that complements the ordinal scar staging. Such classi-
fiers are relatively easy to develop using open-source tools and have
therefore been developed and used in a study-specific manner [13]
that limits their generalizability and widespread application.

These studies show the importance of AI in enabling the stratifica-
tion and automated quantification of key histopathological parame-
ters in the diagnosis of MASLD. However, to maximize value it is
important that such data is integrated with other diverse data sour-
ces, including EHRs, laboratory results, and genomic (and other
‘omics) profiles. There are several initiatives that are currently creat-
ing resources that store and analyze multimodal, multiscale informa-
tion to elucidate new patient subphenotypes, identify new
biomarkers and therapeutic targets.

3. Academia-industry research consortia in MASLD

AI-based approaches to understand complex diseases are enabled
by accessible large-scale multimodal datasets. The Foundation for the
National Institute of Health (FNIH) initiative Non-invasive Bio-
markers of Metabolic Liver Disease (NIMBLE) is a multi-stakeholder
project to support regulatory approval of MASH-related biomarkers
[58]. The diagnostic performance of five blood-based panels was
evaluated in an observational cohort (n = 1073) covering the full
spectrum of MASLD [59]. Multiple biomarkers met prespecified per-
formance metrics. NIS4� had an AUROC of 0.81 for ‘at-risk’ MASH
(steatohepatitis and fibrosis stage ≥F2). The AUROCs of the ELFTM

test, PROC3, and FibroMeter VCTETM for clinically significant fibrosis
(≥F2), advanced fibrosis (≥F3), or cirrhosis (F4), respectively, were all
≥0.8.

The Liver Investigation:Testing Marker Utility in Steatohepatitis
(LITMUS) consortium, supported by the European NAFLD registry
[60], aims to develop, validate, and progress biomarkers for
4

diagnosing, risk stratifying, and monitoring MASLD/MASH progres-
sion and fibrosis stage. The initiative involves a collaborative effort
among end-users (clinicians and the pharmaceutical industry), inde-
pendent academics specializing in medical test evaluation, and bio-
marker researchers and developers from academic or commercial
backgrounds. Leveraging large-scale patient cohorts, bioresources
and multi-omics datasets. the goal is to establish a definitive and
impartial evaluation platform for these biomarkers. The LITMUS
investigators developed prediction models, using supervised ML
techniques, that improved the detection of MASH and at-risk MASH
[61]. They also created a proteo-transcriptomic map of MASLD signa-
tures and generated a composite model comprising four proteins
(ADAMTSL2, AKR1B10, CFHR4 and TREM2), body mass index and
type 2 diabetes mellitus status, to identify at-risk steatohepatitis [62].
LITMUS has recently added an imaging study where they will evalu-
ate different MRI and elastography modalities against liver histology
in MASLD [63].

TARGET-NASH, a longitudinal observational study, tracks patients
under usual clinical care for MASLD/MASH in both academic and
community settings [64]. The dataset is essential for establishing a
baseline and assessing the impact of current practice guidelines,
management, and new therapies on patients with various medical
outcomes. The study's unique design, involving three years of retro-
spective analysis of MASH patients followed by at least five years of
prospective enrolment, enables a comprehensive understanding of
the disease's natural history. The TARGET-NASH cohort has allowed
the validation of a clinical risk-based classification system [65],
among other studies [66−68].

4. SteatoSITE

The aforementioned consortia have compiled large multicentric
prospective datasets. However, this presents potential disadvantages,
including selection bias, loss to follow-up, and long duration to accu-
mulate clinical outcomes. In contrast, SteatoSITE (https://www.steato
site.com) is a retrospective, multimodal MASLD database (Fig. 2) [13].
SteatoSITE includes curated whole-slide images of H&E and picro-sir-
ius red-stained liver sections, accompanying histological assessments
(NAS, SAF, NASH-CRN, collagen % area), bulk hepatic RNA-sequencing
(RNA-seq), and rich EHR data from a cohort of n = 940 adult patients
who had previously undergone either needle biopsy (n = 659),
explant (n = 56) or liver resection (n = 225) between January 2000
and October 2019. Cases across the whole MASLD spectrum were
identified from three of the four NHS Scotland Biorepositories (Loth-
ian, Greater Glasgow & Clyde, and Grampian), representing 12 of the
14 territorial Health Boards. Covering a span of ten years before the
tissue sampling date until May 2020, the dataset encompasses over
5.67 million days (»15,547 years) of comprehensive routine clinical
information derived from EHRs (including demographic data, Inter-
national Classification of Diseases (ICD)-9/10 and OPCS Classification
of Interventions and Procedures version 4 (OPCS-4) codes, laboratory
results, and medication history).

SteatoSITE is a resource that can support multiple facets of MASLD
research [13] and fulfils the FAIR attributes (Findability, Accessibility,
Interoperability, and Reuse of digital assets) that underpin a ‘data
commons’ [69]. One research avenue is use of the extensive histo-
pathological dataset, linked to patient outcomes, to develop new AI-
augmented digital pathology tools for MASLD/MASH. Using training
and validation sets derived from the SteatoSITE cohort, new risk pre-
diction indices derived from SHG/TPE imaging features were shown
to predict all-cause mortality, decompensation events, and HCC, out-
performing both NASH-CRN and qFibrosis ordinal staging [70].

Additionally, analysis of the SteatoSITE bulk RNA-seq data has
enabled the discovery of molecular features linked to outcomes. In
Kendall et al. [13], a 15-gene transcriptional risk score (TRS) was
associated with a higher risk of developing decompensation events

https://biocellvia.com/
https://www.fibronest.com
https://www.fibronest.com
https://www.steatosite.com
https://www.steatosite.com
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in advanced MASLD. Moreover, six of the 15 genes are predicted by
bioinformatics to translate into secretome markers. The TRS was also
used to investigate transcriptional regulatory networks in MASLD.
Three regulons (gene networks controlled by AE binding protein 1
(AEBP1), thyroid hormone receptor beta (THRB), and basonuclin zinc
finger protein 2 (BNC2)) exhibited significantly higher counts of TRS
genes than anticipated by chance. This suggests that these three net-
works might play a crucial role in the progression of MASLD. Of par-
ticular interest given recent encouraging data on the THRB agonist
resmetirom [71] THRB regulon activity not only decreased with
advancing fibrosis stage but also predicted future hepatic decompen-
sation (beyond standard fibrosis scoring).

SteatoSITE was also used to perform deconvolution of the bulk
RNA-seq using a published single-cell RNA-seq (scRNA-seq) reference
dataset from healthy and cirrhotic patients [72], to estimate cell pro-
portions in MASLD and correlate specific cell subpopulations with
clinical outcomes. Interestingly, hepatic scar-associated macrophages
(SAMacs) strongly correlated with fibrosis severity and were predic-
tive for all-cause mortality and hepatic decompensation events. Con-
versely, more homeostatic liver resident cell types such as liver
sinusoidal endothelial cells and vascular smooth muscle cells were
protective against future mortality or hepatic decompensation.

Derived from a Scottish population with a high prevalence of
MASLD and liver-related deaths [73], SteatoSITE is outcome-rich, but
also has some specific limitations including inherent spectrum bias
and a lack of ethnic diversity. Therefore, compared to other cohorts,
SteatoSITE may be less suitable for modeling the population-level
natural history of MASLD, and caution is advised about the generaliz-
ability of findings to other geographical areas and ethnic populations.
Nevertheless, SteatoSITE is currently a unique resource for broad
research efforts in MASLD including patient stratification, digital
pathology methods, biomarker [74] and drug target discovery.

5. Technical challenges of using big data in MASLD research and
practice

The main technical challenges can be categorized into two
domains: those arising from using EHRs and those related specifically
to AI. Prominent EHR challenges include interoperability and usabil-
ity. Globally, EHR systems have different clinical terminologies and
technical specifications [75], which can create barriers when
exchanging and using the data, as both aspects need to be addressed
to achieve true interoperability. Additional factors hampering the use
of EHRs for research purposes include human error (e.g., incorrect
data entry, typographical errors, sample mislabelling), difficulties
5

with data standardization, errors arising from different delimiters or
encoding in input files, issues related to data formatting, and instan-
ces of data duplication, missing data or incompleteness.

Despite the promise of AI/ML approaches in many aspects of MASLD
research and clinical practice, certain technical challenges and limitations
should be acknowledged. ML algorithms must undergo training to effec-
tively identify patterns in the data. This process is hindered by the noto-
riously large dimensionality of features in medical datasets, referred to
as the “curse of dimensionality”, often resulting in suboptimal algorithm
performance in independent studies and failure to generalize to clinical
scenarios. Additionally, it is easy to ignore that all input data are gener-
ated within a non-stationary environment with shifting patient popula-
tions that “drift” away from original training data. This phenomenon
adversely affects algorithm performance and should be monitored and
mitigated during live deployment. Furthermore, clinicians and patholo-
gists, with differing expertise, contribute to the input data, which may
therefore exhibit discrepancies in features/data for the model. Variability
in obtaining input data, influenced by factors such as tissue quality,
experimental locations and equipment, can contaminate feature selec-
tion and ground truthing and adversely impact model performance. AI
systems, acting as black boxes (with internal workings that are invisible
to the researchers/users), can perpetuate biases that are challenging to
detect, such as hidden stratifications [76]. Transparency is therefore cru-
cial in publishing AI models for reliability, reproducibility, and diagnostic
use. Additionally, although somewhat theoretical at present, AI algo-
rithms are susceptible to the risk of adversarial attack, which describes
an otherwise effective model that can be manipulated by provision of
inputs explicitly designed to fool it and to purposefully generate an
incorrect prediction [77]. Finally, standardization and regulatory
approval would be essential for future clinical utilization of these diverse
algorithms andmodels in disease diagnosis and assessment.

6. Future directions

The incorporation of AI/ML into MASLD research is swiftly
advancing. By leveraging appropriate tools and methodologies, such
as dimensionality reduction [78] and feature selection, data scientists
can extract valuable insights from the growing complexity of accessi-
ble datasets. The assessment of liver histology using AI-augmented
digital pathology tools is being assimilated into MASLD interven-
tional trials, where digital analyses might provide better reproduc-
ibility and greater insights into drug efficacy and mechanism of
action than standard scoring methods [79]. Moreover, the integration
of AI-digital pathology with spatially resolved ‘omics data and clinical
outcomes could drive the development of new histopathological-
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based metrics and refined categorizations for the stratification and
prognostication of MASLD.

Finally, in the longer-term, AI might be applied in various ways to
enhance clinical trials in MASLD. For example, AI algorithms could
analyze EHRs to pinpoint eligible patients for clinical trials, improving
patient recruitment efficiency; or be used to predict patient
responses to treatment, helping in the selection of appropriate candi-
dates for specific interventions. In addition, AI algorithms could con-
tinuously monitor patient data in real-time for early detection of
adverse events, enhancing participant safety during the trial.
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