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ABSTRACT

Using a graph-based approach, we propose a multiscale per-
mutation entropy to explore the complexity of multivariate
time series over multiple time scales. This multivariate multi-
scale permutation entropy (MMPEg) incorporates the inter-
action between channels by constructing an underlying graph
for each coarse-grained time series and then applying the re-
cent permutation entropy for graph signals. Given the chal-
lenge posed by noise in real-world data analysis, we inves-
tigate the robustness to noise of MMPEg using synthetic
time series and demonstrating better performance than sim-
ilar multivariate entropy metrics.

We also apply MMPEg to study two-phase flow data,
an important industrial process characterised by complex, dy-
namic behaviour. To this end, we process multivariate Electri-
cal Resistance Tomography (ERT) data and extract multivari-
ate multiscale permutation entropy values. MMPEq char-
acterises the flow behaviour transition of two-phase flow by
incorporating information from different scales. The experi-
mental results show that MMPEg is sensitive to the dynamic
of flow patterns, allowing us to distinguish between differ-
ent flow patterns. We show that our method is noise-robust,
which is suitable for analysis of the complexity of multivari-
ate time series and characterising two-phase flow recordings.

Index Terms— permutation entropy, graph signal, en-
tropy metrics, complexity, noise, two-phase flow.

1. INTRODUCTION

Two-phase flow is important in many industries, including
chemical processes, petroleum exploitation, nuclear engi-
neering, and transportation [1]. Theoretical and experimental
studies have been sought to characterise two-phase flow,
including mathematical approaches [2, 3], fluid dynamics
analysis [4], using high-speed camera [5], and others. These
methods have not fully resolved the complexity and dynamic
behaviours of the flow patterns, especially in the interaction
between different channels in the multivariate signals.
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Trust via a Research Project Grant (RPG-2020-158).

The analysis of a complex system like two-phase flow can
benefit from nonlinear analysis metrics. Univariate permu-
tation entropy [6] has been used as a nonlinear measure of
complexity; it is a computationally fast algorithm, its perfor-
mance under noise conditions has been investigated [7], has
been used for discriminating two-phase flow dynamics [8]
and characterise autoregressive processes [9]. Most of the
physical systems’ signals are multivariate. Therefore, several
univariate entropy metrics have been generalised to a mul-
tivariate setting, including multivariate sample entropy [10],
multivariate dispersion entropy [11], and multivariate permu-
tation entropy [12], among others. Some of them have been
recently used to analyse phase flow and are applied to charac-
terise the behaviour of the two-phase flow system [13, 14, 15].
A prior implementation of multivariate permutation entropy
exists, but it has a major limitation (i.e., it does not consider
cross-channel information).

The effect of noise on the multivariate permutation en-
tropy can lead to inaccurate values. Some improvements have
been proposed to deal with this problem, such as a multivari-
ate weighted permutation entropy [16]. However, these mul-
tivariate methods analyse each time series separately; hence,
the cross-channel information will be lost and increase the
number of parameters used for the entropy computation. To
this end, we present a multiscale multivariate permutation en-
tropy based on constructing a Cartesian graph product.

Contributions: This paper introduces a multiscale algo-
rithm to analyse multivariate time series based on the per-
mutation entropy for graph signals. We apply the algorithm
to a set of synthetic data and two-phase flow data. We show
that it improves the performance of univariate permutation en-
tropy and classical multivariate permutation entropy because
MMPEg consider the interaction between the different data
channels, it is robust to noise, and it is useful to detect the
complexity at different scales of the phase flow patterns.

Structure of the manuscript: The outline of the manuscript
is as follows: Sec. 2 introduces the permutation entropy for
graph signals and Cartesian graph product. Sec. 3 presents
the multiscale multivariate permutation entropy MMPEq. In
Sec. 4, we use synthetic signals to show MMPEg is robust
to noise and it is applied to analyse phase flow data (Sec. 5).
The conclusions and future work are presented in Sec. 6.



2. GRAPHS AND PERMUTATION ENTROPY

This section presents the Cartesian graph product and the re-
cently permutation entropy for analyse graph signals.
Cartesian graph product. The Cartesian product of two
graphs G = (V,€) and G' = (V',&’), denoted GOG', is
the graph defined by the vertex set: V(GOG') =V x V' =
{(v,v)|]v € Vandv' € V'} . Two vertices (v,v’') and
(u, ') are adjacent in GOG' if and only if either v = w and v’
is adjacent to u’ in G’, or v/ = v’ and v is adjacent to v in G.
The graph product is a useful structure to model multidomain
signals [17] and it is the perturbation of a periodic graph [18].
Permutation entropy for graph signals (PE¢). Let G =
(V,€) be a graph, A its adjacency matrix and X = {z;}_,
be a signal on the graph, PE¢ is defined in [19, 20] as follows:

1. For 2 < m € N the embeda’ing dimension, L € N the

delay time and for all 7 = 1,2, ...,n, we define yFl =
1 _

T S0 T = et (AFEX); , where N (i) =

{j € V|itexists a walk on k edges joining i and j } . Then, we

construct the embedding vector y7* € R™ given by
(m—1)L )

yi" :<§L)k:0 :(yiayz‘La"'yi
2. The embedding vector y;"’L is arranged in increasing order
and is assigned to one of k& = m/! permutation (or patterns)
Ty T2y ey T
3. For the distinct permutation, the relative frequency is de-
noted by p(m1),p(ma),...,p(mr). The permutation entropy

PE¢ for the graph signal X is computed as the normalised

Shannon entropy
m!

PEq = _ln(::n!) > p(mi) Inp(m;) -

i=1

3. MULTISCALE MULTIVARIATE PERMUTATION
ENTROPY (MMPE()

Time series from phase flow data contain multiple temporal
scale structures. Consider only a single scale have limited
capability and they can only assess the system’s irregularity at
a single temporal scale. Multiple scales need to be analysed
to understand the dynamics in the signals and to describe the
properties of its model.

Here, we propose a nonlinear multivariate multiscale
methodology based on graph signals to analyse such data.
Let X = {x;,}=17 57 r be a multivariate time series with
p—channels of length n and with I, the graph of interac-
tions between channels. The MMPEG algorithm relies on a
three-step procedure:

1. Coarse-grained procedure. From the original univari-
ate signal X, we derive multiple successive coarse-grained
versions by averaging the time data points within non-
overlapping time segments of increasing length, € , referred
to as the scale factor. Each element of the coarse-grained time

series, U = {uj ; }3;122{7” /) » 18 calculated as:
1 i€
Uig = >
t=(i—1)e+1
The length of each coarse-grained time series is e times
shorter than the original one. For e = 1, we get the original
series, i.e, Ul = X,

We use this coarse-grained procedure for simplicity, how-
ever other approaches to construct the coarse-graining in mul-
tiscale entropy exist [21, 22].

2. Graph construction associated to a multivariate signal.
For each coarse-grained multivariate U, we construct the
graph Gye given by:

QUE = ?Ln/eJDI

Usually, we will consider two basic graph structures,
I, = K, the complete graph with p vertices and I, = ,, the
empty graph on p vertices i.e., without channels-interaction
(see Fig. 1 for an example with p = 3).

xyj, forl<j<pandl<i<nfe.
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Fig. 1. Graph structures considering as interaction graphs.

The directed graph ? has n vertices with adjacency ma-
trix Al—g (size m X n), and the graph I, has p vertices with
adjacency matrix Ay, (size p x p), then the adjacency ma-
trix A?nD I, (size np x np) of the Cartesian product of both

graphs P,[11, is given by

A?nmlp =Ap QL +1L,® AL, ;
where ® denotes the Kronecker product of matrices and I,
denotes the n x n identity matrix.
3. PE for graph signals. We consider U* as a signal defined
on the graph Gye, i.e., U¢: V(Guy<) — R . The multivariate
permutation entropy (MMPZEg ) is defined as the permutation
entropy PEq for the graph signal U€ defined on the graph
Gy, i.e.,

MMPEg = PEg(U°) .

To be noted, if we consider I, = @, our method leads
to the multiscale multivariate permutation entropy previously
presented in [12]. However, MMPEg uses information on



between channel interaction (represented in the graph I,,) and
leads to a more robustness method in the presence of noise,
as we will see in the next section.

4. ROBUSTNESS TO NOISES

To demonstrate the effectiveness of the method, we will anal-
yse the effect of additive Gaussian noise on the performance
of MMPEg on the Lorenz system, this system has important
applications in mechanics, biology, and circuit theory [23].
The Lorenz system is is given by the system of ordinary dif-
ferential equations:

o' =o(y—w),
y =xz(p—2) -y,
2 = xy — Bz

A simulation for the values p = 50,0 = 19 and § = 6, with
initial state x = —1,y = 0 and 2z = 1 is depicted in Fig. 2.

Time (s)
Fig. 2. Time series or sequences of Lorenz system.

We calculate the multivariate permutation entropy, con-
sidering the two previous graph structures, I3 and I}, and we
plot the entropy values as a function of the scale factor € (see
Fig. 3). In both graph structures, the entropy values increase
with the scale factor. However, our MMPEa shows more sta-
bility to the change of scale factor, and the complexity of the
multivariate system is more constant, while MMPE [12, 16]
shows more variability in its values, changing from no com-
plexity at lower scales to almost random behaviour at higher
scales for the same Lorenz system. This robustness would be
important for noise.

To demonstrate the robustness of the method, we will add
white Gaussian noise to the multivariate signals defined by the
Lorenz system. Fig. 4 shows the effects of WGN on multivari-
ate multiscale MMPE and MMPEg for the Lorenz system.
The signal-to-noise ratio of WGN is set for all the channels as
10dB, 20dB, 30dB, 40dB and 50dB, respectively. The noise
has low influence with both methods for scales higher than
ten. The influence of the noise is very important for MMPE
in lower scales, while the impact is smaller for our algorithm,
showing the robustness of MMPEg. Similar results are ob-
tained when the noise is added to one or two channels.
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Fig. 4. Entropy values when WGN is added.

The analysis of dynamics with MMPE includes tempo-
ral information and channel interaction. Experiments where
a noise channel is added to the Lorenz system confirmed that
MMPEg has a good performance. The entropy profile did
not change noticeably with the addition of the noise channel
(results not shown due to space constraints). Preserving all
channels (without deleting noise) is important to compare en-
tropy values for different systems but with the same number
of channels.

5. FLOW ANALYSIS WITH MMPE¢

The two-phase flow experiment was carried out at Tian-
jin University [13], using Electrical Resistance Tomogra-
phy (ERT). Based on the principle that the conductivity
of medium differs, ERT collects boundary voltages be-
tween electrodes placed around the pipe by applying elec-
tric currents to obtain conductivity distribution of two-phase
flow inside the pipe. A constant electrical current of 50
kHz is adopted as the exciting signal, and the data acqui-
sition rate is 120 frames/s. A 16—electrode ERT obtains
16 x 13 = 208 voltage data. Given the redundancy in the
measurements and similar to [24], we extract feature vectors
Vr; from each electrode to reduce the dimension as follows:
Vgsi = Tlg Z;il(Vz‘j — Vijo)/Vij, where V;; is the measure
voltage value, V;;, is the V;; when the pipe is full of wa-
ter and 1 < R < 16. Finally, to reduce the computational



time, the 16 features vectors Vg; are compressed into 4 time
series, by average four Vp; electrode belonging to the same
set group [13]. Then, we applied multivariate multiscale
permutation entropy to characterise the two-phase flow.
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a) Time series of the four sets of electrodes (temporal information) b) Graph structure

Fig. 5. a) Signals of 4 set of electrodes under annular flow
and b) is the graph modelling cross-channel interaction.

Two-phase flow series require preprocessing to eliminate
the noise, but our method is noise-robust as shown in Sec. 4
and has better results than classical MMPE. Hence we do not
need filtering to obtain a good characterisation of the dynamic
in phase flow. The noise causes only small variations of en-
tropy values in the lower scales; hence, we will work with the
original data without additional preprocessing.

For two-phase flow, gas and water were mixed. Water ve-
locity ranged from 0.4 m/s to 2.9 m/s and gas velocities from
0.06 m/s to 5.64 m/s. The flow pattern observed with this ex-
periments and analysed are patterns known as Bubble flow,
Slug flow, Churn flow, and Annular flow. For the analysis,
89 experiments carried out under different conditions of flow
rate of gas and water and the typical length of each record-
ing is ~1400 time samples. We perform the MMPEg on the
signals of the four flow patterns, and plot the corresponding
MMPEg versus scale factor in Fig. 6. The coarse-grain pro-
cess reduces the time series length; consequently, the results
show more variability in high-scale factors.
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Fig. 6. Mean and standard deviation from MMPEg values of
signals for different flow patterns.

Entropy of flow patterns. The bubble flow shows the
highest MMPEg value in almost all scales compared with

the other three patterns. The presence of small bubbles [25]
on the regime produces complex time series on all four sets
of nodes. Because of gravity, the bubbles affect more the top
electrodes than the bottom. Then, the high complexity of the
time series and different response of the sensors leads to the
highest MMPE( values.

The signals acquired in slug flow show a periodic fluc-
tuation induced by the repeated occurrence of big gas bub-
bles. Moreover, the length of the gas bubble could be visually
identified in the signal because the four electrode sets are all
affected by the big gas bubbles flowing over the measured
cross-section and show high voltages resulting from the bub-
ble. Hence, the periodicity on temporal dimension and similar
effects in all the electrodes produce the lowest MMPEg val-
ues for all scales.

The symmetrical distribution of the liquid film around the
pipe perimeter in the annular flow leads to the electrodes in
the annular flow showing similar fluctuations [26], but with
different amplitudes. The liquid film at the bottom of the pipe
is thicker than the top due to the gas velocity; see Fig. 5. The
complexity depends more on the temporal dimension than the
structural dimension. Hence, the values of MMPEg overlap
in low scales for slug and annular flow, making them indistin-
guishably but resulting in less complexity than bubble flow.
For higher scale, MMPZEg is able to distinguish between the
slug, annular, and bubble flow.

Churn flow is the flow with more dynamic changes along
the scale values because it is a highly unstable flow [15]. In
lower scales, churn flow is similar to the slug and annular
flow. The presence of bubbles in the churn flow and the in-
teraction and coalesce with each other produces the highest
entropy values than slug and annular flow for scales between
3-14 and more complexity than bubble for scales between 7-
11 because of the presence of no complete slugs and small
waves. Periodic waves are relevant for higher scales, decreas-
ing the values of MMPEg and making them similar to the
annular flow.

6. CONCLUSIONS AND FUTURE WORK

This paper proposes a multiscale nonlinear methodology to
analyse multivariate time series using the concept of permu-
tation entropy. Contrary to the previous state of the art, our
method allows for the consideration of cross-channel inter-
actions, thanks to the exploitation of graph products and our
recent formulation of permutation entropy for graph signals.
MMPEc is robust with respect to additive noise, making it
suitable for analysis of the complexity of multivariate time
series and characterisation of two-phase flow recordings.
Some future lines of research are: additional statistical
analysis of MMPEg values (for example, analysis of the
slopes in the scale factor), to explore other underlying graph
construction (tensor product, strong product), and to consider
other types of data as well, including biomedical signals.
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