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Abstract. Recently, time-based primitives such as time-lock puzzles
(TLPs) and verifiable delay functions (VDFs) have received a lot of at-
tention due to their power as building blocks for cryptographic proto-
cols. However, even though exciting improvements on their efficiency and
security (e.g. achieving non-malleability) have been made, most of the
existing constructions do not offer general composability guarantees and
thus have limited applicability. Baum et al. (EUROCRYPT 2021) pre-
sented in TARDIS the first (im)possibility results on constructing TLPs
with Universally Composable (UC) security and an application to se-
cure two-party computation with output-independent abort (OIA-2PC),
where an adversary has to decide to abort before learning the output.
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While these results establish the feasibility of UC-secure TLPs and appli-
cations, they are limited to the two-party scenario and suffer from com-
plexity overheads. In this paper, we introduce the first UC constructions
of VDFs and of the related notion of publicly verifiable TLPs (PV-TLPs).
We use our new UC VDF to prove a folklore result on VDF-based ran-
domness beacons used in industry and build an improved randomness
beacon from our new UC PV-TLPs. We moreover construct the first
multiparty computation protocol with punishable output-independent
aborts (POIA-MPC), i.e. MPC with OIA and financial punishment for
cheating. Our novel POIA-MPC both establishes the feasibility of (non-
punishable) OIA-MPC and significantly improves on the efficiency of
state-of-the-art OIA-2PC and (non-OIA) MPC with punishable aborts.

1 Introduction

Time has always been an important, although sometimes overlooked, resource in
cryptography. Recently, there has been a renewed interest in time-based prim-
itives such as Time-Lock Puzzles (TLPs) [40] and Verifiable Delay Functions
(VDFs) [11]. TLPs allow a sender to commit to a message in such a way that it
can be obtained by a receiver only after a certain amount of time, during which
the receiver must perform a sequence of computation steps. On the other hand,
a VDF works as a pseudorandom function that is evaluated by performing a
certain number of computation steps (which take time), after which it gener-
ates both an output and a proof that this number of steps has been performed
to obtain the output. A VDF guarantees that evaluating a certain number of
steps takes at least a certain amount of time and that the proof obtained with
the output can be verified in time essentially independent of the number of steps.

Both TLPs and VDFs have been investigated extensively in recent work
which focusses on improving their efficiency [10,39,44], obtaining new prop-
erties [26] and achieving stronger security guarantees [23,32,27]. These works
are motivated by the many applications of TLPs and VDFs, such as random-
ness beacons [11,12], partially fair secure computation [21] and auctions [12].
In particular, all these applications use TLPs and VDFs concurrently com-
posed with other cryptographic primitives and sub-protocols. However, most
of current constructions of TLPs [40,12,10,32,27] and all known constructions of
VDFs [11,39,44,23,26] do not offer general composability guarantees, meaning it
is not possible to easily and securely use those in more complex protocols.

The current default tool for proving security of cryptographic constructions
under general composability is the Universal Composability (UC) framework
[14]. However, the UC framework is inherently asynchronous and does not cap-
ture time, meaning that a notion of passing time has to be added in order to
analyze time-based constructions in UC. Recently, TARDIS [5] introduced a
suitable time model and the first UC construction of TLPs, proven secure under
the iterated squaring assumption of [40] using a programmable random oracle.
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[5] also shows that a programmable random oracle is necessary for realizing such
time-based primitives in the UC framework.

Besides analyzing the (im)possibility of constructing UC TLPs, TARDIS [5]
showed that UC TLPs can be used to construct UC-secure Two-Party Compu-
tation with Output-Independent Abort (OIA-2PC), where the adversary must
decide whether to cause an abort before learning the output of the computation.
OIA-2PC itself implies fair coin tossing, an important task used in randomness
beacons. However, while these results showcase the power of UC TLPs, they are
restricted to the two-party setting and incur a high concrete complexity. More-
over, their results do not extend to VDFs. This leaves an important gap, since
many TLP applications (e.g. auctions [12]) are intrinsically multiparty and VDFs
are used in practice for building randomness beacons [11,43]. The TARDIS TLP
formalization and its applications also give adversaries exactly as much power in
breaking the time-based assumption as the honest parties, which appears very
restrictive and unrealistic.

1.1 Our Contributions

In this work, we present the first UC-secure constructions of VDFs and introduce
the related notion of Publicly Verifiable TLPs, which we also construct. Using
these primitives as building blocks, we construct a new more efficient randomness
beacon and Multiparty Computation with Output-Independent Abort (OIA-
MPC) and Punishable Abort. Our constructions are both practical and proven
secure under general composition, and support adversaries who can break the
timing assumptions faster than honest parties.

UC Verifiable Delay Functions. We introduce the first UC definition of
VDFs [11], which is a delicate task and a contribution on its own. We also present
a matching construction that consists in compiling a trapdoor VDF [44] into a
UC-secure VDF in the random oracle model while only increasing the proof size
by a small constant. Even though we manage to construct a very simple and
efficient compiler, the security proof for this construction is highly detailed and
complex. Based on our UC VDF, we give the first security proof of a folklore
randomness beacon construction [11].

UC Publicly Verifiable Time-Lock Puzzles (PV-TLP). We introduce
publicly verifiable TLPs (PV-TLP), presenting an ideal functionality and a UC-
secure construction for this primitive. A party who solves a PV-TLP (or its
creator) can prove to any third party that a certain message was contained
in the PV-TLP (or that it was invalid) in way that verifying the proof takes
constant time. We show that the TLP of [5] allows for proving that a message
was contained in a valid TLP. Next, we introduce a new UC-secure PV-TLP
scheme based on trapdoor VDFs that allows for a solver to prove that a puzzle is
invalid, similarly to the construction of [27], which does not achieve UC security.
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Efficient UC Randomness Beacon from PV-TLP. Building on our new
notion (and construction) of PV-TLPs, we introduce a new provably secure ran-
domness beacon protocol. Our construction achieves far better best case scenario
efficiency than the folklore VDF-based construction [11]. Our novel PV-TLP-
based construction requires only O(n) broadcasts (as does [11]) to generate a
uniformly random output, where n is the number of parties. Differently from
the VDF-based construction [11], whose execution time is at least the worst case
communication channel delay, our protocol outputs a random value as soon as all
messages are delivered, achieving in the optimistic case an execution as fast as 2
round trip times in the communication channel. This construction and its proof
require not only a simple application of UC PV-TLPs but also a careful analysis
of the relative delays between PV-TLPs broadcast channels/public ledgers and
PV-TLPs. We not only present this new protocol but also provide a full secu-
rity proof in the partially synchronous model (where the communication delay
is unknown), characterizing the protocol’s worst case execution time in terms of
the communication delay upper bound. In comparison, no security proof for the
construction of [11] is presented in their work.

UC Multiparty Computation (MPC) with Output Independent Abort
(OIA-MPC). We construct the first UC-secure protocol for Multiparty Com-
putation with Output Independent Abort (OIA-MPC), which is a stronger no-
tion of MPC where aborts by cheaters must be made before they know the
output. This notion is a generalization of the limited OIA-2PC result from [5].
As our central challenge, we identify the necessity of synchronizing honest par-
ties so that their views allow them to agree on the same set of cheaters. We
design a protocol that only requires that honest parties are not too much out of
sync when the protocol starts and carefully analyze its security.

UC MPC with Punishable Output Independent Abort (POIA-MPC)
from PV-TLP. We construct the first protocol for Multiparty Computation
with Punishable Output Independent Abort (POIA-MPC), generalizing OIA-
MPC to a setting where i) outputs can be publicly verified; and ii) cheaters in
the output stage can be identified and financially punished. Our construction
employs our new publicly verifiable TLPs to construct a commitment scheme
with delayed opening. To use this simple commitment scheme, we improve the
currently best [4] techniques for publicly verifiable MPC with cheater identifi-
cation in the output stage. We achieve this by eliminating the need for homo-
morphic commitments, which makes our construction highly efficient. We do not
punish cheating that occurs before the output phase (i.e. before the output can
be known), as this requires expensive MPC with publicly verifiable identifiable
abort [31,35,7]. Our approach is also taken in other previous works [1,9,36,4].
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1.2 Our Techniques

All our constructions use a slack parameter 0 < ϵ ≤ 1 that allows the adversary
to break an assumption in time ϵδ when honest parties are assumed to need time
δ. It is assumed that ϵ (or an upper-bound on it) is known.

Verifiable Delay Functions. We depart from a generic stand alone trap-
door VDF [44] (or rather, a weaker notion of a trapdoor verifiable sequential
computation) to obtain a UC-secure continuous VDF in the global random or-
acle model (which is necessary for realizing UC-secure time-based primitives as
proven in [5]). We capture the stand alone continuous VDF in UC following a
similar approach to the one of [5] for capturing the iterated squaring assump-
tion: the intermediate states leaked to the adversary by the functionality are not
concrete representations of actual intermediate states but generic random labels
assigned to states (similarly to the generic group model treatment given to the
RSW assumption in [5]). Learning these intermediate generic states does not
allow the environment (or the adversary) any advantage in computing the next
states before they are revealed by the functionality, as these states are sampled
uniformly at random. Hence, it is not necessary to restrict the UC environment
in any way and the UC composition theorem still holds.

Interestingly, our construction is very simple and efficient: we evaluate the
input in for a number Γ of steps with the stand alone VDF and then compute
the UC VDF output and proof as out = H(sid|in|Γ |stΓ |π′) and Π = (stΓ , π

′)
where stΓ and π′ are the output and proof obtained from the stand alone VDF
and H is a global random oracle. Verification is done by checking that out is
computed according to the values in Π and that π′ is valid for the input and
stΓ . Even though this construction is simple, defining and analyzing its security
is our main contribution in this area, as it requires a complex simulator keeping
track of both honest and adversarial VDF evaluations.

Publicly Verifiable TLPs (PV-TLPs). We define the notion of UC publicly
verifiable TLPs, which allow for a prover who solves a PV-TLP to convince any
verifier that either a certain message was contained in the PV-TLP or that it
was invalid, while only requiring the verifier to perform a constant number of
computational steps. We show that the TLP construction of [5] can realize a
weaker notion of public verifiability allowing a solver to prove a message was
inside a valid TLP, since the solver obtains a trapdoor upon solving the puzzle
that can be used by a verifier to solve the puzzle instantly. We present a new
UC-secure PV-TLP protocol based on a generalization of trapdoor VDFs that
also allows the solver to prove that a PV-TLP is invalid (similarly to [27], which
does not achieve UC security).

In our new protocol, a puzzle creator uses a trapdoor to evaluate the VDF on
a random input st0 for a number of steps Γ , obtaining an output stΓ and proof
π′, which it uses to create a puzzle (st, Γ, tag1 = H1(st0|Γ |stΓ |π′)⊕m, tag2 =
H2(st0|Γ |stΓ |π′|tag1|m)) containing message m that can be solved in Γ steps,
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where H1, H2 are random oracles. The solver simply evaluates Γ steps of the
VDF on input st0 to obtain stΓ , π

′, which serve both to obtain m and as proof
of this solution.

Composable Randomness Beacons. We realize a guaranteed output delivery
(G.O.D.) coin tossing functionality that works like a randomness beacon from
PV-TLPs and semi-synchronous delayed multiparty communication (through ei-
ther a delayed broadcast or a public ledger), where there is a finite but unknown
communication delay. We consider an honest majority and build on the standard
commit-then-reveal coin tossing approach but substitute the commitments with
PV-TLPs: 1. each party broadcasts (or posts on the public ledger) a PV-TLP
containing a random value as input that can be solved in δ ticks (i.e. computa-
tional steps), 2. after commitments from half of the parties have been received
(meaning at least one commitment is from an honest party), each party reveals
the random value in its PV-TLP and stops considering new TLPs received after
this point, 3. if any party fails to reveal this value, the other parties can solve this
party’s PV-TLP by themselves and retrieve the value, 4. the output is obtained
by XORing all random values from the valid PV-TLPs.

An adversary cannot make this protocol abort because any party can solve all
valid PV-TLPs. Even without knowing the maximum communication delay, our
protocol dynamically adjusts δ to ensure that the adversary cannot solve honest
parties’ PV-TLPs before sending its own, meaning it cannot bias the output. If
all parties cooperate in sending and opening their PV-TLPs as soon as possible,
the output can be obtained as fast as the communication channel delay allows.
In our protocol description and proof, we explicitly characterize the worst case
execution time for this protocol in terms of the (unknown) communication delay
upper bound.

MPC with (Punishable) Output-Independent Abort. For MPC with Output-
Independent Abort we generalize the idea from previous two-party works such
as [5,21] and let each participant in an MPC protocol commit to its output
message using a commitment with delayed non-interactive opening, which can
be constructed from a TLP. An honest party Pi only considers output shares
of other parties to be relevant if the TLPs which contain these arrived before
Pi’s own TLP could have been opened by the adversary. For the abort to be
unanimous or to achieve identifiable abort, we additionally use a synchronized
broadcast channel [5]. Such broadcast can be implemented if all honest parties
are not too much out of sync in the beginning of the protocol. It appears that, at
least for this construction of OIA-MPC, such a broadcast channel is necessary:
assume that two honest parties Pi,Pj send TLPs which expire both at time t.
Without a broadcast that guarantees delivery at the same time, an adversarial
party may follow the protocol but will send a (well-formed) TLP with its output
share to Pi such that the TLP opens at time t. It then sends the same TLP to
Pj so that it opens for Pj at time t+ 1. Pi will accept the opening of the TLP
of the adversary, while Pj does not.
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We then achieve punishable output-independent abort by using publicly ver-
ifiable primitives and a smart contract in a way similar to [4]: the parties again
commit to their output shares using a commitment with delayed non-interactive
opening. In comparison to OIA-MPC, we now require these commitments to
be publicly verifiable, and parties must prove that their committed shares are
consistent with the output of the MPC scheme. Such a consistency check can be
done cheaply using a universal hash function that is chosen by all MPC parties,
as was done in [4].

While we depart from [4,5], extra care must be taken in the definition and
proof since no ideal functionalities have previously been designed for such com-
posable timed primitives with public verification. Moreover, we significantly
modify and improve the output share consistency check of [4] by using weaker,
non-homomorphic commitments, which dramatically improves efficiency. Our
observation is that there is no loss in security if the consistency check on the com-
mitted shares is only done once the commitment is opened, due to the binding
property. In comparison [4] performed this check using homomorphic properties
of commitments simultaneously on both commitments and MPC shares.

1.3 Related Work

The recent work of Baum et al. [5] introduced the first construction of a compos-
able TLP, while previous constructions such as [40,12,10] were only proven to
be stand-alone secure. As an intermediate step towards composable TLPs, non-
malleable TLPs were constructed in [32,27]. The related notion of VDFs has
been investigated in [11,39,44,23,26]. Also for these constructions, composability
guarantees have so far not been shown. Hence, issues arise when using these
primitives as building blocks in more complex protocols, since their security is
not guaranteed when they are composed with other primitives.

Randomness beacons that resist adversarial bias have been constructed based
on publicly verifiable secret sharing (PVSS) [34,17] and on VDFs [11], although
neither of these constructions is composable. The best UC-secure randomness
beacons based on PVSS [18] still require O(n2) communication where n is the
number of parties even if only one single value is needed. UC-secure randomness
beacons based on verifiable random functions [22,2] can be biased by adversaries.

Fair secure computation (where honest parties always obtain the output if
the adversary learns it) is known to be impossible in the standard communica-
tion model and with dishonest majority [19], which includes the 2-party setting.
Couteau et al. [21] presented a secure two-party fair exchange protocol for the
“best possible” alternative, meaning where an adversary can decide to withhold
the output from an honest party but must make this decision independently of
the protocol output. Baum et al. [5] showed how to construct a secure 2-party
computation protocol with output-independent abort and composition guaran-
tees. Neither of these works considers the important multiparty setting.

Another work which considers fairness is that of Garay et al. [28], which
introduced the notion of resource-fairness for protocols in UC. Their work is
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able to construct fair MPC in a modified UC framework, while we obtain OIA-
MPC which can be used to obtain partially fair secure computation (as defined
in [29]). The key difference is that their resource-fairness framework needs to
modify the UC framework in such a way that environments, adversaries and
simulators must have an a priori bounded running time. Being based on the
TARDIS model of [5], our work uses the standard UC framework without such
stringent (and arguably unrealistic) modifications/restrictions.

An alternative, recently popularized idea is to circumvent the impossibility
result of [19] by imposing financial penalties. In this model, cheating behavior is
punished using cryptocurrencies and smart contracts, which incentivizes rational
adversaries to act honestly. Works that achieve fair output delivery with penal-
ties such as [1,9,36,4] allow the adversary to make the abort decision after he
sees the output. Therefore financial incentives must be chosen according to the
adversary’s worst-case gain. Our POIA-MPC construction forces the adversary
to decide before seeing the output and incentives can be based on the expected
gain of cheating in the computation instead. All these mentioned works as well as
ours focus on penalizing cheating during the output phase only, as current MPC
protocols with publicly verifiable cheater identification are costly [31,6,35,7,16].
A more detailed complexity analysis in comparison with the existing results is
as follows.

The TARDIS construction requires the use of UC-secure additively homo-
morphic delayed commitments during the output phase, which must be con-
structed from additively homomorphic commitments that require extra overhead
for generation. Our construction does not require any homomorphism and can
be instantiated from TLPs + ROs, which is substantially cheaper. The best con-
struction of such UC-secure additively homomorphic commitments (by Cascudo
et al. in Asiacrypt’19 [16]) requires about 400 times as much computation and
communication as the canonical RO commitments we use in our construction.
Whereas, our construction only requires one plain MPC evaluation plus an addi-
tive computation as well as broadcast communication overhead that scales in the
output size and number of parties for the output phase. All existing construc-
tions for MPC with public cheater identification [31,6,35,7] require to send all
messages of the entire MPC protocol via the broadcast channel, which is not nec-
essary for us. In addition, [35] requires UC-NIZK proofs of correct evaluation of
every protocol step by every party which are non-black box in the protocol, [31]
also performs NIZKs plus requires adaptive OT to preprocess these, [6] requires
a non-standard expensive verifiable lattice-based preprocessing while [7] suffers
from the use of linearly homomorphic commitments for every circuit gate during
the preprocessing. Even previous works achieving public cheater identification
in the output phase of [4] requires expensive publicly verifiable additively homo-
morphic commitment schemes, again incurring an overhead of about 400 times
in computational and communication complexities in relation to the canonical
RO commitments we use.
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2 Preliminaries

We use the (Global) Universal Composability or (G)UC model [14,15] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called par-
ties. A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1, . . . .
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time. We denote with λ the
statistical and τ the computational security parameter.

Public Verifiability in UC. We model the public verification of protocol
outputs, for simplicity, by having a static set of verifiers V. These parties exist
during the protocol execution (observing the public protocol transcript) but only
act when they receive an input to be publicly verified. Converting our approach
to dynamic sets of verifiers (as in e.g. [3]) is possible using standard techniques.

2.1 The TARDIS [5] Composable Time Model

The TARDIS [5] model expresses time within the GUC framework in such a way
that protocols can be made oblivious to clock ticks. To achieve this, TARDIS
provides a global ticker functionality Gticker as depicted in Fig. 1. This global
ticker provides “ticks” to ideal functionalities in the name of the environment. A
tick represents a discrete unit of time which can only be advanced, and moreover
only by one unit at a time. Parties observe events triggered by elapsed time, but
not the time as it elapses in Gticker. Ticked functionalities can freely interpret ticks
and perform arbitrary internal state changes. To ensure that all honest parties
can observe all relevant timing-related events, Gticker only progresses if all honest
parties have signaled to it that they have been activated (in arbitrary order). An
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Functionality Gticker

Initialize a set of registered parties Pa = ∅, a set of registered functionalities Fu = ∅,
a set of activated parties LPa = ∅, and a set of functionalities LFu = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to Pa and send (registered) to P.

Functionality registration: Upon receiving (register) from functionality F ,
add F to Fu and send (registered) to F .

Tick: Upon receiving (tick) from the environment, do the following:
1. If Pa = LPa, reset LPa = ∅ and LFu = ∅, and send (ticked) to the adversary S.

2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ Fu: If F /∈ LFu,
add F to LFu and send (ticked) to F. Otherwise send (notticked) to F.

Record party activation: Upon receiving (activated) from party P with pid
pid ∈ Pa, add pid to LPa and send (recorded) to P.

Fig. 1: Global ticker functionality Gticker(from [5]).

honest party may contact an arbitrary number of functionalities before asking
Gticker to proceed. We refer to [5] for more details.

How we use the TARDIS [5] model. To control the observable side ef-
fects of ticks, the protocols and ideal functionalities presented in this work are
restricted to interact in the6 “pull model”. This precludes functionalities from
implicitly providing communication channels between parties. Parties have to
actively query functionalities in order to obtain new messages, and they obtain
the activation token back upon completion. Ticks to ideal functionalities are
modeled as follows: upon each activation, a functionality first checks with Gticker
if a tick has happened and if so, may act accordingly. For this, it will execute
code in a special Tick interface.

In comparison to [5], after every tick, each ticked functionality F that we de-
fine (unless mentioned otherwise) allowsA to provide an optional (Schedule, sid,D)
message parameterized by a queue D. This queue contains commands to F which
specify if the adversary wants to abort F or how it will schedule message deliv-
ery to individual parties in P. The reason for this approach is that it simplifies
the specification of a correct F . This is because it makes it easier to avoid edge
cases where an adversary could influence the output message buffer of F such
that certain conditions supposedly guaranteed by F break. As mentioned above,
an adversary does not have to send (Schedule, sid,D) - each F can take care of
guaranteed delivery itself. On the other hand, D can depend on information that
the adversary learns when being activated after a tick event.
6 The pull model, a standard approach in networking, has been used in previous works

before such as [33].
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Modeling Start (De)synchronization. In the 2-party setting considered in
TARDIS [5] there is no need to capture the fact that parties receive inputs and
start executing protocols at different points in time, since parties can adopt the
default behavior of waiting for a message from the other before progressing.
However, in the multiparty setting (and specially in applications sensitive to
time), start synchronization is an important issue that has been observed before
in the literature (e.g. [37,33]) although it is often overlooked. In the spirit of the
original TARDIS model, we flesh out this issue by ensuring that time progresses
regardless of honest parties having received their inputs (meaning that protocols
may be insecure if a fraction of the parties receive inputs “too late”). Formally,
we require that every (honest) party sends (activated) to Gticker during every
activation regardless of having received its input. We explicitly address the start
synchronization conditions required for our protocols to be secure.

Ticked Functionalities. We explicitly mention when a functionality F is
“ticked”. Each such F internally has two lists M,Q which are initially empty.
The functionality will use these to store messages that the parties ought to
obtain. Q contains messages to parties that are currently buffered. Actions by
honest parties can add new messages to Q, while actions of the adversary can
change the content of Q in certain restricted ways or move messages from Q
to M. M contains all the “output-ready” messages that can be read by the
parties directly. The content of M cannot be changed by A and he cannot pre-
vent parties from reading it. “Messages” from F may e.g. be messages that have
been sent between parties or delayed responses from F to a request from a party.

We assume that each ticked functionality F has two special interfaces. One,
as mentioned above, is called Tick and is activated internally, as outlined before,
upon activation of F if a tick event just happened on Gticker. The second is called
Fetch Messages. This latter interface allows parties to obtain entries of M.
The interface works identically for all ticked functionalities as follows:

Fetch Message: Upon receiving (Fetch, sid) by Pi ∈ P retrieve the set L of all
entries (Pi, sid, ·) in M, remove L fromM and send (Fetch, sid, L) to Pi.

Macros. A recurring pattern in ticked functionalities in [5] is that the func-
tionality F , upon receiving a request (Request, sid,m) by party Pi must first
internally generate unique message IDs mid to balance message delivery with
the adversarial option to delay messages. F then internally stores the message
to be delivered together with the mid in Q and finally hands out i,mid to the
ideal adversary S as well as potentially also m. This allows S to influence deliv-
ery of m by F at will by referring to each unique mid. We now define macros that
simplify the aforementioned process. When using the macros we will sometimes
leave out certain options if their choice is clear from the context.
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Macro “Notify the parties T ⊆ P about a message with prefix Request from Pi

via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i)) to Q for each Pij ∈ T .

Macro “Send message m with prefix Request received from party Pi to the parties
T ⊆ P via Q with delay ∆” expands to

1. Let T = {Pi1 , . . . ,Pik}. Sample unused message IDs midi1 , . . . ,midik .
2. Add (∆,midij , sid,Pij , (Request, i,m)) to Q for each Pij ∈ T .

Macro “Notify S about a message with prefix Request” expands to “Send (Request,
sid, i,midi1 , . . . ,midik) to S.” Finally, the Macro “Send m with prefix Request
and the IDs to S” expands to “Send (Request, sid, i,m,midi1 , . . . ,midik) to S.”

If honest parties send messages via simultaneous broadcast (ensuring simul-
taneous arrival), then we will only choose one mid for all messages. As the ad-
versary can influence delivery on mid-basis, this ensures simultaneous delivery.
We indicate this by using the prefix “simultaneously” in the first two macros.

2.2 Trapdoor Verifiable Sequential Computation

Functionality Fpsc is presented in Figure 2 and captures the notion of a generic
stand alone trapdoor verifiable sequential computation scheme (a generaliza-
tion of a trapdoor VDF) in a similar way as the iterated squaring assumption
from [40] is captured in [5]. More concretely, Fpsc allows the evaluation of Γ
computational steps taking as input an initial state el and outputting a final
state elΓ along with a proof π. A verifier can use π to check that a state el′Γ
was indeed obtained after Γ computational steps starting from el. Each compu-
tational step takes a tick to happen, and parties who are currently performing a
computation must activate Fpsc in order for their computation to advance when
the next tick happens. The proof π′ can be verified with respect to el, elΓ , Γ in
time essentially independent of Γ . Since current techniques (e.g. [39,44,26]) for
verifying such a proof require non-constant computational time, we model the
number of ticks necessary for each by function g(Γ ). We discuss the implemen-
tation of Fpsc in Appendix A.2.

Fpsc must be used to capture a stand alone verifiable sequential computation
because, as observed in [5], exposing the actual states from a concrete computa-
tional problem would allow the environment to perform several computational
steps without activating other parties (and essentially breaking the hardness
assumption). However, notice that Fpsc does not guarantee that the states it
outputs are uniformly random or non-malleable, as it allows the adversary to
choose the representation of each state, which is crucial in our proof. What Fpsc

does guarantee is that proofs are only generated and successfully verified if the
claimed number of computational steps is indeed correct, also guaranteeing that
the transition between states el and nxt is injective.
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Functionality Fpsc

Fpsc interacts with a set of parties P = {Pi, . . . ,Pn}, an owner Po ∈ P (if Po =⊥,
no Pi ∈ P can access Trapdoor Solve) and an adversary S. It is parameterized by
an adversarial slack parameter 0 ≤ ϵ ≤ 1, state space ST , a proof space PROOF
and a function g : {0, 1}⋆ 7→ N determining the number of ticks for verifying proofs.
Fpsc has initially empty lists prf, L and Qv (proofs being verified); and flags fi for
i = 1, . . . , n that are initially set to zero.

Trapdoor Solve: Upon receiving (TdSolve, sid, el0, Γ ) from Po where Γ ∈ N+

and el0 ∈ ST , sample Γ random distinct states elj
$← ST for j ∈ {1, . . . , Γ} and

add (elj−1, elj) to steps. Also sample proof π $← PROOF . Add (el0, Γ, elΓ , π) to
prf and output (sid, el0, Γ, elΓ , π) to Po.

Solve: Upon receiving (Solve, sid, el0, Γ ) from Pi ∈ P where el0 ∈ ST , append
(Pi, sid, el0, Γ, el0, 0) to L and send (Solve, sid, el0, Γ ) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Tick:
– For each (Pi, sid, el0, Γ, elc, c) ∈ L, if fi = 1 proceed as follows:

1. If there is no elc+1 such that (elc, elc+1) ∈ steps then sample elc+1
$← ST ,

and append (elc, elc+1) to steps.

2. Output (elc, elc+1) to S and update (Pi, sid, el0, Γ, elc, c) by setting c =
c+ 1.

3. If c ≥ ϵΓ and (el0, Γ, elΓ , π) ∈ prf, output
(GetEsPf, el0, Γ, elc, elc+1, . . . , elΓ , π) to S.

4. Else If c ≥ ϵΓ but (el0, Γ, elΓ , π) /∈ prf, then for j ∈ {c + 1, . . . , Γ}
sample state elj

$← ST and add (elj−1, elj) to steps. Also sample
proof π

$← PROOF , and add (el0, Γ, elΓ , π) to prf. Finally, output
(GetEsPf, el0, Γ, elc, elc+1, . . . , elΓ , π) to S.

5. If c = Γ , output (GetPf, sid, el0, Γ, elΓ , π) to Pi, and remove
(Pi, sid, el0, Γ, elΓ , Γ ) from L.

– For each (Pi, sid, c, elI , Γ, elO, π) ∈ Qv, if fi = 1 proceed as follows:
1. If c = 0: remove (Pi, sid, 0, elI , Γ, elO, π) from Qv and set b =

1 if (elI , Γ, elO, π) ∈ prf, otherwise set b = 0, and output
(Verified, sid, elI , Γ, elO, π, b) to Pi.

2. Else, if c > 0: update (Pi, sid, c, elI , Γ, elO, π) by setting c = c− 1.
Set flag fi = 0 for i = 1, . . . , n.

Verify: Upon receiving (Verify, sid, elI , Γ, elO, π) from Pi ∈ P where π ∈
PROOF , add (Pi, sid, g(Γ ), elI , Γ, elO, π) to Qv.

Fig. 2: Ticked Functionality Fpsc for trapdoor provable sequential computations.

2.3 Multi-Party Message Delivery

Ticked Authenticated Broadcast In Fig. 3 we describe a ticked functional-
ity FΓ,∆

BC,delay for delayed authenticated simultaneous broadcast. FΓ,∆
BC,delay allows

each party Pi ∈ P to broadcast one message mi in such a way that each mi
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Functionality FΓ,∆
BC,delay

The ticked functionality FΓ,∆
BC,delay is parameterized by maximal input desynchroniza-

tion Γ , parties P = {P1, . . . ,Pn} and adversary S. S may corrupt a strict subset
I ⊂ P. The functionality uses the identifier ssid to distinguish different instances
per sid. FΓ,∆

BC,delay for each ssid has internal states stssid, donessid that are initially ⊥.

Init: In the beginning of the execution, FΓ,∆
BC,delay waits for input (Delay,∆) from S.

Upon receiving (Delay,∆) from S where ∆ ∈ N and ∆ ≥ Γ , FΓ,∆
BC,delay proceeds to

the next steps using ∆ as its internal (unknown to honest parties) delay parameter.

Send: Upon receiving an input (Send, sid, ssid,mi) from an honest party Pi:
1. If stssid = ⊥ then set stssid = Γ . If either stssid = ⊤ or Pi sent (Send, sid, ssid, ·)

before then go to Total Breakdown.

2. For all Pj ∈ P, add (∆, sid,Pj , (Pi,mi, ssid)) to Q.

3. If all honest parties sent (Send, sid, ssid, ·) then set donessid = ⊤.

4. Send (Send, sid, ssid,Pi,mi) to S.

Total Breakdown: Doing a total breakdown means the ideal functionality from
now on relays all inputs to S, otherwise ignores the input and lets S determine all
outputs from then on. The ideal functionality becomes a proxy for S.

Tick:
1. If stssid = a for a ≥ 0:

(a) If a > 0 then set stssid = a− 1.

(b) If a = 0 and if there is Pi ∈ P \ I that did not send (Send, sid, ssid, ·) then
go to Total Breakdown, otherwise set stssid = ⊤.

(c) If donessid = ⊤ then wait for mi from S for each Pi ∈ I and, if S sends it,
then add (a, sid,Pj , (Pi,mi, ssid)) to Q for all Pj ∈ P, and set stssid = ⊤.

2. Remove each (0, sid,Pi,M) from Q and add (sid,Pi,M) to M.

3. Replace each (cnt, sid,Pi,M) in Q with (cnt− 1, sid,Pi,M).
Upon receiving (Schedule, sid, ssid,D) from S:
– If (Deliver, sid, ssid) ∈ D and donessid = ⊤ then, for all Pi ∈ P, remove

(cnt, sid,Pj , (Pi,mi, ssid)) from Q and add (sid,Pj , (Pi,mi, ssid)) to M.

Fig. 3: Ticked ideal functionality FΓ,∆
BC,delay for synchronized authenticated broad-

cast with maximal message delay ∆.

is delivered to all parties at the same tick (although different messages mi,mj

may be delivered at different ticks). This functionality guarantees messages to
be delivered at most ∆ ticks after they were input. Moreover, it requires that all
parties Pi ∈ P must provide inputs mi within a period of Γ ticks, modeling a
start synchronization requirement. If this loose start synchronization condition
is not fulfilled, the functionality no longer provides any guarantees, allowing
the adversary to freely manipulate message delivery (specified in Total Break-
down).
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In comparison to the two-party secure channel functionality F∆
smt,delay of [5],

our broadcast functionality FΓ,∆
BC,delay uses a scheduling-based approach and ex-

plicitly captures start synchronization requirements. Using scheduling makes for-
malizing the multiparty case much easier while requiring start synchronization
allows us to realize the functionality as discussed below. This also means that
FΓ,∆

BC,delay is not a simple generalization of the ticked channels of [5].

We briefly discuss how to implement FΓ,Γ,∆
BC,delay. We could start from a syn-

chronous broadcast protocol like [25] or the one in [24] with early stopping. These
protocols require all parties to start in the same round and that they terminate
within some known upper bound. For t < n/3 corruptions we could use [20] to
first synchronize the parties before running such a broadcast. If t ≥ n/3 we can
get rid of the requirement that they start in the same round using the round
stretching techniques of [38]. This will maintain that the parties terminate within
some known upper bound. Then use n instances of such a broadcast channel to
let each party broadcast a value. When starting the protocols at time t a party
Pi knows that all protocol instances terminate before time t+∆ so it can wait
until time t + ∆ and collect the set of outputs. Notice that by doing so the
original desynchronization Γ is maintained. When using protocols with early
stopping [24], the parties might terminate down to one round apart in time. But
this will be one of the stretched rounds, so it will increase the original desyn-
chronization by a constant factor.

We stress that other broadcast channels than the one in FΓ,∆
BC,delay may also be

modeled using [5], although these may not be applicable to instantiate OIA-MPC
as we do in Section 6.

Ticked Public Ledger In order to define a ledger functionality FLedger, we
adapt ideas from Badertscher et al. [3]. The ledger functionality FLedger is pre-
sented in Fig. 4; also we describe it in more detail in the Supplementary Material
B.

The original ledger functionality of Badertscher et al. [3] keeps track of many
relevant times and interacts with a global clock in order to take actions at the
appropriate time. Our ledger functionality FLedger, on the other hand, only keeps
track of a few counters. The counters are updated during the ticks, and the
appropriate actions are done if some of them reach zero. We also enforce liveness
and chain quality properties, and our ledger functionality can be realized by the
same protocols as [3].
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Functionality FLedger

FLedger is parameterized by the algorithms Validate,ExtendPolicy and the param-
eters slackWindow, qualityWindow, delaySync,maxTXDelay,maxEmpty ∈ N. It man-
ages variables state, nextBlock, buffer, emptyBlocks, which are initially set to ⊥,⊥,
∅, and maxEmpty respectively. The functionality maintains a list recentQuality that
keeps track of the quality (i.e., generated using the honest procedures or not) of
the last qualityWindow blocks proposed by S that were used to extend the state
state. The functionality maintains the set of registered parties P, and the subsets of
synchronized honest parties H and of de-synchronized honest parties D. Each party
Pi has a current-state view statei that is initially set to ⊥. Whenever an honest
party Pi is registered during the execution, it is added to the subset D, an entry
(Pi, delaySync) is added to the delayed entry table DE and the de-synchronized state
state′i is set to ⊥.

Tick: 1. For each entry (Pi, cnt) ∈ DE, if cnt = 1, set H ← H∪ Pi,D ← D \ Pi

and remove (Pi, cnt) from DE; otherwise decrease the counter value cnt by 1.

2. For each entry transaction BTX = (tx, txid,Pi, cnt) ∈ buffer, decrease the
counter value cnt by 1. Remove from buffer all transaction with counter value
equal 0, and create a list mandatoryInclusion with them.

3. Set state ← ExtendPolicy(state, nextBlock, buffer,mandatoryInclusion,
recentQuality, emptyBlocks). If nextBlock = (hFlag, listTX) was used to
extend state, then update the list recentQuality using hFlag. If a block was
added to state, set emptyBlocks← maxEmpty; else decrease emptyBlocks by 1.

4. Remove from buffer all transactions that were added into state. Set nextBlock←
⊥. For each entry transaction BTX ∈ buffer, if Validate(BTX, state, buffer) = 0,
then remove BTX from buffer.

Read: Upon receiving (Read, sid) from Pi ∈ P: if Pi ∈ D, return (Read, sid, state′i);
otherwise return (Read, sid, statei).

Read Buffer: Upon receiving (ReadBuffer, sid) from S, return (ReadBuffer, sid,
buffer).

Submit a Transaction: Upon receiving (Submit, sid, tx) from Pi, choose a
unique transaction ID txid and set BTX ← (tx, txid,Pi,maxTXDelay). If
Validate(BTX, state, buffer) = 1, then set buffer ← buffer ∪ {BTX}. Send
(Submit, sid,BTX) to S.

Propose a Block: Upon receiving (Propose, sid, hFlag, (txid1, . . . , txidℓ)) from S,
create the list of transactions listTX by concatenating the eventual transactions
contained in buffer that have transaction IDs txid1, . . . , txidℓ. Then set nextBlock←
(hFlag, listTX) and return (Propose, sid, ok) to S.

Set State-Slackness: Upon receiving (SetSlack, sid,Pi, t) from S, proceed as fol-
lows: if t ≥ |state| − slackWindow and t > |statei|, then set statei to contain the
first t blocks of state and return (SetSlack, sid, ok); otherwise, set statei ← state and
return (SetSlack, sid, fail).

Set State of De-synchronized Parties: Upon receiving (DeSyncState, sid,Pi, s)
from S for Pi ∈ D, set state′i ← s and return (DeSyncState, sid, ok).

Fig. 4: Ledger Functionality FLedger.
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3 Publicly Verifiable Time-Lock Puzzles

In this section, we describe an ideal functionality FTLP for publicly verifiable
TLPs. Intuitively, a publicly verifiable TLP allows a prover who performs all
computational steps needed for solving a PV- TLP to later convince a verifier
that the PV-TLP contained a certain message or that it was invalid. The verifier
only needs constant time to verify this claim. The ideal functionality FTLP as
presented in Figure 5 models exactly that behavior: FTLP has an extra interface
for any verifier to check whether a certain solution to a given PV-TLP is cor-
rect. Moreover, FTLP allows the adversary to obtain the message from a PV-TLP
with Γ steps in just ϵΓ steps for 0 < ϵ ≤ 1, modeling the slack between concrete
computational complexities for honest parties and for the adversary is sequential
computation assumptions.

Functionality FTLP allows the owner to create a new TLP containing message
m to be solved in Γ steps by activating it with (CreatePuzzle, sid, Γ,m). Other
parties can request the solution of a TLP puz generated by the owner of FTLP

by activating it with message (Solve, sid, puz). After every tick when a party ac-
tivates FTLP with message (AdvanceState, sid), one step of this party’s previosly
requested puzzle solutions is evaluated. When ϵΓ steps have been computed,
FTLP leaks message m contained in the puzzle puz to the adversary S. When all
Γ steps of a puzzle solution requested by a party are evaluated, FTLP outputs
m and a proof π that m was indeed contained in puz to that party. Finally, a
party who has a proof π that a message m was contained in puz can verify this
proof by activating FTLP with message (Verify, sid, puz,m, π).

In Supplementary Material C, we show that the TLP from [5] realizes a
slightly weaker version of FTLP and the Protocol πtlp presented in Figure 6 realizes
FTLP (i.e. proving Theorem 1). Protocol πtlp is constructed from a standalone
trapdoor VDF modeled by Fpsc. A puzzle owner Po uses the trapdoor to compute
the VDF on a random input st0 for the number of steps Γ required by the PV-
TLP, obtaining the corresponding output stΓ and proof π. The owner then
computes tag1 = H1(st0, Γ, stΓ , π) ⊕ m, tag2 = H2(st0, Γ, stΓ , π, tag1,m)
and tag = (tag1, tag2), where m is the message in the puzzle, using random
oracles H1 and H2. The final puzzle is puz = (st0, Γ, tag). A solver computes
Γ steps of the trapdoor VDF with input st0 to get a proof of PV-TLP solution
π′ = (stΓ , π), which can be used to check the consistency of tag and retrieve
m. If tag is not consistent, π′ can also be used to verify this fact.

Theorem 1. Protocol πtlp (G)UC-realizes FTLP in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary. For every static
adversary A and environment Z, there exists a simulator S s.t. Z cannot distin-
guish πtlp composed with Gticker,GrpoRO,Fpsc and A from S composed with FTLP.
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Functionality FTLP

FTLP is parameterized by a computational security parameter τ , a message space
{0, 1}τ , a state space ST , a tag space T AG, a proof space PROOF , a slack pa-
rameter 0 < ϵ ≤ 1 and a function g : {0, 1}⋆ 7→ N (determining how many ticks it
takes to verify a proof). FTLP interacts with a set of parties P = {P1, . . . ,Pn}, an
owner Po ∈ P and an adversary S. FTLP maintains flags fi for i = 1, . . . , n that
are initially set to 0 and initially empty lists steps (honest state transitions), omsg
(output messages and proofs), Qv (proofs being verified), L (puzzles being solved).
Create puzzle: Upon receiving the first message (CreatePuzzle, sid, Γ,m) from Po

where Γ ∈ N+ and m ∈ {0, 1}τ , proceed as follows:
1. If Po is honest, sample tag

$← T AG, st0
$← ST , and proof π $← PROOF . If

Po is corrupted, let S provide values tag, st0, and the proof π.

2. If (tag, st0, π) /∈ T AG × ST × PROOF or there exists (st′0, Γ
′, tag′,m′, π) ∈

omsg then FTLP halts. Otherwise, append (puz = (st0, Γ, tag),m, π) to omsg,
and output (CreatedPuzzle, sid, puz, π) to Po and (CreatedPuzzle, sid, puz) to S.

Solve: Upon receiving (Solve, sid, puz = (st0, Γ, tag)) from Pi ∈ P, add
(Pi, sid, puz, st0, 0) to L and send (Solve, sid, puz) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Tick: – For all (Pi, sid, puz = (st0, Γ, tag), stc, c) ∈ L, if fi = 1 proceed as follows:
1. If there is no stc+1 such that (stc, stc+1) ∈ steps:
(a) If Po is honest, sample stc+1

$← ST , and append (stc, stc+1) to steps.

(b) If Po is corrupted, send (sid, adv, stc) to S and wait for (sid, adv, stc, stc+1).
If stc+1 /∈ ST then halt. Otherwise, append (stc, stc+1) to steps.

2. Output (stc, stc+1) to S and update (Pi, sid, puz, stc, c) ∈ L by setting c = c+1.

3. If c ≥ ϵΓ and there is no (stc, stc+1), (stc+1, stc+2), . . . , (stΓ−1, stΓ ) ∈ steps:

(a) If Po is honest, sample stj
$← ST for j = c + 1, c + 2, . . . , Γ , and output

(stj−1, stj) to S and append (stj−1, stj) to steps. If (st0, Γ, tag,m, π) /∈
omsg, set m = ⊥, sample π $← PROOF and append (st0, Γ, tag,⊥, π) ∈ omsg.
Finally, output (Solved, sid, puz,m, π) to S.

(b) Else (if Po is corrupted), send (GetSts, sid, puz) to S, wait for S to answer
with (GetSts, sid, puz, stc, stc+1, . . . , stΓ ). For j = c+1, . . . , Γ , if stj /∈ ST or
(stj−1, st

′
j) ∈ steps, then FTLP halts, else, append (stj−1, stj) to steps.

4. Else If c ≥ ϵΓ and there exist (stc, stc+1), . . . , (stΓ−1, stΓ ) ∈ steps, or if (puz′ =
(st0, Γ, tag

′),m′, π′) ∈ omsg s.t. tag′ ̸= tag (i.e. a puzzle with same st0, Γ has
been solved) or Po is corrupted and (puz,m, π) /∈ omsg, send (GetMsg, sid, puz)
to S, wait for S to answer with (GetMsg, sid, puz,m, π). If π /∈ PROOF or
(st′0, Γ

′, tag′,m′, π) ∈ omsg, FTLP halts, else, append (st0, Γ, tag,m, π) to omsg.

5. If c = Γ , remove (Pi, sid, puz, stc, c) ∈ L and send (Solved, sid, puz,m, π) to Pi.

– For each (Pi, sid, c, st, Γ, tag,m, π) ∈ Qv, if fi = 1 proceed as follows: 1. If c = 0,
remove (Pi, sid, 0, st, Γ, tag,m, π) from Qv, set b = 1 if (st, Γ, tag,m, π) ∈ omsg,
otherwise set b = 0 and output (Verified, sid, puz = (st, Γ, tag),m, π, b) to Pi;
2. Else, if c > 0: update (Pi, sid, c, st, Γ, tag,m, π) ∈ Qv by setting c = c− 1.

Set fi = 0 for i = 1, . . . , n.

Public Verification: Upon receiving (Verify, sid, puz = (st, Γ, tag),m, π) from a
party Pi ∈ P, add (Pi, sid, g(Γ ), st, Γ, tag,m, π) to Qv.

Fig. 5: Ticked Functionality FTLP for publicly verifiable time-lock puzzles.
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Protocol πtlp

Protocol πtlp is parameterized by a security parameter τ and is executed by a set
of parties P = {P1, . . . ,Pn} and an owner Po ∈ P interacting with functionalities
Fpsc (whose owner is Po, state space is ST , and proof space is PROOF), GrpoRO1

(an instance of GrpoRO with output space {0, 1}τ ), and GrpoRO2 (an instance of GrpoRO
with output space {0, 1}τ ). All parties locally keep initially empty lists L and Qv.

Create Puzzle: Upon receiving input (CreatePuzzle, sid, Γ,m) for m ∈ {0, 1}τ , Po

proceeds as follows:
1. Sample el0

$← ST and send (TdSolve, sid, el0, Γ ) to Fpsc, receiving
(sid, el0, Γ, elΓ , π), and set Π = (elΓ , π).

2. Send (Hash-Query, (el0|Γ |elΓ |π)) to GrpoRO1, receiving (Hash-Confirm, h1),
and set tag1 = h1⊕m. Send (Hash-Query, (el0|Γ |elΓ |π|tag1|m)) to GrpoRO2,
receiving (Hash-Confirm, h2), set tag2 = h2 and tag = (tag1, tag2).

3. Set puz = (el0, Γ, tag) and output (CreatedPuzzle, sid, puz, Π).

Solve: Upon receiving input (Solve, sid, puz), Pi parses puz = (el0, Γ, tag), sends
(Solve, sid, el0, Γ ) to Fpsc, and adds (sid, puz) to L.

Advance State: Upon receiving input (AdvanceState, sid), Pi sends
(AdvanceState, sid) to Fpsc.

Tick: Pi processes puzzles being solved or verified as follows:
– Upon receiving (GetPf, sid, el0, Γ, elΓ , π) from Fpsc s.t. there is (sid, puz =

(el0, Γ, tag)) ∈ L, parse tag = (tag1, tag2) and do:
1. Check tag by sending (Hash-Query, (el0|Γ |elΓ |π)) to GrpoRO1, re-

ceiving (Hash-Confirm, h1), computing m′ = h1 ⊕ tag1 and
sending (Hash-Query, (el0|Γ |elΓ |π|tag1|m

′)) to GrpoRO2 to receive
(Hash-Confirm, h2).

2. If tag2 = h2, set m = m′, otherwise set m = ⊥. Set Π = (elΓ , π), output
(Solved, sid, puz,m,Π) and remove (sid, puz) from L.

– Upon receiving (Verified, sid, el0, Γ, elΓ , π, b) from Fpsc s.t. there is
(Pi, sid, puz = (el0, Γ, tag),m,Π = (elΓ , π)) ∈ Qv, parse tag = (tag1, tag2)
and do:
1. Check tag by sending (Hash-Query, (el0|Γ |elΓ |π)) to GrpoRO1, re-

ceiving (Hash-Confirm, h1), computing m′ = h1 ⊕ tag1 and
sending (Hash-Query, (el0|Γ |elΓ |π|tag1|m

′)) to GrpoRO2 to receive
(Hash-Confirm, h2).

2. If b = 0 or m ̸= m′ or h2 ̸= tag2, set b′ = 0, otherwise set b′ = 1. Output
(Verified, sid, puz,m,Π, b′) and remove (Pi, sid, puz,m,Π) from Qv.

Public Verification: Upon receiving input (Verify, sid, puz,m,Π), Pi parses
puz = (el0, Γ, tag), Π = (elΓ , π), sends (Verify, sid, el0, Γ, elΓ , π) to Fpsc, and adds
(Pi, sid, puz,m,Π) to Qv.

Fig. 6: Protocol πtlp realizing publicly verifiable time-lock puzzle functionality
FTLP in the Fpsc,GrpoRO-hybrid model.
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4 Universally Composable Verifiable Delay Functions

Functionality FVDF

FVDF is parameterized by a computational security parameter τ , a state space ST ,
a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and a function g : {0, 1}⋆ 7→ N
(determining how many ticks it takes to verify a proof). FVDF interacts with a set
of parties P = {P1, . . . ,Pn}, and an adversary S. FVDF maintains flags fi for i =
1, . . . , n that are initially set to 0 and initially empty lists steps (state transitions),
Qv (proofs being verified), L (proofs being computed), and OUT (outputs).

Solve: Upon receiving (Solve, sid, in, Γ ) from Pi ∈ P where in ∈ ST and Γ ∈ N,
add (Pi, sid, in, Γ, in, 0) to L and send (Solve, sid, in, Γ ) to S.

Advance State: Upon receiving (AdvanceState, sid) from Pi ∈ P, set fi = 1.

Tick: – For each (Pi, sid, in, Γ, stc, c) ∈ L, if fi = 1 proceed as follows:
1. If there is no stc+1 such that (stc, stc+1) ∈ steps, send (sid, adv, stc) to S and

wait for (sid, adv, stc, stc+1). If stc+1 /∈ ST or (stc, st
′
c+1) ∈ steps for some

st′c+1 ∈ ST then halt. Otherwise, append (stc, stc+1) to steps. Finally update
(Pi, sid, in, Γ, stc, c) ∈ L by setting c = c+ 1.

2. If c ≥ ϵΓ and there is no (stc, stc+1), (stc+1, stc+2), . . . , (stΓ−1, out) ∈ steps,
sample out

$← ST , send (GetStsPf, sid, in, Γ, stc, out) to S, wait for S to answer
with (GetStsPf, sid, stc+1, . . . , stΓ−1, Π). If stj /∈ ST or (stj−1, st

′
j) ∈ steps, for

j ∈ {c+1, . . . , Γ −1}, or Π /∈ PROOF , or there exists (in′, Γ ′, out′, Π) ∈ OUT,
FVDF halts. Otherwise, append (stj−1, stj) to steps, for j ∈ {c+ 1, . . . , Γ − 1},
append (stΓ−1, out) to steps and (in, Γ, out,Π) to OUT.

3. If c = Γ , remove (Pi, sid, in, Γ, out, Γ ) ∈ L, send (Proof, sid, in, Γ, out,Π) to Pi.

– For each (Pi, sid, c, in, Γ, out,Π) ∈ Qv, if fi = 1 proceed as follows: 1. If c = 0,
remove (Pi, sid, 0, in, Γ, out,Π) from Qv, set b = 1 if (in, Γ, out,Π) ∈ OUT, oth-
erwise set b = 0 and output (Verified, sid, in, Γ, out,Π, b) to Pi; 2. If c > 0, update
(Pi, sid, c, in, Γ, out,Π) ∈ Qv by setting c = c− 1.

Set fi = 0 for i = 1, . . . , n.

Verification: Upon receiving (Verify, sid, in, Γ, out,Π) from a party Pi ∈ P, add
(Pi, sid, g(Γ ), in, Γ, out,Π) to Qv.

Fig. 7: Ticked Functionality FVDF for Verifiable Delay Functions.

We present a generic UC construction of VDFs as modeled in functionality
FVDF (Figure 7) from a generic verifiable sequential computation scheme mod-
eled in functionality Fpsc (Figure 2) and a global random oracle GrpoRO. Our
construction is presented in protocol πVDF (Figure 8).

Verifiable Delay Functions We model the UC VDF in Functionality FVDF.
It ensures that each computational step of the VDF evaluation takes at least
a fixed amount of time (one tick) and guarantees that the output obtained
after a number of steps is uniformly random and unpredictable even to the
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adversary. However, it allows that the adversary obtains the output of evaluating
a VDF for Γ steps in only ϵΓ steps for 0 < ϵ ≤ 1, modeling the slack between
concrete computational complexities for honest parties and for the adversary
in sequential computation assumptions. Naturally, FVDF also provides a proof
that each output has been correctly obtained by computing a certain number of
steps on a given input. As it is the case with Fpsc, the time required to verify
such proofs is variable and modeled as a function g(Γ ). Moreover, FVDF allows
the ideal adversary to choose the representation of intermediate computational
steps involved in evaluating the VDF, even though the output is guaranteed to
be random. Another particularity of FVDF used in the proof is a leakage of each
evaluation performed by an honest party at the tick when the result is returned
to the original caller. This leakage neither affects the soundness of the VDF nor
the randomness of its output, but is necessary for simulation.

Functionality FVDF allows for a party to start evaluating the VDF for Γ steps
on an input in by activating it with message (Solve, sid, in, Γ ). After this initial
request, the party needs to activate FVDF with message (AdvanceState, sid) on Γ
different ticks in order to receive the result of the VDF evaluation. This is taken
care of by the Tick interface of FVDF, whose instructions are executed after every
new tick, causing FVDF to iterate over every pending VDF evaluation request
from parties who have activated FVDF in the previous tick. Each evaluation is
performed by asking the adversary for a representation of the next intermediate
state stc+1. When ϵΓ steps have been evaluated, FVDF leaks the output out to
the adversary S. When all Γ steps have been evaluated by FVDF, it outputs out
and a proof Π that this output was obtained from in after Γ steps. Moreover,
parties who have an input in and a potential proof Π that out was obtained as
output after evaluating the VDF for Γ steps on this input can activate FVDF

with message (Verify, sid, in, Γ, out,Π) to verify the proof. Once a proof verifi-
cation request has been made, the party needs to activate FVDF with message
(AdvanceState, sid) on g(Γ ) different ticks to receive the result of the verification.

Construction Our protocol πVDF realizing FVDF in the Fpsc,GrpoRO-hybrid
model is described in Figure 8. We use an instance of Fpsc where Po =⊥, mean-
ing that no party in P has access to the trapdoor evaluation interface. Departing
from Fpsc,GrpoRO this protocol works by letting the state el1 be the VDF input
in. Once all the Γ solution steps are computed and the final state and proof
elΓ , π are obtained, the output is defined as out = H(sid|Γ |elΓ |π) where H is
an instance of GrpoRO and the VDF proof is defined as Π = (elΓ , π). Verification
of an output out obtained from input in with proof Π consists of again setting
the initial state el′1 = in and the output out′ = H(sid|Γ |elΓ |π), then checking
that out = out′ and verifying with Fpsc that π is valid with respect to Γ, el′1, elΓ .
The security of Protocol πVDF is formally stated in Theorem 2, which is proven
in Supplementary Material D.

Theorem 2. Protocol πVDF (G)UC-realizes FVDF in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary: there exists a sim-
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Protocol πVDF

Protocol πVDF is parameterized by a security parameter τ and is executed by a set of
parties P = {P1, . . . ,Pn} interacting with functionalities Gticker,GrpoRO,Fpsc (whose
state space is ST , proof space is PROOF and Po =⊥, i.e. no Pi ∈ P can access
the trapdoor solve interface). All parties locally keep initially empty lists L and Qv.

Solve: Upon receiving input (Solve, sid, in, Γ ) where in ∈ ST and Γ ∈ N, Pi sends
(Solve, sid, in, Γ ) to Fpsc, and adds (sid, in, Γ ) to L.

Advance State: Upon receiving input (AdvanceState, sid), Pi sends
(AdvanceState, sid) to Fpsc.

Tick: Pi processes proofs being computed or verified as follows:
1. Upon receiving (GetPf, sid, in, Γ, elΓ , π) from Fpsc s.t. there is (sid, in, Γ ) ∈ L:

(a) Send (Hash-Query, (in|Γ |elΓ |π)) to GrpoRO, getting (Hash-Confirm, h).

(b) Set out = h and Π = (elΓ , π); output (Proof, sid, in, Γ, out,Π) and remove
(sid, in, Γ ) from L.

2. Upon receiving (Verified, sid, in, Γ, elΓ , π, b) from Fpsc s.t. there is
(Pi, sid, in, Γ, out,Π = (elΓ , π)) ∈ Qv:
(a) Send (Hash-Query, (in|Γ |elΓ |π)) to GrpoRO, getting (Hash-Confirm, h).

(b) Set b′ = 0 if b = 0 or h ̸= out, otherwise set b′ = 1. Output
(Verified, sid, in, Γ, out,Π, b′) and remove (Pi, sid, in, Γ, out,Π) from Qv.

Verification: Upon receiving input (Verify, sid, in, Γ, out,Π), Pi parses Π =
(elΓ , π), and sends (Verify, sid, in, Γ, elΓ , π) to Fpsc, and adds (Pi, sid, in, Γ, out,Π)
to Qv.

Fig. 8: Protocol πVDF realizing Verifiable Delay Functions functionality FVDF in
the Fpsc,GrpoRO-hybrid model.

ulator S such that for every static adversary A no environment Z can distinguish
πVDF composed with GrpoRO,Fpsc and A from S composed with FVDF.

5 UC-secure Semi-Synchronous Randomness Beacons

We model a randomness beacon as a publicly verifiable coin tossing functionality
FRB

∆TLP−RB presented in Figure 9. Even though this functionality does not peri-
odically produce new random values as in some notions of randomness beacons,
it can be periodically queried by the parties when they need new randomness.

5.1 Randomness Beacons from TLPs

In order to construct a UC-secure randomness beacon from TLPs and a semi-
synchronous broadcast channel FΓ,∆

BC,delay (with finite but unknown delay ∆), we
depart from a simple commit-then-open protocol for n parties with honest major-
ity where commitments are substituted by publicly verifiable TLPs as captured
in FTLP. Such a protocol involves each party Pi posting a TLP containing a
random value ri, waiting for a set of at least 1 + n/2 TLPs to be received and
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Functionality FRB
∆TLP−RB

FRB
∆TLP−RB is parameterized by delay ∆TLP−RB and interacts with parties P =

{P1, . . . ,Pn}, verifiers V and an adversary S through the following interfaces:

Toss: Upon receiving (Toss, sid) from all honest parties in P, sample x
$← {0, 1}τ

and send (Tossed, sid, x) to all parties in P via Q with delay ∆TLP−RB.

Verify: Upon receiving (Verify, sid, x) from Vj ∈ V, if (Tossed, sid, x) has been
sent to all parties in P set f = 1, else set f = 0. Send (Verify, sid, x, f) to Vj .
Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

Fig. 9: Ticked Functionality FRB
∆TLP−RB for Randomness Beacons.

then opening their TLPs, which can be publicly verified. The output is defined
as r = rj1⊕· · ·⊕rj1+n/2

, where values rj are valid TLP openings. If an adversary
tries to bias the output by refusing to reveal the opening of its TLP, the honest
parties can recover by solving the TLP themselves.

To ensure the adversary cannot bias/abort this protocol, we must ensure two
conditions: 1. At least 1 + n/2 TLPs are broadcast and at least 1 is generated
by an honest party (i.e. it contains an uniformly random ri); 2. The adversary
must broadcast its TLPs before the honest TLPs open, so it does not learn any
of the honest parties’ ri and cannot choose its own ris in any way that biases the
output. While condition 1 is trivially guaranteed by honest majority, we ensure
condition 2 by dynamically adjusting the number of steps δ needed to solve the
TLPs without prior knowledge of the maximum broadcast delay ∆. Every honest
party checks that at least 1+n/2 TLPs have been received from distinct parties
before a timeout of ϵδ ticks (i.e. the amount of ticks needed for the adversary
to solve honest party TLPs) counted from the moment they broadcast their
own TLPs. If this is not the case, the honest parties increase δ and repeat the
protocol from the beginning until they receive at least 1+n/2 TLPs from distinct
parties before the timeout. In the optimistic scenario where all parties follow the
protocol (i.e. revealing TLP openings) and where the protocol is not repeated,
this protocol terminates as fast as all publicly verifiable openings to the TLPs
are revealed with computational and broadcast complexities of O(n). Otherwise,
the honest parties only have to solve the TLPs provided by corrupted parties
(who do not post a valid opening after the commitment phase).

We design and prove security of our protocol with an honest majority in
the semi-synchronous model where FΓ,∆

BC,delay has a finite but unknown maximum
delay ∆. However, if we were in a synchronous setting with a known broadcast
delay ∆, we could achieve security with a dishonest majority by proceeding to
the Opening Phase after a delay of δ > ∆, since there would be a guarantee
that all honest party TLPs have been received.

We describe protocol πTLP−RB in Figure 10 and state its security in Theo-
rem 3, which is proven in Supplementary Material F.
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Protocol πTLP−RB

The protocol is executed by parties P = {P1, . . . ,Pn} out of which t < n/2 are
corrupted and verifiers V, who interact with FΓ,∆

BC,delay and instances F i
TLP of FTLP

with slack parameter ϵ for which Pi acts as Po. The initial delay parameter is δ.
Toss: On input (Toss, sid), all parties in P proceed as follows:
1. Commitment Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) Sample ri

$← {0, 1}τ and send (CreatePuzzle, sid, δ, ri) to F i
TLP, receiving

(CreatedPuzzle, sid, puzi, πi) in response.
(b) Send (Send, sid, ssid, puzi) to FΓ,∆

BC,delay and send (activated) to Gticker.
(c) Wait for Pj ∈ P to broadcast their TLPs within ϵδ ticks (i.e. before the ad-

versary solves puzi) by sending (Solve, sid, puz′ = (st′, ϵδ, tag′)) to FTLP (i.e.
solving a dummy TLP with ϵδ steps to count the ticks) and proceeding as
follows when activated: i. Send (Fetch, sid) to FΓ,∆

BC,delay, receiving (Fetch, sid, L);
ii. Check that there exist 1 + n/2 messages (Pi, sid, (Pj , puzj , ssid)) in L from
different Pj and, if yes, let C = {Pj}1≤j≤1+n/2 and proceed to the Open-
ing Phase, else, send (activated) to Gticker; iii. If (Solved, sid, puz′,⊥, π′) is
received from FTLP, ϵδ ticks have passed, so increment δ and go to Step 1(a).

2. Opening Phase: All parties Pi ∈ C proceed as follows:
(a) Send (Send, sid, ssid′, ri, πi) to FΓ,∆

BC,delay.
(b) Wait δ ticks for all Pj ∈ C to broadcast their TLP solutions by sending

(Solve, sid, puzi) to FTLP and only proceeding to Step 2(c) when (Solved,
sid, puzi, ri, πi) is received from FTLP, sending (activated) to Gticker otherwise;

(c) Send (Fetch, sid) to FΓ,∆
BC,delay, receiving (Fetch, sid, L). Check that every message

of the form (Pi, sid, (Pj , rj , πj , ssid
′)) from Pj ∈ C is a valid solution to puzj by

sending (Verify, sid, puzj , rj , πj) to Fj
TLP and checking that the answer received

later is (Verified, sid, puzj , rj , πj , 1). Send (activated) to Gticker. If this check
passes for all puzj from Pj ∈ C, compute r =

⊕
ri∈V ri, output (Tossed,

sid, r) and skip Recovery Phase. Otherwise, proceed.
3. Recovery Phase: For i ∈ {1, . . . , n}, party Pi proceeds as follows:
(a) For each j such that Pj ∈ C did not send a valid solution of puzj , send

(Solve, sid, puzj) to FTLP. When activated, if (Solved, sid, puzj , rj , πj) is received
from FTLP, send (Send, sid, ssid′′, (rj , πj)) to FΓ,∆

BC,delay and (activated) to Gticker.
(b) Let G be the set of all solutions rj ̸=⊥ of puzj such that Pj ∈ C (i.e. G is the set

of solutions rj from valid TLPs posted in the commitment phase). Compute
r =

⊕
rj∈G rj , output (Tossed, sid, r) and send (activated) to Gticker.

4. Verify: On input (Verify, sid, x), Vj ∈ V proceeds as follows:
(a) Send (Fetch, sid) to FΓ,∆

BC,delay, receiving (Fetch, sid, L) and determining C by
looking for the first 1 + n/2 messages of the form (Pi, sid, (Pj , puzj , ssid));

(b) Check that each message of the form (Pi, sid, (Ph, rj , πj , ssid
′)) in L for Pj ∈ C

and Ph ∈ P (i.e. solutions to a puzzle puzj from a party Pj ∈ C sent by Pj

or by any party Ph ∈ P who solved an unopened puzj in the recovery phase)
contains a valid solution to puzj by sending (Verify, sid, puzj , rj , πj) to Fj

TLP

and checking that the answer is (Verified, sid, puzj , rj , πj , 1);
(c) Let G be the set of all rj such that Pj ∈ C, rj is a valid solution of puzj and

rj ̸=⊥. If x =
⊕

rj∈G rj , set f = 1, else set f = 0, output (Verify, sid, x, f).

Fig. 10: Protocol πTLP−RB for a randomness beacon based on PV-TLPs.
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Theorem 3. If ∆ is finite (though unknown) and all Pi ∈ P receive inputs
within a delay of δ ticks of each other, Protocol πTLP−RB UC-realizes FRB

∆TLP−RB

in the FTLP,FΓ,∆
BC,delay-hybrid model with computational security against static ad-

versaries corrupting t < n
2 parties in P for ∆TLP−RB = 3(ϵ−1∆+ 1) +

∑ϵ−1∆
i=1 i,

where ϵ is FTLP’s slack parameter. There exists a simulator S such that for every
static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB by A composed with FTLP,FΓ,∆

BC,delay from an ideal exe-
cution with S and FRB

∆TLP−RB .

5.2 Using a Public Ledger FLedger with πTLP−RB

Instead of using a delayed broadcast FΓ,∆
BC,delay, we can instantiate Protocol πTLP−RB

using a public ledger FLedger for communication. In this case, we must parame-
terize the TLPs with a delay δ that is large enough to guarantee that all honest
parties (including desynchronized ones) agree on the set of the first t+ 1 TLPs
that are posted on the ledger before proceeding to the Opening Phase. We
describe an alternative Protocol πTLP−RB−LEDGER that behaves exactly as Proto-
col πTLP−RB but leverages FLedger for communication.

Protocol πTLP−RB−LEDGER: This protocol is exactly the same as πTLP−RB except
for using FLedger for communication instead of FΓ,∆

BC,delay in the following way:

– At every point of πTLP−RB where parties send (Send, sid, ssid,m) to FΓ,∆
BC,delay,

instead they send (Submit, sid,m) to FLedger.
– At every point of πTLP−RB where parties send (Fetch, sid) to FΓ,∆

BC,delay and
check for messages in (Fetch, sid, L), instead they send (Read, sid) to FLedger

and check for messages in (Read, sid, statei).

Theorem 4. If ∆ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-
realizes FRB

∆TLP−RB in the FTLP,FLedger-hybrid model with computational secu-
rity against a static adversary corrupting t < n

2 parties in P for ∆TLP−RB =

3(ϵ−1∆ + 1) +
∑ϵ−1∆

i=1 i, where ϵ is FTLP’s slack parameter. Formally, there ex-
ists a simulator S such that for every static adversary A, and any environment
Z, the environment cannot distinguish an execution of πTLP−RB−LEDGER by A
composed with FTLP,FLedger from an ideal execution with S and FRB

∆TLP−RB .

Proof. This theorem is proven in Supplementary Material F. ⊓⊔

5.3 Randomness Beacons from VDFs

It has been suggested that VDFs can be used to obtain a randomness beacon [11]
via a simple protocol where parties post plaintext values r1, . . . , rn on a public
ledger and then evaluate a VDF on input H(r1| . . . |rn), where H() is a crypto-
graphic hash function, in order to obtain a random output r. However, despite
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being used in industry [43], the security of this protocol was never formally
proven due to the lack of composability guarantees for VDFs. Our work set-
tles this question by formalizing Protocol πVDF−RB and proving Theorem 5 (in
Supplementary Material E), which characterizes the worst case execution time.

Theorem 5. If ∆ = maxTXDelay+ emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (but unknown), Protocol πVDF−RB UC-realizes FRB

∆TLP−RB

in the FVDF,FLedger-hybrid model with computational security against static ad-
versaries corrupting t < n/2 parties for ∆TLP−RB = 2(ϵ−1∆+1)+

∑ϵ−1∆
i=1 i, where

ϵ is FVDF’s slack parameter. There is a simulator S s.t. for every static adversary
A, and any environment Z, Z cannot distinguish an execution of πVDF−RB by A
composed with FVDF,FLedger from an ideal execution with S and FRB

∆TLP−RB .

6 MPC with (Punishable) Output-Independent Abort
In this section we will describe how to construct a protocol that achieves MPC
with output-independent abort. The starting point of this construction will be
MPC with secret-shared output7, which is a strictly weaker primitive, as well as
the broadcast as modeled in FΓ,∆

BC,delay and Commitments with Delayed Openings
F∆,δ,ζ

com . In Appendix G we subsequently show how to financially penalize cheating
behavior in the protocol (POIA-MPC).

Fig. 11: How MPC with (Punishable) Output-Independent Abort is constructed.

6.1 Functionalities for Output-Independent Abort
We begin by mentioning the functionalities that are used in our construction
and which have not appeared in previous work (when modeled with respect to
time). These functionalities are:
7 For the sake of efficiency we focus on an output phase that uses additive secret

sharing. However, the core MPC computation could use any secret sharing scheme,
while only the output phase is restricted to additive secret sharing. This approach
can be generalized by using a generic MPC protocol that computes an additive secret
sharing of the output as part of the evaluated circuit, although at an efficiency cost.
We remark that efficient MPC protocols matching our requirements do exist, e.g. [30].
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1. F∆
mpc,sso (Fig. 12 and Fig. 13) for secure MPC with secret-shared output.

2. F∆,δ,ζ
mpc,oia (Fig. 14 and Fig. 15) for OIA-MPC.

In Supplementary Material G, we also introduce the following functionalities:

1. F∆
ct (Fig. 19) for coin-flipping with abort.

2. F∆,δ,ζ
com (Fig. 25 and Fig. 26) for commitments with delayed non-interactive

openings.
3. Fγ,δ,ζ,g

vcom (Fig. 27 and Fig. 28) for commitments with verifiable delayed non-
interactive openings.

4. Fγ,δ,ζ
SC (Fig. 30 and Fig. 31) which is an abstraction of a smart contract.

5. F∆,γ,δ,ζ
mpc,poia (Fig. 32 and Fig. 33) for POIA-MPC.

Before formally introducing all functionalities and explaining them in more de-
tail, we show how they are related in our construction in Figure 11. As can be
seen there our approach is twofold. First, we will realize F∆,δ,ζ

mpc,oia via the protocol
πmpc,oia relying on FΓ,∆

BC,delay,F∆
ct ,F∆

mpc,sso and F∆,δ,ζ
com . Then, we will show how to

implement F∆,γ,δ,ζ
mpc,poia via the protocol πmpc,poia (a generalization of πmpc,oia) which

uses Fγ,δ,ζ
SC ,F∆

ct ,F∆
mpc,sso as well as Fγ,δ,ζ,g

vcom . As mentioned in Fig. 11, Fγ,δ,ζ,g
vcom and

Fγ,δ,ζ
SC are modifications of F∆,δ,ζ

com and FΓ,∆
BC,delay. We now describe the function-

alities required to build πmpc,oia in more detail.

MPC with Secret-Shared Output. The functionality F∆
mpc,sso is formally

introduced in Fig. 12 and Fig. 13. It directly translates an MPC protocol with
secret-shared output into the TARDIS model, but does not make use of any tick-
related properties beyond scheduling of message transmission. The functionality
supports computations on secret input where the output of the computation is
additively secret-shared among the participants. Additionally, it allows parties
to sample random values, compute linear combinations of outputs and those
random values and allows to reliably but unfairly open secret-shared values.
F∆

mpc,sso can be instantiated from many different MPC protocols, such as those
based on secret-sharing [8] or multiparty BMR [30].

Commitments with Delayed Openings. In Fig. 25 & Fig. 26 in Supplemen-
tary Material G we describe the functionality F∆,δ,ζ

com for commitments with de-
layed non-interactive openings. The functionality distinguishes between a sender
PSend, which can make commitments, and a set of receivers, which obtain the
openings. Compared to regular commitments with a normal Open that immedi-
ately reveals the output to all parties, PSend is also allowed to perform a Delayed
Open, where there is a delay between the choice of a sender to open a commit-
ment (or not) and the actual opening towards receivers and the adversary.

While both Commit and Open directly resemble their counterparts in a
normal commitment functionality, the Delayed Open logic is not as straight-
forward. What happens during such a delayed open is that first all honest parties
will simultaneously learn that indeed an opening will happen in the future - for
which they obtain a message DOpen. Additionally, F∆,δ,ζ

com stores the openings
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Functionality F∆
mpc,sso (Computation, Message Handling)

The ticked functionality interacts with n parties P = {P1, . . . ,Pn} and an adversary
S which may corrupt a strict subset I ⊂ P.
Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.

2. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message with
prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if x1, . . . , xn were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆. If all parties sent (Compute, sid)

compute and store (y1, . . . , ym)← C(x1, . . . , xn).

2. Notify S about a message with prefix Compute.

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add

(Pi, sid,m) to M.

– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore all
further messages with this sid except to Fetch Message.

Fig. 12: Ticked Functionality F∆
mpc,sso for MPC with Secret-Shared Output and

Linear Secret Share Operations.

in an internal queue O. These openings can not be rescheduled by the adver-
sary, and therefore it will take δ ticks before honest parties learn the opening of
the commitment. This means that for honest parties, it may take up to ∆ + δ
ticks depending on when DOpen is obtained. The simulator will already learn
the opening after ζ ≤ δ ticks, similar to how it might solve FTLP faster. F∆,δ,ζ

com

ensures that all honest parties will learn the delayed opening simultaneously.
In Supplementary Material G we provide a secure instantiation of a publicly

verifiable8 version of F∆,δ,ζ
com . Since we do not require homomorphic operations,

this means that it can be realized with a much simpler protocol than the respec-
tive two-party functionality in [5].

MPC with Output-Independent Abort. In Fig. 14 and Fig. 15 we describe
the functionality F∆,δ,ζ

mpc,oia for MPC with output-independent abort.
In terms of the actual secure computation, our functionality is identical with

F∆
mpc,sso, although it does not reveal the concrete shares to the parties and the

8 See Theorem 7 for more details.
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Functionality F∆
mpc,sso (Computation on Outputs)

Share Output: Upon first input (ShareOutput, sid, T ) by Pi ∈ P for fresh identi-
fiers T = {cid1, . . . , cidm} and if Computation was finished:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareOutput:
(a) Send (RequestShares, sid, T ) to S, which replies with (OutputShares, sid,
{sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, h ∈ [m] sample sj,cidh ← F
uniformly random conditioned on yh =

⊕
k∈[n] sk,cidh .

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix OutputShares to party Pj via Q with delay ∆. Finally notify S
about the message with prefix OutputShares.

3. Notify S about a message with the prefix ShareOutput.

Share Random Value: Upon input (ShareRandom, sid, T ) by all parties with fresh
identifiers T :
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent ShareRandom:
(a) Send (RequestShares, sid, T ) to S, which replies with (RandomShares,

sid, {sj,cid}cid∈T ,Pj∈I). Then for each Pj ∈ P \ I, cid ∈ T sample sj,cid ← F
uniformly at random.

(b) For cid ∈ T store (cid, s1,cid, . . . , sn,cid) and for each Pj ∈ P \ I send sj,cid
with prefix RandomShares to party Pj via Q with delay ∆. Finally notify
S about the message with prefix RandomShares.

3. Notify S about a message with the prefix ShareRandom.

Linear Combination: Upon input (Linear, sid, {(cid, αcid)}cid∈T , cid′) from all par-
ties: If all αcid ∈ F, all (cid, s1,cid, . . . , sn,cid) have been stored and cid′ is unused, set
s′i ←

∑
cid∈T αcid · si,cid and record (cid′, s′1, . . . , s

′
n).

Reveal: Upon input (Reveal, sid, T ) by Pi ∈ P for identifiers T and if
(cid, s1, . . . , sn) is stored for each cid ∈ T :
1. Notify the parties P \{Pi} via Q with delay ∆. Then notify S about a message

with prefix Reveal.

2. If all parties sent (Reveal, sid, T ) then send
(Reveal, sid, {(cid, s1,cid, . . . , sn,cid)}cid∈T ) to S.

3. If S sends (DeliverReveal, sid, T ) then send message {(cid, s1,cid, . . . , sn,cid)}cid∈T
with prefix DeliverReveal to parties P via Q with delay ∆ and notify S about
a message with prefix DeliverReveal.

Fig. 13: Ticked Functionality F∆
mpc,sso for MPC with Secret-Shared Output and

Linear Secret Share Operations, Part 2.

adversary during the sharing. The output-independent abort property of our
functionality is then achieved as follows: in order to reveal the output of the
computation, each party will have to send Reveal to F∆,δ,ζ

mpc,oia. Once all honest
parties and the verifiers thus learn that the parties indeed are synchronized by
seeing that the first synchronization message arrives at all parties (st = sync
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Functionality F∆,δ,ζ
mpc,oia (Computation, Sharing)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S who may corrupt a strict subset I ⊂ P. F∆,δ,ζ

mpc,oia is parameterized by ∆, δ, ζ ∈
N+, ζ ≤ δ, has an initially empty list O and set J as well as a state st initially ⊥.

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Init, sid, C) then store C locally. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆. Then accept xi as input for Pi.

2. Send xi and the IDs to S if Pi ∈ I, otherwise notify S about a message with
prefix Input.

Computation: On first input (Compute, sid) by Pi ∈ P and if all {xi}i∈[n] were
accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.

3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.

2. If all parties sent Share then:
(a) Send (Shares?, sid) to S.

(b) Upon (DeliverShares, sid) from S send a message with prefix DeliverShares
to each Pj ∈ P \ I via Q with delay ∆. Then notify S about messages with
prefix DeliverShares and the IDs.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties

3. Notify S about a message with prefix Share.

Reveal: Upon first message (Reveal, sid, i) by each party Pi ∈ P, if Share has
finished, if no DeliverShare message is in Q and if st = ⊥ or st = sync:
1. Simultaneously send a message i with prefix Reveal to parties P \ {Pi} via Q

with delay ∆.

2. Set st = sync and notify S about a message with prefix Reveal.

Fig. 14: Ticked F∆,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

and f = ⊤), the internal state of the functionality changes. From this point on,
the adversary can, within an additional time-frame of ζ ticks, decide whether
to reveal its shares or not. Then, once these ζ ticks passed, S will obtain the
output y of the computation after having provided the set of aborting parties
J . If J = ∅ then F∆,δ,ζ

mpc,oia will, within δ additional ticks, simultaneously output y
to all honest parties, while it otherwise outputs the set J .

The additional up to δ ticks between the adversary learning y and the honest
parties learning y or J is due to our protocol and will be more clear later.
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Functionality F∆,δ,ζ
mpc,oia (Timing)

Tick:
1. Set f← ⊥, remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m)

to M. If m = (Reveal, i) then set f← ⊤.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

3. If st = wait(x) & x ≥ 0:
If x ≥ 0: Set st = wait(x− 1).

If x = 0:
(a) Send (Abort?, sid) to S and wait for response (Abort, sid, J) with J ⊆ I.

(b) If J = ∅ then send message y with prefix Output to each party P \ I
via Q with delay δ. If J ̸= ∅ then send message J with prefix Abort to
each party P \ I via Q with delay δ.

(c) Send (Output, sid, y) and the IDs to S.

4. If st = sync and f = ⊤ then set st = wait(ζ) and send (RevealStart, sid) to S.
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add

(Pi, sid,m) to M.

– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) to M for each Pi ∈ P
and ignore all further messages with this sid except to Fetch Message.

Fig. 15: Ticked F∆,δ,ζ
mpc,oia Functionality for MPC with Output-Independent Abort.

Coin Tossing. πmpc,oia additionally requires a functionality for coin tossing F∆
ct

as depicted in Fig. 19 in Supplementary Material A. Note that F∆
ct can easily be

realized in the FΓ,∆
BC,delay,F∆,δ,ζ

com -hybrid model.

6.2 Building MPC with Output-Independent Abort

We will now describe how to construct an MPC protocol that guarantees output-
independent abort. Although this might appear like a natural generalization
of [5], constructing the protocol is far from trivial as we must take care that all
honest parties agree on the same set of cheaters. Our protocol works as follows:

1. The parties begin by sending a message beat (i.e. a heartbeat) to the func-
tionality FΓ,∆

BC,delay. Throughout the protocol, they do the following in parallel
to running the MPC protocol, unless mentioned otherwise:
– All parties wait for a broadcast message beat from all parties on FΓ,∆

BC,delay.
If some parties did not send their message to FΓ,∆

BC,delay in one iteration
then all parties abort. Otherwise, they send beat in another iteration to
FΓ,∆

BC,delay.
The purpose of the heartbeat is to ensure that honest parties are synchro-
nized throughout the protocol, allowing them to later achieve agreement on
the corrupt parties.
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2. The parties provide inputs xi to F∆
mpc,sso, perform the computation using

F∆
mpc,sso and obtain secret shares y1, . . . ,yn of the output y. They also sample

a blinding value ri ∈ Fλ for each Pi inside F∆
mpc,sso. yi, ri is opened to Pi.

3. Next, the parties commit to both yi, ri using F∆,δ,ζ
com towards all parties.

Dishonest parties may commit to a different value than the one they obtained
from F∆

mpc,sso and consistency must therefore be checked.
4. All parties use the coin-flipping functionality to sample a uniformly random

matrix A ∈ Fλ×m. This matrix is used to perform the consistency check.
5. For each i ∈ [n] the parties compute and open ti = ri +Ayi using F∆

mpc,sso.
Due to the blinding value ri opening ti will not leak any information about
yi of Pi ∈ P \ I to the adversary.

6. Each party that obtained ti changes the next beat message to ready. Once
parties receive ready from all other parties and are thus synchronized, they
simultaneously perform a delayed open of yi, ri using their commitments
(and ignore FΓ,∆

BC,delay from now on). Parties which don’t open commitments
in time or whose opened values do not yield ti are considered as cheaters.

Intuitively, our construction has output-independent abort because of the
timing of the opening: Until Step 6, the adversary may abort at any time but no
such abort will provide it with information about the output. Once the opening
phase begins, parties can easily verify if an opening by an adversary is valid or not
- because he committed to its shares before A was chosen and the probability of
a collision with ti for different choices of y′

i, r
′
i can be shown to be negligible in λ

as this is exactly the same as finding a collision to a universal hash function. The
decision to initiate its opening, on the other hand, will arrive at each honest party
before the honest party’s delayed opening result is available to the adversary -
which will be ensured by the appropriate choice of ζ > ∆. In turn, an adversary
must thus send its opening message before learning the shares of an honest party,
which is exactly the property of output-independent abort. At the same time,
honest parties have their DOpen message delivered after ∆ steps already and
will never be identified as cheaters.

Concerning agreement on the output of the honest parties, we see that if
all honest parties initially start almost synchronized (i.e. at most Γ ticks apart)
then if they do not abort during the protocol they will simultaneously open their
commitments. Therefore, using FΓ,∆

BC,delay guarantees that they all have the same
view of all adversarial messages during the Reveal phase.

Interestingly, our construction does not need homomorphic commitments as
was necessary in [5,4] to achieve their verifiable or output-independent abort
in UC. Clearly, our solution can also be used to improve these protocols and
to simplify their constructions. The full protocol can be found in Fig. 16 and
Fig. 17. We now prove the following Theorem:
Theorem 6. Let λ be the statistical security parameter and ζ > ∆. Assume
that all honest parties obtain their inputs at most Γ ticks apart. Then the pro-
tocol πmpc,oia GUC-securely implements the ticked functionality F∆,δ,ζ

mpc,oia in the
F∆

mpc,sso,F∆,δ,ζ
com ,F∆

ct ,F
Γ,∆
BC,delay-hybrid model against any static adversary corrupt-

ing up to n− 1 parties in P. The transcripts are statistically indistinguishable.
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Protocol πmpc,oia (Computation, Share)

All parties P have access to one instance of the functionalities F∆
mpc,sso, F∆

ct and
FΓ,∆

BC,delay. Furthermore, each Pi ∈ P has it’s own F∆,δ,ζ,i
com where it acts as the dedi-

cated sender and all other parties of P are receivers.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that it, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Upon every activation: Let c be a counter that is initially 0. Pi sends
(Send, sid, c, beat) to the functionality FΓ,∆

BC,delay (with c as ssid). Throughout πmpc,oia,
each Pi waits for FΓ,∆

BC,delay to return (Pj , c, beat) for all other Pj ∈ P. If it does,
then each Pi increases c by 1 and sends (Send, sid, c, beat) to FΓ,∆

BC,delay. Otherwise
the parties abort.

Init: Each Pi ∈ P sends (Init, sid, C) to F∆
mpc,sso and ticks. It waits until it obtains

messages C with prefix Init from F∆
mpc,sso for every other party P \ {Pi}.

Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆
mpc,sso and ticks. It waits until it

obtains messages j with prefix Input from F∆
mpc,sso for every Pj ∈ P \ {Pi}.

Computation: Each Pi ∈ P sends (Computation, sid) to F∆
mpc,sso and ticks. It waits

until it obtains messages with prefix Computation from F∆
mpc,sso for every P \ {Pi}.

Share:
1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].

2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆
mpc,sso and ticks. Then it waits

until it obtains a message {yi,cid}cid∈Ty with prefix OutputShares from F∆
mpc,sso.

3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆
mpc,sso and ticks. It then waits

until it obtains a message {ri,cid}cid∈Tr with prefix RandomShares from F∆
mpc,sso.

Set yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.

4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to F∆,δ,ζ,i
com and ticks. It then waits

for messages (Commit, sid, cidj) from F∆,δ,ζ,j
com of all other Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ) to F∆
ct and ticks. It then waits for the

message (Coins, sid,A) where A ∈ Fλ×m.

6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆

mpc,sso.

7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆
mpc,sso and ticks. It then waits for the

message {(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆
mpc,sso. Set

tj = (tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

Fig. 16: Protocol πmpc,oia for MPC with Output-Independent Abort.

To prove security, we will construct a PPT simulator S and then argue indis-
tinguishability of the transcripts of πmpc,oia ◦ A and F∆,δ,ζ

mpc,oia ◦ S. The proof can
be found in Supplementary Material G.
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Protocol πmpc,oia (Reveal)

Reveal: If Share completed successfully:
1. Each party changes the messages to FΓ,∆

BC,delay to (Send, sid, c, ready). Upon re-
ceiving the first (Pj , ready, c) for all Pj ∈ P from FΓ,∆

BC,delay, each Pi sends
(DOpen, sid, cidj) to F∆,δ,ζ,j

com for each Pj ∈ P and ticks. It also stops sending
beat to FΓ,∆

BC,delay.

2. Each Pi ∈ P waits until F∆,δ,ζ,i
com returns (DAdvOpened, sid, cidi). Then Pi checks

if it obtained a message with prefix DOpen from all other F∆,δ,ζ,j
com . Let J1 ⊂ P

be the set of parties such that Pi did not obtain DOpen before it received
DAdvOpened.

3. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each Pj ∈
P \ (J1 ∪ {Pi}) from the respective instance of F∆,δ,ζ,j

com . It then defines J2 as
the set of all parties Pj such that tj ̸= rj +Ayj .

4. If J1 ∪ J2 = ∅ then each Pi ∈ P outputs (Output, sid,y =
⊕

j∈[n] yj) and
terminates. Otherwise it outputs (Abort, sid, J1 ∪ J2).

Fig. 17: Protocol πmpc,oia for MPC with Output-Independent Abort.
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Supplementary Material

A Additional Functionalities

We use two additional functionalities which we deferred to this Supplementary
Material, namely one for coin tossing and for a restricted observable and pro-
grammable random oracle. Those are given in Fig. 19 and Fig. 18.

Using Global Random Oracles: Our protocols use one or more instances of
a global random oracle functionality GrpoRO. Notice that this functionality al-
lows an adversary to program random oracle, i.e., arbitrarily choose the output
(Hash-Confirm, h) of a query (Hash-Query,m) via the Program interface.
However, it also allows honest parties to verify whether the output of a cer-
tain query (Hash-Query,m) has been programmed via the IsProgrammed
interface. In our protocols, we do a number of equality checks with the help
of GrpoRO, checking that a value corresponds to the output of GrpoRO when re-
ceiving a certain query. Whenever an honest party does such a check and sends
a query (Hash-Query,m) to an instance of GrpoRO, we implicitly require the
honest party to also send (IsProgrammed,m) to the same instance in order to
verify whether the output for this query has been programmed. If the instance of
GrpoRO answers with (IsProgrammed, 1), the honest party acts as if the checks
that are being performed with the help of GrpoRO have failed.

A.1 Modeling Rivest et al.’s Time-Lock Assumption [40]

We describe in Fig. 20 the ideal functionality Frsw from [5] that captures the
hardness assumption used by Rivest et al. [40] to build a time-lock puzzle pro-
tocol. Later on, we will use this functionality as setup for realizing UC-secure
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Functionality GrpoRO
GrpoRO is parameterized by an output size function ℓ and a security parameter τ ,
and keeps initially empty lists ListH,prog.
Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:
1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h

$← {0, 1}ℓ(τ)
and set ListH = ListH ∪ {(m,h)}.

2. If this query is made by S, or if s ̸= sid, then add (s,m′, h) to the (initially
empty) list of illegitimate queries Qs.

3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.

Program: On input (Program-RO,m, h) with h ∈ {0, 1}ℓ(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}ℓ(τ) where (m,h′) ∈ ListH and h ̸= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.

IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s ̸= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 18: Restricted observable and programmable global random oracle function-
ality GrpoRO from [13].

publicly verifiable TLPs. Essentially, this functionality treats group (Z/NZ)× as
in the generic group model [42], giving unique handles to the group elements (but
not their descriptions) to all parties. In order to perform group operations, the
parties interact with the functionality but only receive the result of the operation
(i.e. the handle of the resulting group element) after the next computational tick
occurs. As pointed out in [5], this definition of Frsw is corroborated by a recent
result [41] showing that delay functions (such as a TLP) based on cyclic groups
that do not exploit any particular property of the underlying group cannot be
constructed if the order is known. Moreover, we cannot reveal the group struc-
ture to the environment, since it could use it across multiple sessions to solve
TLPs quicker than the regular parties.

A.2 Instantiating Fpsc from Frsw

Functionality Fpsc can be instantiated from the UC formulation of the iterated
squaring on a group of unknown order problem from [5] (i.e. Frsw) and the
soundness of Fiat-Shamir using the techniques from [44,39] in the global random
oracle model, which is anyway necessary for obtaining such UC-secure time-
based primitives as shown in [5]. Notice that the constructions from [44,39] can
be instantiated from iterated squaring on a group of unknown order without
relying on the representation of the group. Hence, they can be instantiated based
on the generic representation of this problem given by Frsw.
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Functionality F∆
ct

The ticked functionality F∆
ct interacts with the n parties P = {P1, . . . ,Pn} and an

adversary S. It is parameterized by the output domain F.
Toss: Upon receiving (Toss, sid,m) from Pi ∈ P where m ∈ N:

1. Send m with prefix Toss to the parties P \ {Pi} via Q with delay ∆.
2. Send m and the IDs to S.
3. If all parties sent (Toss, sid,m):

(a) Uniformly sample m random elements x1, . . . , xm
$← F and send

(Tossed, sid,m,F, x1, . . . , xm) to S.
(b) If S sends (DeliverCoins, sid) then send the message x1, . . . , xm with

prefix Coins to the parties P via Q with delay ∆. Otherwise send the
message ⊥ with prefix Coins to the parties P via Q with delay ∆.

(c) Notify S about the message with prefix Coins.
Tick:

1. For each query (0,mid, sid,Pi,m) ∈ Q:
(a) Remove (0,mid, sid,Pi,m) from Q.
(b) Add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,P,m) in Q with (cnt− 1,mid, sid,Pi,m).
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore

all further messages with this sid except to Fetch Message.

Fig. 19: Functionality F∆
ct for Multiparty Coin Tossing.
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Functionality Frsw

Frsw is parameterized by a set of parties P, an owner Po ∈ P, an adversary S and a
computational security parameter τ and a parameter N ∈ N+. Frsw contains a map
group which maps strings el ∈ {0, 1}τ to N as well as maps in and out associating
parties in P to a list of entries from ({0, 1}τ )2 or ({0, 1}τ )3. The functionality
maintains the group of primitive residues modulo N with order ϕ(N) denoted as
(Z/NZ)×.

Create Group: Upon receiving the first message (Create, sid) from Po:
1. If Pi is corrupted then wait for message (Group, sid, N, ϕ(N)) from S with

N ∈ N+, N < 2τ and store N,ϕ(N).
2. If Po is honest then sample two random distinct prime numbers p, q of

length approximately τ/2 bits according to the RSA key generation proce-
dure. Set N = pq and ϕ(N) = (p− 1)(q − 1).

3. Set td = ϕ(N) and output (Created, sid, td) to Po.
Random: Upon receiving (Rand, sid, td′) from Pi ∈ P, if td′ ̸= td, send

(Rand, sid, Invalid) to Pi. Otherwise, sample el
$← {0, 1}τ and g

$← (Z/NZ)×,
add (el, g) to group and output (Rand, sid, el) to Pi.

GetElement: Upon receiving (GetElement, sid, td′, g) from Pi ∈ P, if g /∈
(Z/NZ)× or td′ ̸= td, send (GetElement, sid, td′, g, Invalid) to Pi. Otherwise,
if there is a el such that (el, g) ∈ group then retrieve el, else sample a random
string el and add (el, g) to group. Output (GetElement, sid, td′, g, el) to Pi.

Power: Upon receiving (Pow, sid, td′, el, x) from Pi ∈ P with x ∈ Z, if td′ ̸= td

or there is no a such that (el, a) ∈ group, output (Pow, sid, td′, el, x, Invalid) to
Pi. Otherwise, proceed:
1. Convert x ∈ Z into a representation x ∈ Zφ(N) by reducing mod φ(N).
2. Compute y ← ax mod N . If there is no el′ such that (el′, y) ∈ group, pick

el′
$← {0, 1}τ different from all group entries and add (el′, y) to group.

3. Output (Pow, sid, td, el, x, el′) to Pi.
Multiply: Upon receiving (Mult, sid, el1, el2) from Pi ∈ P:

1. If there is no a, b such that (el1, a), (el2, b) ∈ group, then output
(Invalid, sid) to Pi.

2. Compute c← ab mod N . If there is no el3 such that (el3, c) ∈ group, pick
el3

$← {0, 1}τ different from all group entries and add (el3, c) to group.
3. Add (Pi, (el1, el2, el3)) to in and return (Mult, sid, el1, el2) to Pi.

Invert: Upon receiving (Inv, sid, el) from some party Pi ∈ P:
1. If there is no a such that (el, a) ∈ group, output (Invalid, sid) to Pi.
2. Compute y ← a−1 mod N . If there is no el′ such that (el′, y) ∈ group,

sample el′
$← {0, 1}τ different from all group entries and add (el′, y) to

group.
3. Add (Pi, (el, el

′)) to in and return (Inv, sid, el) to Pi.
Output: Upon receiving (Output, sid) by Pi ∈ P, retrieve the set Li of all entries

(Pi, ·) in out, remove Li from out and output (Complete, sid, Li) to Pi.
Tick: Set out← in and in = ∅.

Fig. 20: Functionality Frsw from [5] capturing the time-lock assumption of [40].
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B The Ticked Public Ledger

In order to define the ledger functionality FLedgerpresented in Fig. 4, we adapt
ideas from Badertscher et al. [3]. It is parameterized by the algorithms Validate,
ExtendPolicy and the parameters namely slackWindow, qualityWindow,delaySync,
maxTXDelay, maxEmpty ∈ N. These parameters can depend on the protocol
used to realize the ledger. At any point the ledger has a stable state, which is
eventually received by all honest parties (but there is no guarantee that they will
receive it immediately, or even at the same time). The parameter slackWindow
is an upper bound on the number of the most recent blocks in the current stable
state that are still not received by all honest parties.

Any party can submit a transaction, which will be added to the buffer if it is
valid. Validate is used to validate the transactions, and should at least guaran-
tee that no transaction waiting in the buffer contradicts the stable state of the
ledger (the validity of the transactions waiting in the buffer needs to be tested
again once a new block is added to the stable state). The adversary is responsi-
ble for proposing the potential next blocks. It can choose such blocks using the
procedures of an honest miner or not, but the functionality keeps track of that.
It can also propose to have no new block in the next tick. Whenever the func-
tionality is ticked, it runs the algorithm ExtendPolicy to decide if a block will be
added, and what its content would be. ExtendPolicy normally accepts the block
proposed by the adversary, but it also enforces liveness and chain quality proper-
ties. maxTXDelay defines the maximum number of ticks that a valid transaction
will stay in the buffer. After maxTXDelay ticks without inclusion, ExtendPolicy
will force the inclusion of the valid transaction in the next block. maxEmpty de-
fines the maximum number of consecutive suggestions of not adding a new block
by the adversary that can be accepted by ExtendPolicy. After that many ticks
without adding a new block, a new block insertion is forced. ExtendPolicy also
analyzes how many of the last qualityWindow blocks were honestly generated,
and force an honest behavior if the number of honest blocks do not meet the
chain quality properties.

Note that a good simulator acts in such way that it never forces an action
from ExtendPolicy, as a forced action may lead to a distinguishing advantage
for the environment. As the set of parties registered in the ledger is dynamic,
the ledger functionality FLedger includes registration interfaces similar to those
for public verifiers described in Section 2, and these are omitted for conciseness.
delaySync defines how long it takes for honest parties that just joined to become
synchronized (until that point, the adversary can arbitrarily set the state that
the de-synchronized parties view).

The ledger functionality of Badertscher et al. [3] keeps track of many relevant
times and interacts with a global clock in order to take actions at the appropriate
time. Our ledger functionality, on the other hand, only keeps track of a few
counters. The counters are updated during the ticks, and the appropriate actions
are done if some of them reach zero. However, our algorithm ExtendPolicy also
enforces liveness and chain quality properties, and our ledger functionality can
also be realized by the same protocols as in [3].
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C Publicly Verifiable Time-Lock Puzzles, continued

C.1 Public Verifiability for the TARDIS [5] TLP

In the construction of [5], a claimed puzzle solution m′ for a TLP puz can be
publicly verified using as “proof” the final element el′Γ obtained when solving the
TLP. In a nutshell, the verification procedure consists in repeating the steps of
the Get Message interface to obtain m from puz using el′Γ and checking that
m = m′. This procedure can be executed in constant time because each puzzle
puz = (el0, Γ, tag) encodes in its tag both the final state elΓ obtained after Γ
computational steps as well as the trapdoor td for functionality Frsw, which can
be used to compute elΓ from el0 in constant time via Frsw’s RandomAccess
interface. Given a candidate solution el′Γ ,m

′ for puz, the verifier can confirm
that tag does encode el′Γ , recover td and m from tag (using el′Γ ) and use td

to have Frsw instantly compute Γ squarings departing from el0, finally checking
that the output of Frsw is el′Γ and that m = m′. If all these checks succeed,
the verify outputs 1, otherwise it outputs 0. Notice that these steps are the
same as those of the Get Message procedure of the TLP protocol of [5].
Hence, if the verifier outputs 1, it means that all other parties solving puz will
obtain the same message m (checked to be m = m′) obtained by the verifier in
its verification procedure with proof el′Γ . However, if the TLP is invalid, this
procedure cannot be used to convince a verifier of this fact, since purposefully
providing invalid (e.g. random) “proofs” el′Γ or messages m′ trivially makes this
verification procedure fail regardless of the puzzle being valid or not. On the
other hand, our new πtlp allows a solver to either convince a verifier that a
certain message was contained in a valid TLP or that the solved TLP is invalid.

C.2 Protocol πtlp

We formally state security of Protocol πtlp (presented in Figure 6) in Theorem 1,
which we recall below for the sake of clarity.

Theorem 1 Protocol πtlp (G)UC-realizes FTLP in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary. For every static
adversary A and environment Z, there exists a simulator S s.t. Z cannot distin-
guish πtlp composed with Gticker,GrpoRO,Fpsc and A from S composed with FTLP.

Proof. In order to prove this theorem, we construct a simulator S that inter-
acts with an internal copy A of the adversary forwarding messages between A
and GrpoRO1, GrpoRO2, Fpsc unless otherwise stated. S is presented in Figure 21
(Corrupted Po) and in Figure 22 (Honest Po). It forwards messages from A and
simulated hybrid functionalities to Gticker. For any environment Z, we argue that
an execution with S and FTLP is indistinguishable from an execution with A in
the Gticker, GrpoRO, Fpsc-hybrid model. In the case of a corrupted Po, we focus on
the steps necessary for dealing with an adversary A who corrupts Po and leave
the steps necessary for dealing with an A who also corrupts parties in P to the
case of an honest Po.
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In the case of a corrupted Po, the simulator S must extract the message
m from a puzzle puz = (el0, Γ, tag

′ = (tag′1, tag
′
2)) created by the A and

deliver it to FTLP if puz is valid. In order to do this, S observes the queries
to GrpoRO1 and finds a query (Hash-Query, (el0|Γ |el′Γ |π′)) from A to GrpoRO1

for which the response was (Hash-Confirm, h1). Then, S verifies with Fpsc if
the sequence of steps computed correctly and the corresponding proof π is valid
by sending (Verify, sid, el0, Γ, el

′
Γ , π

′) to Fpsc and checking if the response from
Fpsc is (Verified, sid, el0, Γ, el

′
Γ , π

′, 1). Upon this verification pass with Fpsc, S
Computes m = h1 ⊕ tag′1 and observes the queries to GrpoRO2 and finds a query
(Hash-Query, (el0|Γ |el′Γ |π′|tag′1|m)) to GrpoRO2, for which the response was
(Hash-Confirm, tag′2). If these checks pass, S sends (CreatePuzzle, sid, Γ,m)
to FTLP and provides el0, tag′, Π ′ = (elΓ , π

′). This procedure works because S
has access to observe the queries to GrpoRO1, and GrpoRO2 as soon as it receives
puz = (el0, Γ, tag

′ = (tag′1, tag
′
2)) from the A, without waiting for all ticks

to happen. Thus, S performs all the steps as discussed before which guarantees
that the A (or any party) gets the correct solution to this puz if all the necessary
steps are computed correctly.

In the case of a corrupted Po, if any party starts solving a puzzle puz =
(st0, Γ, tag), S receives (Solve, sid, puz = (st0, Γ, tag)) from FTLP. Upon receiv-
ing, S immediately starts solving the puz by sending (Solve, sid, st0, Γ ) to Fpsc.
To make sure that S is ready with next step(s) and/or proof, at every tick S sends
(AdvanceState, sid) to Fpsc and FTLP. This helps S to handle outputs from FTLP

by providing states and proof received from Fpsc. If FTLP sends (sid, adv, stc)
to S and expects to receive the next state, S waits to receive (stc, stc+1)
from Fpsc (S is guaranteed to receive due to having sent (AdvanceState, sid) to
Fpsc) and sends (sid, adv, stc, stc+1) to FTLP. If FTLP sends (GetSts, sid, puz =
(st0, Γ, tag)) to S and expects to receive the remaining states, S waits to
receive (GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc (again S is guaran-
teed to receive this due to having sent (AdvanceState, sid) to Fpsc) and sends
(GetSts, sid, puz, stc, stc+1, . . . , stΓ ) to FTLP. If FTLP sends (GetMsg, sid, puz)
to S and expects the message and the corresponding proof, S extracts the mes-
sage and the proof Π by observing the queries to GrpoRO1 and GrpoRO2 as follows.
S parses puz = (st0, Γ, tag = (tag1, tag2)), determines stΓ , π (as it is already
received (GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc by now) and checks
that there exists a request (Hash-Query, (st0|Γ |stΓ |π)) to GrpoRO1 for which
there was a response (Hash-Confirm, h1). Then S computes m′ = h1 ⊕ tag1
and checks that there exists a request (Hash-Query, (st0|Γ |stΓ |π|tag1|m′)) to
GrpoRO2 for which there was a response (Hash-Confirm, tag2). If these checks
are successful, S sets Π = (stΓ , π) and sends (GetMsg, sid, puz = (st0, Γ, tag),
m′, Π) to FTLP, otherwise it sends (GetMsg, sid, puz = (st0, Γ, tag),⊥, Π) to
FTLP.

The main point of these steps is to let S extract the correct message m and
it’s corresponding proof Π of the puzzle puz (if it is a valid puzzle) and provide
these values m and Π to FTLP. By performing the necessary steps correctly as
described, we ensure that the message and proof provided to FTLP are valid
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and consistent with the view of the internal adversary if it tries to solve the
puzzle later. Thus, an execution with the simulator S and an internal copy of
the adversary A and FTLP is indistinguishable from the real world execution.

In the case of an honest Po, there is no need to extract the message from
a puzzle. Instead, in this case we focus on dealing with an adversary A that
corrupts parties in P. S starts with maintaining a list L (initially empty) of
valid puzs (created by Po) by appending each puz to L as soon as it receives
(CreatedPuzzle, sid, puz = (st0, Γ, tag

′)) from FTLP. On behalf of a corrupted
party, if A starts solving a puzzle puz by querying (Solve, sid, el0, Γ ) to Fpsc, S
also starts solving a valid puz = (el0, Γ, tag = (tag1, tag2) in L correspond-
ing to el0 and Γ by sending (Solve, sid, puz) to FTLP. When A makes a query
(AdvanceState, sid) to Fpsc on behalf of Pi ∈ P \ Po, S sends (AdvanceState, sid)
to FTLP, so that S is ready with the correct message (solution to the puz) and
the corresponding proof Π when required. Upon S receiving (Solved, sid, puz =
(el0, Γ, tag = (tag1, tag2)),m,Π = (elΓ , π)) from FTLP (S is guaranteed to
receive this due to having sent (AdvanceState, sid) to FTLP) for a valid puz =
(el0, Γ, tag = (tag1, tag2)) in L, S computes h1 = m ⊕ tag1 and programs
GrpoRO1 on (el0|Γ |elΓ |π) so that it outputs h1 and programs GrpoRO2 on (el0|Γ |
elΓ |π|tag1|m) so that it outputs tag2. This makes sure that when the adver-
sary A solves all the necessary steps it receives the valid message along with the
proof.

The main point to be observed in this case, is that S learns the message m,
and the corresponding proof Π = (elΓ , π) before/at-the-same-tick A does, and
the states and proof of Fpsc and FTLP are consistent. This is because S sends
(AdvanceState, sid) to FTLP at the same tick when A sends (AdvanceState, sid)
to Fpsc. Therefore, S receiving m, Π before/at-the-same-tick A does allows S to
program GrpoRO1 and GrpoRO2 as described. Programming GrpoRO1 or GrpoRO2 on
respective values fails only when GrpoRO1 (or GrpoRO2) has already been queried
on (el0|Γ |elΓ |π) (or (el0|Γ |elΓ |π|tag1|m)). However, this is possible only with
negligible probability without knowing the respective value(s). Thus, the view of
the adversary A in real world is indistinguishable with the view of S composted
with FTLP.

Public Verification works because we made sure that states of Fpsc and ran-
dom oracle queries compatible with the corresponding FTLP steps.

⊓⊔
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Simulator S for a corrupted Po in πtlp

Simulator S interacts with environment Z, functionalities FTLP, GrpoRO1, GrpoRO2,
Fpsc, Gticker and an internal copy of an adversary A corrupting Po. S forwards all
messages between A and Z. Moreover, S forwards all queries to Gticker, Fpsc, GrpoRO1

and GrpoRO2 unless explicitly stated. S keeps lists of all requests to GrpoRO1 and GrpoRO2,
which are always updated before being used by appending the Qs set of requests
obtained by sending (Observe, sid) to GrpoRO1 and GrpoRO2. All queries to GrpoRO1

and GrpoRO2 made by S go through dummy honest parties so that the queries are
not marked as illegitimate.

Create Puzzle: Upon receiving a puz = (el0, Γ, tag
′) from A, S parse the tag′ =

(tag′1, tag
′
2) and proceeds as follows to check if the tag′ is valid with respect

to the puzzle and extracts the message m:
1. Check that there exists a request (Hash-Query, (el0|Γ |el′Γ |π′)) from A

to GrpoRO1 for which there was a response (Hash-Confirm, h1).
2. Check that upon sending (Verify, sid, el0, Γ, el

′
Γ , π

′) to Fpsc there was a
response (Verified, sid, el0, Γ, el

′
Γ , π

′, 1).
3. Compute m = h1 ⊕ tag′1.
4. Check that there exists a request (Hash-Query, (el0|Γ |el′Γ |π′|tag′1|m))

to GrpoRO2, for which there was a response (Hash-Confirm, h2).
5. Check that tag′2 = h2.

If any of the above checks fails, it means that verifying the opening of this puzzle
will always fail, so S sets m = ⊥. Then, S proceeds to simulate the creation
of a puzzle with message m by sending (CreatePuzzle, sid, Γ,m) to FTLP and
providing el0, tag

′, Π ′ = (el′Γ , π
′).

Solve: Upon S receiving (Solve, sid, puz = (st0, Γ, tag)) from FTLP, S sends
(Solve, sid, st0, Γ ) to Fpsc.

Advance State: At every tick, S sends (AdvanceState, sid) to Fpsc and FTLP.
Tick: S handles outputs from FTLP by providing states and proof received

from Fpsc, which are guaranteed to be obtained due to having sent
(AdvanceState, sid):

1. Upon S receiving (sid, adv, stc) from FTLP, S waits to receive (stc, stc+1)
from Fpsc and sends (sid, adv, stc, stc+1) to FTLP.

2. Upon S receiving (GetSts, sid, puz = (st0, Γ, tag)) from FTLP, S waits
to receive (GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc and sends
(GetSts, sid, puz, stc, stc+1, . . . , stΓ ) to FTLP.

3. Upon S receiving (GetMsg, sid, puz) from FTLP, S parses puz = (st0, Γ,
tag = (tag1, tag2)), determines stΓ , π from a previously received
(GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc and proceeds as follows:

(a) Check that there exists a request (Hash-Query, (st0|Γ |stΓ |π)) to GrpoRO1

for which there was a response (Hash-Confirm, h1).
(b) Compute m′ = h1 ⊕ tag1.
(c) Check that there exists a request (Hash-Query, (st0|Γ |stΓ |π|tag1|m

′))
to GrpoRO2 for which there was a response (Hash-Confirm, tag2).

(d) If all the above checks are successful, S sets m = m′, otherwise sets
m = ⊥. Also, S sets Π = (stΓ , π) and sends (GetMsg, sid, puz =
(st0, Γ, tag),m,Π) to FTLP.

Fig. 21: Simulator S for the case of a corrupted Po in πtlp.
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Simulator S for an honest Po in πtlp

Simulator S interacts with environment Z, functionalities FTLP, GrpoRO1, GrpoRO2,
Fpsc, Gticker and an internal copy of an adversary A corrupting one or more parties
Pi ∈ P \ Po. S forwards all messages between A and Z. Moreover, S forwards
all queries to Gticker, Fpsc, GrpoRO1 and GrpoRO2 unless explicitly stated. S keeps lists
of all requests to GrpoRO1 and GrpoRO2, which are always updated before being used
by appending the Qs set of requests obtained by sending (Observe, sid) to GrpoRO1

and GrpoRO2. However, for every query (IsProgrammed,m) to GrpoRO1 or GrpoRO2,
S answers with (IsProgrammed, 0) if m has been programmed by S itself. All
queries to GrpoRO1 and GrpoRO2 made by S go through dummy honest parties so that
the queries are not marked as illegitimate. S keeps initially an empty list L.

Create Puzzle: Upon receiving (CreatedPuzzle, sid, puz = (st0, Γ, tag
′)) from

FTLP, S appends puz = (st0, Γ, tag
′) to the list L.

Solve: If A makes a query (Solve, sid, el0, Γ ) to Fpsc on behalf of Pi ∈ P \Po such
that puz = (el0, Γ, tag = (tag1, tag2)) ∈ L, then S sends (Solve, sid, puz =
(el0, Γ, tag = (tag1, tag2))) to FTLP.

Advance State: If A makes a query (AdvanceState, sid) to Fpsc on behalf of Pi ∈
P \ Po, S sends (AdvanceState, sid) to FTLP.

Tick:1. Upon S receiving (Solved, sid, puz = (el0, Γ, tag = (tag1, tag2)),m,Π =
(elΓ , π)) from FTLP such that puz ∈ L, proceeds as follows:

(a) computes h1 = m⊕ tag1 and send (Program-RO, (el0|Γ |elΓ |π), h1) to
GrpoRO1.

(b) sends (Program-RO, (el0|Γ |elΓ |π|tag1|m), tag2) to GrpoRO2.

Fig. 22: Simulator S for the case of an honest Po in πtlp.
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D Security Analysis of Protocol πVDF

In this appendix we recall Theorem 2 and present a simulator for πVDF along
with the security proof. Moreover, we argue how the functionality Fpsc can be
instantiated.

D.1 Proof

We recall Theorem 2 and present a proof.

Theorem 2 Protocol πVDF (G)UC-realizes FVDF in the Gticker,GrpoRO,Fpsc-hybrid
model with computational security against a static adversary: there exists a sim-
ulator S such that for every static adversary A no environment Z can distinguish
πVDF composed with GrpoRO,Fpsc and A from S composed with FVDF.

Proof. In order to prove this theorem, we construct a simulator S that interacts
with an internal copy A of the adversary forwarding messages between A and
GrpoRO, Fpsc unless otherwise stated. It forwards messages from A and simulated
hybrid functionalities to Gticker. For any environment Z, we show that an execu-
tion with S and FVDF is indistinguishable from an execution of πVDF with A in
the Gticker,GrpoRO,Fpsc-hybrid model.

We describe simulator S in Figure 23. The main idea of this simulator is
that S observes the adversary A’s queries to Fpsc in order to simulate match-
ing queries to FVDF. When A queries Fpsc on (Solve, sid, in, Γ ), S immediately
starts computing by querying FVDF with (Solve, sid, in, Γ ). Also, at every tick,
S sends (AdvanceState, sid) to Fpsc and FVDF, so that S is ready with the next
step(s)/proof when required. Later on, when FVDF sends (sid, adv, stc) to S and
expects to receive the next state, S waits to receive (stc, stc+1) from Fpsc (S
is guaranteed to receive this as (AdvanceState, sid) is sent to Fpsc) and sends
(sid, adv, stc, stc+1) to FVDF. When FVDF sends (GetStsPf, sid, in, Γ, stc, out) to
S and expects to receive the remaining states and proof, S waits to receive
(GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc (S is guaranteed to receive this
as (AdvanceState, sid) is sent to Fpsc). Upon receiving the same, S also programs
GrpoRO on (in|Γ |stΓ |π) so that it answers with out when A computes the VDF
output. Also, S sets Π = (stΓ , π) and sends (GetStsPf, sid, stc+1, . . . , stΓ−1, Π)
to FVDF. The verification procedure is simulated by simply allowing A to make
the necessary queries to Fpsc and GrpoRO, since by that point the answers to veri-
fication queries are already set up in such a way that verification succeeds if and
only if it would have succeeded with FVDF.

The crux of this strategy is that S essentially only deviates from the protocol
in the equivocation step using GrpoRO. Other than that, queries to Fpsc are simu-
lated towards the adversary exactly as they should, keeping the correspondence
between states of Fpsc and states of FVDF. The simulation fails if a query on
(in|Γ |stΓ |π) including the last Fpsc state stΓ and the corresponding proof π
is issued to GrpoRO before S obtains the final output from FVDF. However, this
only happens if A manages to obtain stΓ , π in less than ϵΓ ticks, where Γ is the
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number of steps it takes to evaluate the input in corresponding to st1 with FVDF.
A can only do so by guessing stΓ (or an intermediate step) and π, which only
happens with probability negligible in the computational security parameter τ .
Hence, we conclude that the execution with S and FVDF is indistinguishable from
the execution of πVDF with A in the Gticker,GrpoRO,Fpsc-hybrid model. ⊓⊔

Simulator S for πVDF

Simulator S interacts with environment Z, functionalities FVDF, GrpoRO, Fpsc, Gticker
and an internal copy of an adversary A corrupting one or more parties Pi ∈ P. S
forwards all messages between A and Z. Moreover, S forwards all queries to Gticker,
Fpsc, and GrpoRO unless explicitly stated. S keeps lists of all requests to GrpoRO, which
are always updated before being used by appending the Qs set of requests obtained
by sending (Observe, sid) to GrpoRO. However, for every query (IsProgrammed,m)
to GrpoRO, S answers with (IsProgrammed, 0) if m has been programmed by S
itself. All queries to GrpoRO made by S go through dummy honest parties so that
the queries are not marked as illegitimate. S keeps initially an empty list L.

Solve: S handles VDF evaluations as follows:
– Upon S receiving (Solve, sid, in, Γ ) from FVDF, S sends (Solve, sid, in, Γ ) to Fpsc.

– If A makes a query (Solve, sid, in, Γ ) to Fpsc on behalf of Pi ∈ P, then S sends
(Solve, sid, in, Γ ) to FVDF.

Advance State: At every tick, S sends (AdvanceState, sid) to Fpsc and FVDF.

Tick: S handles outputs from FVDF by providing states and proofs received from
Fpsc, which are guaranteed to be obtained due to having sent (AdvanceState, sid):

1. Upon S receiving (sid, adv, stc) from FVDF, S waits to receive (stc, stc+1) from
Fpsc and sends (sid, adv, stc, stc+1) to FVDF.

2. Upon S receiving (GetStsPf, sid, in, Γ, stc, out) from FVDF, S waits to receive
(GetEsPf, st0, Γ, stc, stc+1, . . . , stΓ , π) from Fpsc. Upon receiving the same, S
sends (Program-RO, (in|Γ |stΓ |π), out) to GrpoRO and sets Π = (stΓ , π). Fi-
nally, S sends (GetStsPf, sid, stc+1, . . . , stΓ−1, Π) to FVDF.

Verification: S simulates this step exactly as in πVDF, forwarding all messages
between A and GrpoRO and Fpsc from A on behalf of corrupted parties Pi ∈ P and
as described above. Notice that the queries to GrpoRO and Fpsc are already adjusted
such that verification succeeds if and only if (in, Γ, out,Π) has been computed
correctly.

Fig. 23: Simulator S for πVDF.
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Protocol πVDF−RB

Protocol πVDF−RB is parameterized by an initial delay δ and is executed between a
set of parties P = {P1, . . . ,Pn} out of which t < n/2 are corrupted and a set of
verifiers V who interact with FLedger and FVDF with slack parameter ϵ:
Toss: On input (Toss, sid), all parties in P proceed as follows:
1. Input Phase: Pi proceeds as follows:
(a) Sample ri

$← {0, 1}τ , send (Submit, sid, ri) to FLedger and send (activated) to
Gticker.

(b) Wait ϵδ ticks for Pj ∈ P to broadcast their rj by sending (Solve, sid, in′, ϵδ) to
FVDF (i.e. evaluating a dummy input in′ toc count ϵδ ticks) and proceeding as
follows: i. Send (Read, sid) to FLedger, receiving (Read, sid, statei); ii. Check that
1 + n/2 messages of the form (Pj , sid, rj) from different parties are in statei
(we call the set of such parties C) and, if yes, proceed to Output Phase; iii. If
(Proof, sid, in′, ϵδ, out′, Π ′) is received from FVDF, increment δ and go back to
Step 1(a). iv. Send (activated) to Gticker;

2. Output Phase: Pi proceeds as follows:
(a) Retrieve set {rj}Pj∈C from(Read, sid, statei) obtained in the last step

from FLedger and send (Hash− Query, {rj}Pj∈C) to GrpoRO, obtaining
(Hash-Confirm, in). Send (IsProgrammed, {rj}Pj∈C) to GrpoRO, obtaining
(IsProgrammed, b). If b = 1, output ⊥ and ignore the next steps.

(b) Send (Solve, sid, in, δ) to FVDF and, when activated, if (Proof, sid, in, δ, out,Π)
is received from FVDF, proceed to the next step, else, send (activated) to
Gticker.

(c) Save (in, δ, out,Π) for future public verification, output (Tossed, sid, out) and
send (Submit, sid, (in, δ, out,Π)) to FLedger in order to allow verifiers to publicly
verify the output at any point. Send (activated) to Gticker.

Verification: On input (Verify, sid, x), Vi proceeds as follows:
1. Send (Read, sid) to FLedger, receiving (Read, sid, statei) and determining C for sid.
2. Send (Hash− Query, {rj}Pj∈C) to GrpoRO, obtaining (Hash-Confirm, in). Send

(IsProgrammed, {rj}Pj∈C) to GrpoRO, obtaining (IsProgrammed, b). If b = 1,
output (Verify, sid, x, 0) and ignore the next steps.

3. Obtain (in, δ, out,Π) for sid from L, send (Verify, sid, in, δ, out,Π) to FVDF and,
when activated, if (Verified, sid, in, δ, out,Π, b′) is received from FVDF, proceed to
the next step, else, send (activated) to Gticker.

4. Output (Verify, sid, x, b)

Fig. 24: Protocol πVDF−RB

E Randomness Beacon from VDFs

In Figure 24, we present πVDF−RB which realizes FRB
∆TLP−RB from FVDF, FLedger

and GrpoRO. Protocol πVDF−RB formalizes the folklore randomness beacon based
on VDFs proposed in [11]. Even though the original protocol is not fully described
(nor proven), we formalize the following informal construction using a semi-
synchronous broadcast channel (where there is a finite but unknown delay):

1. All parties Pi ∈P sample a random ri
$← {0, 1}λ and broadcast it.
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2. Once 1 + n/2 values rj1 , ..., rj1+n/2
are received, every Pi computes in =

H(rj1 , ..., rj1+n/2
) and computes a VDF with δ steps on input in.

3. Output whatever the VDF outputs.

As in the TLP based beacon, the main idea to prevent an adversary from
biasing/aborting this protocol is to guarantee two conditions: 1. At least 1+n/2
values rj are received and at least 1 rj is sampled uniformly at random by an
honest party; 2. The adversary cannot compute an output of the VDF with δ
steps before 1 + n/2 values rj are received, so it cannot choose its own value in
a way that biases the output. While the first condition follows from honest ma-
jority, the second condition is guaranteed by dynamically adjusting the number
of steps δ needed to compute the VDF without prior knowledge of the maximum
broadcast delay ∆ (as in our TLP based beacon). In order to do so, every party
Pi checks that at least 1+n/2 values rj are received before δ ticks. If this is not
the case, they increment δ and repeat the protocol from the beginning.

We design and analyse this protocol in the semi-synchronous model with
an honest majority. However, as in the case of our TLP based beacon, in a
synchronous scenario where the broadcast delay ∆ is known, we could achieve
security with a dishonest majority by proceeding to the Opening Phase after
a delay of δ > ∆, since there would be a guarantee that all honest party values
ri have been received.

The security of Protocol πVDF−RB is formally stated in Theorem 5, which we
recall below for the sake of clarity.

Theorem 5 If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (but unknown), Protocol πVDF−RB UC-realizes FRB

∆TLP−RB

in the FVDF,FLedger-hybrid model with computational security against static ad-
versaries corrupting t < n/2 parties for ∆TLP−RB = 2(ϵ−1∆+1)+

∑ϵ−1∆
i=1 i, where

ϵ is FVDF’s slack parameter. There is a simulator S s.t. for every static adversary
A, and any environment Z, Z cannot distinguish an execution of πVDF−RB by A
composed with FVDF,FLedger from an ideal execution with S and FRB

∆TLP−RB .
Proof. We construct a simulator S that operates with an internal copy of the
adversary A, towards which it simulates an execution of πVDF−RB as well as
FVDF, GrpoRO and FLedger. Essentially S executes the protocol πVDF−RB exactly
as an honest party would, forwarding all messages between A and Z up to the
point where the protocol proceeds to the output phase. At this point S sends
(Toss, sid) to FRB

∆TLP−RB on behalf of the corrupted parties in C who sent inputs
rj within the current delay δ, obtaining (Tossed, sid, x) from FRB

∆TLP−RB . Next,
S simulates the output of FVDF towards its internal copy of A as (in, x, δ,Π).
There is no need to observe or program GrpoRO, which serves only as an ideal hash
function. Since neither the environment nor any other parties obtain the output
x from FRB

∆TLP−RB before delay δ, S can obtain this output and program the
simulated FVDF accordingly. Moreover, by following the instructions of an honest
party in the input phase, S guarantees that the adversary cannot compute the
VDF before 1+n/2 inputs are given (containing at least one honestly generated
uniformly random ri). Additionally, it is guaranteed that at a maximum delay
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δ = ∆TLP−RB = 2(ϵ−1∆ + 1) +
∑ϵ∆

i=1 i for ∆ = maxTXDelay + emptyBlocks ·
slackWindow the simulator will proceed to the Output phase, since this accounts
for iterating from initial delay δ = 1 until ϵ−1(δ = maxTXDelay + emptyBlocks ·
slackWindow) + 1, at which point all honest parties are guaranteed to agree on
their (at least) 1 + n/2 inputs. Notice that we increase δ if at least 1 + n/2
inputs are not agreed upon within ϵδ ticks but we are guaranteed that, when
δ = ϵ−1∆, we will receive sufficient inputs within delay ϵδ = ∆, since we have
1 + n/2 honest parties and their messages are guaranteed to be agreed upon
within ∆ ticks. Since the protocol terminates and A cannot predict (nor bias)
x, the simulation with S and FRB

∆TLP−RB as parameterized in the Theorem is
indistinguishable from a real world execution of πVDF−RB with A. ⊓⊔

F Proofs for Theorems 3 and 4 for Composable
Randomness Beacons

We present the proofs for Theorems 3 and 4 from Section 5 below. For the sake
of clarity we repeat both theorems.

F.1 Proof for Theorem 3

Theorem 3 If ∆ is finite (though unknown) and all Pi ∈ P receive inputs
within a delay of δ ticks of each other, Protocol πTLP−RB UC-realizes FRB

∆TLP−RB

in the FTLP,FΓ,∆
BC,delay-hybrid model with computational security against static ad-

versaries corrupting t < n
2 parties in P for ∆TLP−RB = 3(ϵ−1∆+ 1) +

∑ϵ−1∆
i=1 i,

where ϵ is FTLP’s slack parameter. There exists a simulator S such that for every
static adversary A, and any environment Z, the environment cannot distinguish
an execution of πTLP−RB by A composed with FTLP,FΓ,∆

BC,delay from an ideal exe-
cution with S and FRB

∆TLP−RB .

In order to prove this theorem, we construct a simulator S that interacts
with an internal copy A of the adversary simulating FTLP and FΓ,∆

BC,delay towards
A. For any environment Z, we show that an execution with S and FRB

∆TLP−RB is
indistinguishable from an execution with A in the FTLP,FΓ,∆

BC,delay-hybrid model.
First of all, we observe that, since all honest parties receive inputs within a

delay of Γ ticks and consequently start executing πTLP−RB, we are guaranteed
that FΓ,∆

BC,delay never goes into a TotalBreakdown. Notice that, as soon as hon-
est parties receive their inputs, they generate a TLP and broadcast it through
FΓ,∆

BC,delay, which means that they all give an input to FΓ,∆
BC,delay within Γ ticks (one

of the conditions for avoiding a TotalBreakdown). Moreover, by following the
instructions of πTLP−RB, honest parties never provide inputs to the same instance
of FΓ,∆

BC,delay (or rather an input with the same ssid) twice, which is the second
condition for avoiding a FΓ,∆

BC,delay TotalBreakdown. Hence, by following the in-
structions of an honest party in the simulated execution with A, we ensure that
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FΓ,∆
BC,delay provides all of its guarantees (as is the case in a real world execution of

πTLP−RB with A where honest parties receive inputs within a delay of Γ ticks).
Next, we observe that, since ∆ is finite, the slack parameterof FTLP is 0 ≤

ϵ ≤ 1 and we have an honest majority, there exists a delay δ > ∆ such that the
Commitment Phase will succeed and the parties will advance to the Opening
Phase. Moreover, notice that we increase δ if at least n/2 TLPs are not received
within ϵδ ticks but we are guaranteed that, when δ = ϵ−1∆, we will receive
sufficient TLPs within delay ϵδ = ∆, since we have 1 + n/2 honest parties and
their messages are guaranteed to be delivered within ∆ ticks. Hence, in the worst
case, where we start with the smallest initial delay δ = 1, we are guaranteed
that the Commitment Phase will succeed after ∆TLP−RB = 3(ϵ−1∆ + 1) +∑ϵ−1∆

i=1 i ticks, which accounts for the total time spent iterating through all
possible delays δ until arriving at δ = ϵ−1∆ + 1. Thus, it is guaranteed that
all honest parties proceed to the Opening Phase within a maximum delay of
∆TLP−RB = 3(ϵ−1∆+ 1) +

∑ϵ−1∆
i=1 i .

Without loss of generality, in the remainder of this proof we assume that
the parties in P receive their (Toss, sid) inputs and start the Commitment
Phase at the same time (i.e. at the same tick). However, notice that, if this
is not the case and there’s a delay of δact ticks between the first party in P
receiving (Toss, sid) and the last party in P receiving this input, we can adjust
for that by increasing the delay parameter δ by δact ticks, which makes sure that
the last party’s message (Pj , sid, puzj) is received by all the other parties in P
before the first party’s TLP is solved.

We focus on constructing S for the worst case where t < n/2 of the parties
are corrupted by A. In this case, S proceeds in the Commitment Phase by
executing the exact instructions of an honest party in πTLP−RB. Notice that this
will ensure that a simulated honest party is in the set C of parties who provide
the at least first 1 + n/2 TLPs. Moreover, executing the steps of an honest
party guarantees that the protocol proceeds to the Opening Phase, since only
1+n/2 TLPs must be received before proceeding and we are guaranteed that this
happens because at least 1 + n/2 parties are not corrupted and because we will
eventually reach a δ that guarantees that all honest party messages are received
(as argued above). We denote one simulated honest party in C by Ph and S will
use it to force the output of the protocol to be equal to that of FRB

∆TLP−RB . After
the Commitment Phase is complete, S waits for (Pi, sid, x) from FRB

∆TLP−RB .
S executes the rest of the steps of an honest party in πTLP−RB for the simulated
parties in C with the following exceptions:

– For each Pj ∈ C, S checks that the TLP puzj in (Pj , sid, puzj) broadcast by
Pj is valid according to FTLP and extracts all rj values from the valid puzj ,
obtaining a set G of parties Pj that broadcast a valid rj , which will be either
opened in the Opening Phase or recovered in the Recovery Phase.

– S sends (Toss, sid) to FRB
∆TLP−RB on behalf of each corrupted party Pj ∈ G

that broadcast a valid TLP.
– S equivocates the opening of puzh from Ph in the Opening Phase so that

it opens to a value r′ such that r′ ⊕ r{j|Pj∈G\Ph} = x.

51



After the simulated execution of πTLP−RB is complete and an r = x is obtained,
S outputs whatever A outputs and halts.

Notice that the simulated opening of puzh to r′ is distributed exactly as in
a real world execution of πTLP−RB and that A obtains the same output x given
by FRB

∆TLP−RB . This holds since only the valid TLPs puzj sent before the first
honest TLPs open are considered in computing the final output, the adversary
does not learn the honest parties’ values ri before S does, and r′ is computed by
S based on the extracted rj from the valid TLPs. Moreover, S sends (Toss, sid)
to FRB

∆TLP−RB for each of the corrupted parties that participated in the simulated
execution correctly.

Hence, an execution with S and FRB
∆TLP−RB is indistinguishable from an ex-

ecution with A in the FTLP,FΓ,∆
BC,delay-hybrid model.

F.2 Proof for Theorem 4

Theorem 4 If ∆ = maxTXDelay + emptyBlocks · slackWindow (computed from
FLedger’s parameters) is finite (though unknown), Protocol πTLP−RB−LEDGER UC-
realizes FRB

∆TLP−RB in the FTLP,FLedger-hybrid model with computational secu-
rity against a static adversary corrupting t < n

2 parties in P for ∆TLP−RB =

3(ϵ−1∆ + 1) +
∑ϵ−1∆

i=1 i, where ϵ is FTLP’s slack parameter. Formally, there ex-
ists a simulator S such that for every static adversary A, and any environment
Z, the environment cannot distinguish an execution of πTLP−RB−LEDGER by A
composed with FTLP,FLedger from an ideal execution with S and FRB

∆TLP−RB .

The proof of this theorem follows from the proof of Theorem 3 by observing
the our choice of δ ensures that similar conditions to those of πTLP−RB are also
maintained in the end of the Commitment Phase in πTLP−RB−LEDGER, allow-
ing us to use the same simulation strategy. We observe that there exists such
δ > maxTXDelay + emptyBlocks · slackWindow since maxTXDelay, emptyBlocks,
slackWindow are finite, leaving us to upper bound δ. As in the case of our TLP
based beacon, in the case of the smallest initial delay δ = 1 we are guaran-
teed that the Commitment Phase will succeed after ∆TLP−RB = 3(ϵ−1∆ +

1) +
∑ϵ−1∆

i=1 i ticks for ∆ = maxTXDelay+ emptyBlocks · slackWindow, which ac-
counts for the time of iterating through all possible delays δ until arriving at
δ = ϵ−1∆ + 1, at which point it is guaranteed that at all honest parties’ TLPs
will be agreed upon by all other honest parties (i.e. it is guaranteed that all
honest parties proceed to the Opening Phase). Without loss of generality, in
the remainder of this proof we assume that the parties in P are already regis-
tered to FLedger and synchronized with respect to FLedger when they receive their
(Toss, sid) inputs and that they start the Commitment Phase at the same
time (i.e. at the same tick). However, notice that, if this is not the case and
there’s a delay of δact ticks between the first party in P receiving (Toss, sid)
and the last party in P receiving this input, we can adjust for that by increas-
ing the delay parameter δ by δact ticks, which makes sure that the last party’s
message (Pj , sid, puzj) is received by all the other parties in P before the first
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party’s TLP is solved. Since we guarantee this condition, we can use the same
simulator S as before with the difference that it simulates FLedger towards an
internal copy A of the adversary by following the exact instructions of FLedger

and executing all the queries to FLedger by A. Hence, we argue that an execution
with S and FRB

∆TLP−RB is indistinguishable from an execution of πTLP−RB−LEDGER

by A composed with FTLP,FLedger.

G MPC with (Punishable) Output-Independent Abort,
continued

In this Supplementary Material Section, we will first provide the full description
of the functionality F∆,δ,ζ

com as well as a proof of Theorem 6. This completes the
description of πmpc,oia. Then, we show how to extend πmpc,oia from Section 6 to
financially punish cheaters. This will be done using a smart contract functionality
Fγ,δ,ζ

SC as well as a multi-party publicly verifiable delayed commitment Fγ,δ,ζ,g
vcom ,

both of which are introduced here. The protocol then implements a modification
of the previous functionality, which we call F∆,γ,δ,ζ

mpc,poia.

G.1 The Functionality F∆,δ,ζ
com for Commitments with Delayed

Openings

In Fig. 25 and Fig. 26 the functionality F∆,δ,ζ
com for commitments with verifiable

delayed non-interactive openings is fully presented as it is used in πmpc,oia.
The functionality is a version of the respective two-party functionality from

[5]. In comparison to [5] we do not require any homomorphism, and addition-
ally support that the adversary already learns the opening after ζ ≤ δ ticks,
while honest parties have to wait ∆ + δ ticks. We will realize a version of this
functionality below, and the construction can be adapted to work for F∆,δ,ζ

com as
well.

G.2 Proof of Theorem 6

Theorem 6 Let λ be the statistical security parameter and ζ > ∆. Assume
that all honest parties obtain their inputs at most Γ ticks apart. Then the pro-
tocol πmpc,oia GUC-securely implements the ticked functionality F∆,δ,ζ

mpc,oia in the
F∆

mpc,sso,F∆,δ,ζ
com ,F∆

ct ,F
Γ,∆
BC,delay-hybrid model against any static adversary corrupt-

ing up to n− 1 parties in P. The transcripts are statistically indistinguishable.

Proof. The simulator will, towards the dishonest parties I that are corrupted
by A, simulate honest parties while additionally interacting with F∆,δ,ζ

mpc,oia. S
will furthermore simulate the hybrid functionalities F∆

mpc,sso,F∆,δ,ζ,i
com ,F∆

ct and
FΓ,∆

BC,delay towards A. S forwards the messages from the hybrid functionalities
and A to Gticker honestly. It ticks Gticker whenever honest parties would tick Gticker
and performs interactions of the simulated functionalities with Gticker honestly.
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Functionality F∆,δ,ζ
com (Commit, Opening)

The ticked functionality is parameterized by ∆, δ, ζ ∈ N where ζ ≤ δ. It interacts
with a set of n parties P = {P1, . . . ,Pn} where PSend ∈ P is a special party called
“the sender” and PRec = P \ {PSend} are the receivers. An adversary S may corrupt
a strict subset I ⊂ P of parties. The functionality internally has an initially empty
list O and a map commits.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:
1. Set commits[cid] = x.

2. Send a message cid with prefix Commit to PRec via Q with delay ∆.

3. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = x ̸=⊥ then
proceed as follows:
1. Send message (cid, x) with prefix Open to PRec via Q with delay ∆.

2. Send (cid, x) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from each Pi ∈ P \ I within
the same tick, then wait for (DOpen, sid, cid) from PSend. Upon receiving it and if
commits[cid] = x ̸=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec via Q

with delay ∆.

2. Add (δ, sid,Pj , (cid, x)) for each Pj ∈ PRec and (ζ, sid,S, (cid, x)) to O.

3. Send cid and the ID to S.
If any of the honest parties do not send the message within the same tick, then the
functionality enters a Total Breakdown like FΓ,∆

BC,delay.

Fig. 25: Ticked Functionality F∆,δ,ζ
com For Commitments with Delayed Opening

(Part 1).

Heartbeat: S will simulate the behavior of honest parties as in πmpc,oia towards
FΓ,∆

BC,delay, but FΓ,∆
BC,delay will never make a Total Breakdown due to behavior

of the simulated honest parties (only when induced by A). In case honest
parties would abort because dishonest parties did not send beat to FΓ,∆

BC,delay,
then S makes F∆,δ,ζ

mpc,oia abort as in the protocol. As in πmpc,oia, S will change
to sending ready using FΓ,∆

BC,delay during Reveal and stop with this once it
opened F∆,δ,ζ

com .

Init: If an honest party sends (Init, sid, C) to F∆,δ,ζ
mpc,oia then S gets informed by

the functionality. It will then simulate sending the same message to F∆
mpc,sso.

Similarly, if a dishonest party inputs such a message into F∆
mpc,sso then S

will forward this to F∆,δ,ζ
mpc,oia. If A decides to reschedule the arrival of such a

message to any of the honest parties in F∆
mpc,sso, then S will forward this to

F∆,δ,ζ
mpc,oia.
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Functionality F∆,δ,ζ
com (Ticks)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M.

2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).

3. For each entry (cnt, sid,Pj , (cid, x) ∈ O with Pj ∈ PRec, if there is no entry
(cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:
– If cnt = 0, append (Pj , sid, (DOpened, (cid, x))) to M.

– If cnt > 0, replace (cnt, sid,Pj , (cid, x)) with (cnt − 1, sid,Pj , (cid, x)) in
O.

4. For each entry (cnt, sid,S, (cid, x)) ∈ O, proceed as follows:
– If cnt = 0, append (PSend, sid, (DAdvOpened, cid)) to M and output

(DOpen, sid,S, (cid, x)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x)) with (cnt− 1, sid,S, (cid, x)) in O.
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and add

(Pi, sid,m) to M.

– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore all
further messages with this sid except to Tick and Fetch Message.

Fig. 26: Ticked Functionality F∆,δ,ζ
com For Commitments with Delayed Opening

(Part 2).

Input: The simulator behaves as during Init. For any honest party that pro-
vides an input into F∆,δ,ζ

mpc,oia it inputs a dummy value into F∆
mpc,sso. For every

dishonest party Pi that provides an input to F∆
mpc,sso it observes that value

xi as S simulates the functionality and then sends xi in the name of Pi to
F∆,δ,ζ

mpc,oia.
Computation: S will follow the same strategy as during Init.
Share: S simulates the protocol πmpc,oia as follows:

1. For each correct message ShareOutput by a dishonest party, send (Share, sid)

to F∆,δ,ζ
mpc,oia in the name of that party. For each message (Share, sid) by an

honest party through F∆,δ,ζ
mpc,oia let that party follow the protocol πmpc,oia.

2. In Step 4 the simulated honest parties commit to yi, ri using F∆,δ,ζ,i
com

that were obtained from F∆
mpc,sso. For each dishonest party Pj , observe

which values yj , rj it commits to using F∆,δ,ζ,j
com . Set J2 as the set of

parties where yj , rj are inconsistent with the outputs that the respective
parties receive from F∆

mpc,sso.
3. If the revealing of shares in Step 7 of the protocol succeeds, then S

sends DeliverShares to F∆,δ,ζ
mpc,oia, otherwise it sends Abort. Observe that

if S sends DeliverShares to F∆,δ,ζ
mpc,oia then message delivery to the honest

parties in F∆,δ,ζ
mpc,oia will be synchronized with how the adversary delays

the DeliverShares message in F∆
mpc,sso. Abort will also be sent if A aborts

F∆
mpc,sso or F∆

ct .
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Reveal: S simulates the protocol πmpc,oia as follows:
1. If an honest party Pi in F∆,δ,ζ

mpc,oia sends Reveal then start broadcasting the
ready message instead of the beat message for the simulated honest party
on FΓ,∆

BC,delay. Conversely, if a dishonest party Pj starts broadcasting ready

on FΓ,∆
BC,delay then send a Reveal-message in the name of Pj to F∆,δ,ζ

mpc,oia once
this broadcast round is finished.

2. Once FΓ,∆
BC,delay makes the first broadcast of only ready messages, then

each simulated honest party Pi sends DOpen to all instances F∆,δ,ζ,j
com for

Pj ∈ P.
3. S now waits for ζ ticks. It checks from which parties Pj ∈ P the honest

parties did not yet obtain DOpen from F∆,δ,ζ,j
com or for which commitments

they already received an opened value. Let J1 be that set. Then it sets
J = J1∪J2 and responds with the appropriate (Abort, sid, J) to F∆,δ,ζ

mpc,oia.
4. Upon obtaining the output y from F∆,δ,ζ

mpc,oia after ζ ticks S picks one sim-
ulated honest party Pi uniformly at random. It then reprograms F∆,δ,ζ,i

com

to output y′
i, r

′
i such that y′

i = y −
∑

j∈[n]\{i} yj (where the yj where
committed by all other parties in F∆,δ,ζ,j

com ) and r′i = ti −Ay′
i.

5. When the last F∆,δ,ζ,j
com of a party Pj ∈ I opens, S lets F∆,δ,ζ

mpc,oia deliver
the output to the honest parties.

First let us consider the Heartbeat mechanism. Here the difference between
the real and the ideal world lies in the total breakdown of FΓ,∆

BC,delay due to be-
havior of honest parties. This will only occur in πmpc,oia but not in S, and it will
happen if any honest party needs more than Γ ticks longer than the first honest
party to submit a message for a respective c. If FΓ,∆

BC,delay does not break down,
then all honest parties obtain the message beat in the same round and a total
breakdown due to honest parties cannot happen for any future call to FΓ,∆

BC,delay,
as all honest parties from now on act synchronized when sending messages to
FΓ,∆

BC,delay. Therefore, this difference in behavior can only occur when c = 0. But
by assumption, all honest parties obtain input within ≤ Γ ticks and they then
immediately send beat to FΓ,∆

BC,delay. Therefore, honest parties never trigger a total
breakdown in πmpc,oia either and this is indistinguishable between protocol and
simulation.

The honest parties react upon their inputs from Z or send outputs to it at
the same points of time both during the real protocol and the simulation. For
the Init, Input, Computation phase that is clear, and aborts are also carried
to F∆,δ,ζ

mpc,oia during Share at the same time. Similarly, actions that honest parties
take towards F∆,δ,ζ

mpc,oia lead to equivalent actions in the simulation that can be
observed by A in Init, Input, Computation, Share. In Reveal they do not
have any input from Z, so we have to consider the output that they obtain in
both cases.

Both in S and in the real protocol, A will always get the correct output of
the computation. It will also always get messages from the (simulated) honest
parties with the same distribution: we only reprogram one commitment F∆,δ,ζ,i

com
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in S but this is indistinguishable due to the random choice of ri that hides the
committed share perfectly.

The simulated honest parties in the simulation will always abort if they
would get the wrong output of the computation, due to the choice of J : J1 is
determined identically in both the simulation and the real protocol, but J2 is
computed differently and it is computed in the simulation according to incorrect
output shares yj of dishonest parties.

Due to the choice of A ∈ Fλ×m we know that fA(y, r) := r + Ay is a
universal hash function, which implies that J2 differs between S and πmpc,oia only
when A in the real protocol commits to values y′

j , r
′
j such that fA(yj , rj) = tj =

fA(y′
j , r

′
j), which it has to do before A is known. By the properties of a universal

hash function, we then have that tj ̸= fA(y′
j , r

′
j) except with probability that is

negligible in λ.
Now if the honest parties do not output y then they output the set J . Honest

parties in the protocol will simply output J while those in the ideal setting only
output J to Z that does not contain any honest parties. We need to argue
that parties in the protocol agree on J and identify the same cheaters as in
the simulation: First, all honest parties in the protocol start in the same “tick”
round when opening their commitments. This is because, as argued before, they
are synchronized in sending beat and are therefore also synchronized in sending
ready. Therefore and because F∆,δ,ζ

com opens in a broadcast, they will always agree
on the parties they identify as cheaters. Because ζ > ∆ all honest messages
DOpen will always arrive before DOpened occurs at an honest party, so J1
never contains an honest party in either the simulation or real protocol. J2 can
by definition never contain an honest party. ⊓⊔

G.3 Penalizing Cheaters

We will now explain how the idea behind the protocol πmpc,oia can be modified
in order to construct MPC with punishable output-independent abort.

In order to manage monetary contributions of parties, we will use a smart
contract functionality Fγ,δ,ζ

SC that accepts deposits of parties and distributes these
to parties that do not cheat. As this smart contract will have to act upon mes-
sages sent by all parties, we will let Fγ,δ,ζ

SC replace the broadcast functionality
FΓ,∆

BC,delay for synchronization. This has the additional advantage that it easily
synchronizes honest parties and Fγ,δ,ζ

SC concerning the abort condition that no
DOpen message can be accepted anymore. This is important, as we require that
both the honest parties and Fγ,δ,ζ

SC identify the same set of cheaters J1 during
the opening phase, which Fγ,δ,ζ

SC can then punish.
In order to identify the set J2 of parties that open in time but with incorrect

output shares, Fγ,δ,ζ
SC must be able to check openings of F∆,δ,ζ

com . For this reason
we will enhance this functionality to Fγ,δ,ζ,g

vcom which has verifiability for opened
values. Moreover, we ask that the opened values of Fγ,δ,ζ,g

vcom have to be trans-
ferable: if any party Pi has found the opening, then by sending it to Fγ,δ,ζ

SC the

57



smart contract can verify the opening without running the delayed opening step
which involves solving a TLP.

In the protocol, parties will then first compute on their inputs and generate
shares of the outputs as in πmpc,oia, although using the aforementioned different
functionalities. Then, before starting the opening phase, each party will send
a deposit to Fγ,δ,ζ

SC . Here all these deposits have to arrive within a γ tick time
span. Then, parties start the delayed openings as before, although the output
time using Fγ,δ,ζ

SC is now longer (ζ + δ + γ) than without punishments. This is
because we now require that honest parties, once they find an opening to (pos-
sibly adversarial) commitments, post these to Fγ,δ,ζ

SC , which may take additional
γ time to complete. Due to the length of the time span, all commitments from
parties in P \J1 will have been posted at that time, so that the set J2 is identical
for honest parties and Fγ,δ,ζ

SC . At the same time, as Fγ,δ,ζ,g
vcom has verifiable open-

ings the adversary cannot send “incorrect” openings for commitments of honest
parties to Fγ,δ,ζ

SC and frame these.
In the following, we will now introduce the individual building blocks as well

as the overall protocol.

G.4 Commitments with Publicly Verifiable Delayed Openings

In Fig. 27 and Fig. 28 we describe the functionality Fγ,δ,ζ,g
vcom for commitments

with publicly verifiable delayed non-interactive openings. The functionality dis-
tinguishes between a sender, which is allowed to make commitments, a set of
receivers, which will obtain the openings, and a set of verifiers, which will be
able to verify that a claimed opening is indeed correct. For Public Verifica-
tion any verifier Vi ∈ V (which does not have to be part of PRec) can check
whether a certain opening for a commitment cid is indeed valid. This allows
parties from PRec to “verifiably transfer” openings to other parties. The string
vt which is part of the verification token makes it computationally infeasible for
any Vi ∈ V to simply brute-force the committed value in advance.

We construct a protocol πvcom realizing Fγ,δ,ζ,g
vcom by combining a standard ran-

dom oracle-based commitment with a TLP. The core of the protocol is having the
sender commit to a message m by sampling some randomness r and broadcast-
ing the commitment c obtained from the random oracle being queried on (m|r),
which is revealed later in the opening phase so that the receivers can repeat the
query to verify that the output matches the previously received c. This basic
scheme can be augmented with a delayed opening procedure by simply gener-
ating a TLP containing (m|r) that can be solved in δ steps, so that receivers
only learn the message (and verification information) for the commitment after
the desired delay δ (where we allow A to already learn it after ζ = ϵ · δ steps).
In order to make this scheme publicly verifiable, we use a bulletin board incor-
porated into the smart contract functionality Fγ,δ,ζ

SC and a global random oracle
GrpoRO, so that any verifier who joins the protocol execution at any point can
retrieve commitments, openings and delayed openings from the bulletin board
and verify them while obtaining the same results as the parties who participated
in the execution so far.
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Functionality Fγ,δ,ζ,g
vcom (Commit, Opening)

The ticked functionality is parameterized by γ, δ, ζ ∈ N where ζ ≤ δ and interacts
with a set of verifiers V and a set of n parties P = {P1, . . . ,Pn} where PSend ∈ P
is a special party called “the sender” and PRec = P \ {PSend} are the receivers.
An adversary S may corrupt a strict subset I ⊂ P of parties. The functionality
internally has an initially empty list O and a map commits. The functionality has
a public function g : {0, 1}∗ 7→ N which describes how many ticks it takes to verify
an opening.

Commit: Upon receiving (Commit, sid, cid, x) from PSend where cid is an unused
identifier and x is a bit-string proceed as follows:
1. If PSend is honest then set vt

$← {0, 1}τ , otherwise wait for
(Verifier, sid, cid, vt) from S where vt ∈ {0, 1}τ .

2. Set commits[cid] = (x, vt).
3. Send a message cid with prefix Commit to PRec ∪ V via Q with delay γ.
4. Send cid and the IDs to S.

Open: Upon receiving (Open, sid, cid) from PSend, if commits[cid] = (x, vt) ̸=⊥ then
proceed as follows:
1. Send message (cid, x, vt) with prefix Open to PRec via Q with delay γ.
2. Send (cid, x, vt) and the IDs to S.

Delayed Open: Upon receiving (DOpen, sid, cid) from PSend, if commits[cid] =
(x, vt) ̸=⊥ then proceed as follows:
1. Simultaneously send message cid with prefix DOpen to all parties in PRec

via Q with delay γ.
2. Add (δ, sid,Pj , (cid, x, vt)) for each Pj ∈ PRec and (ζ, sid,S, (cid, x, vt)) to
O.

3. Send cid and the ID to S.
Public Verification: Upon receiving (Verify, sid, (cid, x, vt)) from Vi ∈ V, if

commits[cid] = (x, vt), set b = 1, else set b = 0. Add (g(δ), sid,Vi, (cid,m, vt, b))
to O.

Fig. 27: Ticked Functionality Fγ,δ,ζ,g
vcom For Multiparty Commitments with Verifi-

able Delayed Opening.

Theorem 7. Protocol πvcom GUC-realizes Fγ,δ,ζ,g
vcom in the GrpoRO,Fγ,δ,ζ

SC ,FTLP hy-
brid model.

Proof. [Sketch] The fact that the Commit and Open steps of πvcom realize the
corresponding interfaces of the standard commitment functionality in the GrpoRO
and FAuth-hybrid model (FAuth is the functionality for authenticated channels)
is proven in [13]. In our case FAuth is substituted by the authenticated bulletin
board embedded in Fγ,δ,ζ

SC through which messages are sent among parties. We
can further extend the simulator S from [13] to capture the delayed opening and
public verification. The delayed opening can be simulated by equivocating the
message contained in the simulated TLP with the one received from Fγ,δ,ζ,g

vcom in
case A corrupts parties in P but not PSend. Since the functionality reveals the
output to the simulator when FTLP opens early for the adversary (at time ζ)
this simulation is consistent. In case A corrupts PSend, the delayed opening can
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Functionality Fγ,δ,ζ,g
vcom (Message Handling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. For each entry (cnt, sid,Pj , (cid, x, vt) ∈ O with Pj ∈ PRec, if there is no

entry (cnt, sid,mid, sid,Pj , (DOpen, cid)) ∈ Q, proceed as follows:
– If cnt = 0, append (Pj , sid, (DOpened, (cid, x, vt))) to M.
– If cnt > 0, replace (cnt, sid,Pj , (cid, x, vt)) with (cnt −

1, sid,Pj , (cid, x, vt)) in O.
4. For each entry (cnt, sid,S, (cid, x, vt)) ∈ O, proceed as follows:

– If cnt = 0 append (PSend, sid, (DAdvOpened, cid)) to M and output
(DOpen, sid,S, (cid, x, vt)) to S.

– If cnt > 0, replace (cnt, sid,S, (cid, x, vt)) with (cnt −
1, sid,S, (cid, x, vt)) in O.

5. For each entry (cnt, sid,Vi, (cid, x, vt, b)) ∈ O with Vi ∈ V, proceed as
follows:
– If cnt = 0, append (Vi, sid, (Verified, cid, x, vt, b)) to M.
– If cnt > 0, replace (cnt, sid,Vi, (cid, x, vt, b)) with (cnt −

1, sid,Vi, (cid, x, vt, b)) in O.
Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D then add (Pi, sid,Abort) toM for each i ∈ [n] and ignore

all further messages with this sid except to Tick and Fetch Message.

Fig. 28: Ticked Functionality Fγ,δ,ζ,g
vcom For Multiparty Commitments with Verifi-

able Delayed Opening.

be simulated by extracting (x, r) from its TLP and checking that these values
represent a valid opening, in which case S instructs Fγ,δ,ζ,g

vcom to start a delayed
opening. S can do this since it simulates FTLP towardsA, similarly to the strategy
of the delayed homomorphic commitment of [5]. S makes puz′ open when Fγ,δ,ζ,g

vcom

sends DAdvOpened (or delays it according to A’s queries to FTLP). This coincides
with the protocol due to the choice of parameters for puz′. Public verification
follows in a straightforward manner since verifiers V receive the same messages
as parties P and perform the exact same procedures of an honest receiver to
verify the validity of such messages. S simulates public verification towards A
by also following the exact steps of honest parties. Notice that this would only
fail if it was possible to find alternative openings x′, r′ for a commitment (cid, c),
which only happens with negligible probability. Hence, since GrpoRO is global the
output obtained by V in the public verification procedure is 1 if and only if the
output x was really obtained from a valid opening of the commitment identified
by cid. The delay for the public verification is the same in the protocol and the
ideal functionality due to the delay of the verification using FTLP. ⊓⊔

Remark 1. By replacing Fγ,δ,ζ
SC with FΓ,∆

BC,delay we can construct F∆,δ,ζ
com in a similar

fashion. The proof is identical to Theorem 7, except that we now additionally
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Protocol πvcom

Protocol πvcom is parameterized by an opening delay δ and operates with parties
P = {P1, . . . ,Pn} and verifiers V that interact with each other and with GrpoRO,
Fγ,δ,ζ

SC , FTLP and Gticker as follows:

Commit: On input (Commit, sid, cid, x), PSend uniformly samples r
$← {0, 1}τ and

queries GrpoRO on (cid, x|r) to obtain c. PSend sends (Broadcast, sid, (cid, c)) to Fγ,δ,ζ
SC .

All parties Pj ∈ P for j ̸= i output (Committed, sid,PSend, cid) upon receiving this
message from Fγ,δ,ζ

SC .

Open: On input (Open, sid, cid), PSend sends (Broadcast, sid, (cid, x, r)) to Fγ,δ,ζ
SC .

Upon receiving (cid, x, r) from Fγ,δ,ζ
SC , each party Pj queries GrpoRO on (cid, x|r)

and checks that the answer is equal to c and that this output is not pro-
grammed by sending (IsProgrammed, cid, x|r) to GrpoRO, aborting if the answer
is (IsProgrammed, 1). Output (Open, sid,PSend, cid,m).

Delayed Open: On input (DOpen, sid, cid), PSend sends (CreatePuzzle, sid, δ, (x, r))
and (CreatePuzzle, sid, ϵ · δ, (⊤)) to FTLP, receiving (CreatedPuzzle, sid, puz, π) and
(CreatedPuzzle, sid, puz′, π′). PSend sends (Broadcast, sid, (cid, puz)) to Fγ,δ,ζ

SC and
(Solve, sid, puz′) to FTLP. Upon receiving (cid, puz) from Fγ,δ,ζ

SC all parties Pi ∈ P
solve both puz by sending (Solve, sid, puz) to FTLP and performing one iteration of
the following loop at every activation:
1. Send (AdvanceState, sid) to FTLP.

2. (PSend only) If FTLP sends (Solved, sid, puz′,⊤, π′) output (DAdvOpened, sid, cid).

3. If FTLP sends (Solved, sid, puz, (x, r), π) then Pi queries GrpoRO on (cid, x|r) and
checks that the answer is equal to c and that the output is not programmed
by sending (IsProgrammed, cid, x|r) to GrpoRO. If any of these checks fail,
Pi aborts. Otherwise, it sends (Broadcast, sid, (cid, x, r, π)) to Fγ,δ,ζ

SC , outputs
(DOpened, sid, (cid, x, r)) and exits the loop.

4. Send (activated) to Gticker.
Verify: On input (Verify, sid, (cid, x, r)), Vj ∈ V sends (Fetch− BB, sid) to Fγ,δ,ζ

SC ,
receives (Return− BB, sid,B) and checks that there exists (cid, c) in B. Vj queries
GrpoRO on (cid, x|r) and checks that the answer is equal to c and that this output is
not programmed by sending (IsProgrammed, cid, x|r) to GrpoRO, checking that the
answer is (IsProgrammed, 0). If any check fails set b = 0, otherwise set b = 1.
If therea is (cid, puz) ∈ B, Vj checks that there exist (cid, x′, r′, π′) ∈ B with respect
to FTLP such that (x′, r′) = (x, r). If so, then it sends (Verify, sid, puz, (x, r), π′)
to FTLP for each such entry in B, and queries (AdvanceState, sid) on FTLP and
(activated) on Gticker until all π′ are verified. If for any of the π′ FTLP outputs
(Verified, sid, puz, (x, r), π, 1) and b has not been set to 0, then set b = 1.
Output (Verified, sid, (cid, x, r), b).

Fetching Messages: At every activation, all parties P and in V send (Fetch, sid)
to Fγ,δ,ζ

SC , receiving (Fetch, sid, L) and parsing L according to the steps above.

a If not, then run a dummy TLP with delay g(δ) and wait until it opens.

Fig. 29: Protocol for Multiparty Commitments with Verifiable Delayed Opening.
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require that all honest parties participate in the same tick when the delayed
opening happens, or otherwise the functionality breaks down. This is a strong
requirement, but it actually holds in the MPC protocol where the functionality
is used. It stems from the use of FΓ,∆

BC,delay, so we could relax this strong syn-
chronization requirement to Γ desynchronization at the expense of making the
functionality more complicated. Again, we choose ζ = ϵ · δ.

G.5 The Smart Contract Functionality

Functionality Fγ,δ,ζ
SC (Contract Code, Bulletin Board)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S. Fγ,δ,ζ

SC is parameterized by the compensation amount q, the security deposit
d = (n− 1)q and has a state st initially set to ⊥ as well as a list B.

Register: On first input (Register, sid, {Fγ,δ,ζ,g,j
vcom }j∈[n]) by Pi ∈ P:

1. Notify the parties P \ {Pi} via Q with delay 0.
2. If each party sent (Register, sid, {Fγ,δ,ζ,g,j

vcom }j∈[n]) with the same functional-
ities then set st = ready, register to all functionalities as verifier and store
references to all these functionalities.

3. Send (Register, sid,Pi, {Fγ,δ,ζ,g,j
vcom }j∈[n]) to S.

Broadcast: Upon receiving an input (Broadcast, sid,m) from a party Pi ∈ P:
1. Simultaneously send message (m, i) to the parties P via Q with delay γ.
2. Send (m, i) and the ID to S.

Fetch Bulletin Board: Upon receiving an input (Fetch− BB, sid) from a party
in P or V, output (Return− BB, sid,B) to that party.

Deposit: On input (Deposit, sid, coins(d)) by Pi ∈ P, if for each Pj ∈ P there is
the same (sid, (Broadcast, (A, t1, . . . , tn, j))) ∈ B and if st ∈ {ready, dep(x)}:
1. Simultaneously send a message (“coins(d)′′, i) with prefix Deposit to the

parties P \ {Pi} via Q with delay 0.
2. If st = ready then set st = dep(γ).
3. Send (Deposit, sid, “coins(d)′′, i) to S.

Fig. 30: Ticked Functionality Fγ,δ,ζ
SC for Smart Contracts.

The smart contract functionality Fγ,δ,ζ
SC is depicted in Fig. 30 and Fig. 31.

It realizes the coin-handling parts of our protocol. At the same time, it serves
in the protocol as a bulletin board (and therefore also broadcast) functionality
and is a verifier to Fγ,δ,ζ,g

vcom . Therefore, our construction requires Fγ,δ,ζ,g
vcom to be a

global functionality. This hides details of the commitment verification from the
smart contract.

At any point the parties will be able to use the bulletin board property of
Fγ,δ,ζ

SC , where Fγ,δ,ζ
SC also keeps track about all messages that have been broadcast

in an internal list B. All such sent messages can at any point be retrieved using
Fetch Bulletin Board.
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Functionality Fγ,δ,ζ
SC (Ticks)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) to M

and, if there is no other (cnt,mid, sid,Pj ,m) ∈ Q, add (sid,m) to B.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) and x ≥ 0:

(a) Set st = wait(x− 1).
(b) If x = 0:

i. Let L ⊆ L′ be the set of parties such that for each i ∈ L there
exists (cidi,yi, ri, vti) in B such that public verification on Fγ,δ,ζ,g,i

vcom

output 1 after the initiated verification. Set J2 as the set of all
parties Pi ∈ L such that ti ̸= ri +Ayi. Set J ← J1 ∪ J2. If J = ∅
then set e1, . . . , en ← d.

ii. If instead J ̸= ∅ then set ei ← d+ |J | · q for each party Pi ∈ P \ J
and ei ← d− q · (n− |J |) for each Pi ∈ J .

iii. Send message coins(ei) to each party Pi ∈ P via M.
iv. Set st = ⊥ and send (Coins, sid, {ei}Pi∈P) to S.

(c) If x = g(δ): Let L′ ⊂ P \ J1 be the set of parties such that for i ∈ L
there exists (cidi,yi, ri, vti) in B. Send (Verify, sid, (cidi, (yi, ri), vti))
to Fγ,δ,ζ,g,i

vcom .
(d) If x = δ + g(δ) + γ: Set J1 as the set of parties Pj such that Fγ,δ,ζ,g,j

vcom

did not send DOpen to Fγ,δ,ζ
SC .

4. If st = dep(x):
If x > 0: Set st = dep(x− 1).
If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(ζ + δ + g(δ) + γ) and send a message AllDeposited to P and
S viaM. Otherwise send a message coins(d) with prefix Coins to each
party that sent the deposit viaM, set st = ready and send a message
Reimbursed to P and S via M.

Fig. 31: Ticked Functionality Fγ,δ,ζ
SC for Smart Contracts.

Before being able to use Fγ,δ,ζ
SC with respect to coins, the parties will have

to register the instances of Fγ,δ,ζ,g
vcom that they want to use. Once this is finished,

they can then deposit coins to the functionality if the protocol has actually shared
the output to all parties which is indicated by Fγ,δ,ζ

SC having obtained A. This
way we avoid that the adversary can activate Deposit of Fγ,δ,ζ

SC prematurely.
All parties then, once Deposit is activated, have time γ to deposit their coins
as well, otherwise these will automatically be returned by Fγ,δ,ζ

SC . If all parties
indeed deposited their coins then Fγ,δ,ζ

SC will notify both the parties and S about
this state change, which will allow them to react to this event by opening their
instances of Fγ,δ,ζ,g

vcom . After this, no more coins can be deposited by any party.
Once the coins are locked, Fγ,δ,ζ

SC will similarly to πmpc,oia wait for the parties
to initialize the opening of their commitments for δ ticks. Afterwards it will wait
δ + γ ticks where parties in the protocol first obtain the committed values for
each commitment (which takes δ ticks) which they then broadcast via Fγ,δ,ζ

SC

(which takes another γ ticks to succeed). Fγ,δ,ζ
SC can then verify these openings
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using the respective instances of Fγ,δ,ζ,g
vcom . Honest parties will always succeed in

doing this in the respective amount of time.
None of the actions done by Fγ,δ,ζ

SC rely on any secret information or secret
state and all messages that are provided by Fγ,δ,ζ

SC are provided immediately. In
an implementation, this can be implemented with a non-private smart contract.

G.6 MPC with Punishable Output-Independent Abort

Finally, we now describe the functionality F∆,γ,δ,ζ
mpc,poia which provides MPC with

punishable output-independent abort as described in Fig. 32 and Fig. 33.
F∆,γ,δ,ζ

mpc,poia contains, as previous MPC functionalities, the MPC capabilities for
input sharing, computation and output sharing. Any party can, after the output
sharing is finished, deposit coins to F∆,γ,δ,ζ

mpc,poia which will then also immediately
notify all other parties and S about this event, which if it happens the first time
will lead to an internal state-change. Unless all parties then deposit coins within
γ, they will be reimbursed by F∆,γ,δ,ζ

mpc,poia, otherwise it switches to a waiting state
wait.

Similar to F∆,δ,ζ
mpc,oia, the functionality F∆,γ,δ,ζ

mpc,poia will first remain in the waiting
state for δ ticks. Then it asks S to provide the set J of cheating parties to it. After
obtaining J , the functionality will then return the output of the computation
y to S. Ultimately, the functionality will wait for another δ + γ ticks during
which it either reveals the output y to all honest parties (if J = ∅) or the set J -
exactly as F∆,δ,ζ

mpc,oia. In addition, after these δ+γ ticks the functionality will either
reimburse all parties with coins(d) if J = ∅ or share all coins among the non-
cheating parties P\J otherwise. The strategy for calculating this reimbursement
is identical to Fγ,δ,ζ

SC .

The Protocol. The full protocol πmpc,poia is depicted in Fig. 34 and Fig. 35. It
uses a similar approach as πmpc,oia, although the broadcast of A, t1, . . . , tn as well
as the inherent broadcasts in Fγ,δ,ζ,g

vcom must now be done via Fγ,δ,ζ
SC . In comparison

to πmpc,oia we do not have to externally synchronize the honest parties using a
heartbeat, as the AllDeposited message from Fγ,δ,ζ

SC now serves as synchronization
point within the protocol.

Afterwards, honest parties will now open their commitments Fγ,δ,ζ,g
vcom as before

and wait for DOpen messages from other parties’ commitment functionalities
Fγ,δ,ζ,g,j

vcom . Once they obtain a solution by Fγ,δ,ζ,g,j
vcom , however, they post it on

Fγ,δ,ζ
SC to allow Fγ,δ,ζ

SC to verify it. Then, those parties who started the opening
at the right time, got their openings on Fγ,δ,ζ

SC and whose openings are correct
will then be reimbursed. Here, observe that honest parties will be able to solve
the TLPs and solve the solutions within the time-frame given by Fγ,δ,ζ

SC , so the
set J2 identified by Fγ,δ,ζ

SC will be identical with the set determined by each
honest party.

For the correctness of the protocol, we see that honest parties can never be
framed as cheaters as long as δ > γ i.e. as long as the TLPs do not time out
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Functionality F∆,γ,δ,ζ
mpc,poia (MPC)

The ticked functionality runs with n parties P = {P1, . . . ,Pn} and an adversary
S who may corrupt a strict subset I ⊂ P. F∆,γ,δ,ζ

mpc,poia is parameterized by ∆, γ, δ, ζ ∈
N+, ζ ≤ δ, the compensation amount q and the security deposit d = (n − 1)q.
The computed circuit is defined over F. The functionality has a state st that is
initially ⊥ as well as an initially empty set J . The functionality has a public function
g : {0, 1}∗ 7→ N.

Init: On first input (Init, sid, C) by Pi ∈ P:
1. Send message C to the parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Init, sid, C) then store C locally.
3. Send C and the IDs to S.

Input: On first input (Input, sid, i, xi) by Pi ∈ P:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. Accept xi as input for Pi.
3. Send m and the IDs to S if Pi ∈ I, otherwise notify S about a message

with prefix Input.
Computation: On first input (Compute, sid) by Pi ∈ P and if all x1, . . . , xn were

accepted:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If each party sent (Compute, sid) compute y = C(x1, . . . , xn) and store y.
3. Notify S about a message with prefix Compute.

Share: On first input (Share, sid) by party Pi, if y has been stored and if st = ⊥:
1. Notify parties P \ {Pi} via Q with delay ∆.
2. If all parties sent Share then:

(a) Send (Shares?, sid) to S.
(b) Upon (DeliverShares, sid) from S simultaneously send a message with

prefix DeliverShares to each Pj ∈ (P ∪V) \ I via Q with delay ∆. Then
notify S about messages with prefix DeliverShares and the ID.

(c) Otherwise, if S sends (Abort, sid) then send Abort to all parties
3. Notify S about a message with prefix Share.

Deposit: On first input (Deposit, sid, coins(d)) by Pi ∈ P, if Share finished, if no
DeliverShare message is in Q and if st ∈ {dep,⊥}:
1. Simultaneously send a message (i, “coins(d)′′) to the parties P \ {Pi} via
Q with delay 0.

2. If st = ⊥ then set st = dep(γ).
3. Notify S about the message.

Fig. 32: Ticked Functionality F∆,γ,δ,ζ
mpc,poia for Secure Multiparty Computation with

Punishable Output-Independent Abort.

before they succeeded at sending their TLPs to the bulletin board. To achieve
output-independent abort, we require ζ > γ.

Overall, this leads to the following

Theorem 8. Let λ be the statistical security parameter and ζ > γ. Then the
protocol πmpc,poia GUC-securely implements the ticked functionality F∆,γ,δ,ζ

mpc,poia in
the F∆

mpc,sso,Fγ,δ,ζ,g
vcom ,F∆

ct ,F
γ,δ,ζ
SC -hybrid model against any static adversary cor-
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Functionality F∆,γ,δ,ζ
mpc,poia (Message Scheduling)

Tick:
1. Remove each (0,mid, sid,Pi,m) from Q and instead add (Pi, sid,m) toM.
2. Replace each (cnt,mid, sid,Pi,m) in Q with (cnt− 1,mid, sid,Pi,m).
3. If st = wait(x) & x ≥ 0:

If x ≥ 0: Set st = wait(x− 1).
If x = δ + g(δ) + γ:

(a) Send (Abort?, sid) to S and wait for (Abort, sid, J) with J ⊆ I.
(b) If J = ∅ then send message y with prefix Output to each party
P \ I via Q with delay δ.

(c) If J ̸= ∅ then send message J with prefix Abort to each party P \ I
via Q with delay δ.

(d) Send (Output, sid, y) and the IDs to S.
If x = 0:

(a) If J = ∅ then set e1, . . . , en ← d.
(b) If J ̸= ∅ set ei ← d + |J | · q for each party Pi ∈ P \ J and

ei ← d− q · (n− |J |) for each Pi ∈ J .
(c) Send message coins(ei) with prefix Coins to each party P \ I via
M with delay 0.

(d) Send (Coins, sid, {coins(ei)}Pi∈I) to S.
4. If st = dep(x):

(a) Set st = dep(x− 1).
(b) If x = 0: If all parties in P sent (Deposit, sid, coins(d)) then set st =

wait(ζ + δ + g(δ) + γ) and send a message AllDeposited to P and S
via M. Otherwise send a message coins(d) with prefix Coins to each
party that sent the deposit via M, set st ← ⊥ and send a message
Reimbursed to P and S via M.

Upon receiving (Schedule, sid,D) from S:
– If (Deliver, sid,mid) ∈ D then remove each (cnt,mid, sid,Pi,m) from Q and

add (Pi, sid,m) to M.
– If (Abort, sid) ∈ D and st = ⊥ then add (Pi, sid,Abort) toM for each i ∈ [n]

and ignore all further messages with this sid except to Fetch Message.

Fig. 33: Ticked Functionality F∆,γ,δ,ζ
mpc,poia for Secure Multiparty Computation with

Punishable Output-Independent Abort.

rupting up to n− 1 of the n parties in P. The transcripts are statistically indis-
tinguishable.

Achieving Partial Fairness. Gordon and Katz [29] introduced the concept of
partially fair two-party computation, where correctness and privacy of the secure
protocol always holds but fairness may not hold with probability 1/|poly(λ)|.
This notion, generalized to the multiparty-setting, can also be achieved by ex-
tending πmpc,oia. There, the parties would sample a secret bit b fairly in MPC. If
b = 1 then the reconstructed output would be the actual output of the compu-
tation together with the bit b, while if b = 0 then the output phase would only
reveal a “dummy output” and b. Over multiple output rounds, this process will
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Protocol πmpc,poia (Computation, Sharing)

All parties P have access to one instance of the functionalities F∆
mpc,sso,F∆

ct and
Fγ,δ,ζ

SC . Furthermore, each Pi ∈ P has it’s own Fγ,δ,ζ,g,i
vcom where it acts as the dedi-

cated sender and all other parties of P are receivers.
Throughout the protocol, we say “Pi ticks” when we mean that it sends (activated)
to Gticker. We say that “Pi waits” when we mean that Pi, upon each activation, first
checks if the event happened and if not, sends (activated) to Gticker.

Init:
1. Each Pi sends (Register, sid, {Fγ,δ,ζ,g,j

vcom }j∈[n]) to Fγ,δ,ζ
SC and ticks. Then it

waits until it receives Register from Fγ,δ,ζ
SC for each P \ {Pi}.

2. Each Pi ∈ P sends (Init, sid, C) to F∆
mpc,sso and ticks. Then it waits until

it obtains messages C with prefix Init from F∆
mpc,sso for every other party

P \ {Pi}.
Input: Each Pi ∈ P sends (Input, sid, i, xi) to F∆

mpc,sso and ticks. Then it waits
until it obtains messages j with prefix Input from F∆

mpc,sso for every other party
Pj ∈ P \ {Pi}.

Computation: Each Pi ∈ P sends (Computation, sid) to F∆
mpc,sso and ticks. Then it

waits until it obtains messages with prefix Computation from F∆
mpc,sso for every

other party P \ {Pi}.
Share:

1. Set Ty = {cidy,j}j∈[m], Tr = {cidr,k}k∈[λ] and Tt = {cidt,k}k∈[λ].
2. Each Pi ∈ P sends (ShareOutput, sid, Ty) to F∆

mpc,sso and ticks. Then it
waits until it obtains a message {yi,cid}cid∈Ty with prefix OutputShares from
F∆

mpc,sso.
3. Each Pi ∈ P sends (ShareRandom, sid, Tr) to F∆

mpc,sso and ticks. Then it
waits until it obtains a message {ri,cid}cid∈Tr with prefix RandomShares
from F∆

mpc,sso. Set yi = (yi,cidy,1 , . . . , yi,cidy,m) and equivalently define ri.
4. Each Pi ∈ P sends (Commit, sid, cidi, (yi, ri)) to Fγ,δ,ζ,g,i

vcom and ticks. Then
it waits for messages (Commit, sid, cidj) from the Fγ,δ,ζ,g,j

vcom -instances of all
other parties Pj ∈ P \ {Pi}.

5. Each Pi ∈ P sends (Toss, sid,m · λ) to F∆
ct and ticks. It then waits for the

message (Coins, sid,A) where A ∈ Fλ×m.
6. Each Pi ∈ P for k ∈ [λ] sends (Linear, sid, {(cidv,j ,A[k, j])}j∈[m] ∪
{(cidr,k, 1)}, cidt,k) to F∆

mpc,sso.
7. Each Pi ∈ P sends (Reveal, sid, Tt) to F∆

mpc,sso and ticks. It then waits for the
message {(cid, t1,cid, . . . , tn,cid)}cid∈Tt with prefix DeliverReveal from F∆

mpc,sso.
Set tj = (tj,cidt,1 , . . . , tj,cidt,λ) for each j ∈ [n].

8. Each Pi ∈ P sends (Broadcast, sid, (A, t1, . . . , tn)) to Fγ,δ,ζ
SC and ticks.

9. Each Pi ∈ P waits until it received n identical broadcasts
(Broadcast, sid, (A, t1, . . . , tn)), one from each Pj ∈ P.

Fig. 34: Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.

be repeated until b = 1. Partial fairness of the approach follows as the adversary
has to decide if or not it will reveal the output before learning the value of b for
the respective round. This idea can also be combined with financial incentives to
strengthen the guarantees of πmpc,poia.
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Protocol πmpc,poia (Deposit)

Deposit:
1. If Pi finished Share, then it sends (Deposit, sid, coins(d)) to Fγ,δ,ζ

SC and
ticks.

2. Upon having received (AllDeposited, sid) from Fγ,δ,ζ
SC Pi sends

(DOpen, sid, cidi) to Fγ,δ,ζ,g,i
vcom and ticks. If the party in-

stead obtains (Coins, sid, coins(d)) then it aborts and outputs
(Reimbursed, sid, coins(d)).

3. Each Pi ∈ P waits for a message (DAdvOpened, sid, cid) from Fγ,δ,ζ,g,i
vcom .

It then checks if it obtained a message with prefix DOpen from all other
Fγ,δ,ζ,g,j

vcom . Let J1 ⊂ P be the set of parties such that Pi did not obtain
DOpen before Fγ,δ,ζ,g,i

vcom released (DAdvOpened, sid, cid).
4. Each Pi ∈ P waits until it obtains (DOpened, sid, (cidj , (yj , rj)) for each
Pj ∈ P\(J1∪{Pi}) from the respective instance of Fγ,δ,ζ,g,j

vcom . Pi then sends
(Broadcast, sid, (cidj ,yj , rj , vtj)) to Fγ,δ,ζ

SC , ticks and defines J2 as the set
of all parties Pj such that tj ̸= rj +Ayj .

5. If J1 ∪ J2 = ∅ then each Pi ∈ P defines y =
⊕

j∈[n] yj and outputs
(Output, sid,y). Otherwise it outputs (Abort, sid, J1 ∪ J2).

6. Each Pi waits for a message (Coins, sid, coins(ei)) from Fγ,δ,ζ
SC . It then

outputs (Coins, sid, coins(ei)).

Fig. 35: Protocol πmpc,poia for MPC with Punishable Output-Independent Abort.
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