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Abbreviations used

3D: 3-dimensional

ARP2/3: Actin-related protein 2/3 complex

B-LCL: Lymphoblastoid B-cell lines

ctrl: Control

DC: Dendritic cell

fsn: Flaky skin

HD: Healthy donor

iDC: Immature dendritic cell

mDC: LPS-activated dendritic cell

mDia1: Diaphanous-related formin 1

pAKT: Phosphorylation levels of AKT

PI3K: Phosphoinositide 3-kinase

PI4KIIIa: Phosphatidylinositol 4 kinase type III a

PI4P: Phosphatidylinositol 4-phosphate
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Background: The actin cytoskeleton has a crucial role in the
maintenance of the immune homeostasis by controlling various
cellular processes, including cell migration. Mutations in TTC7A
have been described as the cause of a primary
immunodeficiency associated to different degrees of gut
involvement and alterations in the actin cytoskeleton dynamics.
Objectives: This study investigates the impact of TTC7A
deficiency in immune homeostasis. In particular, the role of the
TTC7A/phosphatidylinositol 4 kinase type III a pathway in the
control of leukocyte migration and actin dynamics.
Methods: Microfabricated devices were leveraged to study cell
migration and actin dynamics of murine and patient-derived
leukocytes under confinement at the single-cell level.
Results: We show that TTC7A-deficient lymphocytes exhibit an
altered cell migration and reduced capacity to deform through
narrow gaps. Mechanistically, TTC7A-deficient phenotype
resulted from impaired phosphoinositide signaling, leading to
the downregulation of the phosphoinositide 3-kinase/AKT/
RHOA regulatory axis and imbalanced actin cytoskeleton
dynamics. TTC7A-associated phenotype resulted in impaired
cell motility, accumulation of DNA damage, and increased cell
death in dense 3-dimensional gels in the presence of chemokines.
Conclusions: These results highlight a novel role of TTC7A as a
critical regulator of lymphocyte migration. Impairment of this
cellular function is likely to contribute to the pathophysiology
underlying progressive immunodeficiency in patients. (J Allergy
Clin Immunol 2023;152:949-60.)

Key words: TTC7A, cell migration, actin dynamics, nuclear defor-
mation, cell survival under confinement

Autosomal recessive biallelic mutations in TTC7A have been
identified as the cause of an immune and gastrointestinal disorder
of variable severity.1-4 Depending on the type of mutation, gastro-
intestinal symptoms can present as very early-onset inflammatory
bowel disease ormultiple intestinal atresia. On the other hand, im-
mune manifestations of patients who are TTC7A-deficient range
from mild lymphopenia to combined immunodeficiency.5 In gen-
eral, patients who are TTC7A-deficient develop a progressive
lymphopenia, leading to increased susceptibility to infections.

TTC7A contains 9 tetratricopeptide repeat domains, which
have been proposed to act as scaffold for protein complexes.6 Our
group and others have described diverse functions mediated by
TTC7A. In vitro, cells from patients who are TTC7A-deficient
present with disrupted actin cytoskeleton and cell polarity
through the increase of RHOA-mediated signaling.1 TTC7A
also interacts with the supramolecular complex containing phos-
phatidylinositol 4 kinase type III a (PI4KIIIa), EFR3B,
and HYCC1 (also known as FAM126A), in the plasma mem-
brane.7 PI4KIIIa is required for the synthesis of phosphatidylino-
sitol 4-phosphate (PI4P), which is necessary for plasma
membrane identity, cell survival, and cell polarity.8,9 TTC7A
can also be localized in the nucleus, participating in the regulation
of chromatin structure and nuclear organization.10 Finally, in
mice, Ttc7 controls hematopoietic stem cells’ stemness.11

Despite our improved understanding of the different cellular func-
tions of TTC7A, the pathophysiological mechanisms underlying
TTC7A-associated immunodeficiency are not fully characterized.

In the present study, we leverage microfabricated devices to
investigate the impact of TTC7A deficiency on leukocyte
migratory capacity at the single-cell level. We found that
TTC7A-deficient lymphocytes presented an increased cell speed
compared to control cells, but a reduced cellular (and nuclear)
deformation capacity when migrating along micrometric spaces.
Mechanistically, TTC7A deficiency disrupted actin cytoskeleton
polymerization downstream of the PI4KIIIa/phosphoinositide
3-kinase (PI3K)/AKT signaling pathway. Notably, confinement
of lymphocytes from patients who are TTC7A-deficient in dense
CCL21-containing 3-dimensional (3D) microenvironments re-
sulted in increased DNA damage and cell death. We propose
that altered actin dynamics observed in TTC7A-deficient lym-
phocytes modifies their migratory capacity and survival in com-
plex 3D microenvironments, possibly contributing to
progressive lymphopenia observed in patients who are TTC7A-
deficient.
METHODS
Additional methods are available in this article’s Online

Repository (available at www.jacionline.org).
Patients
Our patients who are TTC7A-deficient have been previously

reported2,4 and gave their consent to participate in the study. Pa-
tients with the following biallelic mutations in TTC7A were
included: L304fsX59, E71K, R325Q. A density gradient using
lymphocyte separation media (Eurobio, France) was performed
to recover the PBMCs from patients and healthy donors (HDs).
Cells were activated either with 5 mg/mL PHA (Sigma-Aldrich,
St Louis, Mo) and 100 U/mL of IL-2 (PeproTech, Thermo Fisher
Scientific, Waltham, Mass) for 3 days and cultured in RPMI-1640
medium supplemented with 10% FBS and 1% penicillin/strepto-
mycin (Gibco, Thermo Fisher Scientific), or with Transact (Mil-
tenyi Biotech, Gaithersburg, Md) following instructions from
the manufacturer. To obtain monocytes, CD14 cells were purified
using CD141 selection kit (BD Biosciences, San Jose, Calif).
Lymphoblastoid B-cell lines (B-LCLs) and stably transduced
cell lines were generated as previously described.2,10
Microdevices
Microdevices were prepared as previously described.12 Briefly,

devices were fabricated using polydimethylsiloxane and custom-
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made molds, coated with 10 mg/mL fibronectin from bovine
plasma (Sigma-Aldrich, St Louis, Mo) for 1 hour. Migration
was recorded using a Zeiss Axio Observer Z1 (Hamamatsu digital
camera C11440; Carl Zeiss, Oberkochen, Germany) microscope,
with a time lapse of 1 or 2 minutes using a 103 (numerical aper-
ture 0.45) dry objective. The image analysis was done using Im-
ageJ (National Institutes of Health, Bethesda, Md). Briefly,
kymographs for each channel were generated using a semiauto-
matic macro, and single-cell trajectories were manually isolated.
Trajectories were then analyzed with a custom-made MATLAB
(MathWorks, Natick, Mass) code to determine the cell speed.
For the analysis of constrictions, the same macro was used as
the generation of the kymographs and then manual quantification
was performed to obtain the percentage of cells that pass. We as-
sessed the following outcomes: (1) pass, (2) not-pass and turn, and
(3) not-pass and blocked. Turn cells were considered as those that
reach the constriction and turn back in <_10 timeframes. Blocked
cells correspond to cells that reached the constriction and stopped
without passing or turning back for >10 timeframes. Chemotaxis
in constricted environments was achieved by loading in a second-
ary well a solution containing 200 ng/mL of CXCL12 (Pepro-
Tech, Thermo Fisher Scientific, Waltham, Mass) 30 minutes
before acquisition.
Statistics
All data analysis was performed with GraphPad Prism 9 for

MacOS (GraphPad Software, Boston, Mass). Statistical differ-
ences were considered when P < .05, P < .01, P < .001, and
P < .0001.

Data obtained from migration experiments were evaluated for
normal distribution using the D’Agostino-Pearson test, and
comparisons between conditions were performed using Mann-
Whitney/unpaired t-test (for 2 conditions) or 2-way ANOVA test
(for >2 conditions), depending on the normality result. The pas-
sage through microconstrictions follows a binomial distribution
and P values were calculated using the chi-square method for
each experiment and pair of samples compared.
RESULTS

Ttc7 regulates 1D migration of immature murine

dendritic cells
Gut organoids derived from patients who are TTC7A-deficient

present with an altered actin cytoskeleton polarity due to
increased RHOA signaling.1,2 This pathway also controls leuko-
cyte migration under confinement.13,14 Hence, we thought to
determine the impact of Ttc7 deficiency on leukocyte migration.
In a first step, we generated bone marrow–derived DCs from flaky
skin (fsn) mice (natural mutant deficient for Ttc7). We observed
that Ttc7 was not required for DC differentiation, nor for Toll-
like receptor response in vitro (Fig E1,A andB in this article’s On-
line Repository at www.jacionline.org). To assess whether Ttc7
was required for DC motility, we compared the migration of
immature DCs (iDCs) and LPS-activated DCs (mDCs) from con-
trol and fsn mice using microchannels, in which cells migrate
along micrometric tubes.14 As expected, control DCs increased
speed on LPS treatment (Fig 1, A and B).15 Interestingly, Ttc7-
deficient immature DCs (iDCfsn) were as fast as mature DCs
from both control (ctrl) and fsn mice (mDCctrl and mDCfsn,
respectively) at different levels of confinement (ie, 4- and
8-mm–wide microchannels) (Fig 1, A and B and Fig E1, C).
Similar results were obtained when comparing speed of control
and Ttc7-deficient T cells (Fig E1, D). Therefore, we hypothe-
sized that Ttc7 is a critical regulator of leukocytes migration un-
der confinement.

Because DC migration in microchannels strongly relies on
actin,15,16 we sought to determine the impact of Ttc7 deficiency in
actin polymerization. We had shown that in iDCctrl slow and fast
motility phases in microchannels are regulated by the nucleation
activities of actin-related protein 2/3 complex (Arp2/3) (at the cell
front) and diaphanous-related formin 1 (mDia1) (at the cell rear),
whereas fast motility of mDCs mostly depends on mDia1 func-
tion.15,16 Accordingly, iDCctrl presented with a bimodal concen-
tration of F-actin at the cell front and rear, while mDCctrl

presented F-actin structures preferentially at the back of the cell
(ie, reduced front/back ratio of actin staining) (Fig 1, C and D
and Fig E1, E and F). Notably, both iDCfsn and mDCfsn accumu-
lated F-actin and mDia1 preferentially at the cell rear (Fig 1, C
and D and Fig E1, E and F). Of note, Arp2 distribution was not
affected by Ttc7 deficiency (Fig 1, C and D and Fig E1, E and F).

To determine whether increased speed of iDCfsnwas caused by
an elevated Rhoa/Rock-mediated signaling,2 we inhibited Rock
activity (ie, Y-27632 treatment) and its downstream targetMyosin
II (ie, blebbistatin treatment) in control and Ttc7-deficient DCs.
Both treatments decreased speed in iDCctrl and iDCfsn (Fig E1,
G andH).We further assessed the contribution of mDia1 to iDCfsn

phenotype.17 To do so, we used the formins inhibitor Smifh2,
which reduced the speed of iDCfsn while not affecting iDCctrl

(Fig 1, E). Moreover, Smifh2 treatment of iDCfsn led to F-actin
redistribution from rear to the front of the cell (Fig 1, F and G).
Collectively, these data support that Ttc7 deficiency in iDCfsn pro-
motes mDia1-dependent actin nucleation at the cell rear,
increasing cell speed in microchannels.
TTC7A controls human T-cell migration
To determine the impact of TTC7A deficiency on migration of

human lymphocytes, we assessed spontaneous speed of blood T
cells derived from HDs and different patients carrying biallelic
mutations in TTC7A, migrating in 1D-confined microchannels.
We assessed the impact of 3 different TTC7A deleterious
mutations (TTC7AL304fsX59, TTC7AE71K, and TTC7AR325Q).2,4

Human activated T cells had persistent trajectories (Fig 2, A
and Video E1 in this article’s Online Repository at www.
jacionline.org). T cells derived from patients who are TTC7A-
deficient were faster than their control counterparts (Fig 2, A
and B and Video E1). Consistent with a general role of TTC7A
in the control of leukocyte migration, similar observations were
made with patient-derived B-LCLs and primary monocytes (Fig
2, C and Fig E2, A-C and Video E2 in this article’s Online Repos-
itory at www.jacionline.org). In all these cases (and thus indepen-
dent of the underlying mutation), TTC7A-deficient cells were
faster than control cells. Increased speed of TTC7A-deficient
cells was independent of the coating, as patient-derived T-cell
blasts were faster than controls in fibronectin (Fig 2, B) and
collagen coated-channels (Fig E2, D). Notably, transduction of
patient-derived B-LCLs with wild type TTC7A (but not with
TTC7AE71K), restored normal cell speed (Fig E2, D).

Human T-cell blasts rely on ROCK and MYOSIN II activities
for actin polymerization and contractile force generation during
migration in microchannels (Fig 2, E and F). HD T-cell blasts had
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a bimodal distribution of actin in the front and rear of the cell dur-
ing migration in microchannels (Fig 2, G and H). In agreement
with their increased speed, TTC7A-deficient T-cell blasts ex-
hibited an increased F-actin polymerization at the cell rear (Fig
2, G and H). To evaluate the contribution of DIAPH1 (human ho-
molog of mDia1) and ARP2/3 to this phenotype, we treated HD
and TTC7A-deficient T-cell blasts with Smifh2 and CK-666
and measured cell migration. Our data showed that DIAPH1
(but not ARP2/3) inhibition restored cell speed of TTC7A-
deficient cells to control values (Fig 2, I and Fig E2, E). These re-
sults suggest that increased migration speed under confinement of
TTC7A-deficient T-cell blasts, involve an aberrant activation of
DIAPH1 and increased F-actin polymerization at the cell rear,
highlighting TTC7A as a critical regulator of actin polymeriza-
tion during human T-cell migration.
Increased cell speed observed in TTC7A-deficient

cells is mediated by reduced PI4KIIIa activity
TTC7A plays a critical role in the assembly and function of the

multiprotein complex involving PI4KIIIa, EFR3A, and
HYCC1.18 TTC7A deficiency leads to an impaired formation
and localization of this complex, hindering PI4KIIIa activity
and the subsequent phosphoinositide metabolism3,6 (Fig 3, A).
To characterize the contribution of PI4KIIIa in lymphocyte
migration under confinement, we treated control human T-cell
blasts with 2 different chemical inhibitors of PI4KIIIa, BF-
738735 and GSK-A1. In both cases, we observed that PI4KIIIa
inhibition increased cell speed (Fig 3, B), suggesting that the
enhanced motility of patient-derived cells could be caused by a
defective PI4KIIIa activity. To address this question, we supple-
mented control and TTC7A-deficient T-cell blasts with
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exogenous PI4P (the metabolite produced by PI4KIIIa) or with
PI(3,4,5)P3 (a downstream phospholipid of the pathway) and as-
sessed 1D-confined cell migration. PI4P and PI(3,4,5)P3 supple-
mentation did not affect migration of control cells (Fig 3, C and
Fig E3, A in this article’s Online Repository at www.jacionline.
org). In contrast, both phospholipids reduced migration speed
of TTC7A-deficient T-cell blasts and redistributed the F-actin
pool toward the front of the cell (Fig 3, C-E and Fig E3, A). On
the other hand, treatment of TTC7A-deficient cells with irrelevant
phospholipids such as PI3P and phosphatidylcholine did not
affect cell speed (Fig E3, B). PI4P availability is crucial for the
phosphoinositide cascade, PI3K activity, and further downstream
signaling.19 Moreover, PI3K/AKT pathway modulates RHOA/
ROCK activity and thus actin dynamics (Fig 3, A).20We therefore
investigated the contribution of PI3K and downstream signaling
(ie, AKT, SRC, and PTK2B) in T-cell migration under confine-
ment. The treatment of control T-cell blasts with specific chemical
inhibitor for PI3K increased cell speed, recapitulating the pheno-
type observed in TTC7A-deficient cells (Fig 3, F). Similarly,
AKT, SRC, and PTK2B inhibition in control cells also increased
cell speed (Fig 3, G-I). In agreement with the hypothesis of
reduced PI4KIIIa/PI3K signaling as the cause of altered actin dy-
namics in TTC7A-deficient cells, exogenous activation of AKT
by SC79 in TTC7A-deficient T-cell blasts restored cell speed
(Fig 3, J). To further characterize the impact of TTC7A-
deficiency in AKT activity, we compared the phosphorylation
levels of AKT (pAKT) in HD and TTC7A-deficient cells while
migrating under confinement. Even if total levels of AKT were
similar, we observed lower pAKT in TTC7A-deficient T-cell
blasts compared to control, and PI4P supplementation increased
pAKT levels of TTC7A-deficient cells (Fig 3, K and L and Fig
E3,C). These results demonstrate that TTC7A deficiency disrupts
the activity of the PI4KIIIa/PI3K/AKT/SRC axis and alters hu-
man T-cell motility, highlighting the critical regulatory role of
this pathway in actin polymerization during lymphocyte migra-
tion under confinement.
Impairment of PI4KIIIa/DIAPH1/actin function in

TTC7A-deficient cells disrupts the capacity to

migrate through micrometric pores and irregularly

confined microenvironments
In vivo, leukocyte migration occurs in complex microenviron-

ments requiring a high degree of cell deformability.21 To charac-
terize the impact of TTC7A deficiency in the capacity of
lymphocytes to deform their nucleus, we studied the behavior
of control and TTC7A-decifient T-cell blasts while migrating
through 8-mm microchannels carrying constrictions of 1.5- or
2.0-mm width and 15-mm length (Fig 4, A). In agreement with
previous experiments, cells spontaneously migrated in 8-mm
channels devoid of constrictions, and TTC7A-deficient T-cell
condition). (F)HD cells treated with tenalisib (n >_ 160 cel

(n >_ 180 cells/condition). (H) HD cell treated with SRC-in

with PTK2B inhibitors (n >_ 150 cells/condition). (J) TTC

(K) Immunofluorescence of cells stained with pAKT (red

panel), TTC7A-PI4P (bottom panel). Bar 5 2 mm. (L) Qu

and PI4P-treated (red filled bars) or not (red empty bars)
Fluorescence intensity determined using Icy software (

Mann-Whitney tests were used to evaluate statistical sig
blasts were faster than control cells (Fig E4, A in this article’s On-
line Repository at www.jacionline.org). When facing 1.5-mm
constrictions, TTC7A deficiency strongly reduced the capacity
of T-cell blasts and B-LCLs to spontaneously pass through a
1.5-mm constriction (Fig 4, B and Fig E4, B). Moreover,
TTC7A-deficient cells that still passed the constriction took
longer than control cells did (Fig 4, C and Fig E4, C). Similar re-
sults were observed in Ttc7-deficient mouse T cells (Fig E4, D).
Notably, transduction of TTC7A-deficient B-LCLs with wild-
type TTC7A (but not TTC7AE71K), restored normal cell passage
(Fig E4, B and C). Of note, when cells were forced to pass the
constriction (on CXCL12 stimulation) (Fig E4, E), TTC7A-
deficient T-cell blasts passed at a similar level as control counter-
parts did, but passage time was still increased (Fig E4, F and G).

Cell passage through constrictions requires a high degree of
cellular (and nuclear) deformation. In murine DCs, it has been
shown that this process rely on an ARP2/3-dependent perinuclear
actin polymerization.22 Accordingly, ARP2/3 inhibition reduced
T-cell passage in both control and TTC7A-deficient conditions
(Fig E4,H). Next, we aimed to determinewhether the reduced ca-
pacity of TTC7A-deficient cells to pass the constrictions was
related to a defective nuclear deformation. Thus, we assessed nu-
clear deformation in the fraction of cells that failed to pass the
constriction. We defined 4 different situations depending on the
capacity of the nucleus to enter the constriction: First, cells that
did not deform their nucleus at all (group I), cells in which the nu-
cleus entered <33% of the constriction (group II), between 33%
and 66% of the constriction (group III), and 100% of the constric-
tion (group IV) (Fig 4, D). Blocked control T cells had an equal
repartition among the 4 different groups (Fig 4, E and F), suggest-
ing that cell blockage was not determined by impaired capacity
to deform the nucleus. In contrast, a large majority of TTC7A-
deficient T-cell blasts failed to enter their nucleus in the constric-
tion (group I) (Fig 4, E and F), suggesting that the reduced
capacity of TTC7A-deficient cells to pass through micrometric
spaces was caused by an impaired capacity to deform their
nucleus.

To determine whether the reduced passage rate of TTC7A-
deficient cells in 1.5-mm constrictions was caused by alterations
in the PI4KIIIa signaling pathway, we supplemented TTC7A-
deficient cells with PI4P or PI(3,4,5)P3. We observed that phos-
pholipid treatment restored the capacity of TTC7A-deficient cells
to migrate through 1.5-mm constrictions and reduced the time
required to do so (Fig 4, B and C and Fig E4, I). DIAPH1 inhibi-
tion by Smifh2 treatment also restored the capacity of TTC7A-
deficient cells to pass through 1.5-mm constrictions (Fig 4, B).
In both cases (PI4P and Smifh2 treatments), restoration of cell
passage correlated with reestablishment of the nuclear deform-
ability of nonpassing TTC7A-deficient T-cell blasts to a level
comparable with that of control cells (Fig 4, F). These data sug-
gest that the altered actin polymerization characterizing
ls/condition). (G) HD cells treated with MK2206-2HCl

hibitors (n >_ 130 cells/condition). (I) HD cells treated

7A cells treated with SC79 (n >_ 100 cells/condition).

) and Hoechst (blue). HD (top panel), TTC7A (middle

antification of intensity/area of K for HD (black bars)
TTC7A-deficient T cells (n5 3, n > 95 cells/condition).

Institut Pasteur, Paris, France). Two-way ANOVA or

nificance.

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


I

II

III

IV

F

A B C

0

20

40

60

C
el

lp
as

sa
ge

 (%
)

p<0.05
p<0.01

HD

TTC7A

          -        +         -      
       -         -         + 

PI4P
Smifh2

p<0.01

Distance (μm)

Ti
m

e

TTC7A

Hoechst

15μm

1.5/2.0 μm8μm

HD

D
%

of
 C

el
ls

p<0.0001

I II III IV

HD
TTC7A

p<0.0001
p<0.0001

p<0.0001

0

10

20

30

40

50

TTC7A I 

II 

III 

IV 

60
%

40
%

40
%

TTC7A - PI4P

I 

II 

III 

IV 

60
%

40
%

TTC7A - SMIFH2

I 

II 

III 

IV 

60
%

40
%

I 

II 

III 

IV 

60
%

40
%

40
%

HD
E

-         +    PI4P
2

4

6

8

10

Ti
m

e
of

pa
ss

ag
e

(m
in

) p<0.0001

p<0.0001
p<0.001

TTC7AHD
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ANOVA was used for statistical analysis in C and E.
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TTC7A-deficient cells impaired the capacity to pass through mi-
crometric pores.

To evaluate the impact of TTC7A deficiency in leukocyte
migration in a more complex microenvironment in which cells
undergo frequent nuclear deformations during their migration
(Fig E5, A in this article’s Online Repository at www.jacionline.
org), we assessed cell motility in dense collagen gels. Analysis of
random migration showed that TTC7A-deficient T-cell blasts
were similar to control cells in their capacity to explore their
microenvironment despite a slightly reduced mean speed (Fig 5,
A and B). Of note, TTC7A deficiency did not affect the chemo-
tactic response to CCL21, as both responded to the chemokine
(Fig 5, C). To determine the contribution of PI4KIIIa signaling
pathway in collagen migration, we assessed T-cell migration on
inhibition of PI4KIIIa. GSK-A1 treatment reduced speed in
a dose-dependent manner in both control and TTC7A-deficient
T-cell blasts, highlighting the critical role of PI4KIIIa signaling
to T-cell migration. Consistent with an impaired PI4KIIIa
signaling in TTC7A-deficient cells, the latter were more sensitive
to GSK-A1 treatment, because the same concentration of the drug
reduced the speed of TTC7A-deficient cells more than it did in
control cells (Fig 5,D). Similarly, exploratory capacity, quantified
by the mean-squared displacement, of TTC7A-deficient cells was
more affected than that of GSK-A1-treated control cells (Fig 5, E
and F). These results show that TTC7A/PI4KIIIa signaling
pathway is required for T-cell migration in complex 3D
microenvironments.
TTC7A is essential for preservation of genome

integrity and cell survival when migrating in

complex 3D microenvironments
Cell migration in irregular microenvironments has been

associated to transient nuclear envelope ruptures and DNA
damage.22,23 Therefore, we hypothesized that the alterations in
nuclear deformation capacity observed in TTC7A-deficient

http://www.jacionline.org
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lymphocytes may negatively impact genomic stability and sur-
vival when migrating in complex 3D microenvironments. We
assessed the viability of control and TTC7A-deficient T-cell
blasts, either seeded in dense collagen gels for 48 hours or in
suspension (Fig 6, A). While cell viability was comparable be-
tween control and TTC7A-deficient cells in both settings (Fig 6,
B and C), the addition of the chemokine CCL21 to collagen gels
significantly increased cell mortality of TTC7A-deficient T-cell
blasts compared to controls (Fig 6, B and C). Of note, CCL21-
induced mortality of TTC7A-deficient cells was not observed in
suspension (Fig E6, A in this article’s Online Repository at
www.jacionline.org). In keeping with these observations, mu-
rine DCs from Ttc7-deficient mice also present with an
increased cell death on chemotactic migration in collagen gels
(Fig E6, B). This suggests that increased mortality of TTC7A-
deficient cells in the presence of CCL21 was a consequence
of cell confinement and correlated with the capacity of
CCL21 to form long haptotactic gradients by binding to
collagen fibers. Then, we sought to evaluate whether the
increased mortality of TTC7A-deficient cells was related to
DNA damage in this microenvironment. To do so, 53BP1 foci
staining on nucleus was used as indicator of DNA damage.
We found low levels of DNA damage in absence of confinement
in both cell types (Fig E6, C). An increased DNA damage was
observed in chemotactic conditions in TTC7A-deficient T-cell
blasts (Fig 6, D and E). Supplementing TTC7A-deficient T cells
and murine DCfsn with PI4P protected cells from DNA damage
and death during directional migration in collagen gels (Fig 6, B
and C and Fig E6, B). Alternatively, inhibition of PI4KIIIa or
AKTactivity in control T-cell blasts, recapitulated the increased
cell death and DNA damage observed in TTC7A-deficient cells
(Fig E6, D-F). In keeping with these data, freshly isolated
PBMCs from TTC7A-deficient patients presented increased
DNA damage compared to control cells (Fig 6, F). These results
indicate that alterations in actin dynamics caused by defective
PI4KIIIa/PI3K/AKT/RHOA signaling in TTC7A-deficient
cells are associated with an impaired nuclear deformation,
resulting in increased DNA damage and reduced survival
in response to chemotactic signals in complex 3D
microenvironments.

Thus, TTC7A acts as a critical regulator of human T-cell
migration and cell survival under confinement, suggesting that

http://www.jacionline.org
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alterations of this process may contribute to dysregulated immune
homeostasis observed in TTC7A-deficient patients.
DISCUSSION
TTC7A participates in several cellular functions.2,10,11,24,25

However, it is not clear how alterations in these processes
contribute to the immune phenotype characterizing TTC7A-
deficient patients. This report shows that TTC7A is a regulator
of leukocyte migration in humans and mice. TTC7A controls
F-actin polymerization at the different poles of the cell by
ensuring the activity of the PI4KIIIa/PI3K/AKT/RHOA regulato-
ry axis. The synthesis of PI4P is the first step of a signaling
pathway leading to PI(3,4,5)P3 production, AKT activation, and
eventually RHOA activity,20 among many others.26 TTC7A defi-
ciency decreases kinase activity of PI4KIIIa, reducing the pool of
PI4P,8,27 leading to RHOA hyperactivation. Subsequently, RHOA
destabilizes the autoinhibited conformation of the DIAPH1,
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promoting the polymerization of actin filaments and persistent
motility.28,29 In murine DCs, the coordinated action of mDia1
and Arp2/3 controls migration by promoting actin polymerization
at the front or back of the cell.15 Our results support that similar
mechanisms occur in human lymphocytes. The increase DIAPH1
activity observed in TTC7A-deficient cells suggests that a compe-
tition between DIAPH1 and ARP2/3 for free actin monomers
could modulate their activities and thus actin dynamics and cell
migration. Such a regulatory loop has been described in yeasts,
amoebas, drosophila, and mammalian cells, because depletion
or inhibition of one actin regulator increases the activity of the
other.30,31

Surprisingly, it was found that TTC7A-deficient T-cell blasts
present different phenotypes depending on the complexity of the
surroundingmicroenvironment. Inmicrochannels, which allowed
us to assess the intrinsic contractility of cells in an obstacle-free
microenvironment, TTC7A-deficient cells have increased speed
as compared to controls, independent of the coating (ie,
fibronectin or collagen). On the contrary, TTC7A-deficient cells
were slower in collagen gels (ie, 3D environment), which impose
cell deformations during migration. This dichotomy can be
explained by the fact that despite having stronger contractility,
TTC7A-deficient cells have an impaired capacity to deform and
pass through micrometric constrictions. This suggests that cell
and nuclear deformations are the limiting factors determining
migration capacity in tissues.32,33

During interstitial migration, leukocytes deform their nucleus
in an ARP2/3-dependent process.22,34 As a consequence of this
deformation, the nucleus suffers a high degree of mechanical
stress, which can be associated with ruptures of the nuclear enve-
lope and DNA exposure to the cytoplasm.35-37 In control cells,
migration-induced DNA damage is prevented by the fast reseal-
ing of the nuclear envelope.36 In context of TTC7A deficiency, al-
terations in front-back actin polymerization reduce their
deformation capacity leading to accumulation of DNA damage
and reduced cell survival during chemotactic response in complex
microenvironments. Our results suggest that alterations in leuko-
cyte migration could constitute a pathophysiological mechanism
underlying the progressive lymphopenia reported in TTC7A-
deficient patients.

Our work raises intriguing questions as to whether alterations
in leukocyte migration contribute to immunodeficiency in other
primary immunodeficiency diseases. It has been shown that
mutations in DOCK8 lead to leukocyte susceptibility to undergo
a form of cell death known as cytothripsis,38 which has been pro-
posed to be caused by the loss of front/rear coordination during
displacement.38 In contrast to what has been reported for
DOCK8, cytothripsis was not observed in TTC7A-deficient leu-
kocytes, suggesting that TTC7A is not required to preserve cell
shape during motility. Leukocyte migration could also be defec-
tive in other primary immunodeficiency diseases associated
with defects in the production of PI4P (or other metabolites of
this pathway), as is the case for the recently described mutations
in PI4KA39,40 in patients with a clinical phenotype partially
resembling patients withmultiple intestinal atresia–combined im-
munodeficiency.1,41 (ie, caused by TTC7A null mutations). Based
on our data, lymphocytes from patients who are PI4KA-deficient
will likely display similar motility defects. Alterations in leuko-
cyte migration could also contribute to pathophysiology in other
conditions such as defects of DNA damage response machin-
ery.42,43 Indeed, ATR and ATM are required for repair of DNA
damage and preservation of DNA integrity during migration un-
der confinement.35,36 However, it is not known whether alter-
ations in this process contribute to clinical phenotypes.

In conclusion, we unveil TTC7A as a critical regulator of actin
dynamics, allowing lymphocytes to efficiently migrate in com-
plex microenvironments. Our data suggest that alterations in cell
motility can lead to accumulation of DNAdamage and reduce cell
viability. Therefore, we propose that alterations in nuclear
mechanics in lymphocytes during confined migration could
play a previously unappreciated pathophysiological role in the
development of progressive lymphopenia and immunodeficiency.
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Clinical implications: TTC7A controls actin dynamics, leuko-
cyte motility and survival in 3D environments. Our data offer
a likely explanation for the progressive lymphopenia observed
in patients and highlight alterations in cell motility as a putative
pathophysiological mechanism.
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