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Abstract

A significant issue that has plagued data-driven Vibration-based Structural
Health Monitoring (VSHM) is the mitigation of Environmental and Opera-
tional Variations (EOVs). The Damage Sensitive Features (DSFs) that are
obtained from the vibration response of the structure are influenced by EOVs.
Regression analysis, such as multivariate nonlinear regression, can be used
to create relationships between Environmental and Operational Parameters
(EOPs) and the DSFs, with EOV-insensitive DSFs created by taking the re-
gression residuals. Inherent issues, originating from nuances in their design,
exist within the design of the regression models, following from the overall
uncertainty and redundancy in predictors and explained variables, leading
to poor performance. To overcome this, a comprehensive nonlinear stepwise
regression methodology has been developed to scour the regression models
of as much uncertainty as possible. The proposed methodology addresses
a number of crucial ideas: removing co-nonlinear variables, identifying the
most influential EOPs, facilitating the selection of compact regression bases
and determining which DSFs should be regressed. Robust DSFs are cre-
ated by combining non-regressed DSFs with critically thought-out regressed
DSFs. Ultimately, reducing the uncertainty within the models will lead to
more confidence in the decision making within a VSHM methodology.
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environmental and operational variations, nonlinear stepwise regression.
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1. Introduction

Current industry standards for the maintenance of large structures is done
through visual inspection. However, these inspections can be expensive, dan-
gerous and laborious. The majority of inspections are performed by skilled
engineers, often in risky conditions (such as via rope access) [1]. In paral-
lel, as structures are constructed in more remote locations, as in the case of
wind turbines and offshore structures, accessibility becomes a major issue.
Therefore, a high demand for an online and real-time method for analysing
the current state of a structure has been identified [2]. This is a gap that
Vibration-based Structural Health Monitoring (VSHM) has the potential to
occupy if it can address some of its problems related to the practical appli-
cation.

A known issue, and one that has troubled VSHM systems for years, is
the effects that Environmental and Operational Variations (EOVs) have on
the structural dynamics. It has been well established in the literature that
the presence of these effects can mask the effects of damage and make it
more difficult to detect [3]. A large amount of work now focuses on ways to
capture the effects of varying conditions without affecting the sensitivity to
damage [4].

Linear transformation approaches [5, 6, 7] were popular in the early stages
of VSHM but due to evidence of nonlinear behaviour, regression based ap-
proaches became more popular as they are naturally suited to this type of
application. The approaches are often subdivided into two different groups
[8], implicit methods and explicit methods. Implicit methods do not directly
consider information on Environmental and Operational Parameters (EOPs).
Implicit methodologies have been built using technologies such as cointegra-
tion [9, 10], principal component analysis [11, 12] and, depending on their
inputs, a number of machine learning methods, artificial neural networks
[13] and support vector machines [14]. Machine learning approaches are very
powerful and can find deep rooted relationships between variables but are of-
ten less interpretable. This can make explaining non-damage extreme events
more difficult to justify if they are incorrectly identified.

Alternatively, there are explicit methods that use information about the
EOPs to model the Damage Sensitive Features (DSFs). The complexity of
these models can vary from simple linear models [15] to Bayesian regression
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models [16] and all the way to stochastic models such as Gaussian Process
Regression (GPR) [17, 18]. The choice of model to apply tends to be applica-
tion specific but many different types of regression-based method have been
demonstrated to work effectively [19]. GPR and Bayesian regression methods
provide uncertainty boundaries for their predictions, which are useful in the
construction of damage diagnosis, but can be computationally involved, es-
pecially in the face of large training datasets. On the other hand, a method
such as multivariate nonlinear regression can be easier to implement and
optimise, as well as having higher interpretability.

A more detailed design of regression models can often be overlooked. It
is relatively simple to introduce some data to a regression method and re-
ceive promising results. However, there are important practical aspects in
the construction of regression models for EOV compensation in SHM that
must be addressed to obtain robust and reliable results. For example, DSFs
contain uncertainties which can be detrimental if no action is taken to relieve
the effect of bias [20]. When many inputs are available, it is not straight-
forward to know which ones to use and even which are actually influential
[8]. Furthermore, the selection of the variables used within the model is
not trivial. This problem has been addressed in the past using a number
of methods. Rainieri et al. [21] postulates the application of blind source
separation, which extracts underlying information sources from a mixture,
to isolate the individual effect of EOPs in multiple DSFs. A poor selection of
variables may lead to overfitting, characterised by unreliable predictions and
poor model-based decision making [22]. Additionally, dependency between
inputs can lead to severe problems with instability in parameter estimates,
large sampling variances and an inability to decouple the effects of different
predictors, which can affect the interpretability of the regression model [23].

The problem of overfitting, poor generalisation from observed to unseen
data [24], has long been an issue in the machine learning community. In real
data sets, there are only a finite number of training observations and, as a
result, neural networks excessively weight around the training observations,
consequently reducing the generalisation ability [25]. One method that is
often applied to address the generalisation problem is pruning. Pruning re-
duces the complexity of a network by methodically discarding parameters
from the network [26], creating a lower dimension and less intricate network
but at the cost of a small reduction in accuracy. Alternatively, the dimen-
sion of networks can be reduced through the application of weight sharing
[27]. The weight sharing approach relies on the bits-back argument that can
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be achieved through defining a more appropriate prior and an uncertainty
limited posterior distribution.

Complexity regularisation can also be embedded within a neural network
to prevent overfitting [28, 29]. Additional terms in the form of penalty func-
tions can be added to the optimisation function to reduce the occurrence of
large weights or large numbers of weights [25, 30]. While all these methods
proactively seek to reduce overfitting to the training data, data sets that
contain noisy predictors and responses can still pose serious problems. Ad-
ditionally, the design of neural networks, as well as other machine learning
approaches, often fundamentally lack interpretability. The consequence of
this being that while parameters are being reduced, there is an absence of
understanding as to the effect of the particular relationship.

On the other hand, when less-complex traditional regression models are
applied, they are less susceptible to the level of overfitting of neural net-
works. However, this comes at the cost of the accuracy of the prediction of
the training observations. Nevertheless, this does not mean that traditional
regression models cannot be overfitted. Similar methods to those used in
machine learning must also be applied to traditional regression schemes. For
example, methods akin to pruning can be used to help identify the most
influential parameters and determining which DSFs should be regressed can
be achieved through a type of complexity regularisation.

Stepwise regression has often been used in the optimisation of traditional
regression models. Forward stepwise regression is usually applied for linear
models and is a tool that has been used for many years, recently seeing
implementation in the context of SHM [31]. In each stage of a forwards
stepwise regression, the variable that best describes the trend in the data is
selected until the error no longer decreases. Lasso regression is a backward
stepwise regression first introduced by Tibshirani [32], also for the purpose
of linear regression. The Lasso is capable of performing subset selection by
introducing a penalty function in the least squares estimate [33], identical to
the approach used in complexity regularisation.

In both stepwise regression methods, the move to nonlinear is challenging
but important given the complex relationships that exist in real applications.
Previous works have sought to linearise the formation of the model through
a suitable transformation [34]. One such method requires the expansion of
each EOP with its corresponding order to form a new input vector. For
example, if temperature is considered to have a cubic effect, the input to the
model would require: temperature, temperature squared and temperature
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cubed. However, this can become impractical if there are a large number of
EOPs, especially so if the inter-parameter relationship is being considered.

The work in this manuscript builds upon research conducted by the same
authors [35, 36], where the same DSFs are used, which are extracted from
the Vestas V27 wind turbine experiment [37]. In the first work [35], mul-
tivariate nonlinear regression is applied to mitigate the effects of EOPs on
the extracted DSFs. It was demonstrated that the damage could be more
reliably detected through mitigation of EOPs. Additionally, the sensitivity
of the DSFs to each EOP was explored whilst limiting the scope to the effect
of a small subset of EOPs and performing a manual selection of the order of
the regression model per input variable.

Aiming towards the generalisation of the method, in the second work [36],
the automatic selection of the regression model order was considered under
the effect of multiple EOPs. The complexity of the resulting combinatorial
search problem limited the scope to a relatively small polynomial order per
input variable.

Although an improved performance relative to [35] was observed, the
obtained regressions tended to overfit the training data. The crux of this
problem is that while some DSFs are sensitive to a subset of input variables,
other DSFs may be sensitive to other or to none. In addition, the complexity
of the functional relation from EOPs to DSFs varies from DSF to DSF, and so
the regression model complexity does. This means that allowing automated
selection of regressors (i.e. EOPs) and regression model complexity (i.e.
polynomial order) on individual DSFs is a crucial when building explicit
EOP compensation methods in SHM. This becomes the primary focus of the
presented work.

Consequently, the aim of this work is to postulate a general methodology
allowing automated selection of regressors and regression model complex-
ity on individual DSFs, amenable for vibration-based damage detection in
structural systems. To this end, a nonlinear stepwise regression method is
considered to overcome the variable selection problem. This approach has
not been seen before in the context of VSHM but could improve the robust-
ness of nonlinear regression models through considered design. Crucially, at
each step, a new unique nonlinear function is tested for each EOP and for
a number of different orders with the complete regression model being con-
structed by selecting the best model at each stage. This particular stepwise
structure is more efficient and can, therefore, consider a wider range of EOPs
as well as model orders than a linearised forward stepwise or a constrained
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regression method, such as the Lasso.
The rest of the manuscript is laid out in the following manner. Firstly,

a comprehensive description of the applied methodology is given. This in-
cludes, but is not limited to, full explanations of the feature extraction, mul-
tivariate nonlinear regression and the nonlinear forward stepwise regression
method. A detailed overview of a real and operational wind turbine blade
case study is given as a test data set for the method. The results, and discus-
sion of, are then presented to demonstrate the benefits of the methodology.
Finally, the conclusions of the work will be drawn.

2. Methodology

2.1. Problem Statement

The methodology presented in this work follows the general path of a
VSHM system. A schematic representation of a basic explicit system is
shown in Figure. 1. As with any explicit system, there are multiple input
sources. The first source is the vibration measurements taken from the struc-
ture itself and the second is the information obtained from environmental and
operational measurement systems. The input sources are noted in orange.
Additionally at this stage, DSFs are extracted from the measured vibrations.
This process forms the first stage of the VSHM system, noted in blue.

EOPs,
ξ

Vibration 
measurements,

Y

Feature 
extraction,

Y → α

Regression 
modelling,
α = α(ξ)

Model 
optimisation 

scheme

Outlier 
analysis, 

MSD

Damage 
diagnosis 

Feature 
normalisation

p ≤ NT

p > NT

p – observation number
NT – number of training observations
Y – vibration response of structure
α – DSF vector
ξ – Vector containing available EOPs

Figure 1: Schematic representation of a basic explicit VSHM system.

Regression models are then created using multivariate nonlinear regres-
sion, see Section. 2.2, as with previous works [35, 36]. The regression models
can be optimised by varying the functional orders of each EOP or by chang-
ing which EOPs are being considered. Once the regression models are estab-
lished, their predicted values can be used to normalise the measured DSFs.
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The DSFs are then passed through an outlier analysis, comparing them to
the training set. The final stage, the output noted in green, is the damage
diagnosis. This allows the operator to determine whether the structure is
behaving normally or if it should be checked.

As evidenced in previous research, many aspects of the explicit system
are prone to overfitting and, therefore, poor generalisability. To address
this problem, different statistical methods have been applied to create a
more robust and generalisable framework. Beginning with the extraction of
EOPs, the inputs are pruned using mutual information to remove unnecessary
variables, reducing the complexity of the system.

The most prolific overfitting is typically found in the design of the regres-
sion models. To combat this issue, a forward stepwise regression approach is
adopted in tandem with a leave-one-out cross validation error. This method
allows for the automatic selection of regressors and model complexity, re-
ducing the likelihood of overfitting regression models. In parallel, additional
pruning is conducted to remove coefficients with negligible size compared to
the largest coefficient of the model. Finally, the F-test is used to ensure re-
gression models are not fitted to EOV-insensitive DSFs. Figure. 2 shows the
additions, highlighted in yellow with gold arrows, proposed in this work.

EOPs,
ξ

Vibration 
measurements,

Y

Feature 
extraction,

Y → α

Regression 
modelling,
α = α(ξ)

Outlier 
analysis, 

MSD

Damage 
diagnosis 

Feature 
normalisation

p ≤ NT

p > NT

p – observation number
NT – number of training observations
Y – vibration response of structure
α – DSF vector
ξ – Vector containing available EOPs

Mutual 
Information, 
pruning of 

EOPs

F-test, only 
model EOV-

sensitive DSFs

Forward stepwise 
regression, model 

optimisation

Leave-one-out 
cross validation

Coefficient 
pruning

Figure 2: Schematic representation of explicit VSHM framework for increased generalis-
ability and robustness.
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2.2. Multivariate Nonlinear Regression Modelling

Regression models are used to construct relationships between indepen-
dent and dependent variables. The independent variables that are used are
the EOPs, e.g. temperature, wind speed, azimuth angle, et cetera. The
DSFs, dependent variables, are created based on the vibrations measured
from the system. The purpose of the regression models is to understand how
the DSFs change as the EOPs change. If this relationship can be understood,
the variations in the system can be modelled and, therefore, accounted for
and mitigated. In some cases, relationships exist between the independent
variables, but these are captured as part of the multivariate nonlinear regres-
sion modelling. In the multivariate nonlinear regression method, dependent
variables are nonlinearly regressed on a number of independent variables.

The DSFs are modelled according to:

αp = WT · f(ξp) + u, u ∼ N (0,Σu) (1)

where αp is the dependent variables, WT is the coefficient matrix, ξp is the
vector containing the predictors, f(ξp) is the multivariate functional repre-
sentation independent variables and u is the innovations (uncertainties that
are not represented by the independent variables).

The multivariate functional representation of the independent variables
is calculated using a Kronecker product, as described in Eq. 2a. The repre-
sentations can then be collected to form a matrix F(X).

f(ξp) = f1(ξp,1)⊗ f2(ξp,2)⊗ · · · ⊗ fi(ξp,i)⊗ · · · ⊗ fL(ξp,L) (2a)

F(X) =
[
f(ξ1) f(ξ2) . . . f(ξp) . . . f(ξN)

]
∈ RG×NT (2b)

where f(ξp) is the Kronecker product the p-observation, ξp,i represents the
i -EOP of the p-observation and fi is the univariate functional representation
associated with the i -EOP.

The final variables that need to be determined for the estimate of the
features are the coefficient matrix and the innovations covariance. The coef-
ficient matrix is calculated using a least squares estimate, as in Eq. 3.

Ŵ = (F(X) · FT(X))−1 · F(X) ·AT (3)

EOP-corrected features can then be calculated using the following equa-
tion:
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α̃p = αp − α̂p = αp −WT · f(ξp) (4)

where α̃p is the EOP-corrected feature (equivalent to the regression residual),
αp is the measured feature and α̂p is the nonlinear estimate of the feature.

2.3. Nonlinear Stepwise Regression

2.3.1. Forward Stepwise Regression

In forward stepwise regression, a single predictor is added at a time to
model the DSFs. The purpose of this is to prevent additional predictors
being added that bear no influence. Since nonlinear models are used, each
predictor needs to be tested with a range of orders. For the first iteration, a
univariate approach is required, as shown in Eq. 5a. The process then follows
the steps of the multivariate nonlinear regression. Once each predictor has
been tested with the full range of model orders, the combination with the
lowest Leave-One-Out Cross Validation (LOOCV) error, see section 2.3.3 is
kept constant through the remainder of the process, predictor and model
order. The second iteration then uses the result of the first iteration and
forwards by trying the different combinations of remaining predictors, as
shown in Eq. 5b. Similarly, the third iteration follows the same process, as
shown in Eq. 5c. The general procedure follows until the model can no longer
be improved by adding additional predictors.

f(ξp) = fi(ξp,i) (5a)

f(ξp) = fa(ξp,a)⊗ fi(ξp,i−a) (5b)

f(ξp) = fa(ξp,a)⊗ fb(ξp,b)⊗ fi(ξp,i−a,b
) (5c)

where fa(ξp,a) is the Univariate Functional Representation (UFR) of the first
predictor added, fb(ξp,b) is the UFR of the second predictor added, fi(ξp,i−a) is
the UFR of any predictor excluding the first added and fi(ξp,i−a,b

) is the UFR
of any predictor excluding the first two added. An important aspect to note
is that each DSF is modelled separately. The forward stepwise regression
process is summarised in Figure.3.

2.3.2. Identification and Pruning of Related Input Variables

Since the models are nonlinear, mutual information is used to assess the
correlation between inputs. A measure of normalised mutual information
based on the work of Moon et al. [38] is applied, as previously used in [39],
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Figure 3: Diagrammatic representation of the forward stepwise procedure

in Eq. 6. Inputs with normalised mutual information close to 1 are highly
correlated and will cause problems in the definition of the regression models.
Therefore, a threshold may be applied to limit the effect of highly correlated
variables, without discarding too many of the potentially influential input
parameters. If any correlated inputs exceed this limit, one is excluded from
the construction of the regression models, but noted to be likely influential.

Iξ1,ξ2 =
∑
i,j

Pξ1,ξ2(ξ1,i, ξ2,j) log2

(
Pξ1,ξ2(ξ1,i, ξ2,j)

Pξ1(ξ1,i)Pξ2(ξ2,j)

)
(6)

where Iξ1,ξ2 is the normalised mutual information, Pξ1,ξ2(ξ1,i, ξ2,j) is the joint
probability density and Pξ1(ξ1,i) and Pξ2(ξ2,j) are the marginal probability
densities of predictor 1 and 2 respectively. This process is repeated to test
all combinations of variables from ξ1 to ξL.

The joint probability density function, Eq. 7a, describes the probability of
two or more continuous variables. For example, Pξ1,ξ2(ξ1,i, ξ2,j) describes the
probability of ξ1 happening knowing ξ2, then multiplied by the probability of
ξ2 occurring. On the other hand, the marginal probability density function,
Eq. 7b, is the joint probability density function integrated across all variables
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except the one in question. For example, Pξ1(ξ1,i) is the marginal probability
density for all variables except ξ1 [40].

Pξ1,ξ2(ξ1,i, ξ2,j) =

∫ b1

a1

∫ b2

a2

fξ(ξ1, ξ2) dξ1dξ2 (7a)

Pξ1(ξ1,i) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fξ(ξ2 . . . ξL)dξL . . . dξ2 (7b)

where ξ1 ∈ [a1, b1] and ξ2 ∈ [a2, b2].

2.3.3. Cross Validation

To compare the regression models in each step of the nonlinear stepwise
regression procedure, a cross validation measure is implemented. The cross
validation criteria used in this work is the LOOCV [41]. In this method,
one observation is excluded from the training data when training the model
and its error is computed. The square of the mean of the cumulative error,
normalised by the square of the measured DSFs (αp), is used as an estimate
for the quality of the nonlinear regression model, as shown in Eq. 8.

MSELOO =
1

NT

·
NT∑
p=1

(α̃p)
2 ·

(
NT∑
p=1

(αp)
2

)−1

(8)

2.3.4. Reducing Model Order

Since the models are allowed to train up to an order of 10, it is probable
that some of the features are overfitted to the training data. In order to
minimise the detrimental effects of overfitted model orders, a brief method is
applied to reduce orders where possible. The values in the coefficient matrices
were analysed to establish their influence on the models. Any coefficient that
was less than 1/1000-th of the largest value was deemed to have minimal
influence and was assumed to be a result of overfitting and, therefore, it was
discarded. Where there were regions of these coefficients, the order of the
input parameters were reduced to exclude them accordingly.

To assess the benefit of reducing the model order, the Bayesian Informa-
tion Criterion (BIC) is used. The BIC is based on the log likelihood function
but introduces a penalty term that increases with the numbers of parameters,
see Eq. 9 [42]. The likelihood of a model can be easily increased by adding
parameters but this also increases the chances of overfitting the model. As
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such, the BIC is used to quantify whether the increase in the likelihood is
worth adding parameters.

BIC = −2 lnL+ p2 lnNT (9)

where L is the maximised value of the likelihood function and p2 is the
number of parameters of the regression model.

2.3.5. F-test

An F-test is used to determine whether the null hypothesis should be
rejected or not [43]. The null hypothesis that is used within the nonlin-
ear forward stepwise regression method is that the regression provides no
improvement over the average value of the DSF. An F-test is, therefore, a
quantitative measure for demonstrating which regression models provide sta-
tistically significant results. As such, it can be incorporated within the non-
linear stepwise framework as a method for determining which DSFs should
be regressed.

Since the first model being considered is based only on the mean of the
DSF, the model order is always 1. For the regressed DSF, the model order
is determined during the nonlinear forward stepwise procedure. To calculate
the F-statistic for each DSF, Eq. 10b is used.

RSS =

NT∑
p=1

(αp − α̂p)
2 (10a)

F0,r =
RSS1 −RSS2

RSS2

× N

p2 − 1
(10b)

where F0,r is the F-statistic of the r -DSF and RSS1 and RSS2, calculated
using Eq. 10a, are the residual sum of squares of the mean model and the
regressed model respectively.

The critical value of the F-statistic, γr, is determined by the F-distribution
and the order of the two models being considered. The decision on whether
the DSF is to be regressed is then based on the following hypotheses:

H0 : F0,r ≤ γr → Not regressed (11a)

H1 : F0,r > γr → Regressed (11b)
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2.4. Novelty Index for Damage Diagnosis

In order for a system to be able to detect damage, a baseline must first
be created using undamaged observations. For damage detection, any new
observation can then be compared to the baseline using an outlier analysis.
The novelty index used is theMahalanobis Squared Distance (MSD), an index
used in many other works [13, 44]. The following equation is used to calculate
the MSD:

MSD(α̃p,ΣA) = α̃p
TΣAα̃p (12)

where α̃p is the corrected DSF of the p-observation and ΣA is the covariance
of the training data.

However, a modified version of the MSD must be used to ensure the
covariance term properly describes the training observations. The modified
MSD can be used in this case because of the way in which the DSFs are
derived. Principal Component Analysis (PCA) is used in the derivation of
the DSF, so information on the variance of each component is available in
the eigenvalue. Instead of using the covariance of the training data, the
covariance can be redefined using the derivation of the PCA procedure, the
full PCA derivation is found in section 3.1 alongside the feature extraction
method. Eq. 13a shows the singular value decomposition of Y′′

j and by using
PCA projection, the covariance matrix in Eq. 13b can be extracted.

Y′′
j = UjSjV

T
j (13a)

Σβj
=

1

N − 1
βjβ

T
j =

1

N − 1
UT

j Y
′′
jY

′′T
j Uj =

1

N − 1
S2
j (13b)

where βj is the contribution of the j-sensor,Uj are the left hand eigenvectors,
Sj are the eigenvalues and Vj are the right hand eigenvectors of Y′′

j . S
2
j is a

diagonal matrix containing the squared eigenvalues. All this information can
be collected across all sensors to give the covariance matrix Σβ. The form
of the MSD that is used for DSFs prior to correction is therefore given in
Eq. 14.

MSD(α̃p,Σβ) = α̃p
TΣ−1

β α̃p (14)

Following the correction of the DSFs, the square of the eigenvalues no
longer represents the covariance between the features. Instead, a better mea-
sure of the covariance are the innovations. The innovations can be calculated
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as a function of the sum of the regression residuals as in Eq. 15a. The covari-
ance matrix can be created as a diagonal matrix of the innovations as shown
in Eq. 15b with the corresponding modified MSD in Eq. 15c.

σϵr =
1

N − 1

NT∑
p=1

α̃2
p,r (15a)

Σϵ = diag(σϵ1 , σϵ2 , · · · , σϵr , · · · , σϵR) (15b)

MSD(α̃p,Σϵ) = α̃p
TΣ−1

ϵ α̃p (15c)

where σϵr is the innovations for the r -DSF, α̃n,r is the regression residual
for the r -DSF and Σϵ is the diagonal matrix containing all the individual
innovations.

In the case where there are regressed DSFs mixed with measured DSFs,
the covariance can be defined as in Eq. 16a. The new MSD is then given in
Eq. 16b.

Σtot =

[
Σβ 0
0 Σϵ

]
(16a)

MSD(α̃p,Σtot) = α̃p
TΣ−1

totα̃p (16b)

3. Case Study

In 2014, an experimental campaign was undertaken to create a baseline
data set for wind turbine blades. The study was conducted on an operational
Vestas V27 wind turbine in Denmark, as shown in Figure. 4a. The work was
conducted in collaboration between Technical University of Denmark and
Brüel & Kjær. Many studies have gone on to use the data obtained from the
experiment [8, 35, 37, 44, 45].

One of the turbine blades was instrumented with a total of 12 accelerome-
ters and 1 actuator, as shown in Figure. 5. However, only the accelerometers
located on the leading and trailing edges of the blade will be used. In ad-
dition to these accelerometers, the accelerometer closest to the actuator was
used to obtain information about the impact in each observation. Over a
period of 5 months, the blade was hit by the actuator once every 5 minutes,
with a 30 second recording of the response taken each instance.

As part of the experimental campaign, damage was introduced to the
blade in the form of a crack along the trailing edge. This was done by
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(a) (b)

Figure 4: (a) Image of instrumented V27 wind turbine blade used during experiment and
(b) damage introduced to trailing edge of blade.

physically debonding the upper and lower surfaces (see Figure. 4b), causing a
local reduction in stiffness. Three different crack lengths were created: 15cm,
30cm and 45cm. The damage was then repaired and the blade retested under
a new state. The crack in the trailing edge was used to emulate delamination
in the structure, a common fault that occurs in wind turbine blades.

Since the wind turbine is an older model, it may only operate at standstill
condition, or rotating at either 32 or 43 RPM. Only data from the 43RPM
operation will be used, along with information collected regarding environ-
mental and operational conditions. A total of 10 EOPs were measured to be
used in the construction of the regression models. These were: temperature
(oC), wind speed (ms−1), blade pitch (o), wind direction (o), precipitation
(mm), azimuth angle (o), the rotating speed of the blades (RPM), the maxi-
mum value of the actuator hit (ms−2), the standard deviation of the actuator
hit (ms−2) and the variance of the actuator hit (ms−4). Having a large range
of EOPs helps to account for as much of the possible variations in the data
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Unused Accelerometer
Used Accelerometer Electro-mechanical Actuator

15/30/45cm Damage

Figure 5: Schematic layout of instrumentation on experimental Vestas V27 wind turbine
blade, including: accelerometers used in this work, excluded accelerometers, location of
damage and location of actuator.

as possible.
The total number of observations available for each condition during the

43RPM operation are noted in Table. 1 below. The repaired state of the blade
was used as a baseline because there were significantly more observations
compared to the original undamaged state. Additionally, there is a greater
range of values within each EOP, which is conducive to creating more reliable
and accurate regression models.

Table 1: Total number of available observations for each damage scenario for the real wind
turbine blade monitoring campaign.

Repaired
15cm damage 30cm damage 45cm damage Undamaged

Training Testing
3456 864 258 194 254 828

Of the total 4380 repaired observations, 80% (3456) were used for training
and the remaining 20% (864) were used a validation set. The validation set is
an important consideration to ensure that the behaviour of the observations
of the same level of damage behave in a similar manner.

3.1. Feature Extraction

In this work, a feature based on a dimensionally reduced Fourier transform
is used. The acceleration data from each observation can be grouped to give
the matrix in Eq. 17a. However, the final feature is being considered on
a sensor by sensor contribution. Therefore, the matrix in Eq. 17a can be
rewritten to give Eq. 17b.
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Yp,j =
[
yp,1 yp,2 . . . yp,j . . . yp,M

]
∈ RS×J (17a)

Yj =
[
y1,j y2,j . . . yp,j . . . yN,j

]
∈ RS×N (17b)

where Yp,j is the combined acceleration time-series for the j -accelerometer of
the p-observation, yp,j ∈ RS is the individual time-series for the j -accelerometer
of the p-observation and Yj is the combined acceleration times series for the
j -accelerometer across N observations.

The acceleration data is then transformed from the time domain to the
frequency domain using the Fourier transform. The new dimension is halved
due to the reflection owing to the Nyquist frequency. A further transforma-
tion is applied by concatenating the real and imaginary parts of Eq. 18a to
give Eq. 18b. Following this, the transformation across each observation can
be recombined, as shown in Eq. 18c.

y′
p,j = (ℜy′

p,j + iℑy′
p,j) ∈ CS/2 (18a)

y′′
p,j = (ℜy′

p,jℑy′
p,j)

T ∈ RS (18b)

Y′′
j =

[
y′′
1,j y′′

2,j . . .y′′
p,j . . .y

′′
N,j

]
∈ RS×N (18c)

where y′
p,j is the Fourier transform of yp,j, ℜy′

p,j is the real part and ℑy′
p,j

the imaginary part of y′
p,j, with i =

√
−1. y′′

p,j is the second transformation
of yp,j, where the real and imaginary parts of y′

p,j are concatenated.
PCA is used to reduce the dimension of Y′′

j . A full explanation of PCA
can be found in previous works [46]. However, a brief explanation is included
here for the sake of completeness. To begin, the covariance of the training
data must be calculated.

Cj =
1

NT − 1
Y′′

j,TY
′′
j,T

T
(19)

where Cj is the covariance of the training data, NT is the number of training
observations, Y′′

j,T are the DSFs for the training set and (·)T represents the
transpose.

Following this, the singular value decomposition can be applied to the
covariance calculated in Eq. 19.

Cj = UjΛjV
T
j (20)
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where Uj ∈ RS×S are the left hand eigenvectors (also known as principal vec-
tors), Vj ∈ RS×S are the right hand eigenvectors and Λj are the eigenvalues
(also known as principal values) sorted in descending order.

The left hand eigenvectors can be used as a transformation matrix by
reducing the number of principal vectors, with one matrix defined for each
accelerometer forNT observations. Since the transformation matrix is a lower
version of Uj, it is now defined as Ũj,T . Each contribution to the overall DSF
for each observation is projected using Eq. 21.

βp,j = ŨT
j,Ty

′′
p,j (21)

where βp,j is the contribution of the j -accelerometer to the p-observation.
The final DSF for each observation, αp, can be assembled by concatenat-

ing the contributions from each of the individual accelerometers, as shown
in Eq. 22a. All of the DSFs can then be grouped to form a single matrix, as
shown in Eq. 22b.

αp =
[
βp,1 βp,2 . . . βp,s . . . βp,Sr×M

]T ∈ R(Sr×M)×1 (22a)

A =
[
α1 α2 . . . αp . . . αN

]
∈ R(Sr×M)×NT (22b)

4. Results and Discussion

The focus of this analysis is to show the benefits of the forward stepwise
approach, as well as comparing its performance to the method in the previous
work [35]. In the previous work, a trial and error approach was used to
optimise the regression models. This method was limited in the number
of EOPs that could be considered, as well as the maximum order, before
the process became too large to compute. Since the models were fit with
5 EOPs, there were a number of issues as a result, particularly overfitting
and the prediction of future observations. To test the full potential of the
proposed method, a total of 10 predictors are used up to a maximum order
of 10.

4.1. Related Variables

The first new aspect that the proposed methodology brings is the search
for similar input variables. Figure. 6a shows a heat-map of the normalised
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mutual information between each of the 10 EOPs. It can be seen that there
is a very strong correlation between the standard deviation of the actuator
hit and the variance of the actuator hit, see Figure. 6c. Due to their high
co-nonlinearity, one was removed from the forward stepwise procedure. Dif-
ficulties arise when selecting a threshold for discarding inputs. In this work,
it was decided that the threshold would be 0.8, therefore, discarding only the
actuator variance. There are a few other correlated variables which would
be expected to be seen. For example, the wind speed and blade pitch (see
Figure. 6d).

The Pearson Correlation Coefficient(PCC) has been included in Fig-
ure. 6b for comparison. Since the PCC is a measure of the linear relationship
of two variables, it is only able to identify strongly linearly correlated in-
puts. However, the relationship between inputs is often nonlinear. As such,
the PCC would still remove the actuator variance but does not establish
more complex relationships such as that between the temperature and wind
direction, one that is identified using mutual information. Both the mu-
tual information and PCC would remove the same variable. However, in
more complex systems, strongly nonlinearly correlated relationships might
be missed that affect the quality of the regression. Therefore, the recom-
mended method for real structures would be mutual information as it is the
more thorough method.

4.2. Reducing Model Order

The next aspect that was addressed was the overfitting of model orders.
The histogram in Figure. 7a shows how the model orders were distributed
prior to the order reduction and indicate that whilst there is a distribution
across all model orders, there a significant number of higher order models.
This leads to the possibility of a number of overfitted models. Studying
Figure. 7b reveals a considerable shift following the model order reduction
procedure. There are now far fewer higher order models and a tendency
towards lower orders. The reduction in model orders should give better pre-
dictions of future data. However, the effect on the accuracy of the regression
models must also be considered.

For comparison, a total of three different regression schemes are used.
Scenario A is the error from previous work [35] where 5 EOPs were modelled
with a maximum order of 5, scenario B is the first implementation of the
forward stepwise approach where 10 EOPs were available up to an order of
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1 = Temperature

2 = Wind speed

3 = Pitch

4 = Wind direction

5 = Precipitation

6 = Azimuth

7 = Operating RPM

8 = Actuator Max

9 = Actuator STD

10 = Actuator Var

(c) (d)

Figure 6: (a)Heat-map of the average mutual information between each of the 10 input
variables, (b) Heat-map of the Pearson Correlation Coefficient between each of the 10
input variables, (c) Actuator variance plotted against actuator standard deviation and (d)
Pitch of blade plotted against wind speed.
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(a) (b)

Figure 7: (a) Histogram showing the frequency of model orders selected using nonlinear
forward stepwise regression and (b) a histogram showing the frequency the input EOP
orders following an order reduction method.

10 and finally, scenario C is the second iteration where the model orders have
been reduced. These scenarios are summarised in Table. 2.

Table 2: The three regression scenarios used to compare optimisation schemes.

Scenario EOPs considered Maximum Order Order reduction scheme
A 5 5
B 10 10
C 10 10 X

Figure. 8 shows the training cross validation error, MSELOO, of the final
regression models across the first 24 DSFs for the three different scenarios.
There is a near perfect overlap in the results of B and C meaning the reduction
of orders has not only simplified the model but also had no real effect on the
accuracy. There are some minor differences in the MSELOO between A and
C but in general their performance is comparable. This means that regression
models with similar accuracy can be created without the need for all EOPs,
as well as higher orders.

However, when the BIC is studied in Figure. 9, it can be seen that the
preferred model is scenario C, the reduced order forward stepwise regression.
The lower BIC values confirm that even if the accuracy is lower, the more
compact regression models offered by scenario C outweigh the insignificant
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Figure 8: The MSELOO for three scenarios: A - 5 EOPs and maximum order 5, B -
Forward stepwise approach with choice of 10 EOPs and maximum order 10, C - Forward
stepwise approach with order reduction method applied.

increase in the log likelihood, as computed in Eq. 9. Consequently, the
reduced order forward stepwise method should be used as they are least
likely to be overfitted to the training observations.

Figure 9: Sorted BIC values for three scenarios: A - 5 EOPs and maximum order 5, B -
Forward stepwise approach with choice of 10 EOPs and maximum order 10, C - Forward
stepwise approach with order reduction method applied.

4.3. F-statistic

A further important aspect in the design of regression-based systems is
considering whether the regression model provides any improvement to the
predictive capabilities over the mean of the samples. Models with less pre-
dictive power will only add to the uncertainty in the system. To determine
which regression models were used, the F-statistic was implemented. Fig-
ure. 10a and Figure.10b show the F-statistic for each Principal Component

22



(a) (b)

Figure 10: F-statistic and critical F-statistic for the regression model of each PC for one
accelerometer. Critical value: (a) 1% and (b) 0.1%.

(PC) along with its corresponding critical value for 1% and 0.1% respectively.
In this case, only one accelerometer is being considered.

Looking, firstly, at the DSF F-statistic in Figure. 10a. It can be seen that
the F-statistic begins large and decays rapidly. This suggests that the PCs
that account for the larger amounts of variance are most heavily influenced
by the EOPs since the correction that is offered from the regression model
gives it far more predictive power over the mean. It also implies that the
higher components are most likely noise, unrelated to the EOPs, because
the regression models do not provide much predictive power. In cases where
the F-statistic is less than zero, the regression models actually provide worse
predictions than the mean of the observations. The implication of this being
that there are no discernible relationships between the EOPs and the DSFs,
a potential consequence of trying to model noise.

The choice for the critical value is a difficult task in itself. In this work, it
was chosen that a more discriminative critical value would be used to ensure
only high quality regression models are used. From Figure. 10b, it can be
seen that far fewer regressed PCs will be used in comparison to Figure. 10a.
Once the DSFs have been sorted according to Eq. 11a and Eq. 11b, the
novelty index can be reapplied. Figure. 11 shows how the Area under the
ROC curve (AUC) varies with respect to the number of PCs, this again is
demonstrated for a single accelerometer. The AUC gives a good indication
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of the damage detection performance of a method. The higher the value, the
better the separation between the analysed subset of observations and the
testing observations. In the following figures, measured refers to the original
derived DSFs, forward stepwise refers to the DSFs following the application
of the reduced order nonlinear forward stepwise method and combination
refers to the DSF vector that has been made up of the measured and forward
stepwise DSFs, depending on their corresponding F-statistic.

Referring firstly to Figure. 11a, there are many interesting aspects that
are revealed. In the case of testing/training, it is desirable to have the AUC
to be as close to 0.5 as possible. In this regard, all three feature sets perform
similarly well. Although there is a general increasing trend, the AUC never
strays far from the desirable value of 0.5. For this particular scenario, it is
difficult to say any of the particular feature sets are the best.

For simplification, the discussion for three damage cases in Figure. 11b,
Figure. 11c and Figure. 11d will be grouped since their trends are more or
less the same. In all cases, the measured features outperform the reduced
order forward stepwise features in terms of their maximum AUC. However,
when the combination features are introduced, a feature is created that out-
performs both the measured and forward stepwise features when considering
as much information as possible. In general, the forward stepwise features
are superior when fewer PCs are considered but it is important to include
more features since the AUC continues to increase, suggesting even the lower
variance components contain information on the damage.

Figure. 12 shows how the AUC varies with the number of cumulative
PCs when eight accelerometers are considered, namely those on the leading
and trailing edge of the blade, see Figure. 5. A noticeable difference comes
in Figure. 12a when compared to the Figure.14a in [36]. In the previous
work, there is a significant increase in the AUC for the testing/training when
more features are added. With the change to the definition of the MSD, the
problem of separation between the testing and training is no longer an issue.
Whilst the AUC has generally reduced for the damage cases, the correction
of the testing far outweighs this negative implication.

As with Figure. 11, the damage cases in Figure. 12 also follow a similar
trend. The AUC increases steadily as more PCs are added, suggesting still
that information about the damage is available in each PC. Similarly, when
eight accelerometers are considered, the measured features outperform the
regression corrected features. The combination features perform variably
across the number of PCs, they always perform better than the measured
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(c) (d)

Figure 11: The area under the ROC curve for varying numbers of PCs obtained from one
accelerometer. (a) testing/training, (b) testing/15cm damage, (c) testing/30cm damage
and (d) testing/45cm damage.
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(a) (b)

(c) (d)

Figure 12: The area under the ROC curve for varying numbers of PCs obtained from eight
accelerometers. (a) testing/training, (b) testing/15cm damage, (c) testing/30cm damage
and (d) testing/45cm damage.
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and forward stepwise features when the most information is used. While the
combination features make the most logical sense, they too perform better
than the features sets that are used to make them up.

The F-statistic is an important measure to understand the extent at which
a regression model has improved the predictability of a variable. In this work,
it was applied to determine whether the regression corrected feature added
more uncertainty when compared to its corresponding measured feature. A
threshold was established in Figure. 10b to eliminate the cases where the
regression model added insignificant benefit. A new feature vector was then
created by combining regression corrected features with measured features.
The new feature vector aids in establishing robustness in the system, an
important factor in the application of VSHM systems. In the first instance,
the new feature vector increased the separation of undamaged and damaged
observations, as seen in Figure. 11 and Figure. 12, as well as removing the
possibility that the increased performance was a consequence of increased
uncertainty in the system by redefining the derivation of the MSD.

4.4. Beyond Training

However, to get a better understanding of how well the models perform,
the observations beyond the training must be explored. Most importantly,
the testing data must perform as similarly as possible to the training data.
For this analysis, the DSFs are evaluated following the application of the nov-
elty index. To assess the changes in the distributions amongst the different
damage cases, the Normalised Interquartile Range (NIQR) in Figure. 13a,
and the rate of outliers in the distribution in Figure. 13b, for each regression
scenario and each damage case are plotted. A k-fold analysis was used to
gain a better understanding of the variations in these factors [47]. A total
of 25 different training sets were used for building the regression models, a
different subset of 3456 of the total 4320 repaired observations each fold, see
Table. 1.

In a perfect regression case, it would be possible to remove all the variation
within data. However, this is not possible as it is almost impossible to account
for all of the possible sources of variation. Therefore, the aim of the regression
model is remove as much as possible. The removal of the variations will follow
to the outlier analysis, the MSD. The best possible outcome of the regression
model would be to reduce the variation within the observations, as well as
reducing the number of unexplained points, or outliers.
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(a)

(b)

Figure 13: The (a) normalised interquartile range and (b) rate of outliers plotted against
each damage case for each regression scenario. Regression procedure repeated 25 times
with different training data sets.
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An issue that was found in previous work [35, 36] was that there were
expansive distributions of data, an indicator of poor regression models, when
multivariate nonlinear regression was applied. From Figure. 13a, there is a
pattern in the training distributions that can be attributed to the overfitting
of models. Starting with scenario A, the method used in the previous works,
the distribution of the data is smaller than that of the proposed method,
scenario C, with scenario B in the middle. As the optimisation scheme be-
comes more strict on its inputs, the training models become less accurate.
However, the benefits of this are immediately apparent in the smaller distri-
butions among the damage cases.

Between the forward stepwise, scenario B, and reduced order forward
stepwise, scenario C, there is a reduction in the distribution, as well as the
variability in the size of the distributions, as observed in Figure. 13a for all
the damage cases. A really important outcome is that the NIQR for both
the training and testing are very similar, thanks to the MSD implemented
in Section. 2.4. This adds confidence to the decisions that are made beyond
the training. The DSFs created using measured and regressed DSFs tend
to have lower NIQRs for the damage cases. Unsurprisingly, the NIQR for
the combined DSFs is higher for the training and testing since the DSF sets
contain mostly measured DSFs.

The outlier rate in Figure. 13b is given by the number of outliers in
the selected distribution divided by the total number of observations in the
damage group. Observing firstly the training observations, it can be seen
that scenario B has a lower outlier rate than scenario C, the measured DSFs
and marginally less than scenario A. This result can be due to overfitting
to the training data in Scenario A but less accurate fitting due to the order
reduction in scenario C. As with the NIQR in Figure.13a, the number of
outliers is consistent between training and testing. Assuring the behaviour
of the testing is as similar as possible to training is a key aspect of designing
a robust system.

Beyond the undamaged data in Figure. 13b, there is a general pattern
that emerges. Each step that is taken to improve the quality of the regres-
sion models improves the outlier rate, starting from the 5 EOP model right
through to the combined DSFs. Additionally, the variation in the outlier
rate for the combined DSFs is consistently the lowest across most damage
scenarios. Whilst the outlier rate is higher in the undamaged cases, the ben-
efits of the stability in the damage cases demonstrates an improvement over
the other regression based methods. This is primarily because the outlier
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rate between the training and testing are comparable.
The reduced order forward stepwise multivariate nonlinear regression

method, scenario C, offers many advantages over a quick and ill-thought
out regression based approach. Firstly, in the latter approach, the model
orders either have to be selected manually or via an exhaustive discrete op-
timisation method. This process can be inaccurate, time consuming and can
lead to increased uncertainty in the regression models. In the forward step-
wise method, the most influential EOPs are automatically selected as well as
their optimised order. Furthermore, the issue of co-nonlinearity can also be
addressed by using mutual information in an all-encompassing method. After
assessing the suitability of the regression using the F-statistic, the regression
based DSFs can be combined with the measured DSFs to create a more ro-
bust DSF set. The combined DSFs had a lower NIQR and outlier rate across
all damaged cases. Furthermore, the NIQR and outlier remained consistent
between training and testing. Using the proposed method in this work, dam-
age detection could be enhanced by creating a more robust structural health
monitoring methodology.

The principal purpose of applying the methods in this work was to create
a robust framework for the optimisation of regression-based models in the
context of VSHM for wind turbine blades. However, the principles that were
applied allow the developed framework to be applicable in a more generalised
manner through the automatic selection of regression variables and model
complexity. This will allow the method to be applied to a wide range of
mechanical and civil structures.

Nonetheless, changing operational regimes can lead to non-smooth effects
in the DSFs. In that context, the developed framework is not generalisable.
In this work, the 43RPM DSFs were separated from other operating regimes.
For a truly general result, the compensation within the DSFs would be done
in an automatic manner. In conclusion, the developed framework is gen-
erally applicable in the compensation of continuous EOV effects in DSFs
but still requires user intervention for the compensation of non-smooth ef-
fects. However, the framework still offers a powerful tool for the wider SHM
community.

5. Conclusion

A nonlinear forward stepwise regression was applied to improve the ro-
bustness of a damage detection algorithm towards EOVs. The aim of this

30



work was to address important challenges that occur in multivariate regres-
sion, such as the overfitting of model orders, redundant input variables and
collinearity between input variables. The proposed method was able to iden-
tify and remove correlated input variables by either mutual information or
Pearson’s correlation coefficient. However, since Pearson’s correlation coef-
ficient is suited towards linear correlation, it is recommended to continue to
use mutual information for future applications. The optimisation method
used in the forward stepwise regression was capable of creating models that
were comparably as accurate as a laborious trial and error approach. Fur-
thermore, the optimisation was able to recognise and mitigate the presence
of overfitted models.

The most important finding in this work was that the proposed methodol-
ogy allows the creation of a tailored nonlinear regression model that obtains
a DSF vector that combines features that are normalised against different
numbers of EOPs depending on their influence. Furthermore, each DSF was
automatically analysed to determine whether the regression model provided
value to the prediction. New combined DSFs were then created which are
a combination of non-regressed DSFs and regressed DSFs that were highly
influenced by EOVs. By not including regressed DSFs that showed poor
performance, compared to the mean, eliminated the possibility of introduc-
ing bias towards the training data. Using a k-fold analysis, it was shown
that the combined DSFs outperformed all of the fully regressed DSFs, as
well as the measured DSFs. Consequently, more robust and reliable decision
making within a VSHM framework is achieved. Furthermore, it is believed
that the applied framework can be generalised and applied across a variety
of structures in the context of SHM.
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