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1Paderborn University, Paderborn, Germany
2University of Edinburgh, Edinburgh, UK (work done while at Paderborn University)

October 18, 2023

Abstract

Rational multiparty computation (rational MPC) provides a framework for analyzing MPC
protocols through the lens of game theory. One way to judge whether an MPC protocol is
rational is through weak domination: Rational players would not adhere to an MPC protocol if
deviating never decreases their utility, but sometimes increases it.
Secret reconstruction protocols are of particular importance in this setting because they repre-

sent the last phase of most (rational) MPC protocols. We show that most secret reconstruction
protocols from the literature are not, in fact, stable with respect to weak domination. Further-
more, we formally prove that (under certain assumptions) it is impossible to design a secret
reconstruction protocol which is a Nash equlibrium but not weakly dominated if (1) shares are
authenticated or (2) half of all players may form a coalition.

Keywords: Game Theory, Rational Secret Sharing, Multiparty Computation, Rational Cryptog-
raphy, Iterated Deletion of Weakly Dominated Strategies.

1 Introduction

A multiparty computation (MPC) protocol is one that allows n parties, each with their own secret
input xi, to jointly compute the value of a function f(x1, . . . , xn). Applications range from jointly
evaluating statistics on confidential data in a privacy-preserving way, to replacing trusted parties
which setup cryptographic systems, to substituting trusted hardware by software. Security typically
ensures the correctness of results while guaranteeing to leak no more information about the inputs
than the computation’s result itself leaks. Traditionally, these properties must hold with respect to
adversaries that are allowed to corrupt certain parties while non-corrupted parties honestly follow
the protocol prescriptions.
In this paper, we are interested in rational MPC [HT04], i.e. rather than partitioning the MPC

protocol participants into a set of strictly honest and a set of arbitrarily malicious parties, we instead
analyze the parties’ behavior from a game-theoretic point of view. This means that we assume that
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every participant is rational (rather than honest or malicious) and tries to maximize some utility
function. Rational MPC addresses the following issues with the standard MPC definition: On
one hand, the standard definition is too strong because it covers arbitrarily irrational destructive
behavior. On the other hand, the standard definition is too weak because it assumes that at least
one party honestly executes the protocol even if it is potentially irrational to do so. Rational
MPC offers an alternative that takes game-theoretic incentives into account when evaluating MPC
protocols. It is the better formalization for scenarios where one can reasonably assume participants
to act rationally (e.g., in economics).
Using game theory terminology, the n MPC parties are players. Each player i chooses a strategy

Mi, which is an interactive Turing machine describing how they want to behave in the protocol. Then
the Turing machines run their programs, interacting with each other. At the end, the utility of each
player is determined, roughly speaking, by their machine’s output. An MPC protocol (M1, . . . ,Mn)
is a tuple of suggested strategies for the n players, also called a mechanism. The goal is to design
mechanisms which are stable in the sense that rational, utility-maximizing participants follow their
prescriptions. A common notion of stability is the Nash equilibrium (NE), where no player i can
(significantly) improve her expected utility by deviating from her prescribed strategy Mi. In some
situations, especially when there is uncertainty about the other players’ strategies or utilities, a NE
is considered too weak and additional properties are required. For example, think of switching to a
strategy which additionally to the original behaviour protects against some denial of service attack
by the other players. If it is possible to protect against such an attack without additional cost,
why should a player not switch? Additionally, uncertainty may generally arise in network settings,
where the other players’ strategies might be affected by external factors like connection failures
or lost messages. Based on these considerations, the requirement that a NE survives the iterated
deletion of weakly dominated strategies (IDoWDS) has been used in rational secret reconstruction
repetitively [HT04, ADGH06, GK06, LT06]. A strategy Mi is weakly dominated if there exists
an alternative strategy M∗i that does (significantly) better against some strategy profile of the
other players, and does not perform (significantly) worse against any strategy profile. Surviving
IDoWDS means that in a process where, repeatedly, all weakly dominated strategies are deleted,
the original strategy Mi remains. This process is reasoned by the assumption that a rational
player would always switch to a dominating strategy M∗i since this may only increase her gain.
Like [HT04, ADGH06, GK06, LT06], we call a protocol a practical mechanism or rationally secure,
if its strategies (1) form a NE and (2) survive IDoWDS.
Typically, rational MPC protocols work in two stages: first, the parties run a standard MPC

protocol with malicious security for the functionality f . As the result of that protocol, the parties
receive secret shares si of the computation result s = f(x1, . . . , xn). In the second stage, the parties
run a rational MPC secret reconstruction phase, to which each party contributes their share si, and
the protocol yields the final result s for everyone. This structure is reminiscent of standard MPC
protocols (e.g., GMW [GMW87]), which also yield a secret sharing of the result s and then have
the parties reconstruct it. In contrast to the standard setting, where secret reconstruction amounts
to simply having all the (honest) parties broadcast their shares to everyone, secret reconstruction
in the rational setting is much more complicated. This is because, in some scenarios, it is irrational
for a party i to simply broadcast their share si [HT04]. Broadcasting the share does not help player
i to reconstruct the secret, but it may help others. So for players that prefer to learn the result and
prefer others not to learn the result, the simple “everyone broadcast their shares” protocol breaks
down.
As a consequence, secret reconstruction protocols play a crucial role in rational MPC. The secret

reconstruction scenario can be described as follows: A dealer samples a secret s and secret shares
(si)

n
i=1 of s, as well as digital signatures σi on (i, si) (for ease of exposition, we assume authentication

via digital signatures). When using secret reconstruction as part of a larger rational MPC protocol,
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we can imagine that (si, σi)
n
i=1 are the result of some MPC computation. The player machine Mi

gets as input its signed share (si, σi) (and the corresponding public key). The machines M1, . . . ,Mn

then interact with each other. Finally, each Mi outputs what it thinks the reconstructed secret is.
The rational utilities that player i tries to maximize are natural, i.e. the player prefers outputting
the correct secret over outputting a wrong secret (prefers correctness) and the player prefers other
players not to learn the secret (prefers exclusivity).
Several works have tackled the problem of rational secret reconstruction. To sidestep the is-

sue that rational participants may be hesistant broadcasting their share for fear of unnecessarily
helping others, most existing secret reconstruction protocols [HT04, ADGH06, GK06, LT06] take a
randomized number of rounds and use dummy rounds to punish participants who refuse to broad-
cast. Ultimately, parties in those protocols still broadcast shares, but there is randomness and
uncertainty involved about when (non-dummy) shares are broadcast.
Another challenge for rational secret reconstruction is the authentication of the result s: If a

party i can broadcast a fake share so that all other parties receive a wrong reconstruction result
s′ ̸= s (while i can reconstruct the real result), then doing so is rational. For this reason, inherently,
there needs to be some way for parties to check whether the correct share was broadcast or at least
whether the reconstruction result is valid.

1.1 Our Contribution

We show that almost all known secret reconstruction protocols do not survive iterated deletion of
weakly dominated strategies (where weak domination is adapted to the computational setting in a
natural way, see Definition 10). We observe that any “natural” strategy Mi is weakly dominated by
a machine M∗i that works as follows: M∗i behaves exactly like Mi except that it adds an additional
check to messages it receives in the first round. If all other players j ̸= i happen to send messages
of the format (LEAK, sj , σj) such that σj is a valid signature on (j, sj), then M∗i uses the received
shares (s1, . . . , sn) to reconstruct the secret s. In this case, M∗i continues to behave like Mi, but
outputs the s from the leaked shares in the end. In all other cases, M∗i outputs what Mi outputs.
In other words, M∗i hopes that all other players decide to deviate from the protocol and instead

simply send this special format message containing their input in plain. And indeed, if the other
players play this (artificial) strategy, then M∗i outputs the correct secret with probability 1. This is
significantly better than a typical protocol Mi, which we (for now) assume just aborts because of an
unexpected first-round message format (LEAK, . . . ). Furthermore, M∗i never does worse than Mi,
because the only way M∗i deviates is by outputting a secret s that is guaranteed to be the correct
secret (assuming unforgeable signatures), which is the preferred outcome of a rational player. So
M∗i is never worse than Mi, but does significantly better against strategies that leak their input,
which means that M∗i weakly dominates Mi. This makes intuitive sense: the additional signature
check can only help player i, so it is irrational not to include it.

Hence, any “natural” strategy Mi, which does not include such a first-message check itself, is
weakly dominated by the modified strategy M∗i . It follows that Mi does not survive iterated
deletion of weakly dominated strategies (IDoWDS) (or, more specifically, Mi does not even survive
the first “iteration” of IDoWDS because it is weakly dominated w.r.t. the original strategy set).
We apply this observation to existing protocols in Section 4, demonstrating that almost all known
secret reconstruction protocols from the literature do not survice IDoWDS.
In addition to falsifying claims from the literature, the goal of this paper is to characterize the

extent of this IDoWDS issue. Can existing protocols be fixed? What classes of protocols are
susceptible to the issue? It may be tempting to try to fix the issue by including the first-message
check of M∗i in the original protocol. If Mi already checks the first message, then M∗i has no
advantage over Mi and does not weakly dominate it. However, there is an essentially endless
supply of other ways to encode the input-leaking message. Say a strategy Mi does check if the
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first messages contain messages of the format (LEAK, sj , σj). Then this strategy is still weakly
dominated by a strategy M∗∗i , which works like Mi, but additionally checks whether the first
messages have the format (LEAK, sj , σj), where x denotes some other encoding, e.g., base64 or
the bitwise negation of the canonical representation. Similarly to above, M∗∗i weakly dominates Mi,
as it cannot do worse than Mi, but does better against the strategies that leak their input by sending
(LEAK, sj , σj). Intuitively, no matter how many different ways of interpreting the first message a
strategy implements, it is likely that one can come up with a new (contrived) representation not
covered by it. Hence, it seems exceedingly unlikely that any reasonable strategy exists that survives
IDoWDS. We formalize this idea in Section 5, proving that if we allow strategies to be non-uniform
Turing machines and the dealer “sufficiently” authenticates the secret shares, then there exists no
strategy that is not weakly dominated.
What could be possible ways around this issue? For this, we examine what makes the machine

M∗i work. Because the shares are signed in the examples above, M∗i can be sure that when it receives
authenticated first-round shares, M∗i (almost) never outputs the wrong secret, no matter what the
remaining n − 1 parties do. This enables the argument that M∗i weakly dominates Mi: If it were
possible for n − 1 parties to convince M∗i to output a wrong secret, then M∗i does not necessarily
weakly dominate Mi anymore. So counter-intuitively, in order for the secret sharing scenario to
possess a rational mechanism (circumventing weak domination by M∗i ), the shares must not be
authenticated too well. However, in order for a mechanism to be a Nash equilibrium, authentication
must also not be too weak : If it were possible for a party to convince all others of a wrong secret
(while receiving the correct secret himself), then doing so is rational.

There is indeed a (small) middle ground between perfect authentication and no authentication,
which sidesteps our initial weak domination result. Indeed, the third protocol of Abraham, Dolev,
Gonen, and Halpern [ADGH06] avoids the initial weak domination counterexample as follows: In-
stead of authenticating the secret sharing with signatures or MACs (as in the first two instantiations
in [ADGH06]), their third instantiation uses Reed-Solomon codes (i.e. Shamir shares with redun-
dancy). This instantiation hits the sweet spot between too much and too little authentication:
Reed-Solomon codes are strongly authenticating against up to n/3 parties (even providing error
correction), but for n − 1 parties, it is trivial to manipulate shares to make the last party believe
in a wrong secret. This allows their protocol to be a Nash equilibrium while avoiding our initial
counterexample, which requires stronger authentication.

However, the third protocol of Abraham et al. [ADGH06] is also weakly dominated in certain
(reasonable) settings, even if it requires a different counterexample. Roughly speaking, the weakly
dominating strategy for this protocol only deviates from the original protocol when the original
protocol would output a reconstructed secret sunlikely that is only correct with negligible probability
(say, for simplicity, an error symbol). Because this is almost certainly not the correct secret,
deviating in this case is never worse than the original strategy, which has minimal utility outputting
the (likely) wrong secret. The deviation is sometimes better against strategies that would make the
original protocol consistently output a wrong secret sunlikely. This is possible in the Reed-Solomon
scenario because n − 1 parties can easily change the shared secret in a way that is undetectable
to the last party. In this case, the deviation would correct the wrong sunlikely to the correct secret
instead, achieving significantly higher utility. We explain this counterexample in Section 7 in detail.
Still, while our initial counterexample rules out most (authenticated) secret sharing settings, and

our second counterexample rules out using Reed-Solomon for some secret distributions, it may
well be that there are other secret distributions for which Reed-Solomon secret sharing presents a
way out of the weak domination issues. To approach this remaining possibility, we offer additional
secret-distribution-agnostic insights when considering coalitions (as is standard in the rational MPC
literature [ADGH06, KN08a]). In Section 6, we show that if we consider coalitions of at least n/2
rational players, then no reasonable secret reconstruction protocol exists (at least not for typical
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secret sharing schemes) that is rational to play for the coalition. Essentially, we show that in that
setting, either authentication is good enough for the weak domination counterexample to work, or
authentication is weak enough to enable the coalition to play a strategy that is better for them than
the prescribed strategy (meaning that there is no Nash equilibrium). In particular, this effectively
rules out the existence of rational secret reconstruction for the important n = 2 setting. Overall, our
results in Sections 5 to 7 comprehensively characterize the extent of the IDoWDS issue for rational
MPC protocols, effectively ruling out rational secret reconstruction protocols for a wide range of
typical secret sharing schemes, for certain secret distributions for unauthenticated secret sharing,
and for majority coalitions.

1.2 Consequences

Our results call into question a wide range of rational MPC protocols, for secret reconstruction
in particular. The most immediate insight is that the popular strategy of authenticating shares
with digital signatures, with one-time information-theoretically secure MACs (Construction 1), or
with zero-knowledge proofs seem to be widely incompatible with weak domination requirements. In
all those cases, this strong authentication makes adding a first-round check to the strategy weakly
dominate any reasonable protocol’s strategies. In particular, all secret reconstruction protocols from
[ADGH06, GK06, HT04, LT06] exhibit this weak domination flaw. We discuss concrete examples
in Section 4, unifying several of the protocols in a common framework. See Section 7 for the
counterexample for the Reed-Solomon based secret reconstruction protocol from [ADGH06].
Our impossibility result for rationally secure secret reconstruction carries over to general rational

MPC, which was approached so far by “take any actively secure general-purpose MPC protocol
which computes a sufficiently authenticated secret sharing and replace the final reconstruction phase
by a rationally secure one” [ADGH06, HT04, LT06, GK06]. Since by our result such reconstruction
mechanisms in many settings do not exist, such compositions which survive IDoWDS do not exist,
either. Our results from Section 6 rule out this approach for coalitions of n/2 and more players, which
especially covers two party computations. The reason for this is that in all actively secure MPC
protocols we know, the computed results are (effectively) in the form of a sufficiently authenticated
secret sharing, which must be reconstructed at the end. Even if the beginning of the protocol
survives IDoWDS, according to our result, there would be no continuation of the protocol that
reconstructs the results and survives IDoWDS. As a concrete example consider GMW-style rational
MPC, where in the first phase, the parties run an actively secure GMW-style MPC protocol, then
in the second phase, they run some rational secret reconstruction protocol to retrieve the result
(this is the strategy of [GK06, LT06]). Because in that scenario, the shares after the first phase are
authenticated by zero-knowledge proofs, our counterexample applies for the second phase: Our M∗i
strategy in that case would check whether in the first round of phase two, everyone just broadcasts
their shares and a zero-knowledge proof that the broadcast shares are correct, i.e. consistent to
the input the parties committed to at the beginning. Then the counterexample works as explained
above, substituting signature unforgeability with zero-knowledge proof soundness.
In conclusion, our results (summarized in Table 1) show that in many important settings, the

approaches and techniques known from the literature are incompatible with respect to the crypto-
graphic version of IDoWDS.

1.3 The Way Forward for Rational MPC

Given the extent of the IDoWDS issue regarding our current understanding of how to design rational
MPC protocols, the question arises how future rational MPC research should deal with our results.
As motivated in Section 1.1, in network settings and, especially, cryptographic settings, the notion
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Table 1: Overview of our results for coalitions of t parties and k-out-of-n secret sharing schemes
having the corresponding property from column one. Each result applies to any mechanism
in the given setting. We assume t < k as otherwise coalitions are able to reconstruct secrets,
inherently leading to unstable mechanisms. Note, t = 1 represents the non-coalition case.

majority coalition t ≥ n/2 t < n/2

local (n − t)-verifiable (shares authenticated by signa-
tures, MACs, . . . )

weakly dominated (for non-uniform strategies:
Theorems 2 and 3)

Reed-Solomon codes based (e. g. redundant Shamir
shares)

weakly dominated for certain secret distributions
(Theorem 5)

verifiable-or-fully-broken (e. g. additive sharing, Sha-
mir’s sharing for k > n/2)

weakly dominated or no Nash
equilibrium (Theorem 4)

no result

of IDoWDS is philosophically reasonable and its ideas should be represented somehow. Given that,
we see two approaches for handling the IDoWDS property in the future.
The first way is to concentrate future research on settings and protocols for rational secret recon-

struction or, more generally, MPC protocols, which are not ruled out by our results. In Section 6.3
we show that settings with coalitions of n/2 and more players cannot be proven rationally secure in
almost any reasonable setting. As we only rule out Reed-Solomon based reconstruction protocols
for certain secret distributions, it is still open whether there are such protocols not prone to weak
domination for some secret distributions. Those, however, would need to exploit properties of the
secret distribution to avoid our counterexample.

The second way is to tweak the definitions of what we consider rationally secure. As our adap-
tation of IDoWDS to the computational setting is quite natural (as discussed in Definition 10), it
seems that one needs to find a replacement for IDoWDS on the game-theoretic side, which reflects
rational behavior and in particular the idea of “weak dominance rationality”, but whose compu-
tational translation is less strict and does not rule out the same wide range of protocols ruled out
by the current definition. For example, Hillas and Samet [HS20] propose to iteratively delete so
called weak flaws instead of weakly dominated strategies and claim this reflects “weak dominance
rationality” better than IDoWDS. This is a potential candidate for a replacement. Other replace-
ments, already suggested in the literature, are discussed below. Either option leads to many open
questions and paves the way for new interesting research and results.

1.4 Organization

In Section 2, we discuss related work. In Section 3, we introduce the models of communication and
non-uniform computation as well as other relevant standard primitives from cryptography and game
theory. In particular, in Section 3.5 we define the rational secret recontsruction game central to this
work. In Section 4, we show that most previously published mechanisms are weakly dominated. We
generalize this result to arbitrary mechanisms in the non-uniform setting in Section 5. In Section 6,
we extend the previous results to coalitions. Moreover, we show in Section 7 that schemes based on
Reed-Solomon codes are also weakly dominated with respect to certain distributions of secrets.

2 Discussion of Related Work

For the last 20 years a lot of research has been done on the interplay between game theory and
cryptography (see for example the surveys [DR07, Kat08], and [MZA+13] for a more practically
oriented perspective). This covers, at least, two different aspects: on the one hand, cryptographic
approaches to game-theoretic problems, e.g. replacing mediators in certain games (see e.g. [DHR00,
HNR13] and many subsequent papers); on the other hand, using game-theoretic concepts in the
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design of cryptographic primitives, e.g. replacing malicious adversaries by rational adversaries, or
mixtures of malicious and rational adversaries (see [LT06]). The second line of research was initiated
by Halpern and Teague [HT04]. They initiated the study of rational multiparty computation and,
in particular, rational secret reconstruction. Instead of designing protocols resistant to malicious
adversarial behavior, they studied secret reconstruction and multiparty computation under the
assumption that agents act rationally. Recently, this approach led to game-theoretic notions of
fairness in multiparty coin toss and leader election [AL11, GK12, CGL+18, CCWS21, WAS22].
Most relevant to our work is the work of Halpern and Teague and the research that followed

it [GK06, ADGH06, ACH11, KN08b, KN08a, FKN10]. In this approach, secret reconstruction, and
more generally a multiparty computation of some functionality, is modeled as a game, with the goal
of designing protocols that satisfy various game-theoretic properties within this game, e.g. constitute
a Nash equilibrium. However, there has never been any consensus about the right definition for a
good rational strategy in multiparty computation, especially around weak domination and iterated
deletion of weakly dominated strategies.
In this section, we explore the history of weak domination in the literature, argue why we should

not just abandon weak-domination-like properties, and then discuss more recent definitions in that
context.

2.1 History of (Iterated) Deletion of Weakly Dominated Strategies

The notion of iterated deletion of weakly dominated strategies has been introduced in the com-
putational context by Halpern and Teague [HT04]. They argue that every protocol with a fixed
last round, in which the parties send their shares, is weakly dominated: it is better for player i to
deviate and not send her share, because revealing her share can only help others learn the secret
and does not help her at all. This argument is wrong: as observed by [KN08a], this deviation can
be detected and punished by the other players, e.g., by checking whether player i indeed sends her
share, and only then revealing their own shares. Because refusing to send the share leads to not
learning the secret when played against those punishment strategies, it does not weakly dominate
the original strategy of simply sending the last message.

Nevertheless, their argument against last rounds inspired several secret reconstruction protocols
[HT04, ADGH06, GK06, LT06] that introduce uncertainty about which round is the last. The
underlying idea of those protocols is that not sending some round’s message is risky: if it turns out
that this was not the last round, the other parties will abort the protocol, making it impossible
to learn the secret. On the positive side, the protocols of [HT04, ADGH06, GK06, LT06] enable
reconstruction of n-out-of-n secret sharing in a Nash sense, which does indeed require hiding the
last round. In particular, [ADGH06, GK06, LT06] enable two-party secret reconstruction. Note
that for k-out-of-n (k < n) secret sharing, the simple “everyone broadcast their shares in round 1”
strategy is a Nash equilibrium.

On the negative side, in this paper, we show that all those protocols are still weakly dominated,
contrary to stated goals and claims. The issue with the proof sketches by [HT04, ADGH06, GK06,
LT06] is that they (implicitly) only consider deviations that send or do not send the expected
messages in some round. However, there is another form of deviation, which we will call undetectable
deviation, which forms the basis of our counterexample: This kind of deviation keeps following
the protocol (sending the expected messages) outwardly, but secretly adds an additional check to
improve utility in some contrived scenarios. Undetectable deviations (which are invisible to the
other parties) were seemingly overlooked in those proofs without any formal justification.
Later, Kol and Naor showed that, in a very restricted strategy space, no strategy is weakly

dominated [KN08a, Theorem A.3]. Their strategy space essentially only considers the choice of
either sending a share in some round or keeping silent in that round. Additionally invoking purely
game-theoretic criticism of weak domination [Sam92, Sta95], they conclude that weak domination
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is not a useful notion, as it does not seem to rule out several “bad” strategies.

2.2 In Defense of Weak Domination

We disagree with Kol and Naor’s assessment of weak domination, given that our results show
that, if we do not severely restrict our strategy space, all strategies are weakly dominated. As a
consequence, weak domination seems to deserve criticism for being being too harsh, rather than too
forgiving.
To (somewhat informally) reflect on the role that weak domination serves in modeling rational

behavior, consider the strategy Mbackdoor
i (Figure 1), which allows the other players to unanimously

vote to have party i self-destruct. We can view this vote as a backdoor that triggers irrational
behavior if all other parties collaborate. If the vote does not pass (which is the default behavior
if everyone plays Mbackdoor

i ), Mbackdoor
i behaves reasonably. Clearly, Mbackdoor

i is not a reasonable
strategy to play for a rational player. Any rational player would (at least) remove the irrational
behavior (line 3), as it does not serve any positive purpose for them and may only serve to sabotage
them. Hence we would expect our definitions to reflect this and identify Mbackdoor

i as a bad strategy.
Consider the mechanism (Mbackdoor

1 , . . . ,Mbackdoor
n ) for n > 2. If everyone keeps to the prescribed

strategies Mbackdoor
i , then nobody sends any messages in the first round and the backdoor is not

triggered. If a single party deviates, they can also not trigger the backdoor, as this requires co-
operation of other players. Hence (Mbackdoor

1 , . . . ,Mbackdoor
n ) is a Nash equilibrium (assuming the

non-backdoored (M1, . . . ,Mn) are reasonable).
The notion of a Nash equilibrium does not detect the issue with Mbackdoor

i , because it only
considers scenarios where almost everyone executes the prescribed protocol. This is where weak
domination comes in: for weak domination, we need to consider all possible behavior of the other
parties. It is then easy to see that Mbackdoor

i is weakly dominated by a strategy ignoring the vote
outcome: this is (1) clearly better against strategies where all other players collaborate to trigger
the backdoor in Mbackdoor

i , and (2) it is never worse than Mbackdoor
i (assuming self-destruction has

minimal utility and Mi is reasonable).
Overall, we conclude that the field should have some notion that detects “backdoored” strategies

such as Mbackdoor
i . For this, Nash equilibria are not sufficient, and weak domination, while very

suitable for this very task in spirit, in actuality is too eager and removes too many strategies, as we
show in this paper.

2.3 Alternative Notions

The notion of weak domination has been widely abandoned in the more recent rational MPC
literature, which the literature generally justifies with Kol-Naor’s observation that weak domination

Strategy Mbackdoor
i

1 : Send nothing in the first round.

2 : if we received (shutdown, i) from all other players in first round then

3 : Self-destruct (e.g., halt and output an error).

4 : else

5 : Run reasonable protocol Mi.

Figure 1: Strategy Mbackdoor
i , augmenting some reasonable strategy Mi with a self-destruct if the

other players unanimously vote for it. Serves as an illustration of the need for the weak
domination property.
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is too forgiving and hence not meaningful (even though this is only true in a very restricted strategy
space).
As a replacement, Kol and Naor themselves suggest strict Nash equilibria [KN08a, FKN10], which

essentially requires that unilateral (detectable) deviation significantly decreases utility (as opposed
to simply not increasing utility as in the standard notion). While strict Nash equilibria capture
some intuitions of irrational behavior, by its nature it also only considers unilateral deviations and
fails to detect some issues that were (in spirit) caught by weak domination. For example, if we
consider Mbackdoor′

i that behaves like Mbackdoor
i but also, if the vote is not unanimous, punishes

everyone that voted for triggering the backdoor (e.g., by shunning them from the rest of the pro-
tocol). This way, any unilateral deviation in the first round leads to a decrease in utility, making
(Mbackdoor′

1 , . . . ,Mbackdoor′
n ) a strict Nash equilibrium (assuming Mi is reasonable), but the backdoor

is still very much present in Mbackdoor′
i .

Another notion that may replace weak domination are Nash equilibria that are stable with respect
to trembles [FKN10]. The idea is to model deviating behavior as another strategy: we consider
strategies that usually play the prescribed strategies, but “tremble” with some probability and play
some completely arbitrary strategy. The notion then says that even when playing against trem-
bling strategies, it is still rational to follow the protocol honestly. Similarly to weak domination,
this notion considers deviations of all players (though it has only been formally defined for n = 2
players [FKN10]). However, for technical reasons (probably as they noticed problems similar to our
weak domination counterexample), the notion explicitly removes undetectable deviations from con-
sideration. In somewhat simplified terms, their definition requires that any improvement against
trembled strategies can be achieved in a way that does not alter behavior against the originally
prescribed (non-trembled) strategies. In other words, undetectable deviations, that do not alter
the behavior against the prescribed strategies (such as our weak domination counterexamples) are
exempt from this definition (i.e. even if one such undetectable deviation were a significant improve-
ment against trembling strategies, the definition would not consider this an issue). Because of this,
the stability with respect to trembles notion also fails to detect backdoors such as Mbackdoor

i , i.e.
(Mbackdoor

1 , . . . ,Mbackdoor
n ) is a Nash equilibrium that is stable with respect to trembles (assum-

ing Mi are reasonable). Even though removing the backdoor improves utility significantly against
strategies that sometimes tremble to trigger the backdoor, Mbackdoor

i and the non-backdoored ver-
sion behave the same against non-trembling strategies, and hence this improvement is ignored by
the notion.
Overall, while the field has largely moved on from weak domination, we argue that (1) it did so

for the wrong reasons (believing the notion is too forgiving rather than, as we show, too strict),
and that (2) it did so without adequately replacing the notion with something that can detect bad
mechanisms that would be intuitively considered irrational, such as Mbackdoor

i . This paper and its
impossibility results supply more adequate reasons why weak domination may be dismissed for now
by future protocols (given that it rules out many settings), and explain why one should not attempt
to prove future protocols rationally secure regarding weak domination. Our results should also
inform the design of future stability notions to replace weak domination, providing some baseline
potential counterexamples to check new notions against.

3 Preliminaries

3.1 Notation

In the following, define [n] := {1, . . . , n}. For index set I ⊆ [n] let −I := [n] \ I, when n is clear
from the context. Similarly, let −i := −{i} = [n]\{i} for a single index i ∈ [n]. For sets S1, . . . , Sn,
we define S×I :=×i∈I Si. For a vector (s1, . . . , sn) ∈ S×[n], let sI denote the restriction of s to
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the indices contained in I. For s, s′ ∈ S×[n], let (sI , s
′
−I) denote the tuple s∗ = (s∗1, . . . , s

∗
n) with

s∗i := si if i ∈ I and s∗i := s′i otherwise. If the context is clear, we omit the additional parentheses,
especially when being used within functions, e. g. we write u(1λ, sI , s

′
−I) instead of u(1λ, (sI , s

′
−I)).

A function µ : N→ R≥0 is negligible if ∀c > 0 ∃λ0 ∀λ ≥ λ0 : µ(λ) ≤ λ−c. A function p : N→ R≥0
is noticeable if p(λ) ≥ 1/q(λ) for some polynomial q.

3.2 Model of Computation and Communication

We model interactions between parties in protocols by probabilistic polynomial-time (ppt) inter-
active Turing machines (ITMs), where polynomial-time corresponds to a polynomially bounded
per-round running time in the security parameter λ. The security parameter is encoded as 1λ and
provided on a special tape of the interacting ITMs. These also have special tapes for incoming and
outgoing communications besides the usual tapes of Turing machines. The communication proceeds

in rounds, where in each round k and for each pair Mi,Mj of ITMs, Mi writes a message m
(k,i)
j , pos-

sibly the empty string, onto the outgoing communication tape for ITM Mj . At the end of a round,
all messages are written onto the corresponding incoming message tapes and the next round begins.
While this models simultaneous communication, which has been used for many protocols aiming to
survive the iterated deletions of weakly dominated strategies (e. g. [ADGH06, GK06, LT06]), our
results also transfer to models where messages may be delayed but eventually are delivered. For
every ITM Mi there exists a polynomial pi which bounds the running time for computing the out-
going messages in the security parameter. Unlike other ITM models for MPC, we make no further
assumptions on the security of communication channels.
For our general result we require ITMs to be non-uniform which we define as follows.

Definition 1. A non-uniform ppt interactive Turing machine (ITM) is a pair (M,a) where a =
(a1, a2, . . . ) is an infinite sequence of auxiliary strings with |aλ| being polynomially bounded in λ
and M is a ppt ITM with a special tape for the non-uniform advice. For given input (security)
parameter λ ∈ N and input x, M is run on (1λ, x, aλ) where we require the running time to be
polynomial in λ and the length |x| of x per round of communication.

In Definition 1 we explicitly state auxiliary strings, instead of using an infinite sequence of ITMs,
which facilitates the descriptions of ITMs in our theorems, examples, and proofs. Also note, if the
auxiliary strings are empty, then machine M can be represented by a uniform ppt ITM.

3.3 Secret Sharing

A secret sharing scheme enables the owner of a secret s to share it among a set of n players P1, . . . , Pn

such that only explicitly authorized subsets of them are able to reconstruct the secret by pooling
their shares. These authorized sets are defined via monotone access structures.

Definition 2 (Access Structure). Let M = {P1, . . . , Pn} be a set of n parties. A set A of subsets
of M is called monotone if A ∈ A and A ⊆ B ⊆M implies B ∈ A. An access structure A ⊆ P(M)
with n parties is a monotone collection of non-empty subsets of M . A set A ⊆M is called qualified
if A ∈ A and non-qualified if A ̸∈ A.

Monotonicity models that groups which are qualified to learn a shared secret remain qualified
when additional parties join. In the following we define secret sharing schemes with respect to
such access structures. We extend the standard secret sharing definition (c. f. [Bei11]), which
only includes shares, by additional information which is used for authentication and verification of
shares.
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Definition 3 (Secret Sharing Scheme with locally verifiable reconstruction). Let A be an access
structure with n parties and S be a finite set of secrets where |S| ≥ 2. A (perfect) secret sharing
scheme with domain of secrets S realizing access structure A with locally verifiable reconstruction
is a tuple of ppt algorithms Π = (SetupΠ, Share,Recon), where

• SetupΠ(1
λ), on input security parameter 1λ, outputs public parameters pp with |pp| ≥ λ.

• Share(pp, s), on input public parameters pp and secret s ∈ S, outputs for each i ∈ [n] a
triple (s(i), τ (i), σ(i)) consisting of share s(i), local verification information τ (i) ∈ {0, 1}∗, and
authentication information σ(i) = (σ

(i)
1 , . . . , σ

(i)
n ) ∈ {0, 1}∗.

• Recon(pp, τ (i), (s(j), σ
(j)
i )j∈A), on input public parameters pp, Pi’s local verification informa-

tion τ (i), and, for A ⊆ [n], tuples (s(j), σ
(j)
i )j∈A of shares and authentication information,

deterministically outputs an element from S ∪ {⊥}.

We require correctness: For all λ ∈ N, pp ← SetupΠ(1
λ), s ∈ S, and for all (s(i), τ (i), σ(i))i∈[n] ←

Share(pp, s), A ∈ A, i ∈ A it holds

Pr[Recon(pp, τ (i), (s(j), σ
(j)
i )j∈A) = s] = 1.

If A = {A ⊆ [n] | |A| ≥ m}, we say Π is an m-out-of-n secret sharing scheme.

A secret sharing scheme with locally verifiable reconstruction is intended as follows. After the
public parameters are set up, the algorithm Share is used by a dealer to share a secret s she owns.
When a party Pj wants to reveal its share s(j) with some Pi it additionally reveals the corresponding

authentication information σ
(j)
i . If player Pi obtained (s(j), σ

(j)
i )j∈A corresponding to a qualified

group A, by correctness Recon reconstructs the initially shared secret s using verification information
τ (i). Beyond these syntactical definitions, we use the following standard notion of privacy for secret
sharing schemes.

Definition 4 (Perfect privacy). A secret sharing scheme Π for access structure A and secret domain
S has perfect privacy if ∀λ ∈ N, ∀pp← SetupΠ(1

λ), ∀A ̸∈ A, and ∀s, s′ ∈ S, it holds that Share(pp, s)A
and Share(pp, s′)A are identically distributed.

In addition to privacy we define the non-standard property of (non-uniform) local t-verifiability.
Intuitively, this property ensures that it is infeasible for ppt adversaries to make an honest player
output a wrong secret by manipulating up to t shares.
In ForgeS,CA,Π(λ) first the secret sharing scheme is set up according to SetupΠ. Then, a secret s∗

and a corresponding sharing is sampled. The adversary A is given the inputs of all (corrupted)
parties i ∈ C and has to output (possibly) new shares and authentication information for these. A
wins if it makes one of the (non-corrupted) parties i ∈ [n] \ C output a wrong secret with respect
to the newly constructed values and (some of) the remaining honest values.

Definition 5 ((Non-uniform) local t-verifiability). Secret sharing scheme Π has local verifiability
against up to t corruptions if ∀ non-uniform ppt A, ∀C ⊂ [n], |C| ≤ t, there is a negligible function
µ such that

Pr[ForgeS,CA,Π(λ) = 1] ≤ µ(λ),

where the experiment ForgeS,CA,Π(λ) is defined in Figure 2.
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Experiment ForgeS,CA,Π(λ):

1. s∗ ← S(1λ), pp← SetupΠ(1
λ).

2. ((s(1), τ (1), σ(1)), . . . , (s(n), τ (n), σ(n)))← Share(pp, s∗).

3. Non-uniform adversary (A, (ω1, ω2, . . . )) is given public parameters pp,
and triples (s(j), τ (j), σ(j))j∈C , and outputs (s(j), σ(j))j∈C .

4. Output is 1 iff ∃i ∈ [n] \ C,∃H ⊆ [n] \ C with
Recon(pp, τ (i), (s(j), σ(j))j∈C , (s

(j), σ(j))j∈H) ̸∈ {s∗,⊥} .

Figure 2: Experiment for local verification of secrets for secret sharing scheme Π with respect to
non-uniform adversary (A, (ω1, ω2, . . . )), set C ⊂ [n] of corrupted parties, and family of
secret distributions S.

If winning experiment ForgeS,CA,Π(λ) is infeasible for any (non-uniform) ppt adversary A and coali-
tion of size t, then the scheme has (non-uniform) local verifiability against up to t corruptions
(Definition 5). In particular, local (n− 1)-verifiability implies that a coalition of n− 1 parties can-
not make the remaining party Pi, using its verification information τ (i), output an incorrect secret.
Note that local verifiabilty is different from the stronger notions of robust secret sharing (RSS) and
verifiable secret sharing (VSS) (c. f. [Rab94]). In VSS the dealer may be corrupted which we do
not require as we assume honest initial sharings as inputs. RSS guarantees that with respect to t
deviations the initially shared secret s∗ is correctly reconstructed which does not allow for throwing
an error ⊥. Besides these differences, we additionally choose to make the included information for
authentication and verification explicit. In the following Construction 1 we give an example for a
secret sharing scheme by Abraham et al. [ADGH06] which satisfies locally (n− 1)-verifiable recon-
struction. It essentially authenticates shares from Shamir’s secret sharing scheme [Sha79] with the
idea of information checking from [RB89].

Construction 1 (Secret Sharing Scheme ΠADGH [ADGH06]). Them-out-of-n secret sharing scheme
ΠADGH = (SetupADGH,ShareADGH,ReconADGH) with domain of secrets S is defined as follows

• SetupADGH(1λ): Generates and returns the description of a field F with |F| > 2λ and S ⊂ F as
public parameters pp.

• ShareADGH(pp, s): Generates uniformly at random a degree-(m − 1) polynomial h ∈ F[X]
constrained by h(0) = s. For each i, j ∈ [n], i ̸= j, it chooses uniformly at random Pi’s

verification information y
(i)
j ← F and computes Pj ’s corresponding authentication information

b
(j)
i , c

(j)
i ∈ F such that c

(j)
i = b

(j)
i · h(i) + y

(i)
j . For each i ∈ [n], it sets s(i) = (i, h(i)),

τ (i) = (y
(i)
1 , . . . , y

(i)
n ), and σ(i) = ((b

(i)
1 , c

(i)
1 ), . . . , (b

(i)
n , c

(i)
n )), and returns (s(i), τ (i), σ(i)).

• ReconADGH(pp, y(i), ((j, s(j)), (b
(j)
i , c

(j)
i ))j∈A): Compute set of indices of valid shares as H ={

j ∈ A|c(j)i = b
(j)
i · s(j) + y

(i)
j

}
. If |H| < m output ⊥. Otherwise choose m values (j, s(j)),

interpolate the corresponding degree-(m− 1) polynomial h ∈ F[X], and output h(0).

3.4 Game-Theoretic Notions

In the following we define the game-theoretic notions necessary to model rationality of participants
in a computational setting. These originate mainly from the survey of Katz [Kat08] but are suitably
adapted to our (non-uniform) setting. We begin with the definition of normal form games which
provide a very basic idea for our upcoming considerations.
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Definition 6 (Normal Form Game). A normal form game Γ =
(
(Ai)i∈[n], (ui)i∈[n]

)
with n players

P1, . . . , Pn consists of

• A set of Ai of actions, also called strategies, for each player Pi.

• A utility function ui : A×[n] → R for each player Pi.

We call a ∈ A×[n] a pure strategy profile and σ = (σ1, . . . , σn) where σi denotes a distribution over
Ai a (mixed) strategy profile. By ui(σ) we denote the expected utility of a mixed strategy profile,
i. e. ui(σ) = Ea←σ[ui(a)].

The sets Ai from Definition 6 define the strategies which players are allowed to play within the
game. After each player has chosen a strategy, the resulting strategy profile is valued using the
utility function. This, especially, enables to compare different strategy profiles and strategies based
on their utility. Note, using the expected value to assess mixed strategies (and, later on, probabilistic
ITMs) is a common choice which models risk-neutral players.

In order to suit interactions in a cryptographic setting we adapt this framework, as is common,
in two steps. First, we introduce a security parameter 1λ on which the utilities depend and restrict
the strategies to ITMs which are ppt (in this security parameter).

Definition 7 (Computational Game). A computational game Γ =
(
(Si)i∈[n], (ui)i∈[n]

)
with n play-

ers P1, . . . , Pn consists for each player Pi of

• A strategy set Si of ppt ITMs with (local) output space Oi ⊆ {0, 1}∗.

• A utility function ui which maps security parameter 1λ and (local) ITM outputs (o1, . . . , on) ∈
O×[n] to a utility in R.

For a given security parameter 1λ and strategy profile M = (M1, . . . ,Mn) the utility ui(1
λ,M)

denotes the expected utility over the distribution of outputs of ITMs (induced by their randomness).

Semantically, at the beginning of a computational game the players choose their respective ITMs.
Afterwards, the security parameter is fixed and the players execute their ITMs. This ordering
prevents that players choose a different ITM based on the security parameter and thereby, implicitly,
use non-uniform ITMs. We explicitly allow non-uniform ITMs, if a different strategy for each
security parameter is intended. Also note that mixed strategies are not incorporated within the
game, because probabilistic ITMs are sufficient to represent mixed strategies. In typical applications
the output space of machines can be stated very precisely. For secret reconstruction the output space
is the secret domain.
In the second, final step an external trusted setup is added to the framework. Such initial

information, for example, may contain key material of a public-key infrastructure or the shares of
a secret sharing. We cover this in following definition.

Definition 8 (Typed Computational Game). A typed computational game Γ =
(
{D(λ)}λ∈N ,

(Si)i∈[n], (ui)i∈[n]
)
with n players P1, . . . , Pn consists of

• A set Ti of types for each player Pi and a corresponding ppt-sampleable family of (input) type
distributions {D(λ)}λ∈N over T×[n].

• A set Si of ppt ITMs with (local) output space Oi ⊆ {0, 1}∗ for each player Pi.

• A utility function ui for each player Pi which maps security parameter λ, types (t1, . . . , tn) ∈
T×[n], and (local) ITM outputs (o1, . . . , on) ∈ O×[n] to a utility in R.
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For a given security parameter λ and ITMs (M1, . . . ,Mn), we overload notation and define the
utility ui(1

λ, (M1, . . . ,Mn)) = E
[
ui(1

λ, t1, . . . , tn, o1, . . . , on)
]
, where (t1, . . . , tn) ← D(λ) and oi is

the output of ITM Mi(1
λ, ti) after interacting with all the other ITMs. For a coalition C ⊆ [n]

we define utility uC(1
λ, (M1, . . . ,Mn)) :=

∑
i∈C ui(1

λ, (M1, . . . ,Mn)), where each ITM Mi, i ∈ C, is
run with input (1λ, (ti)i∈C).

In a typed computational game, first the players choose their strategies, i. e. ITMs. Afterwards,
the security parameter is fixed, the types (t1, . . . , tn) are privately sampled by an external Dealer
(in game theory often called Nature), and each ti is (privately) written on the input tape of Mi

which starts the interaction. Fixing the ITMs before sampling types is of major importance with
respect to types which are based on computationally hard problems. Otherwise, for example, given
any discrete logarithm instance, the (computationally unbounded) player would be able to choose
a strategy which hardcodes the solution to the given instance. This even exceeds the capabilities
of non-uniform ITMs whose auxiliary input may only depend on the security parameter but not
concrete problem instances. Utilities in typed computational games depend on the (local) outputs
and sampled types. They are (a-priori) computed as expected value over the sampling of types,
interaction of machines, and their final outputs. For a coalition C of players, we define the utility
uC as sum over the parties’ individual utilities when their ITMs are run on their shared inputs.
This reflects the idea that in a realistic setting parties who form a coalition split up their gains.
With respect to the framework from Definition 8 the notion of t-resilient equilibria serves as first

concept to describe stable strategy profiles.

Definition 9 (t-Resilient Computational Equilibrium). For a typed computational game Γ =(
{D(λ)}λ∈N , (Si)i∈[n], (ui)i∈[n]

)
we call strategy profile M = (M1, . . . ,Mn) ∈ S×[n] t-resilient com-

putational equilibrium if for all C ⊆ [n], |C| = t, and all strategies M ′C ∈ S×C there exists a negligible
function µ such that

uC(1
λ,M ′C ,M−C) ≤ uC(1

λ,M) + µ(λ)

Definition 9 adapts the notion of an ϵ-Nash equilibrium to the cryptographic setting of typed
computational games where parties are allowed to form coalitions. In a computational equilibrium
each player Pi is at most able to increase her utility by a negligible amount µ when switching to a dif-
ferent strategy. Assuming that players do not care about negligible improvements, a computational
equilibrium is arguably stable as nobody has an incentive to deviate.
For some scenarios the stability of t-resilient equilibria is insufficient and complementary prop-

erties are demanded. One such property relies on the dominance of strategies which we define for
typed computational games.

Definition 10 (Dominance in Typed Computational Games). Let typed computational game Γ =(
{D(λ)}λ∈N , (Si)i∈[n], (ui)i∈[n]

)
. For player Pi a strategy M∗i ∈ Si weakly dominates M ′i ∈ Si if

1. “Never non-negligibly worse”: For all M−i ∈ S×−i there exists a negligible function µ such
that

ui(1
λ,M∗i ,M−i) ≥ ui(1

λ,M ′i ,M−i)− µ(λ)

2. “Sometimes significantly better”: There exists a noticeable function p and an opponent strat-
egy profile M−i ∈ S×−i such that

ui(1
λ,M∗i ,M−i) ≥ ui(1

λ,M ′i ,M−i) + p(λ)

If the second condition holds for all strategies, then M∗i strictly dominates M ′i . For each player Pi,
denote the set of its strictly dominated strategies by sDOMi(Γ) and its weakly dominated strategies
by wDOMi(Γ).
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According to Definition 10, a strategy Mi weakly dominates another strategy M ′i if (1) Mi is at
most negligibly worse than M ′i against any opponent ITMs and (2) Mi is noticeably better than
M ′i against at least one choice of opponent ITMs. Similarly to how computational equilibria are
defined with slack (i.e. strategies that only improve by a negligible amount do not count), this
notion of dominance is also adapted to the computational setting. One receives the original purely
game-theoretic notion of domination when setting µ = p = 0.

The purely game-theoretic notion, without slack, is not very useful for cryptographic scenarios
for the same reasons that the Nash equilibrium definition has been adapted to include slack [Kat08].
In a definition without slack, any negligible improvement would be considered. In particular, say
we have a protocol that involves public-key cryptography, then intuitively, any strategy can be
improved by having the machine try to randomly guess the secret key (and then use that key to break
something). This improvement would be, in every sense of the word, negligible (by cryptographic
security guarantees) and practically completely irrelevant. However, according to the non-slack
definition, it would never be considered rational to play any strategy, since the strategy with one
additional brute-force attempt would be (negligibly) better. Also, it makes intuitive sense that a
rational player would be indifferent to both negligible improvements and negligible loss in utility.
Requiring sometimes (noticeable) gain but never any loss, as done in [LT06], seems artificial. In
particular, it is inconsistent to computational Nash equlibria, where players are indifferent with
respect to negligible losses, in the sense that replacing any strategy with a negligibly worse strategy
is still a Nash equilibrium. For those reasons, we define dominance with slack in both conditions.
In contrast to Nash equilibria, there does not seem to be a consensus on how to generalize domi-

nation to a setting that includes coalitions. We refer to Section 6 for our definition of domination
with coalitions.

Remark 1 (Noticeable vs non-negligible gains). With respect to the second condition of Defi-
nition 10, we could also require a non-negligible advantage from the weakly dominating strategy
instead of a noticeable one. While the following results apply to both definitions, working with no-
ticeable functions facilitates the proofs. In particular, we do not have to argue about infinite series
of security parameters for which some inequality is not satisfied. Furthermore, it is questionable
whether a strategy which is non-negligibly but not noticeably better, should be considered domi-
nant. Using just non-negligible gains includes cases where there exists an infinite series of security
parameters on which the utility is bounded by a negligible function. If, in practice, the game is only
instantiated on these security parameters, the strategy would only ever have a negligible gain.

Note that, essentially, weakly dominated strategies are irrelevant for the game. No rational player
would consider playing them. So conceptually, weakly dominated strategies can be safely deleted
from the pool of considered strategies. Deleting strategies, however, may render other strategies
weakly dominated, with respect to the reduced strategy sets. So with the same reasoning, those
“new” weakly dominated strategies should be deleted as well. This process leads to following
definition of iterated deletion of weakly dominated strategies.

Definition 11 (Iterated Deletion of Weakly Dominated Strategies). Let typed computational game
Γ0 =

(
{D(λ)}λ∈N , (S0

i )i∈[n], (ui)i∈[n]
)
. For all i ∈ [n] and j ∈ N define Sj

i := Sj−1
i \ wDOMi(Γ

j−1)

and Γj =
(
{D(λ)}λ∈N , (Sj

i )i∈[n], (ui)i∈[n]
)
. Then S∞×[n] :=

⋂∞
j=1 S

j
×[n] is the set of strategies which

survives the process of iterated deletion of weakly dominated strategies and Γ∞ =
(
{D(λ)}λ∈N ,

(S∞i )i∈[n], (ui)i∈[n]
)
is its corresponding game. A strategy profile (M1, . . . ,Mn) ∈ S0

×[n] survives the

iterated deletion of weakly dominated strategies, if (M1, . . . ,Mn) ∈ S∞×[n].

During the process of deletion of strategies, the strategy sets shrink over time. While for finite
strategy sets this process eventually stops, for infinite sets we are not aware of any characterizations
when this process stops. For our upcoming results, it is important to note that any weakly dominated
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strategy w.r.t. the original (full) strategy set is deleted in the first iteration and can never be
considered rational to play according to this notion. Indeed, our results will only focus on the first
iteration of iterated deletion, i. e. we generally show that strategies are weakly dominated from
the start (rather than becoming weakly dominated in later iterations). This implies not surviving
IDoWDS, which is the term that most of the related work is concerned with.
In important publications [ADGH06, GK06, HT04], founding the field of rational secret recon-

struction and rational MPC, a mechanism is only considered “practical” if it both is a Nash equlib-
rium and survives the iterated deletion of weakly dominated strategies. Otherwise, playing such a
mechanism is arguably irrational.

3.5 Rational Secret Reconstruction

In this section, we define the secret reconstruction game in the spirit of [GK06] as an instantiation of
a typed computational game (Definition 8). For this, we need to define the types, allowed strategies,
and utility functions.
The setting is as follows. First, a secret is shared among n players using a locally verifiable secret

sharing scheme (Definition 3). This is done by a dealer in this formalization and the shares (and any
authentication data) are given to each party as a type, but we could similarly imagine the shares to
be the output of an MPC protocol. As another application example, a central party might secret
share authentication information among a group of people to restrict access to some application.
The goal for the parties is to reconstruct the secret. Regarding the utilities, each player has a
certain gain from learning the shared secret, e. g. if the result of a computation or the access to
an application is valuable. How much a player gains typically also depends on whether the other
parties learn the secret as well. For example, if a player is the only one to learn a password for
an online banking application, then she might transfer all available money to her own account. If
others also gain access to the application, then the money possibly has to be shared with them
decreasing the player’s gain.
Based on these considerations, the reconstruction of locally verifiable shared secrets by rational

participants is defined as follows.

Definition 12 (Secret reconstruction game with locally verifiable reconstruction). The secret recon-
struction game with family of secret distributions {S(λ)}λ∈N over secret domain S, access structure
A, secret sharing scheme Π = (SetupΠ,Share,Recon) with locally verifiable reconstruction consists
of

• Type distribution D(λ): Sample public parameters pp ← SetupΠ(1
λ), secret s ← S(λ), and

shares (s(i), τ (i), σ(i))i∈[n] ← Share(pp, s). Set type ti := (pp, (s(i), τ (i), σ(i))).

• A set Si of ppt ITMs with (local) output space S ∪ {⊥} for each player Pi.

• A utility function ui for each player Pi which maps security parameter, secret s ∈ S, and the
parties’ outputs (s1, . . . , sn) ∈ (S ∪ {⊥})n to a utility in R.

Remark 2. Unlike Definition 8 of typed computational games, we let the utility function in Defini-
tion 12 only depend on the secret itself and not the whole types. This specialization reflects typical
secret reconstruction utilities which only rely on the shared secret itself and not on concrete shares,
authentication data, or public parameters. Additionally, if the secret sharing scheme has no locally
verifiable reconstruction, then the corresponding local verification information and authentication
information remain empty.

Definition 12 models a scenario where players first choose the ITMs they use for reconstructing
the secret which is afterwards shared among them by an external party. The secrets are sampled
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according to a publicly known distribution which depends on the security parameter. This depen-
dence is especially important if the secret’s length increases with the security parameter, e. g. when
it corresponds to a secret key. Then each player runs their ITM on input (s(i), τ (i), σ(i)), consisting
of the player’s share s(i), local verification information τ (i), and authentication information σ(i) as
in Definition 3. The ITM eventually outputs a guess for the secret or an error symbol ⊥. After the
execution, a player’s utility depends on the shared secret and the output guesses.
While utility functions might encode anything, previous works [HT04, GK06, ADGH06, KN08a]

modeled players to prefer learning the (correct) secret over not learning the secret and to prefer the
others not to learn the (correct) secret.

Definition 13. Let ui be the secret reconstruction utility of player Pi from a secret reconstruction
game (Definition 12). We say ui

• prefers correctness, if there exists a noticeable function p such that for all λ ∈ N, secrets s ∈ S,
and guesses s∗, s′ ∈ (S ∪ {⊥})n with s∗i = s ̸= s′i we have

ui(1
λ, s, s∗) > ui(1

λ, s, s′) + p(λ).

• prefers exclusivity, if for all j ̸= i there exists a noticeable function p such that for all λ ∈ N,
secrets s ∈ S, and guesses s∗, s′ ∈ (S ∪ {⊥})n with s∗j = s ̸= s′j and s∗−j = s′−j we have

ui(1
λ, s, s′) > ui(1

λ, s, s∗) + p(λ).

If ui prefers both correctness and exclusivity, then we call it natural.

Definition 13 states that a player prefers correctness if her utility improves when her ITM outputs
the correct secret instead of the wrong secret while the others’ guesses are fixed. Additionally, a
player prefers exclusivity if her utility improves when another party outputs the wrong secret instead
of the right one. As discussed in previous Remark 1 on noticeable and non-negligible gains, we again
choose to require noticeable functions as improvements. This restriction of utilities, which arguably
applies to many real-world applications, was used to show negative results [HT04, ADGH06, LT06,
AL11] as well as to construct protocols being a computational equilibrium [HT04, GK06, ADGH06,
KN08a].
Finally, we restrict the distribution of secrets to be non-trivial to rule out scenarios where ITMs are

able to correctly guess the secret without any interaction: The distribution must not be concentrated
too much on a single secret.

Definition 14 (Non-trivial secret distribution). A family of secret distributions {S(λ)}λ∈N over
secret domain S is called non-trivial if there exists a noticeable function p such that for all secrets
s ∈ S

Pr[S(λ) = s] < 1− p(λ).

4 Weak Domination in Existing Secret Reconstruction Protocols

In this section we describe several existing strategies from [ADGH06, GK06] which were formerly
claimed to survive the iterated deletion of weakly dominated strategies in the secret reconstruction
game. Contradicting these claims we construct a counterexample which weakly dominates the
original strategies if the initial secret sharing scheme is locally verifiable. This counterexample
serves as blueprint for other protocols like [HT04, KN08a] and provides an intuition for our general
results.
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ITM MADGH
i on input ti = (pp, s(i), τ (i), σ(i)) with access to Fβ,ŝ (Figure 4).

1 : Set flag allHonest := true

2 : while allHonest do

3 : Send ti to Fβ,ŝ which privately returns (s(i), τ (i), σ(i)).

4 : For all Mj , j ̸= i: Simultaneously send (s(i), σ
(i)
j ) and obtain (s(j), σ

(j)
i ).

5 : Compute s∗ = Recon(pp, τ (i), ((s(1), σ
(1)
i ), . . . , (s(n), σ

(n)
i ))).

6 : if s∗ =⊥ then

7 : allHonest := false

8 : elseif s∗ ̸= ŝ then

9 : Output s∗ and terminate.

10 : Continue listening, but send nothing anymore.

Figure 3: Secret reconstruction strategy generalized from several protocols of [ADGH06, GK06]

using an ideal functionality Fβ,ŝ (Figure 4) instead of an MPC protocol.

The above-mentioned protocols follow the generic pattern depicted in Figure 3. We describe this
pattern using standard terminology from multiparty computation, i.e. we use an ideal functionality
that has to be replaced by an appropriate protocol. Using the functionality description allows us
to abstract from many irrelevant details. In accordance with the secret reconstruction game, input
ti for ITM MADGH

i includes public parameters pp and a triple (s(i), τ (i), σ(i)) consisting of share
s(i), local verification information τ (i), and authentication information σ(i). They assume there is
some fake secret ŝ ∈ S which is not in the support of distribution S of secrets and, therefore, is
distinguishable from the initially shared secret s∗. The main loop always begins with a first phase
where the parties query an ideal functionality Fβ,ŝ (Figure 4) using their types. Functionality Fβ,ŝ

first checks consistency and validity of these inputs and, if successful, returns a fresh round sharing
(s(i), τ (i), σ(i)) of either s∗ with probability β or of ŝ with probability 1 − β. Afterwards MADGH

i

sends its round share s(i) and authentication information σ
(i)
j to each Mj as well as simultaneously

obtains a message parsed as (s(j), σ
(j)
i ). MADGH

i uses its round verification information τ (i) to locally
reconstruct a corresponding secret. If the reconstruction fails with error symbol ⊥, MADGH

i leaves
the loop and only listens to any further communication. If the reconstructed secret s∗ does not
equal the fake secret ŝ, s∗ is locally output as final guess. Otherwise, the loop’s next round begins.
Note, the protocol makes each Mi correctly output the initially shared secret s∗ in an expected
number of 1/β loop runs.

This protocol pattern randomizes the last round in order to overcome the problem that “send
no/wrong share” weakly dominates “send share” in a fixed last round. Due to the secret sharing’s
privacy, it is indistinguishable for deviating parties whether the current round’s secret equals the
initial secret s∗ or the fake secret ŝ. When a party deviates such that she makes the reconstruction
either fail with ⊥ or a wrong secret s ̸= ŝ, the remaining parties stop the interaction. If this happens
in a fake round, which with probability 1−β is the case, this stop of interaction acts as punishment
as the deviating party obtains no further information on s∗.

In order to instantiate MADGH
i such that “send no/wrong share” not weakly dominates “send

share”, the secret sharing scheme, its access structure, and the parameter β have to be chosen
suitably. Depending on the given utilities, these ingredients have to be chosen such that the expected
loss of making the protocol stop in a fake round outweighs the expected gain of exclusively learning
the secret by deviating in a non-fake round. In short, the punishment deters active deviations which
are observable by the remaining players. This, however, does not account for local deviations which
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Functionality Fβ,ŝ on inputs (ppi, s
(i), τ (i), σ(i)) from each ITM Mi

1 : if ∃i ∈ [n] : Recon(pp, τ (i), (s(j), σ
(j)
i )j∈[n]) =⊥ ∨ppi ̸= pp1 then

2 : return ⊥
3 : else

4 : Compute s∗ = Recon(pp, τ (1), (s(j), σ
(j)
i )j∈[n])

5 : Compute (s(i), τ (i), σ(i))i∈[n] ←

{
Share(ppΠ, s

∗), with probability β

Share(ppΠ, ŝ), with probability 1− β

6 : return (s(i), τ (i), σ(i)) to each party Pi

Figure 4: Functionality Fβ,ŝ which, given a consistent and valid sharing of secret s∗, returns a fresh
sharing of s∗ with probability β and of ŝ with probability 1− β.

are not observable. To see this, consider our counterexample MADGH
i (Figure 5) which extends

strategy MADGH
i by a simple check at the end of its first loop run. Concretely, MADGH

i checks
whether each other machine sent a specially formatted LEAK-message containing their share and
authentication information. If these values reconstruct to a valid secret under the initial verification
information τ (i), then s∗ is output. MADGH

i weakly dominates the original approach MADGH
i in

certain settings as specified in following theorem.

Theorem 1. Let Π = (SetupΠ,Share,Recon) be a secret sharing scheme (Definition 3) with perfect
privacy (Definition 4). Consider a secret reconstruction game (Definition 12) for Π, with non-trivial
distribution of secrets (Definition 14) and reconstruction utilities preferring correctness (Defini-
tion 13). If Π has local (n−1)-verifiability (Definition 5), then for strategy MADGH

i (Figure 3) there

exists a weakly dominating strategy MADGH
i .

We sketch the proof idea of Theorem 1. For more details we refer to the analogous formal proof of
our generalized non-uniform result Theorem 2. In order to weakly dominate MADGH

i (Figure 3) our

constructed strategy MADGH
i (Figure 5) has to be 1) noticeably better against at least one opponent

strategy but 2) never more than negligibly worse against any opponent strategy. Regarding 1),

consider strategies M ′j→i (Figure 6) which send (LEAK, s(j), σ
(j)
i ), i. e. a specially marked message

containing the initial share and authentication information, to MADGH
i and terminate. ITM MADGH

i

correctly parses these incoming messages, reconstructs the initial secret, and outputs it. Because
MADGH

i is not instructed to parse the specific LEAK-format, reconstruction fails, MADGH
i leaves its

loop, and only listens without a correct output. As we assume correctness-preferring reconstruction
utilities, which value correct outputs with a noticeably higher utility than wrong outputs, require-

ment 1) is satisfied. Regarding 2), in comparison to MADGH
i ITM MADGH

i may only deviate and

lead to a worse utility, if the remaining (n− 1)-parties sent shares which make MADGH
i reconstruct

neither the initial secret s∗ nor ⊥ under the initial τ (i). Assuming local (n − 1)-verifiability, this
happens with negligible probability against any ppt strategy M ′j→i. Hence, compared to MADGH

i ,

the expected loss of MADGH
i is at most negligible which satisfies requirement 2).

In order to show where our result applies, we first explain the concrete protocol instantiations
and settings of MADGH

i from [ADGH06, GK06]. In the following let k be the size of coalitions, n
the number of participating players, and m the threshold of required shares for an (m,n)-threshold
access structure.

1. [GK06, Section 4], k-resilient equilibrium for k < m: Requires an arbitrary secret sharing
scheme which signs the initial shares as well as round shares as input and within the loop.

19



ITM MADGH
i on input ti = (pp, s(i), τ (i), σ(i)) with access to Fβ,ŝ (Figure 4).

1 : Run MADGH
i on the given inputs until end of first communication round.

2 : For all j ∈ [n] \ {i}: Parse message mj from Mj as (LEAK, s(j), σ
(j)
i ).

3 : Compute s∗ = Recon(pp, τ (i), ((s(1), σ
(1)
i ), . . . , (s(n), σ

(n)
i ))).

4 : if s∗ ̸∈ {ŝ,⊥} then // Shares valid with respect to the initial τ (i) were sent.

5 : Output s∗.

6 : Continue to execute MADGH
i .

Figure 5: Strategy MADGH
i which weakly dominates MADGH

i (Figure 3).

ITM M ′j→i on input tj = (pp, s(j), τ (j), σ(j)) with access to Fβ,ŝ (Figure 4).

1 : Send mj = (LEAK, s(j), σ
(j)
i ) to Mi.

2 : Output ⊥ and terminate.

Figure 6: Strategies M ′j→i.

The reconstruction algorithm outputs ⊥ if some share fails to verify under the corresponding
public key. Probability β depends on utilities.

2. [ADGH06, Proposition 1], k-resilient equilibrium for k < m: Requires a secret sharing with
signed shares (as in [GK06]) or with information-theoretic 1-time MACs as in Construction 1
as input. Within the loop: plain Shamir secret sharing without further reconstruction. Prob-
ability β depends on utilities.

3. [ADGH06, Proposition 2], k-resilient equilibrium for k < m < n − k: Requires a secret
sharing with signed shares (as in [GK06]) or with information-theoretic 1-time MACs as in
Construction 1 as input. Within loop: Construction 1. Probability β = 1/2, field size F of
Shamir sharing depends on utilities.

4. [ADGH06, Proposition 3], k-resilient equilibrium for k < m < n − 2k: Uses a Shamir secret
sharing without further verification or authentication information as input and within the
loop. For reconstruction: Reed-Solomon decoding. Probability β = 1/2 but field size F of
Shamir sharing depends on utilities.

As the first three results all require initial sharings which are locally (n−1)-verifiable, Theorem 1

applies. Each of these concrete protocols is weakly dominated by strategyMADGH
i . Hence, differently

than claimed, these protocols do not survive the iterated deletion of weakly dominated strategies.
The fourth variant ([ADGH06, Proposition 3]) does not make use of any locally verifiable properties
but relies on pure combinatorics to reconstruct the original secret. In this case our counterexample

does not apply. In particular, there exists an opponent strategy M−i which makes ITM MADGH
i

output a wrong secret by appropriately adjusting the corresponding shares. More generally, our
counterexample fails in scenarios where the remaining n− k parties are able to undetectably adjust
their shares in order to change the reconstructed secret. However, as we show in Section 7, in certain
settings [ADGH06, Proposition 3] is also weakly dominated, but by another type of strategy.
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5 Impossibility Results for Surviving Iterated Deletion of Weakly
Dominated Strategies

As explained in the introduction, the counterexample shown in Section 4 can be counteracted by
adding the same first-round check to the honest protocol. However, informally, one can argue that
there are many different checks that simply expect different encodings of the special first-round
message, and not all of them can be built into a polynomial-time strategy. In this section, we show
that in certain settings, local (n−1)-verifiability and iterated deletion of weakly dominated strategy
(IDoWDS) are provably incompatible. We start with a non-uniform setting in Section 5.1 and then
discuss other settings in Section 5.2.

5.1 Impossibility with Respect to Non-uniform Strategies

We consider the non-uniform setting. We show that for a secret reconstruction game local (n −
1)-verifiability and iterated deletion of weakly dominated strategy (IDoWDS) are incompatible,
i.e. in this setting every non-uniform strategy is weakly dominated by some other non-uniform
strategy. This is formalized in Theorem 2 and Corollary 1. The only restrictions we need are non-
trivial distributions and correctness-preferring utilities. Recall that for trivial secret distributions,
i.e. distributions that are concentrated on a single secret, secret reconstruction games are mostly
vacuous.

Theorem 2. Let Π = (SetupΠ,Share,Recon) be a secret sharing scheme (Definition 3) with perfect
privacy (Definition 4). Consider a secret reconstruction game (Definition 12) for Π, with non-uniform
strategies, non-trivial distribution of secrets (Definition 14), and reconstruction utilities preferring
correctness (Definition 13). Let (Mi, ω

′
1, ω
′
2, . . . ) be a strategy for the secret reconstruction game, i.e.

a non-uniform ppt ITM. If Π has (non-uniform) local (n− 1)-verifiability (Definition 5), then there
exists another strategy (M∗i , (ω1, ω2, . . . )) which weakly dominates (Mi, ω

′
1, ω
′
2, . . . ) (Definition 10).

Corollary 1. In the non-uniform setting there exists no strategy profile for the secret reconstruction
game setting described in Theorem 2 which survives the iterated deletion of weakly dominated
strategies (Definition 11).

Proof (Theorem 2). In order to prove Theorem 2, given strategy (Mi, ω
′
1, ω
′
2, . . . ), where we from

now on drop its auxiliary inputs (ω′1, ω
′
2, . . . ) which are immaterial to the argument, we define a new

strategy (M∗i , (ω1, ω2, . . . )) as in Figure 7. (M∗i , (ω1, ω2, . . . )) extends Mi by an additional check

Non-uniform ITM (M∗i , (ω1, ω2, . . . )), ωλ = (ωλ,1, . . . , ωλ,n), for given Mi.

Setup: Sample (t1, . . . , tn)← D(λ), ti = (pp, s(i), τ (i), σ(i)), and send ti to Mi.

1 : Run Mi on the given inputs until end of first communication round.

2 : For all j ∈ [n] \ {i}: On message mj from Mj set (s(j), σ
(j)
i ) := mj ⊕ ωλ,j .

3 : if s∗ := Recon(pp, τ (i), (s(j), σ
(j)
i )j∈[n]) ̸=⊥ then

4 : Output s∗.

5 : Continue to execute Mi.

Figure 7: Improved strategy (M∗i , (ω1, ω2, . . . ))

whether it obtained one-time pad encryptions of the original signed shares using the non-uniform
keys ωλ = (ωλ,1, . . . , ωλ,n). Without loss of generality we assume that the messages mj that Mi

receives from other strategies are of the same length as the advice strings ωλ,j (which in turn have
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the length of shares). If this is not the case, we only consider prefixes of mj of the appropriate
length. Since (M∗i , (ω1, ω2, . . . )) in its first step simulates Mi until the end of the communication
round, it also needs the M ′is advice string as additional input. To simplify notation, we do not
include this in the description of (M∗i , (ω1, ω2, . . . )).

To prove Theorem 2, first note that (M∗i , (ω1, ω2, . . . )) (Figure 7) is ppt. Next, we show its
weak dominance over Mi (Definition 10). We split the proof for computational weak dominance
into Lemmas 1 and 2: On the one hand, we show that M∗i achieves at most negligibly less utility
than Mi with respect to any opponent strategy M−i (Lemma 1). On the other hand, we show the
existence of an opponent strategy M−i that achieves noticeably higher utility than Mi (Lemma 2).
Taken together, Lemmas 1 and 2 show that both requirements of computational weak dominance
are satisfied which finishes the proof.

Lemma 1. Let (non-uniform) ITM Mi be a strategy for the secret reconstruction game for a secret
sharing scheme Π = (SetupΠ, Share,Recon) with locally (n − 1)-verifiable reconstruction and non-
uniform strategies. Then for any opponent strategy profile M−i and strategy (M∗i , (ω1, ω2, . . . ))
(Figure 7) there exists a negligible function µ such that for all λ ∈ N

ui(1
λ,Mi,M−i) ≤ ui(1

λ, (M∗i , (ω1, ω2, . . . )),M−i) + µ(λ) (1)

Proof. For the sake of contradiction assume that for some (M∗i , (ω1, ω2, . . . )), M−i, and all negligible
functions µ we have

ui(1
λ,Mi,M−i) > ui(1

λ, (M∗i , (ω1, ω2, . . . )),M−i) + µ(λ).

Note that the only deviation of ITM (M∗i , (ω1, ω2, . . . )) from the original strategyMi happens within
lines 2-4 (Figure 7). Since, by assumption, reconstruction utilities prefer correctness, compared to
Mi this deviation only decreases utility if the secret output in line 4 is not correct. In order to
decrease utility more than negligibly, entering line 4 and outputting the wrong secret has to happen
with a non-negligible probability. However, in that case from (M∗i , (ω1, ω2, . . . )) andM−i we immedi-
ately get an adversary violating the local (n−1)-verifiability property of Π = (SetupΠ,Share,Recon)
(see Definition 3).

Lemma 2. Let ITM Mi be a strategy for the secret reconstruction game for secret sharing scheme
Π = (SetupΠ, Share,Recon) with locally (n − 1)-verifiable reconstruction and with non-uniform
strategies (Definition 12). If the distribution of secrets is non-trivial (Definition 14) and reconstruc-
tion utilities prefer correctness, then there exist auxiliary strings (ω1, ω2, . . . ), an opponent strategy
M−i, and a noticeable function p such that for all λ ∈ N

ui(1
λ, (M∗i , (ω1, ω2, . . . )), (M−i, (ω1, ω2, . . . ))) ≥ ui(1

λ,Mi, (M−i, (ω1, ω2, . . . ))) + p(λ),

where each strategy in profile M−i gets the same sequence of auxiliary strings.

Proof. Consider the opponent strategies (M ′j→i, (ω1, ω2, . . . )), j ̸= i, described in Figure 8. Together
they form the profile M−i.
The strategies in (M ′j→i, (ω1, ω2, . . . )) are tailored towards(M∗i , (ω1, ω2, . . . )) and simply send one-

time pad encryptions of their shares to Mi. Obviously, these are not useful (or rational) strategies
but are still relevant for weak domination.
In the following, to ease notation, we exclude the shares verification and authentication informa-

tion which are not relevant to the argument itself. Also, to increase readability, we drop the auxiliary
strings from the non-uniform ITMs (M∗i , (ω1, ω2, . . . )) and (M ′j→i, (ω1, ω2, . . . )) when possible.

For the sake of contradiction assume that for all (ω1, ω2, . . . ) and all noticeable functions p

ui(1
λ,M∗i , (M

′
j→i)j ̸=i) < ui(1

λ,Mi, (M
′
j→i)j ̸=i)) + p(λ). (2)
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Non-uniform ITM (M ′j→i, (ω1, ω2, . . . )), ωλ = (ωλ,1, . . . , ωλ,n)

Setup: Sample (t1, . . . , tn)← D(λ), ti = (pp, s(i), τ (i), σ(i)), and send ti to Mi.

1 : Send mj = (s(j), σ
(j)
i )⊕ ωλ,j to Mi.

2 : Output ⊥ and terminate.

Figure 8: Strategies (M ′j→i, (ω1, ω2, . . . ))

First note, the strategies M ′j→i have the fixed output ⊥ irrespective of Mi. Therefore, against
M ′j→i, the only difference in Mi’s utility originates from the output of Mi itself. Further, because
we assume utilities which prefer correctness, any output of Mi which is not the correct secret results
in noticeably less utility compared to the correct secret. By construction, M∗i always correctly
reconstructs and outputs the originally shared secret in line 4 when the remaining parties run
M ′j→i. Therefore, M

∗
i achieves the optimal utility with respect to the ITMs M ′j→i. Hence, in order

to satisfy Equation (2), strategy Mi has to output the correct secret with overwhelming probability
for all choices of auxiliary strings. By an averaging argument this also holds when choosing the
auxiliary strings uniformly at random. Formally, there exists a negligible function µ such that

Pr[s← S(λ), ωλ ← {0, 1}ℓ(λ) : Mi(Share(s)⊕ ωλ) = s] = 1− µ(λ).

for all λ ∈ N. We rewrite above equation as

Pr[s← S(λ), ωλ ← {0, 1}ℓ(λ) : Mi(ωλ) = s] = 1− µ(λ).

In particular, by the uniform choice of ω the input of Mi is stochastically independent of s but Mi

still outputs s with overwhelming probability. This, however, contradicts the non-trivial distribution
of secrets because there exists a noticeable function p such that for any machine M ′, especially Mi,
we have

Pr[s← S(λ), ωλ ← {0, 1}ℓ(λ) : M ′(ωλ) = s] ≤ max
S∈S

Pr[S(λ) = s] < 1− p(λ).

Concretely, for the negligible function µ and noticeable function p the previous equations imply
relation p(λ) < µ(λ), which for λ large enough is false.

5.2 Impossibility with Respect to Other Settings

If we examine the proof above, the main challenge for proving that every strategy is weakly domi-
nated is coming up with a first-message encoding for which we can prove that the original strategy
does not check it in any way. We mask the first-round message by XORing with some bit string
that is the same for all machines M ′j→i, but to which the original strategy has no access. In the
non-uniform setting, we essentially prove that a ppt machine cannot check all XOR masks, and
then encode some XOR mask that is not checked in the non-uniform advice string ω of the coun-
terexample machines (M∗i , (ω1, ω2, . . . )), (M

′
j→i, (ω1, ω2, . . . )).

Another alternative for getting an XOR mask that is not accessed by the original strategy Mi

presents itself in the random oracle model: If the original strategy Mi is such that it never queries
a random oracle (e.g., any strategy in the standard model), then in the random oracle model, Mi

is weakly dominated by some random oracle model strategy M∗i . M∗i works as in the non-uniform
example, but sources the XOR mask from the random oracle (e.g., as H(1)||H(2)|| . . . ). The first-
round messages of M ′j→i do not convey any information about the secret at all to the original
non-random-oracle strategy.
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Other ways are conceivable as well. For example, assume that the dealer extends each party’s
type ti by some shared random bit string ω or there is some common reference string that we know
is ignored by the original machine Mi (e.g., if Mi is a subprotocol in a larger protocol).

6 Impossibility of Rational Mechanisms for Majority Coalitions

In many cases, we not only want to look at individual rational actors, but also design mechanisms
that are rational to follow for coalitions of actors [ADGH06]. So instead of standard (computa-
tional) Nash equilibria, in the coalition setting one considers t-resilient computational equilibria
(Definition 9). Even though it seems not to have been done in the literature [ADGH06], we argue
that in order to properly take coalitions into account, one must also account for coalitions when
considering weak domination of strategies.
In this section, we provide evidence that there cannot be any reasonable secret reconstruction

mechanism that for coalitions of size t ≥ n/2 is both (1) a t-resilient computational Nash equilibrium
and (2) in some sense “t-resilient against weak domination”, i.e. there is no t-coalition strategy that
is sometimes (significantly) better (against some strategy of the non-coalition members) and never
(non-negligibly) worse. This seems to be true as long as the secret sharing scheme is verifiable-
or-fully-broken (Definition 16), which is the case for the most popular secret sharing schemes. We
formally prove impossibility for those secret sharing schemes and non-uniform strategies (so that
we can apply a version of Theorem 2), but the result also generalizes to the settings discussed
in Section 5.2 and intuitively, as argued in the introduction, similar results should apply to any
reasonable concrete protocol with uniform strategies.
Intuitively, a mechanism designer has the choice between two options regarding authentication of

the secret sharing: The first option is to make the secret sharing scheme very well authenticated,
so that n− t parties cannot convince t honest parties of a wrong secret. But then any (t-coalition)
strategy is weakly dominated similar to Section 5, as the strategy that applies a share verification
check to (some encoding of) the first-round messages can be sure that if the check succeeds, it
outputs the correct secret. The alternative option is to make the secret sharing scheme not as well
authenticated, so that a coalition of n − t parties can convince someone of a wrong secret. But in
that case, no strategy can be a (n − t)-resilient Nash equilibrium because it is always better for a
coalition of n− t parties to deviate to convince the other parties of a wrong secret. But if a strategy
is not a (n − t)-resilient Nash equilibrium, then it also cannot be a t-resilient Nash equilibrium
because t ≥ n− t for t ≥ n/2. Overall, no matter whether authentication is chosen to be strong or
weak, you get a problem with either weak domination or Nash equilibria.
To prove this, we first introduce a notion of weak domination for coalitions in Section 6.1, then

go on to explain our assumption on the possible secret sharing schemes in Section 6.2, and finally
prove the impossibility result in Section 6.3.

6.1 Weak Domination for Coalitions

First, we generalize the notion of weakly dominated strategies to weakly dominated strategies with
respect to coalitions. While definitions of Nash equilibria with respect to coalitions (Definition 9)
are widely available, it seems a similar generalization for weak domination is much less standard.
For Nash equilibria, it is argued that if coalitions form, they may have an incentive to deviate
from the prescribed mechanism in order to improve their utility. We argue that similarly, for
weak domination with coalitions, it is reasonable for a coalition to deviate from the mechanism
because there is an alternative coalition strategy that is never (non-negligibly) worse than the
mechanism, but is (noticeably) better against some strategies of the non-coalition parties. We
generalize Definition 10 for coalitions as follows.
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Definition 15 (Dominance with coalition C). Let typed computational game Γ =
(
{D(λ)}λ∈N ,

(Si)i∈[n], (ui)i∈[n]
)
and C ⊆ [n]. A partial strategy M∗C ∈ S×C weakly dominates M ′C ∈ S×C with

respect to coalition C if

1. “Never non-negligibly worse”: For all M−C ∈ S×−C, there exists a negligible function µ such
that

uC(1
λ,M∗C ,M−C) ≥ uC(1

λ,M ′C ,M−C)− µ(λ)

2. “Sometimes significantly better”: There exists a noticeable function p and a partial opponent
strategy M−C ∈ S×−C

uC(1
λ,M∗C ,M−C) ≥ uC(1

λ,M ′C ,M−C) + p(λ)

where uC is defined as in Definition 8. We say that the coalition strategy M ′C ∈ S×C is weakly
dominated if there is some M∗C that weakly dominates it.

The original non-coalition definition (Definition 10) is the special case with |C| = 1. We omit a
definition of iterated deletion of weakly dominated strategies with respect to coalitions (it is not
actually clear what that should look like, but it also is not necessary to our argument).
Theorem 2 can be generalized to coalitions as follows.

Theorem 3. Let Π = (SetupΠ,Share,Recon) be a secret sharing scheme (Definition 3) with perfect
privacy (Definition 4). Consider a secret reconstruction game (Definition 12) for Π, with non-
uniform strategies, non-trivial distribution of secrets (Definition 14), and reconstruction utilities
preferring correctness (Definition 13). Let C ⊂ [n], t = |C|, and let MC = (Mi)i∈C be some partial
non-uniform strategy profile. If Π has (non-uniform) local n − t-verifiability (Definition 5), then
there exists a non-uniform partial strategy profile M∗C that weakly dominates MC (Definition 15).

Proof (sketch). Given partial strategy profile MC = (Mi)i∈C , define partial strategy profile M∗C as
follows. Choose i ∈ C arbitrarily. Then M∗C consists of (M∗i , (ω1, ω2, . . . )) and strategies Mj , j ∈
C \ {i}. The rest of the proof is as the proof for Theorem 2.

6.2 An Assumption on the Secret Sharing Scheme

For the results in this section, we require the secret sharing scheme to have a specific property.
Namely, we want that for any number k of corrupted shares, it must be either (1) infeasible to
circumvent authentication (meaning it has local k-verifiability as in Definition 5), or (2) very easy
to circumvent authentication in the following sense: Manipulating the k corrupted shares results
in a sharing of a different secret s′ related to the original secret s∗ (even if the k parties may not
be able to reconstruct s∗ from their shares). Then given the related secret s′, it must be easy to
find s∗. For example, for an additive (xor) secret sharing, the process (2) can be accomplished by
incrementing some corrupted share by 1, which results in a secret s′ = s∗ + 1, so given s′, it is easy
to retrieve s∗. There must not be an in-between where authentication is broken against k parties,
but it also is not possible for k parties to both change the sharing to a different secret and then
reliably infer the real secret.

Definition 16 (Verifiable-or-fully-broken secret sharing schemes). Let Π be a secret sharing scheme
(Definition 3) for n parties. We say that Π is verifiable-or-fully-broken (for secret distributions
S(1λ)) if for all k ∈ [1, n − 1], Π has local k-verifiability, or there is a C ⊆ [n], |C| = k and a
deterministic polynomial-time algorithm A such that Pr[ForgeRelS,CA,Π(λ) = 1] ≥ 1 − µ(λ) for some

negligible function µ, where ForgeRelS,CA,Π is as in Figure 9.

This definition covers secret sharing schemes such as:
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Experiment ForgeRelS,CA,Π(λ):

1. s∗ ← S(1λ), pp← SetupΠ(1
λ).

2. ((s(1), τ (1), σ(1)), . . . , (s(n), τ (n), σ(n)))← Share(pp, s∗).

3. Adversary A is given pp, (s(j), τ (j), σ(j))j∈C . It outputs (s
(j), τ (j), σ(j))j∈C and a state st.

4. Check if ((s(j), τ (j), σ(j))j /∈C , (s
(j), τ (j), σ(j))j∈C) is valid output of Share(pp, s′) for some

s′ /∈ {s∗,⊥}. If not, output 0 and stop.

5. A is given s′ and st, and outputs some sguess.

6. Output 1 iff sguess = s∗.

Figure 9: Experiment for fully breaking verification of secrets for secret sharing scheme Π with
respect to deterministic adversary A, set C ⊂ [n] of corrupted parties, and family of
secret distributions S.

• Any secret sharing scheme where shares are signed or MACed as in Construction 1 (because
those schemes are k-verifiable for all k ∈ [1, n− 1]).

• Additive n-out-of-n secret sharing (because there, A can simply increment one share by +1
and then s∗ = s′ − 1).

• Shamir’s m-out-of-n secret sharing for m > n/2 with high-entropy secret distributions S. This
is because for k ≥ m > n−m, A can interpolate the polynomial f∗, compute all other n−m
parties’ shares, and then set up a new polynomial f ′ that agrees with the n−m honest parties’
shares but encodes the secret s∗+1; for k < m, the scheme is k-verifiable because if the secret
has high entropy, then it is infeasible to guess the shares of the other parties. Guessing wrong
results in reconstruction failing because some honest party’s share does not agree with the
polynomial induced by the manipulated shares output by A.

These schemes are widely used and arguably the most relevant ones. Note that Shamir’s secret
sharing for threshold m ≤ n/2 does not fall under this, but that case is less interesting in our
setting because a coalition of k > n/2 can then reconstruct the secret without any interaction (in
particular, if used for sharing secrets in multiparty computation, the coalition would be able to see
all of it).

6.3 Proving Impossibility

We are now ready to prove the following theorem.

Theorem 4. Let Π be a secret sharing scheme (Definition 3) with perfect privacy (Definition 3)
that is verifiable-or-fully-broken (Definition 16) for secret distributions S. Consider the secret re-
construction game for secret sharing scheme Π with non-uniform strategies, non-trivial distribution
of secrets S (Definition 14), and reconstruction utilities preferring correctness and exclusivity (Def-
inition 13). Let t ≥ n/2. Then there exists no mechanism with the following properties:

• If everyone follows the mechanism, the correct secret is reconstructed with probability 1.

• The mechanism is a t-resilient Nash equilibrium (Definition 9).

• There is no coalition C ⊆ [n], |C| = t such that MC is weakly dominated (Definition 15).
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Overall, this indicates that for most typical secret sharing schemes, there is no pleasing mechanism
that could be considered fully “rational”. In contrast to Section 5, Theorem 4 does not assume that
the secret sharing needs to be authenticated (but rather shows that whether or not authentication
is applied, both cases run into rational issues).
For the proof, there are two cases, similar to how we argued at the beginning of this section: (1)

if the secret sharing scheme Π has (non-uniform) local n− t-verifiability (Definition 5), then every
mechanism is t-weakly dominated (because of Theorem 3). Otherwise (2) the secret sharing scheme
does not have local n− t verifiability. Then it also does not have local t ≥ n− t verifiability. Then
Definition 16 gives us an adversary A that manipulates the coalition shares, altering the shared
secret from s∗ to some s′ ̸= s∗ (for the non-coalition parties), and can output the correct s∗ for the
coalition parties. We use A to construct a coalition strategy with better utility than the mechanism,
meaning that the mechanism is not a t-resilient computational Nash equilibrium.

Proof. Theorem 4 follows from Theorem 3 for the case that Π has (non-uniform) local n − t-
verifiability, and from Lemma 3 in the other case.

Lemma 3. In the setting of Theorem 4, assume Π does not have (non-uniform) local t-verifiability.
Then no mechanism (M1, . . . ,Mn) ∈ S×[n] is a t-resilient computational Nash equilibrium.

Proof. LetM = (M1, . . . ,Mn) be a mechanism. Let C and A be as in Definition 16, C ⊆ [n], |C| = t.
Let (M∗i )i∈C be as in Figure 10.
Consider a run of strategies ((M∗i )i∈C , (Mi)i/∈C) from the point of view of the coalition strategies

M∗i . If A outputs manipulated shares that are possible output of Share(pp, s′) for some secret s′,
the result of the honestly run mechanism will be s′. This is because all the coalition members get
the same output from the deterministic A, and the honestly executed mechanism always succeeds
in reconstructing the input shared secret (in this case the manipulated one).
That means that from the point of view of A, everything is exactly as in ForgeRelS,CA,Π(λ). So that

with overwhelming probability, the coalition members output the right secret s∗ = sguess and the
non-coalition members output a wrong secret s′ ̸= s∗. Because parties prefer exclusivity, it follows
that the coalition utility

∑
i∈C ui(1

λ, (M∗i )i∈C ,M−C) with the strategies M∗i is noticeably larger
than the coalition utility

∑
i∈C ui(1

λ,M) for the mechanism (where everyone learns the correct
secret). Hence M is not a t-resilient Nash equilibrium.

7 Weak Domination without Locally Verifiable Reconstruction

Theorems 1 and 2 rule out many important settings and protocols for rational secret reconstruc-
tion with respect to the notions of weak domination (Definition 10) and iterated deletion of weakly
dominated strategies (Definition 11). However, as explained in the discussion after Theorem 1, one

Behavior of ITM M∗i in the coalition (i ∈ C) on input (pp, (s(j), τ (i), σ(j)))j∈C , where Mi is the
honest strategy and A (Definition 16) fully breaks Π.

1 : Run ((s(j), τ (j), σ(j))j∈C , st)← A(pp, (s(j), τ (j), σ(j))j∈C).

2 : Run Mi(pp, s
(i), τ (i), σ(i)) interactively, until Mi outputs s

′.

3 : Run sguess ← A(s′, st).
4 : Output sguess.

Figure 10: Improved strategy M∗i for coalition member i ∈ C
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mentioned protocol is not affected by our results. In particular, if strategy MADGH
i is instantiated

according to Proposition 3 of [ADGH06], the secret sharing lacks local verifiability. The authentica-
tion purely relies on combinatorial properties of Shamir’s secret sharing for (m,n)-threshold access
structures in settings where k < m < n − 2k. In the following, we show that even instantiated

this way, there is another strategy MADGH
i,−100 (Figure 11) which weakly dominates MADGH

i under mild
assumptions on the utilities and the distribution of secrets.

ITM MADGH
i,−100 on input ti = (pp, s(i)) with access to Fβ,ŝ (Figure 4).

1 : Run MADGH
i until it (locally) outputs secret s∗.

2 : if s∗ ∈ Ŝ then

3 : Output s∗ − 100

4 : else

5 : Output s∗

Figure 11: StrategyMADGH
i,−100 for secret reconstruction game (without locally verifiable reconstruction)

which weakly dominates MADGH
i (Figure 3) for certain distributions of secrets.

ITM MADGH
j,+100 on input tj = (pp, s(j)) with access to Fβ,ŝ

1 : Compute polynomial L of degree 1 with L(0) = 100 and L(i) = 0.

2 : Set s′j := sj + L(j). // New sharing consistent with si and reconstructs to s+ 100.

3 : Run MADGH
j with (pp, s′j) until it (locally) outputs some guess and halts.

4 : Output ⊥ and terminate.

Figure 12: Strategies MADGH
j,+100, against which MADGH

i,−100 (Figure 11) performs better than MADGH
i .

Before formalizing this statement, we give an intuition on when and whyMADGH
i,−100 weakly dominates

MADGH
i . Recall, this requires that MADGH

i,−100 is (1) never more than negligibly worse, but (2) against

some opponent strategy noticeably better than MADGH
i . To this end, we assume there is a subset Ŝ

from the domain of secrets S which is hit with negligible probability by the distribution of secrets
S. For concreteness, let Ŝ := {100, . . . , 999} ⊂ {1, . . . , 999} =: S where S samples each element
from Ŝ with some negligible probability and the elements from S \ Ŝ uniformly with respect to the
remaining probability. Observe that if MADGH

i (or any other strategy) outputs an element ŝ ∈ Ŝ as
its guess, for reasonable utility functions this increases Pi’s expected utility by at most a negligible
term compared to any other output. This holds because by assumption on S any element ŝ ∈ Ŝ may
be correct with at most negligible probability. Hence, any strategy which simulatesMADGH

i and only
deviates if MADGH

i would output an element from Ŝ, achieves at most µ less utility than MADGH
i and,

thus, satisfies (1). This especially holds for MADGH
i,−100, which only deviates if MADGH

i would output

some ŝ ∈ Ŝ and outputs s∗ := ŝ − 100 instead. Finally, strategies MADGH
j,+100 (locally) adapt their

initial shares, which correspond to the (unknown) correct secret s, such that the resulting shares are
consistent with share si of player Pi and reconstruct to s′ = s+100. When playing the reconstruction
game against MADGH

j,+100, with overwhelming probability MADGH
i (wrongly) outputs a secret ŝ from Ŝ

while MADGH
i,−100 outputs the correct one. Hence, assuming utilities preferring correctness, MADGH

i,−100 and

MADGH
j,+100 satisfy property (2). This intuition is formalized in following Theorem 5.
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Theorem 5. Let Π = (SetupΠ,Share,Recon) be Shamir’s secret sharing scheme [Sha79] for an
(m,n)-theshold access structure with m < n having domain of secrets S := {1, . . . , 999}. Let
Ŝ := {100, . . . , 999}, negligible function µ, and distribution of secrets S such that for all n ∈ N,
ŝ ∈ Ŝ, and s ∈ S \ Ŝ we have Pr[S = ŝ] = µ(n)

|Ŝ| and Pr[S = s] = 1−µ(n)
|S\Ŝ| . If reconstruction utilities

prefer correctness (Definition 13) as well as value any wrong guess with the same (minimal) utility,

then strategy MADGH
i,−100 (Figure 11) weakly dominates MADGH

i (Figure 3) in the secret reconstruction
game (Definition 12) for Π and distribution of secrets S.

Proof (sketch). The proof is two-fold and shows that in the given setting strategy MADGH
i,−100 is (1)

never more than negligible worse but (2) sometimes noticeably better than MADGH
i .

First, we show that any strategy M ′i which simulates an arbitrary given strategy Mi, except
for outputting its guesses from Ŝ, is never more than negligibly worse than Mi. Therefore, fix
arbitrary opponent strategies M−i and a negligible function µ such that for all λ ∈ N we have
Pr[S ∈ Ŝ] = µ(λ). Further, denote by U+ the maximal utility of Pi when outputting a correct
guess, and U− the (unique) utility when guessing wrong. Then, when Mi outputs a secret ŝ from Ŝ,
there are two cases: Either ŝ is correct, which happens at most with probability µ, yielding U+ while
M ′i may output something different giving at least utility U−. Or ŝ is wrong, giving Mi the minimal
utility U− which M ′i may only increase. Hence, in expectation, Mi achieves at most µ(λ)(U+−U−)

higher utility than M ′i . Setting M ′i = MADGH
i,−100 and Mi = MADGH

i , property (1) follows.

It remains to show (2), i. e. with respect to MADGH
j,+100 strategy MADGH

i,−100 is noticeably better than

MADGH
i . Recall Shamir’s secret sharing for secret s: First, a polynomial F , constrained by F (0) = s,

is chosen uniformly among all polynomials of degree less than m+ 1. Then each player Pi obtains
share si := F (i). Reconstruction then basically works by gathering m + 1 shares and computing
F (0) via interpolation. Now consider the adapted shares by sj := F (j) + L(j) from the opponent
parties MADGH

j,+100. Further, note that s′i = F (i) + L(i) holds due to L(i) = 0. Hence, the resulting n
shares are consistent with a sharing using polynomial P = L+F with P (0) = L(0)+F (0) = 100+s.
This manipulation is only detectable by MADGH

i if s > 900 was sampled which makes s′ > 1000
at the end of a protocol. Whatever action MADGH

i might play upon detection, its impact is only
negligible as s > 900 happens with negligible probability only. In any other case, happening with

overwhelming probability, it outputs s+100 which is wrong and gives U− utility. Strategy MADGH
i,−100,

however, always outputs the correct secret, giving utility U+. Hence, with respect to MADGH
j,+100,

strategy MADGH
i,−100 has almost (U+−U−) more utility than MADGH

i which is noticeable for correctness
preferring utilities.

Theorem 5 shows that besides properties like local verifiability of the initial shares, further details
like the concrete secret sharing scheme and the corresponding distribution of the secrets have an
impact on notions like weak domination in rational secret reconstruction. This has not been consid-
ered in previous work. The setting in Theorem 5 was chosen to be so specific for better illustration
but is generalizable. The only conditions that this type of strategy places on the setting are:

• There is a set of secrets Ŝ which is hit with negligible probability and a set S∗ which is hit
with noticeable probability.

• The (n− 1) opposing parties must be able to manipulate their shares in such a way that (1)
the strategy of player Pi cannot detect any change and (2) by this manipulation the secrets
of S∗ are mapped to elements of Ŝ with noticeable probability. In our example, this was
possible without communication due to the properties of Shamir’s secret sharing as well as
the size of the corresponding sets. By private or subliminal communication simpler ways are
also possible here.

29



• The utilities are correctness preferring and give the same utility for each wrongly issued secret.
The latter is necessary, because otherwise strategies may exist that let the adapted strategy
output a particularly bad guess with noticeable probability, while the original strategy outputs
a still wrong but, utility-wise, better guess.

• The weakly dominated strategy must be part of a rational secret reconstruction mechanism,
which (by our definition) has perfect correctness. Otherwise, strategies would be conceivable
which, instead of outputting secrets from Ŝ, simply guess secrets from S∗.
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