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Abstract

Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as

the main variable in established methods for predicting walking time (via the walking speed)

along a route. Research into fell-running has suggested further variables which may

improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level

of terrain obstruction. Recent improvements in data availability, as well as widespread use

of GPS tracking now make it possible to explore these variables in a walking speed model at

a sufficient scale to test statistical significance. We tested various established models used

to predict walking speed against public GPS data from almost 88,000 km of UK walking / hik-

ing tracks. Tracks were filtered to remove breaks and non-walking sections. A new general-

ised linear model (GLM) was then used to predict walking speeds. Key differences between

the GLM and established rules were that the GLM considered the gradient of the terrain (hill

slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruc-

tion in off-road travel. All of these factors were shown to be highly significant, and this is sup-

ported by a lower root-mean-square-error compared to existing functions. We also

observed an increase in RMSE between the GLM and established methods as hill slope

increases, further supporting the importance of this variable.

Introduction

Knowing how fast people are able to walk between locations is critical information in many sit-

uations. In hiking and hillwalking scenarios, this information is vital for safety reasons. If you

are leaving in the morning for a hike then it is good practice to provide an estimated return

time such that emergency services can be contacted if you get into difficulty and do not return

[1]. An inaccurate estimate for how long a route will take could lead to unnecessary callouts,

or delay a callout in a situation where every minute is important. Furthermore, in circum-

stances where a hiker has gone missing, an accurate measure of walking speed can help to

restrict a potential search area around a last known location. Finally, when out on a hike there

are situations where hikers may be deciding whether to follow a footpath, or take a more direct

cross-country route. Accurate estimates of the walking speed and time for both scenarios are

required to be able to select the optimal route.
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There are a multitude of factors which can impact the walking speed and time predictions

for a route [2], although these can generally be split into two categories [3, 4]. The first category

covers the individual effects which depend on who precisely is undertaking the walk, and

when they are doing it. These effects include group size (larger groups often walk slower), age

or fitness of participants, and weather conditions, as well as the aim of the walk (afternoon

stroll vs. specific hike). The second category covers the fixed effects which will affect all indi-

viduals who attempt the same route. These include how steep the terrain is and whether the

route is paved, along a track or in wild country.

Most of the individual effects cannot be modelled without considerable prior knowledge

about the person who is planning a route. Therefore, most existing hiking route planners cal-

culate the walking speed solely based on the terrain, and this is presented as the average time

(or time range) it takes to complete a hike. It is then left up to the individual to tune the pre-

dicted time for a hike given their knowledge about personal ability and circumstances.

Formulae of varying complexity have been proposed to estimate human walking speed and

time along a projected path. A popular early method that is still widely used was put forward

by Naismith [5] which calculates walking time under normal conditions as:

“an hour for every three miles on the map, with an additional hour for every 2,000 feet of
ascent.”

This approximates to a walking speed of 5 km/h with 10 minutes added on for every 100 m

of ascent. This was later adjusted by Aitken [6], who introduced a reduced base movement

speed of 4 km/h on surfaces which are not paths or roads. Naismith’s rule is still used today by

Scout groups and other casual hikers due to the ease of calculating walking time by hand using

a paper map. However, despite the widespread use, Naismith’s rule does have a well-known

limitation; namely that the predicted speed does not change when descending a hill, regardless

of the gradient.

An alternative hiking function proposed by Tobler [7], has become more popular in recent

research and other situations where speeds do not need to be calculated by hand:

W ¼ 6∗expð� 3:5jSþ 0:05jÞ;

where

W = velocity (km/h)

S = gradient of slope.

Like Naismith’s rule, this gives a speed of 5 km/h on flat ground, with a maximum speed of

6 km/h on a mild descent (around 3 degrees). In a similar manner to Aitken’s correction, a fac-

tor of 0.6 is applied to the calculated speed for all off-road travel. Tobler’s function avoids the

issues seen in Naismith’s rule when descending slopes, but it predicts a sharp peak in walking

speed on mild descents, which may be unrealistic. The formulae discussed here are directly

compared in Fig 1.

Other studies have also looked at providing alternative methods to calculate walking speeds

[9–11], but all continue to use walking slope as the main variable to determine walking speed

(with various multiplicative factors applied for off-road travel).

When exploring speeds of fell-runners, Arnet [12] suggested that movement velocity may

be dependent on three factors: obstruction (with different factors applied depending on the

kind of obstruction), ascent in the run direction (walking slope) and slope of the terrain (hill

slope). The actual values used in Arnet’s calculations cannot be directly applied to walking

speeds as they were based on orienteering championships where participants were running.
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Experience tells us that traversing on a steep hill (while maintaining constant elevation) is

more difficult than traversing flat ground. However, the existing methods estimate the same

walking speed for both situations. Similarly, high levels of terrain obstruction in off-road areas

(such as a thick gorse bush) are much more difficult to walk through than empty fields. The

simple multipliers for off-road travel in Aitken’s correction and Tobler’s function do not pro-

vide any further distinction between two such regions.

Wood and Schmidtlein [13], took all three of Arnet’s factors into account, and looked at

evacuating citizens in the event of a hurricane. They applied Tobler’s function to both the hill

slopes and walking slopes, and calculated the terrain obstruction coefficients based on energy

usage rather than walking speed (using [14]). They accepted that these were likely not the cor-

rect values, but were unable to find any better alternatives. Campbell, Dennison, and Butler

[15] conducted a study using lidar data to explore the effects of ground roughness and vegeta-

tion density on firefighter evacuation speeds, but they did not consider the hill slope

separately.

All of the studies mentioned above utilised relatively small sample sizes. However, the

rise in use of global navigation satellite systems (GNSS), more frequently referred to as

GPS tracking, means that a data-driven approach to modelling walking speed is now pos-

sible, which provides two main benefits. Firstly, it is possible to access GPS tracks from a

wide variety of regions and terrains. Secondly, each track can easily be broken down into

Fig 1. Existing functions used to calculate walking speed. Naismith’s rule [5], Tobler’s hiking function [7] and Campbell et al.’s function [8] plotted as

predicted walking speed in km/h against the slope in the direction of travel (walking slope) in degrees where positive is uphill. For Naismith’s function

and Tobler’s function, on and off-path versions are shown.

https://doi.org/10.1371/journal.pone.0295848.g001
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individual sections, enabling specific route features to be investigated at much higher spa-

tio-temporal resolution. This has been explored in recent work [8, 16], however the

crowdsourced nature of these studies meant that data collection was not controlled, and

thus that the data could not be assumed to consist wholly of walking or hiking tracks. In

[16], data from hikes, jogs and runs was processed together, resulting in a very wide range

of movement speed estimates. Campbell et al. attempted to overcome this in [8] by only

considering data points with a speed between 0.2 m/s and 5 m/s (and the resulting model

is shown in Fig 1). However, 5 m/s (18 km/h) is much higher than the maximum predicted

speeds from existing methods (such as Naismith’s rule), so it is likely some non-walking

data remained. Furthermore, applying a blanket 0.2 m/s minimum speed may well over-

look valid datapoints recorded by particularly slow individuals, or in especially difficult

regions. Finally, although these studies had the benefit of using large sample sizes, they

both looked solely at the effect of the walking slope on speed, and did not explore addi-

tional variables.

Here we used a data-driven approach to explore the impact of all three factors discussed by

Arnet on walking speeds. These are the walking slope, the hill slope and the terrain obstruc-

tion. We aimed to use these factors to develop a model for the walking speed for an average

individual. As with the existing methods, this model did not seek to model individual effects,

and would still require tuning based on personal ability or conditions.

Materials and methods

Data set, cleaning and key assumptions

Full details of the various datasets used in this study are provided in S1 File. Further, a detailed

description of the data filtering processes, and choices/assumptions made during data process-

ing are described in S2 File.

In summary, GPS tracks were obtained for hikes in the UK from Hikr.org [17] and Open-

StreetMap (OSM) [18]. Elevation and walking slope values were calculated and added to

every GPS point using data from the Ordnance Survey Terrain 5 Digital Terrain Map

(DTM), which provides elevation data at 5 m intervals across the whole of the UK [19]. Hill

slope values were found using the quadratic surface method [20, 21]. Each data point was

then classified as on a paved road, on an unpaved road, or off road, determined by searching

a 50 m radius around each point in an OSM Road dataset [22]. Paved and unpaved road clas-

sification was determined using [23], with the unpaved road values being ‘path’, ‘bridleway’

and ‘track’.

Terrain obstruction information was calculated using lidar datasets [24–26], as the differ-

ence in values between a Digital Surface Map (DSM) and Digital Terrain Map (DTM). This

meant that any physical feature which protruded from the ground was regarded as an obstruc-

tion. We had access to lidar data at 2 m resolution covering large areas of England and Wales,

but the coverage was not complete. Of our off-road data (*2,900 km, spread across over 1,200

tracks), over 2,000 km had lidar data available. Exploration of the lidar data (see S5 File)

showed that there was a clear drop in walking speeds once the height of an obstruction was

greater than 10 cm, beyond which the speed was relatively constant. We used this information

to classify points into heavy obstruction (>10 cm) or light obstruction (< = 10 cm) for model-

ling purposes.

Visual inspection of the tracks showed that a large number contained long breaks which

could impact the accuracy of a walking speed model. Fig 2 shows examples of regions where

breaks are visible in a GPS track, and the process developed to identify these regions is outlined

in Algorithm 1.
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Algorithm 1 Breakfinding process for a GPX track segment
1: Breakpoint_list = ;
2: Find the median distance (rmedian) and speed (smedian) of the segment
3: for point (pi) in segment do
4: Calculate travel direction quadrant and point angle
5: Calculate break likelihood using the point speed and angle
6: if speed == 0 or distance >1 km or duration >3 minutes then
7: Breakpoint_list += pi
8: end if
9: if speed >10 km/h and duration(pi−1) >3 minutes then
10: Breakpoint_list += pi
11: end if
12: end for
13: for point (p) in segment do
14: if Neighbourhood of p is a cluster (C) then ▷ See Defs 1 & 2,

S2 File
15: for point (pc) in C do
16: if Neighbourhood of pc is a new cluster (Cn) then
17: C = C \ Cn
18: end if
19: end for
20: Remove points at the ends of the cluster with low break

likelihood

Fig 2. A GPS track where 3 breaks can be identified by finding point clusters. Clusters of points can form on a GPS track when a break is taken

during a hike. By identifying these clusters as potential breaks we are able to remove most break periods from the datasets used for our analysis of

walking speeds. For full details of these and other data filtering methods see S2 File. Background images from OpenStreetMap and OpenStreetMap

Foundation [27], visualised using QGIS [28].

https://doi.org/10.1371/journal.pone.0295848.g002
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21: Add ‘missing’ points to the cluster (to make a continuous run
of points) to form a Potential Break (B*)

22: if less than half the points in B* have low break likelihood
and there is travel in opposite quadrants (Q1 & 3 or Q2 & 4) then

23: Breakpoint_list += B*
24: end if
25: end if
26: end for

Where the datapoints in the original GPS track were under 50 m in length, they were

merged together to minimise the effects of errors in the GPS location values. While doing this,

the resulting distance was the sum of all distances in the constituent GPS points, so may be

longer than the straight line distance between co-ordinates. Similarly, both hill and walking

slope values, as well as obstruction height, were calculated as the weighted average of constitu-

ent points, weighted by point duration.

While the Hikr dataset consisted of tracks which were tagged as a walk or hike, within some

of these there were segments where it was clear that the participant was driving to or from the

hike location, based on the observed speeds. The OSM data, on the other hand, was not filtered

by transport type. There were a large number of tracks which were clearly from faster modes

of transport, as their speed was implausible for a hiker. A process to remove these non-walking

tracks and segments was created, whereby the known Hikr walking segments were used to cre-

ate filtering bounds of plausible walking speeds, which could then be applied to the remainder

of the dataset. This process is summarised in Algorithm 2.

Algorithm 2: Filtering process for GPS data from Hikr and OpenStreetMap
1: Remove duplicate segments (containing sections with identical start
location, end location, start time and duration)
2: Remove all segments with median speed >10 km/h
3: Remove all breaks with duration >30 seconds
4: Remove all breaks containing points with speed >10 km/h or distance

>1 km
5: Merge remaining points into sections at least 50 m in length.
6: Recursively remove points with speed >10 km/h adjacent to a break,

or the end of the track
7:
8: if Hikr data then
9: if segment mean speed >10 km/h then
10: remove segment
11: end if
12: Calculate filtering bounds ▷ Eqs (1)—(4), S2 File
13: else
14: Identify Key Points ▷ see S2 File
15: Remove single datapoints between Key Points
16: Remove points where median speed between consecutive key points

>Eq (1)
17: while segment length is not consistent do
18: Remove points with speed >10 km/h adjacent to a break, or the

end of the track
19: if segment median speed >Eq (1) or segment minimum speed >Eq

(2) or segment upper quartile speed >Eq (3) or segment upper
whisker speed <Eq (4) or segment duretion <2.5 minutes then

20: Remove segment
21: end if
22: end while
23: end if
24:
25: Combine all segments into a single dataset
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26: Remove the fastest and slowest 0.5% of the data

Following this, a decision was made to remove data from tracks found in Scotland. Lidar

data covering the walking tracks was necessary to model the terrain obstruction, and was not

sufficiently available in Scotland at the time of the study. Furthermore, analysis showed that

that walking speeds in Scotland were at the extreme end of what is seen throughout the rest of

the UK (see S4 File). Including this data without also including a corresponding extreme data-

set where lidar data is available may result in incorrect modelling. All OSM track segments

which took place within Scotland were excluded from further processing. Similarly Hikr tracks

which were tagged as taking place in Scotland, and which fully took place in Scotland were

excluded.

Our final modelling dataset consisted of 7,636 GPS tracks from England and Wales, with

over 1.4 million individual data points and almost 88,000 km of travel. Each datapoint repre-

sented approximately 50–100 m of travel, and contained:

• Start coordinate

• End coordinate

• Start time

• Duration

• Distance

• Speed

• Elevation

• Walking slope

• Hill slope

• On-road flag

• Paved road flag (if on-road)

• Obstruction data available flag (if off-road)

• Heavy obstruction flag (if off-road and obstruction data available)

Modelling

Model formulation. Pilot studies were conducted to identify an appropriate model

framework, using tracks within Scotland (see S3 File). Generalised linear model (GLM)

and generalised additive model (GAM) approaches were explored, and within both we

looked at the relationship between the walking and hill slopes, and the walking speed, with

a small number of prior assumptions. As it is more challenging to walk on steeper slopes,

for both the hill and walking slope components we knew that the walking speed should be

a decreasing function of the magnitude of slope (with some allowance for faster walking

speeds on mild descents). Models which failed to predict this were removed under the

assumption that the data were overfitted. Furthermore, previous work [11, 29–31] has

identified the existence of a critical gradient; the angle at which it is faster to zig-zag up a

hill, rather than ascend directly. This occurs at a walking slope of around 15—21 degrees,

so models which failed to predict the critical gradient occurring below 21 degrees were

removed.
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10-fold cross-validation was used to compare the remaining model parameters, looking at

R-squared values, root-mean-squared error (RMSE) and mean absolute error. Where multiple

models performed equally well, the simplest model was selected for ease of interpretabilty and

real-world application. The selected model type was a Generalised Linear Model (GLM). Mod-

els were implemented using R version 3.6.1 [32].

Terrain types. Each of the three road types (paved road, unpaved road, off-road) was

included in the model, both as factor variables, and as interaction terms with each of the slope

variables.

Before adding terrain obstruction data to the model, we checked that there was no system-

atic difference between the walking speeds in regions where we had lidar data, and regions

where we did not (see S5 File). Thus our findings in regions where lidar data was available

could be extended to those where it was unavailable. Factor variables were then added to the

model for each obstruction level (heavy, light or unknown obstruction).

Statistical analysis. Variables within the model were tested for significance using the

Wald test, which allows us to account for correlation between points within the same track

(coeftest function within lmtest package in R).

To measure the impact of our model, we compared walking speed predictions of our model

against those of Naismith’s, Tobler’s and Campbell et al.’s models. Four different metrics were

compared; the average percentage error, mean squared error (MSE), root-mean squared error

(RMSE) and R squared value. These were explored when looking at both individual 50 m track

sections, as well as predicted walking times for tracks as a whole. Finally, we isolated the off-

road track sections in order to assess the improvement of our model at predicting walking

speeds for off-path travel.

Results

We started by assembling a dataset of hikes derived from approximately 20,000 public GPS

tracks. These tracks recorded a variety of transport methods and required significant filtering.

This process included iterative data cleaning to remove erroneous or non-walking data and

identify/remove breaks (e.g. Fig 2) to give us a final usable dataset containing 7,636 GPS tracks,

with over 1.4 million individual data points and covering almost 88,000 km of travel in the U.

K. Each data point represents at least 50 m of travel (with a mean distance of 60.3 m), and the

breakdown of the data by slope angle and terrain type is shown in Table 1. Previous research

has found that most walking takes place on low walking slopes [33], and this is evidenced by

our data (*98% of our data was from walking slopes of under 10 degrees).

Our curated hike dataset allowed us to create a data-driven model which we can directly

compare with existing walking speed algorithms. The model formulation was selected using a

small-scale exploratory study which considered data from Scotland (see S3 File). In this explor-

atory study, multiple different model types were explored which could fit the data, and which

Table 1. Total distance of data under different terrain conditions (km).

Hill Slope (degrees) |Walking Slope| (degrees)

0–10 10–20 >20 0–10 10–20 >20

Paved road 62159.1 7841.2 2081.9 70726.5 1277.3 78.4

Unpaved road 9996.9 2210.3 700.7 12421.7 460.0 26.2

Off Road (obstruction unknown) 773.5 114.2 17.8 871.7 31.7 2.0

Off Road (light obstruction) 1282.9 150.1 23.8 1424.6 30.6 1.7

Off Road (heavy obstruction) 428.7 105.2 28.5 543.5 18.5 0.4

https://doi.org/10.1371/journal.pone.0295848.t001
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matched existing knowledge about walking speeds. Cross-validation methods showed that

there was very little difference in performance of the best models, therefore the final model

was a Generalised Linear Model (GLM), which was chosen as it was the simplest of those tested

(we had no evidence that a more complex model would be superior). This choice also meant

that our model was both easy to interpret, and simple to apply to future work.

This final GLM model included all three of the variables suggested by Arnet [12]:

v ¼ expðaþ bφþ cyþ dy2
Þ ð1Þ

where

v = walking speed (km/h)

φ = hill slope angle (degrees)

θ = walking slope angle (degrees)

Terrain obstruction level was included as a factor variable, while we considered the road

types as both factor variables and interaction terms. Not all terms had a significant effect on all

variables; we therefore created a model with all possible terms, and removed them one at a

time (in order of least significance) until all remaining terms were significant to at least 95%

confidence level (using Wald test). The final values for a, b, c and d are given in Table 2 for

each of the terrain obstruction levels and road types. The critical gradient for this model is

between 14—16 degrees when walking uphill and -16 − -18 degrees when walking downhill

(depending on road and obstruction conditions), which is in line with previous findings.

Fig 3 shows the predicted walking speeds under different conditions. The importance of

including both the hill slope and terrain obstruction variables can be clearly seen when looking

at the Off Road Light Obstruction speed predictions. When directly ascending or descending a

slope, the walking speed is comparable to walking on a road. However, when traversing a slope

while off road, the walking speed is comparable to traversing a slope of double the gradient

while on a road or path. Similarly, comparing the walking speed predictions of Off Road Light

Obstruction and Off Road Heavy Obstruction reveals that just 10 cm of vegetation (our cutoff

point for heavy obstruction) can reduce the walking speed by more than 0.5 km/h.

Fig 4 shows the same walking speed predictions as Fig 3, alongside the confidence interval

for the mean walking speed for each terrain type. In the low-slope regions where most walking

occurs, our model fits closely with the mean data confidence intervals. Our model does deviate

from the confidence interval in some areas, particularly in high-slope and off-road regions.

However, these are also the areas where we have the least amount of data (see Table 1). In Fig

4J the confidence interval for the mean would suggest that it is faster to walk on hill slopes of

30 degrees than hill slopes of 10 degrees. We have less than 30 km of data recorded in heavy

obstruction regions on hill slopes of over 20 degrees, and less than 20 km of this had a walking

slope magnitude of under 5 degrees (indicating that the slope was being traversed). Further,

even within this range, the data is skewed towards the lower hill slope values. This lack of data

explains the widening confidence interval, and counter-intuitive observations and we suggest

that a targeted study would be required to collect more data in this region.

Fig 5 compares the Paved Road and Off Road Heavy Obstruction speed predictions from

our model against the existing functions from Naismith, Tobler and Campbell et al. When

looking at the walking slope, the largest areas of deviation between our model and Naismith’s

rule occurs when descending a slope, as Naismith’s rule does not predict a reduced speed in

this scenario. For both Tobler’s and Campbell et al.’s functions, the shape of the walking slope

component is relatively similar to our new model, with the main distinction being the peak

predicted speed on flat ground. None of the existing functions account for the hill slope, which
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Table 2. Final walking speed model variable coefficients.

a b c d

Paved road 1.580 -0.00389 -0.00726 -0.00218

Unpaved road 1.580 -0.00389 -0.00965 -0.00248

Off-road (obstruction unknown) 1.536 -0.00731 -0.00965 -0.00187

Off-road (light obstruction) 1.580 -0.00731 -0.00965 -0.00187

Off-road (heavy obstruction) 1.443 -0.00731 -0.00965 -0.00187

https://doi.org/10.1371/journal.pone.0295848.t002

Fig 3. Walking speed predictions under different terrain conditions. When: (A) travelling directly up or down hills of varying slope (walking slope),

(B) traversing across hills of varying slope (hill slope).

https://doi.org/10.1371/journal.pone.0295848.g003
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Fig 4. Walking speed predictions under different terrain conditions. When: (A,C,E,G,I) travelling directly up or down hills of varying slope (walking

slope), (B,D,F,H,J) traversing across hills of varying slope (hill slope). Also shown in each plot is the 95% confidence interval of the mean value of the

walking speed for the terrain type, calculated at 5 degree intervals, using data bins with a width of 10 degrees. Note that the confidence intervals were

calculated using only data which is within 5 degrees of directly ascending (A,C,E,G,I) or traversing (B,D,F,H,J) the slope.

https://doi.org/10.1371/journal.pone.0295848.g004
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leads to large disparities when predicting the walking speed for slope traversals. A further

example of this can be seen in S6 File, which shows the walking speeds for a simulated off-road

route which encounters the full range of hill and walking slopes.

When comparing the performances of each of the models (Table 3), the predicted speeds

for individual 50 m sections had a lower RMSE and percentage error, and a higher R squared

value using our new model than in the existing ones. The R-squared value is still very low,

however we suggest that this is due to the variability within the data. We have previously

acknowledged that there are many individual effects which can impact the walking speed, and

which we did not attempt to capture in our model. Instead it captures the general trend of the

Fig 5. Comparison of new model and existing hiking functions. Predicted walking speeds of the new model, Naismith’s rule, Tobler’s function and

Campbell et al.’s function when: (A, C, E) travelling directly up or down hills of varying slope (walking slope), (B, D, F) traversing across hills of varying

slope (hill slope).

https://doi.org/10.1371/journal.pone.0295848.g005

Table 3. Comparison of new model against existing methods to calculate walking speeds.

New Model Naismith Tobler Campbell

Average % error 23.68 26.36 26.17 25.33

MSE 1.20 1.61 1.53 1.58

RMSE 1.10 1.27 1.24 1.26

R2 0.09 -0.22 -0.16 -0.19

https://doi.org/10.1371/journal.pone.0295848.t003
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walking speed for an average individual under average conditions, and does this better than

existing models (evidenced by the improved RMSE).

To isolate the impact of each of the slope variables, we filtered the results to look at the data

where a slope was being directly climbed or traversed. Figs 6A, 6B, 7A and 7B show the RMSE

and mean residuals for each of the models, for data which was within 5 degrees of directly

climbing (A) or traversing (B) hills of varying slope. From this we can clearly see that Nai-

smith’s rule consistently overestimates walking speeds when descending a slope, and underes-

timates speeds when climbing a slope. When ascending or descending a slope, the RMSE of

our GLM is similar to that of Tobler’s hiking function. However, one of the main areas where

we see an improvement using our model is on slight declines. Tobler’s hiking function suggests

that walking speed increases on mild descents up to a maximum of 6 km/h. It is clear from Fig

6A, that Tobler’s function overestimates the walking speed in this region. Campbell et al.’s

function has a slightly lower RMSE value than our new model on the steepest walking slopes,

however it underestimates the walking speeds on flat ground and mild slopes; the regions

where most walking occurs. Improved walking speed predictions in this region therefore have

the greatest impact in real-world situations. Within this region our model consistently has a

lower RMSE than the existing functions, and a mean residual error close to 0 km/h.

Fig 6. Comparing RMSE values for the new model, Naismith’s rule, Tobler’s function and Campbell et al.’s function. When: (A) travelling directly

up or down hills of varying slope (all data, walking slope), (B) traversing across hills of varying slope (all data, hill slope), (C) travelling directly up or

down hills of varying slope (off-road data only, walking slope), (D) traversing across hills of varying slope (off-road data only, hill slope). Campbell

et al.’s function does not provide off-road speed estimates, so was not included in the off-road data comparisons.

https://doi.org/10.1371/journal.pone.0295848.g006
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We also see an improvement in RMSE when using our model to predict speeds for hill tra-

versals (Fig 6B). We can note from Fig 7B that both Naismith’s rule and Tobler’s hiking func-

tion consistently overestimate the walking speed when traversing a slope, as they do not take

into account the impact that the hill slope has on reducing walking speeds. The performance

of Campbell et al’s model improves as the hill slope increases, although we suggest this is more

due to it underestimating the speed on shallow slopes. We do see that the average error in our

model increases as the hill slope increases, but we believe that this is due to limited volumes of

data at high hill slopes (*0.5% of our data occurs on hill slopes steeper than 40 degrees).

As well as looking at the overall performance of our new model, we looked to explore how

well our model performed in off-road conditions, compared to the off-road adjustments for

the existing functions (Naismith’s reduced base speed of 4 km/h, and Tobler’s correction factor

of 0.6). Figs 6C, 6D, 7C and 7D show the RMSE and mean residuals, only considering data

which was recorded in off-road conditions. From Figs 6C and 7C it is clear that Tobler’s func-

tion consistently underestimates the walking speed when off-road. The factor of 0.6 is a larger

reduction in walking speed than is observed in practice. As we found when looking at our data

as a whole, Naismith’s rule underestimates the walking speed when climbing a slope and

Fig 7. Comparing mean residual values for the new model, Naismith’s rule, Tobler’s function and Campbell et al.’s function. When: (A) travelling

directly up or down hills of varying slope (all data, walking slope), (B) traversing across hills of varying slope (all data, hill slope), (C) travelling directly

up or down hills of varying slope (off-road data only, walking slope), (D) traversing across hills of varying slope (off-road data only, hill slope).

Campbell et al.’s function does not provide off-road speed estimates, so was not included in the off-road data comparisons.

https://doi.org/10.1371/journal.pone.0295848.g007
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overestimates when descending a slope. Our new model does not suffer from these problems,

with both a lower RMSE and lower absolute mean residual value across all walking slopes.

Both of these existing models also consistently underestimate walking speeds when traversing

a slope, unlike our new model which has a mean residual of less than 0.4 km/h on slopes of up

to 35 degrees. The error in predictions of our new model does increase as the hill slope

increases, though the RMSE is generally lower than seen in the existing models. On the stee-

pest hill slopes our model appears to perform less well than the existing ones, though only

0.2% of our off-road data occurred on a hill slope steeper than 40 degrees.

Although we have shown an improvement in walking speed predictions over short sections

of routes, this did not translate to similar results when looking at predicted walking times for

routes as a whole. Our model and all of the existing models which we have explored here had

an average percentage error of 13.5%—15.5% when predicting the time taken for a complete

route. However, based on the errors seen in Figs 6 and 7, we believe that this is a result of

errors cancelling out over the course of a hike. For example while ascending a hill, Naismith’s

rule will underestimate the walking speed (and thus overestimate the walking time), but it will

then overestimate the walking speed on the subsequent descent, leading to a relatively accurate

total time estimate. The results here suggest that Naismith’s rule, and other existing functions,

are still a good rule of thumb to calculate route times as a whole, but time estimates for individ-

ual sections of a route will be less accurate than when using the new model found here.

Discussion

We have developed a model for walking speed which is very robust, due the large volume of

data (88,000 km) used to build it, and which correlates with the data over a wider range of con-

ditions than commonly used formulae. Data from tracks confirms that each of the walking

slope, the hill slope and the terrain type or obstruction are significant factors in determining

walking speeds. The model improves on existing methods to predict walking speeds (Figs 6 &

7). We have also shown the specific improvement that our new model has on predicting walk-

ing speeds in off-road conditions, compared to the simple off-road speed reductions used by

existing models. The existing methods to calculate walking speeds require tuning for use in

real-world scenarios, as there are many factors which can affect an individual’s walking speed

beyond the slope and obstruction level (such as the weather, fitness level or age) [2–4]. The

model presented here requires the same tuning as these existing methods but provides more a

more accurate population average walking speed across a wide range of terrain and slope

conditions.

Our results confirm that Naismith’s rule (Fig 1) is still a good rule-of-thumb to use when

estimating the total walking time for a route, especially in situations where the calculation

must be done by hand. However, the findings here can be used as an addition to Naismith’s

rule; it is likely that (under Naismith’s rule) the predicted ascent time will be overestimated

and the predicted descent time will be underestimated. It is not uncommon for hikers to con-

tact one another when they reach the summit of a hill, and provide an estimated arrival time

back at the campsite. Knowing that the descent will likely take longer than estimated by Nai-

smith’s rule will result in more accurate arrival estimations being given. Similarly, the knowl-

edge of how the hill slope reduces walking speeds, or that just 10 cm of vegetation can reduce

walking speeds by up to 0.6 km/h may well affect route choices made when out on a walk. For

example, if a hiker is following a footpath, but can see from their map that the path forms a

large curve then they can use our findings to decide whether it will be faster to travel off-road

and cut the corner. On flat terrain with heavy levels of obstruction, our model suggests that

such a short cut will be faster if the distance covered on the path is more than 15% longer than
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the off-road distance. Speed is not the only factor which would affect this decision, as safety

and navigability are also important variables, but these results can help people make more

informed choices when on a hike.

The benefit of using crowdsourced GPS data to build our model is also a limitation of the

approach, as we did not have control over data collection. This meant that models were unable

to account for any bias in our data such as group size, ability and composition, or other poten-

tial variables such as weather conditions, as factors in determining walking speed (although we

would expect the volume of data to cause most of these effects to average out).

Unlike previous work [8], we did not use fixed values to classify breaks and non-walking or

hiking tracks. Instead we developed filters based on the attributes of known walking data (see

S2 File). The methods used to filter the datasets were blinded to the outcome of the model gen-

eration, the choice of filtering methods will have had an impact on the dataset and subsequent

model and no ground truth was available against which to test our assumptions.

Our method of calculating the terrain obstruction value was relatively crude, looking only

at the obstruction height at each GPS point. While this did prove to be successful, and we

observed a clear difference in walking speeds between areas of light and heavy obstruction (see

S5 File), the inaccuracies present within GPS data may have led to some erroneous obstruction

measurements, for example in a field sparsely populated with trees. In future, efforts should be

made to refine this approach, such as considering the average obstruction level over a wider

area around each point.

A further limitation of our data came when we looked to classify points into paved roads,

unpaved roads or off-road. A combination of GPS drift and map error means that there is sig-

nificant uncertainty and so we had to use a search radius around each data point to identify

potential roads. We suspect that we were likely overclassifying tracks on roads. While our

model appears to be robust to this overclassification (due to the volumes of correctly classified

data used), the overclassification left us with a reduced number of off-road datapoints from

which to predict off-road travel speeds.

Furthermore, the use of crowdsourced data meant that all of our data came from ‘walkable’

regions by definition. When including the terrain obstruction variable, we were unable to

determine if there are levels of terrain obstruction which makes walking impossible. Similarly,

the vast majority of the data was collected on shallow hill- and walking slopes, leading to a

sparcity of data in steeper areas. While this does mean that we can be very confident about our

walking speed predictions in less steep regions (where most walking occurs), it is unclear

whether the lack of data on steeper regions is a result of steep slopes being relatively rare, or

that they cannot be easily navigated, so hikers chose an alternate path. As described above we

had to make a number of assumptions regarding data filtering and processing including

model selection, and other choices may give different results. To support anyone who wants to

challenge or test these assumptions, or try different models, we have made all our code avail-

able on Github. Further, all of the data sources used are detailed in S1 File and the filters/

assumptions we used to clean the data are fully detailed in S2 File.

Conclusion

Widely used algorithms (e.g. Naismith’s rule) for estimating walking/hiking speed are simple

to understand, very easy to calculate but are based on limited observations. Here we curated a

dataset of almost 88,000 km of walking and hiking data. We found that the existing algorithms

perform quite well against the dataset but they tend to overestimate ascent time, underestimate

descent time and most ignore terrain obstruction and hill slope both of which we found to be

significant factors. We used the data to derive a new model that takes into account these
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variables. We demonstrated that the model provides more accurate walking speeds than the

existing methods in all scenarios, and particularly in off-road regions. By providing improved

walking speed predictions in these off-road regions, we have enabled more accurate calcula-

tions of the fastest route to or from any given location, which could save minutes in an emer-

gency situation where every second is important.
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