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Closed-aperture unbounded acoustics experimentation using
multidimensional deconvolution

Xun Li,1,a) Theodor Becker,1 Matteo Ravasi,2 Johan Robertsson,1 and Dirk-Jan van Manen1

1Institute of Geophysics, Eidgen€ossische Technische Hochschule Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland
2Earth Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia

ABSTRACT:
In physical acoustic laboratories, wave propagation experiments often suffer from unwanted reflections at the

boundaries of the experimental setup. We propose using multidimensional deconvolution (MDD) to post-process

recorded experimental data such that the scattering imprint related to the domain boundary is completely removed and

only the Green’s functions associated with a scattering object of interest are obtained. The application of the MDD

method requires in/out wavefield separation of data recorded along a closed surface surrounding the object of interest,

and we propose a decomposition method to separate such data for arbitrary curved surfaces. The MDD results consist

of the Green’s functions between any pair of points on the closed recording surface, fully sampling the scattered field.

We apply the MDD algorithm to post-process laboratory data acquired in a two-dimensional acoustic waveguide to

characterize the wavefield scattering related to a rigid steel block while removing the scattering imprint of the domain

boundary. The experimental results are validated with synthetic simulations, corroborating that MDD is an effective

and general method to obtain the experimentally desired Green’s functions for arbitrary inhomogeneous scatterers.
VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0003706

(Received 7 January 2021; revised 18 February 2021; accepted 19 February 2021; published online 16 March 2021)

[Editor: Michael R. Haberman] Pages: 1813–1828

I. INTRODUCTION

Acoustic wave propagation in air or water can be stud-

ied physically through laboratory experiments such as in air-

filled cavities or water tanks (e.g., Cassereau and Fink,

1992; Fink, 1992). However, waves reflected from the

boundaries of the experimental setup often cause an adverse

effect, particularly for experiments that aim to study only

the scattering within the experimental domain. The unde-

sired boundary reflections can interfere with, or mask, the

wavefields related to the interior scatterers. Ideally, the

acoustic waves studied in such laboratory experiments

should propagate in a boundless domain of infinite extent,

which is impossible to realize experimentally (Larose et al.,
2010; McDonald et al., 1983; Mo et al., 2015).

One common solution to the problem of boundary

reflections in laboratory experiments is to deploy absorbing

materials around the experimental setup such that an

anechoic chamber is formed, absorbing the outward propa-

gating acoustic waves (e.g., Beranek and Sleeper, 1946).

The materials acting as absorbers can be pyramid-shaped

wedges of fiberglass (Munjal, 2002; Trinh et al., 2019), for

example, or self-similar acoustic meta-materials (Shao

et al., 2019; Zhang et al., 2020). However, deploying such

passive absorbers tends to be impractical for experiments

carried out in the low-to-mid frequency range (e.g., 1–10

kHz), since a thick (order of meters) and costly layer of the

absorber is required to enclose the experiments. Also, in

practice, low-frequency outward propagating waves are not

perfectly absorbed using this approach. Another solution is

to build an active anechoic chamber where acoustic sources

are densely deployed around the boundary of the experimen-

tal domain to cancel the outward propagating waves

(Beyene and Burdisso, 1997; Guicking and Lorenz, 1984;

Habault et al., 2017; Smith et al., 1999). These active sour-

ces, sometimes installed together with passive absorbers,

can effectively render the boundary transparent for low-

frequency experiments (<1 kHz) but are not efficient for

high-frequency experiments. A recently developed technol-

ogy called immersive wave experimentation can achieve

broadband absorption of outward propagating waves (e.g.,

1–20 kHz) (Becker et al., 2018, 2020; Vasmel et al., 2013).

Simultaneously with the physical experiments, waves mea-

sured inside the experimental domain are extrapolated out-

ward to the domain boundary ahead of time such that

sources densely deployed on the boundary can cancel the

outward propagating waves based on the prediction.

Instead of using the above-mentioned methods that

attempt to change the boundary condition of the experimen-

tal setup during laboratory experiments, the problem caused

by boundary reflections can also be solved by removing the

scattering component related to the domain boundary from

the recorded data afterwards (i.e., in post-processing).

Conventionally, the arrivals or waveforms involving bound-

ary reflections in the recorded data can be identified anda)Electronic mail: xun.li@erdw.ethz.ch, ORCID: 0000-0001-9203-4205.
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removed using a time windowing approach (e.g., Blum

et al., 2011). However, the determination of a suitable time

window highly depends on separating the boundary-related

waveforms from the waveforms related to the interior scat-

tering in terms of the arrival times. Hence, the applicability

of this technique is often restricted to high-frequency (e.g.,

MHz range) experiments. The post-processing of data

recorded in the laboratory such that the boundary-related

scattering is removed can also be achieved by means of mul-

tidimensional deconvolution (MDD), also called

Rayleigh–Betti deconvolution, widely used in exploration

seismology (Amundsen, 2001; Amundsen et al., 2001;

Wapenaar et al., 2011). The seismic data recorded in the

subsurface (e.g., in a horizontal well), or on the ocean bot-

tom, can be post-processed such that the scattered wave-

forms related to the overlying medium, or a reflecting top

surface,1 are removed from the recorded data. One key fea-

ture of the MDD method, as used to remove the overlying-

medium- or surface-related multiples, is that neither the

medium below the subsurface receiver array nor the source

wavelet is required to be known (Amundsen, 2001).

Similarly, in a laboratory experimental setup, the material

properties of the scattering medium (e.g., a rock sample)

inside a closed-surface receiver array do not need to be

known. Rakotonarivo et al. (2013) propose an MDD method

that can be applied to laboratory experiments such that the

structural impedance [i.e., the in vacuo response due to exci-

tation forces, see Zhou et al. (2019)] of a physical object

can be estimated from a random noise field. Williams et al.
(2017) apply this method to real laboratory experiments to

compute the structural impedance of an elastic object placed

in a non-anechoic room with active sources randomly dis-

tributed outside the object. Following the same principles,

Sternini et al. (2019) construct a laboratory facility to deter-

mine the scattering properties of an arbitrary object from the

measurement of responses at the surface of the object, which

is placed in a noise field. The scattering imprint caused by

the boundary of the experimental domain is removed from

data recorded at the surface of the object, and one obtains

the structural impedance matrix as the MDD result. These

laboratory experiments are similar to the seismic MDD

applications discussed by Poletto et al. (2014) and

Weemstra et al. (2017b) where a reflecting boundary condi-

tion or virtual reflector is applied at the level of the subsur-

face receiver array replacing all the scatterers above,

including the top free surface.

In this paper, we focus on post-processing of a dataset

acquired in an air-filled waveguide using an MDD method

such that the scattering effects of the rigid boundary sur-

rounding the experimental setup are completely removed

while only the Green’s functions associated with the scatter-

ing object inside the experimental volume are obtained in

the absence of an exterior reflecting boundary. The acquisi-

tion geometry involves a receiver array, completely enclos-

ing an experimental volume, which enables full-aperture

sampling of the scattering related to the medium inside the

receiver array. Also, this MDD method requires wavefield

decomposition such that the in-going wavefield can be

derived from the total wavefield recorded at the receiver

array. Hence, we propose a wavefield separation method

that enables the wavefields recorded around general, curved,

closed receiver arrays to be separated into in- and out-going

components. The general methodology proposed in this

paper based on MDD thus has the potential to replace the

current paradigm of absorption- and active cancellation-

based removal of boundary reflections. The new paradigm

involves proper sampling of boundary reflections combined

with MDD to enable fully enclosing reconstruction of scat-

tering wavefields for true radiation boundary conditions.

In Sec. II, we present the MDD theory and propose the

wavefield separation method. In Sec. III, we demonstrate

the accuracy of the wavefield decomposition method with a

numerical example using the forward, multidimensional

convolution (MDC) relationship derived in Sec. II. We then

demonstrate the ability of the MDD method to remove the

scattering related to the boundary of a physical two-

dimensional (2D) waveguide and further confirm the results

(i.e., obtained Green’s functions) with numerical simula-

tions. In Sec. IV, we discuss the general applicability of

MDD in acoustic wave propagation experiments and com-

pare the MDD method to immersive wave experimentation.

Section V summarizes our conclusions.

II. METHOD

A. MDD

We consider a physical experiment bounded by a rigid

boundary and a corresponding desired experiment without

the rigid boundary, as shown in Figs. 1(a) and 1(b). The two

experiments are connected via the convolution-type integral

of the two-way representation theorem (Ravasi et al., 2015):

p̂ðxir;xÞ ¼
þ

S

ðp̂ðxr;xÞĜ
v;q
i ðxr; xir;xÞ

� v̂iðxr;xÞĜ
p;qðxr; xir;xÞÞni dSðxrÞ; (1)

where all the quantities are expressed in the frequency

domain (denoted by the symbol )̂, and x is the angular fre-

quency. In Eq. (1), the wave quantities p̂ðxirÞ and p̂ðxrÞ are

pressures recorded at the interior receiver (xir) and the

receiver surface SðxrÞ (with normal vector component ni) in

the physical experiment, while v̂iðxrÞ is particle velocity

recorded at SðxrÞ in the xi direction. The Green’s functions

are both associated with the desired medium in which

Gv;q
i ðxr; xir;xÞ represents the ith component of the particle

velocity recording at xr due to an impulsive point source of

volume injection rate density at xir (superscript q for mono-

pole), and Gp;qðxr; xir;xÞ represents the pressure recording

due to an impulsive point source of volume injection rate

density. The detailed derivation of Eq. (1) is given in the

Appendix.

The medium properties inside the volume V are the

same in the physical and desired experiments, as shown in

Fig. 1. Outside V, the medium for the desired experiment is

1814 J. Acoust. Soc. Am. 149 (3), March 2021 Li et al.
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homogeneous [i.e., Fig. 1(b)], namely such that the surface S
effectively satisfies a radiation boundary condition so that

waves propagating out of S are never scattered back into V.

Since we are interested in an expression for a single type of

Green’s function, we apply the chosen medium properties

and simplify the representation integral in Eq. (1) as follows.

First, we decompose the wavefields associated with the physi-

cal experiment on the right-hand side of Eq. (1) into in- and

out-going components: p̂ ¼ p̂in þ p̂out and v̂i ¼ v̂in
i þ v̂out

i , as

shown in Fig. 1(c). Hence, Eq. (1) is recast as

p̂ðxirÞ ¼
þ

S

h
ðp̂inðxrÞ þ p̂outðxrÞÞĜ

v;q
i

� ðv̂in
i ðxrÞ þ v̂out

i ðxrÞÞĜ
p;q
i
ni dSðxrÞ: (2)

Note that the Green’s functions in Eq. (2) can also be decom-

posed into in- and out-going components (i.e., G ¼ Gin

þGout), but due to the radiation boundary condition, the in-

going component, Gin, is always zero, and hence G ¼ Gout.

The two purely out-going terms p̂outĜ
v;q
i and v̂out

i Ĝ
p;q

cancel

each other, since their stationary points yield exactly opposite

contributions to the surface integral (Ravasi et al., 2015;

Wapenaar and Berkhout, 1989; Wapenaar and Fokkema,

2006). Hence, Eq. (2) is simplified:

p̂ðxirÞ ¼
þ

S

ðp̂inðxrÞĜ
v;q
i � v̂in

i ðxrÞĜ
p;qÞni dSðxrÞ: (3)

It can be shown, as in Ravasi et al. (2015) and

Wapenaar et al. (2011), that the two terms p̂inðxrÞĜ
v;q
i and

�v̂in
i ðxrÞĜ

p;q
in Eq. (3) yield the same contribution to the

surface integral. Here, we choose to keep the term

p̂inðxrÞĜ
v;q
i and transform the simplified equation back to

the time domain:

pðxir; tÞ ¼ 2

þ
S

pinðxr; tÞ � Gv;q
i ðxr; tj xir; 0Þni dSðxrÞ; (4)

where the symbol � refers to convolution in time t. In Eq.

(4), the Green’s function Gv;q
i ðxr; tj xir; 0Þ ni denotes the nor-

mal particle velocity at the surface SðxrÞ for an impulsive

volume source injection at xir. We further apply source-

receiver reciprocity to Eq. (4), i.e., Gv;q
i ðxr; tj xir; 0Þ ni

¼ �Gp;f
;i ðxir; tj xr; 0Þ ni (Fokkema and van den Berg, 2013),

where ½:�;f;i denotes the impulse response due to a body force

source, f (i.e., a dipole), in the xi direction. For convenience,

the Green’s function Gp;f
;i ni can be replaced by �Gd for a nor-

mally oriented body force source and a pressure wavefield

(i.e., dipolar Green’s function). Hence, we finally obtain

pðxir; tÞ ¼ �2

þ
S

pinðxr; tÞ � �Gdðxir; tj xr; 0Þ dSðxrÞ; (5)

which constitutes a MDC relationship between the wave-

fields in the physical and desired experiments.

Note that the dipolar Green’s functions on the right-

hand side of Eq. (5) are defined in the desired, unbounded

experiment. Hence, the Green’s functions are to be treated

as unknowns that we aim to solve for using knowledge of

wavefield quantities such as pðxir; tÞ recorded in a physical

experiment and pinðxr; tÞ separated from the recorded data.

However, Eq. (5) is a Fredholm integral of the first kind

(Aster et al., 2013), the inversion of which is highly ill-

posed if wavefields p and pin are considered for only a single

source outside the receiver surface (Wapenaar et al., 2008).

Hence, one needs to excite many sources outside S, record

and separate the data for each of these sources individually

and compose a system of equations by considering multiple

versions of Eq. (5) simultaneously. This system of equa-

tions, denoted as the ptotal � pin scheme in the following,

can then be inverted using MDD (Amundsen, 2001; van der

Neut and Herrmann, 2013; Wapenaar et al., 2008).

The sought-after Green’s functions in Eq. (5) corre-

spond to the impulsive responses of a desired medium that

only includes the physical scatterers of the real medium

inside the surface S; the exterior scatterers, such as the rigid

FIG. 1. (Color online) Geometries for physical and desired experiments. All the denoted wave quantities are in the time domain (without )̂. (a) A physical

experiment with a source (red star at xs) generating wave energy. The blue dots (xr) represent receivers around the surface S (dashed blue line) with normal

n. The blue triangle at xir denotes a receiver inside the experimental volume V. The solid black circle denotes the rigid boundary surrounding the experimen-

tal volume, while the black arrows denote wave propagation between the source and receivers. (b) The desired experiment associated with the Green’s func-

tions in Eq. (1) of which source and receiver positions are at xir and xr , respectively. The short notation Gin represents the in-going Green’s functions Gv;q;in
i

and Gp;q;in that are zero in this desired medium (i.e., homogeneous outside V). The dashed black circle represents a transparent boundary compared to the

rigid boundary in the physical experiment. (c) The wavefields recorded around the receiver surface S are decomposed into in-going and out-going compo-

nents, denoted by the black arrows.
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boundary of the experimental domain, do not exist in the

desired medium. Hence, MDD can be used to remove unde-

sired scattering effects caused by the physical boundary in

laboratory experiments. The recorded data are (post-)proc-

essed such that only waveforms related to the interior scat-

terers of interest are kept. Furthermore, note that the source

that generates the waves in the physical experiment remains

undefined in the theory leading up to Eq. (5). Therefore, the

sources outside the receiver surface S do not need to be

densely or regularly spaced and can be put sparsely, without

consideration of the Nyquist sampling criterion (Weemstra

et al., 2017b). In fact, they can even be a noise wavefield

(e.g., Sternini et al., 2019). Thus, the source spectra or tem-

poral signatures do not need to be known in the physical

experiment, and, in fact, any source characteristics, includ-

ing radiation patterns, will be removed by MDD. Finally,

because MDD is based on a convolutional representation, as

opposed to a correlational representation, MDD works for

dissipative media and for different types of wave physics

inside V (e.g., elastic and viscoelastic) (Wapenaar et al.,
2011).

We discuss the practical aspects of solving a system of

equations constructed from multiple equations of the form

as in Eq. (5) later (in Sec. III B). First, we discuss how MDD

can be applied to a more typical laboratory configuration for

a complete, full-aperture sampling of the scattering related

to the medium inside V.

1. MDD for a laboratory configuration: Full-aperture
sampling of the scattering inside V

Equation (5), giving the physical wavefield in the inte-

rior in terms of a MDC of the in-going part of the physical

wavefield on the surface S and the dipolar Green’s functions

for the same medium, but with radiation boundary condi-

tions, is valid for any point xir inside S. Having this ability,

through MDD, to remove the boundary-related scattering

events from recorded data at receivers inside S seems very

useful. However, the requirement of interior receivers, i.e.,

within the recording surface, is impractical as such interior

receivers impede placing large solid objects there. We there-

fore propose to apply Eq. (5) to the configuration shown in

Fig. 2(a) in the limit where the receivers, fxirg, approaching

the surface from the interior, lie on Srec (i.e., on the inner

blue circle). However, note that an integrable singularity

exists for the dipolar Green’s function on the right-hand side

of Eq. (5), and pole artefacts may be problematic in the

inverted Green’s functions at and around the location where

the source and receiver positions are co-located (i.e., when

xr ¼ xir). Also, the Green’s functions �Gd in Eq. (5) contain

the direct arrivals between all locations on the recording sur-

face Srec, which are often not of interest when studying the

scattering properties of the interior object in the laboratory

experiments (e.g., when they bypass the scatterers

completely). The pole artefacts and direct arrivals can be

removed from the MDD result obtained from a laboratory

experiment with the scattering object placed inside the

recording surface Srec (“heterogeneous” case) by carrying

out a second experiment with a homogeneous experimental

domain (“homogeneous” case) and subtracting the MDD

result from that in the heterogeneous case. Thus, we carry

out two laboratory MDD experiments with and without the

interior scattering object for two sets of Green’s functions,
�G

het

d and �G
hom

d , and we finally obtain

�G
scat

d ¼ �G
het

d � �G
hom

d ; (6)

where �G
scat

d only contains the waveforms that are related to

the scattering caused by the interior object of interest. The

two-layer recording surface Srec shown in Fig. 2(a) allows

for wavefield decomposition, which will be discussed later,

and has nothing to do with the singularity of the Green’s

functions in Eq. (5), which is considered when the two blue

circles in Fig. 2(a) coincide at the inner receiver circle, i.e.,

FIG. 2. (Color online) (a) Schematic of the acquisition geometry used for MDD experiments. The emitting surface Semt is composed of evenly spaced sour-

ces (red stars) located at the rigid boundary (solid black circle) surrounding a 2D waveguide. Two circular layers of densely spaced receivers (blue dots)

make up the recording surface Srec. (b) 2D waveguide used for laboratory experiments. The scatterer under study is a rigid steel block placed inside Srec.
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assuming that the wavefield decomposition can be done for

data recorded along a one-layer receiver array. Note that

sources as shown in Fig. 2(a), in the MDD theory, are not

necessarily located at the rigid boundary surrounding the

experimental domain and can be placed anywhere between

the rigid boundary and the recording surface Srec.

The geometry shown in Fig. 2(a) is similar to the acqui-

sition geometry for ocean-bottom data processed using

MDD in marine seismic applications (Amundsen, 2001;

Wapenaar et al., 2011). However, compared to those appli-

cations, with almost exclusively one-sided acquisition

geometries (Amundsen et al., 2001; Bellezza and Poletto,

2014; Minato et al., 2011; van Dalen et al., 2014; Weemstra

et al., 2017a), a physical experiment in the laboratory such

as the one we propose in Fig. 2(a) has the advantage of a

fully enclosing acquisition geometry. The sources located

(sparsely) outside the recording surface (in our case on the

rigid boundary) can illuminate the scatterers inside Srec from

all directions, which alleviates the problem of rank defi-

ciency in the inversion of the MDC equations, particularly

compared to experiments with a one-sided acquisition

geometry. Nevertheless, the inverse problem is still ill-

posed and needs to be regularized (Rakotonarivo et al.,
2013). Rank deficiency is also affected by the number of

sources and the frequency bandwidths (Ruigrok et al., 2010;

Hunziker et al., 2010), but a further discussion is beyond the

scope of this paper. Note that when performing MDD for

the configuration shown in Fig. 2(a), since Green’s functions

between every pair of points on the recording surface are

obtained, not only are all the boundary-related scattering

events removed from the data, the Green’s functions enable

full-aperture reconstruction of the scattering wavefield

related to the object(s) under investigation.

B. Wavefield decomposition on general curved
surfaces

The MDD theory, given in Sec. II A, requires wavefield

separation of data recorded along closed, circular receiver

arrays as in the experimental setup shown in Fig. 2(a).

However, as pointed out in Ravasi et al. (2015), wavefield

separation along a closed-aperture receiver array is still a

challenge in MDD applications. The commonly used plane-

wave decomposition method for data recorded on a planar

receiver array (e.g., Amundsen, 1993; Day et al., 2013;

Fokkema and van den Berg, 2013; Ram�ırez and Weglein,

2009; Wapenaar and Berkhout, 1989) does not work for

data recorded along a curved surface. Wavefield separation

can be achieved using the technique of cylindrical harmon-

ics (Hulsebos, 2004), which is restricted to circular receiver

arrays. Also, wavefield injection in numerical modeling can

be used to separate wavefields along arbitrary curved surfa-

ces (e.g., Amundsen and Robertsson, 2014; Robertsson

et al., 2015). However, for data recorded in a closed aper-

ture, wavefield injection cannot decompose the data into in-

and out-going components, which are often obtained as up-

and down-going wavefields for data recorded in experiments

with a one-sided acquisition geometry (see Thomsen et al.,
2018; Thomson, 2012).

In this paper, we propose a new wavefield separation

method for curved, closed surfaces, inspired by a seismic

separation method for waves recorded on curved but open

surfaces developed in Riyanti et al. (2008) and Ferber and

van Manen (2017). The method for open surfaces involves

decomposing the data recorded in a marine seismic survey

on a non-planar receiver array. The method relies on setting

up a linear relation between the full (up-going þ down-

going) pressure data (in the space-frequency domain)

recorded at an array with an arbitrary depth profile and the

desired, up-going pressure data (in the wavenumber-

frequency domain) that would have been recorded on a flat,
reference surface. The basic idea behind this method is that

it is easier to formulate the (inverse) transform from a regu-

larly sampled (plane-wave) spectrum in the wavenumber-

frequency domain to the irregularly sampled data in the

space-frequency domain than vice versa. Therefore, a least-

squares formulation is intuitive: the linear relation is

inverted to estimate the regularly sampled up-going wave

spectrum on the flat reference surface. Finally, from the reg-

ularly sampled spectrum, the up-going wavefield can be

obtained at any desired regular or irregular location in

space.

Consider a group of neighboring receivers on the inner

layer of the recording surface Sr1, as shown in Fig. 3(a),

which are indexed clockwise as 1; 2;…;N. For this group of

receivers, we construct a local coordinate system x0; z0 with

the x0 axis tangential to the inner circle Sr1 and z0 axis point-

ing in the normal (radial) direction. The origin in the local

coordinate system coincides with the central receiver of this

receiver group. Figure 3(b) shows the selected receivers in

this local coordinate system, as well as the corresponding

receivers in the outer layer of the recording surface Sr2 (i.e.,

with the same angular range). In the local coordinate system

x0; z0 as shown in Fig. 3, the locations of the selected

receivers at the inner and outer circles are denoted as

ðxr1
n ; z

r1
n Þ and ðxr2

n ; z
r2
n Þ, and we treat the x axis or z0 ¼ 0 as

the construction surface of the separated wavefields.

FIG. 3. (Color online) (a) Selected group of receivers (red dots) in the inner

layer of the recording surface Sr1 (blue dots). A local coordinate x0; z0 is

constructed to include these receivers, and the green dot denotes the central

receiver. (b) Zoom-in of the local coordinate in the graph (a) with a differ-

ent orientation. The blue circles denote receivers in the outer layer of the

recording surface Sr2.
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In the pressure wavefield separation method of Ferber

and van Manen (2017), the construction surface is located at

the sea surface, and the linear operator also contains a model

for wave reflection at the sea surface, relating the up- and

down-going wavefields below the sea surface, halving the

number of unknowns. For wavefield separation in the labo-

ratory configurations such as shown in Fig. 2(a), there is no

simple, general model for reflection at the boundaries of the

experimental domain, and thus no such relation exists

between the in- and out-going waves. Therefore, either pres-

sure data at two offset recording surfaces are needed to

invert for the individual in- and out-going wavefields, or

both the pressure and normal particle velocity are needed on

a single surface. We process a subset of data corresponding

to the receivers at ðxr1
n ; z

r1
n Þ and ðxr2

n ; z
r2
n Þ in the local coordi-

nate system to separate the wavefields at the construction

surface z0 ¼ 0. In total, the number of recorded traces in this

subset thus is 2N. Because only the central receiver located

in the inner circle Sr1 is also part of the wavefields inverted

at the construction surface, we only keep the needed sepa-

rated (in-going) wavefield at the central receiver. The same

process is then repeated for all the receivers at Sr1 as the

“central receiver.”

The pressure data recorded at the selected receivers in

the local coordinate system x0; z0, as shown in Fig. 3(b), are

denoted as pðxr1
n ; z

r1
n ; tÞ and pðxr2

n ; z
r2
n ; tÞ (n ¼ 1; 2;…;N).

We first transform the time-domain pressure data into the

frequency (f) domain, giving p̂ðxr1
n ; z

r1
n ; f Þ and p̂ðxr1

n ; z
r1
n ; f Þ

(n ¼ 1; 2;…;N) with f ¼ x=2p. In this paper, we define the

Fourier transform of a time-dependent wavefield quantity,

e.g., pðx; tÞ, as p̂ðx;xÞ ¼
Ðþ1
�1 exp ð�jxtÞpðx; tÞ dt, where j

is the imaginary unit. We further define the desired sepa-

rated in- and out-going components in the wavenumber-

frequency domain as ~sinðf ; knÞ and ~soutðf ; knÞ, where kn is the

regularly sampled horizontal wavenumber (still with

n 2 1;…;N). Note that the wavenumber spacing is chosen

in accordance with the spatial Nyquist sampling criterion

and that only wavenumbers corresponding to propagating

waves are considered (i.e., kn < f=c with c as acoustic wave

speed), implying an increasing number of unknowns (� N)

with frequency. For each frequency, we express the total

pressure and the in- and out-going components at the con-

struction surface as two column vectors,

ptotðf Þ ¼ p̂ðxr1
1 ; z

r1
1 ; f Þ;…; p̂ðxr1

N ; z
r1
N ; f Þ;

�
p̂ðxr2

1 ; z
r2
1 ; f Þ;…; p̂ðxr2

N ; z
r2
N ; f Þ�

T ; (7a)

ssepðf Þ ¼ ~sinðf ; k1Þ;…; ~sinðf ; kNÞ;
�
~soutðf ; k1Þ;…; ~soutðf ; kNÞ�T : (7b)

Then, for each frequency, we construct a Hermitian matrix,

i.e., the Gram matrix Lðf Þ, as

Lðf Þ ¼
Lout

r1 ðf Þ Lin
r1ðf Þ

Lout
r2 ðf Þ Lin

r2ðf Þ

" #
(8)

with the submatrices

Lout
r1 ðf Þ ¼ ei2p kmxr1

n �kzðkmÞjzr1
n jð Þ

� �
n;m¼1;…;N; (9a)

Lin
r1ðf Þ ¼ ei2p kmxr1

n þkzðkmÞjzr1
n jð Þ

� �
n;m¼1;…;N; (9b)

Lout
r2 ðf Þ ¼ ei2p kmxr2

n �kzðkmÞjzr2
n jð Þ

� �
n;m¼1;…;N; (9c)

Lin
r2ðf Þ ¼ ei2p kmxr2

n þkzðkmÞjzr2
n jð Þ

� �
n;m¼1;…;N; (9d)

and kzðkmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf=cÞ2 � k2

m

q
is the vertical wavenumber

(Ferber and van Manen, 2017). The Gram matrix L relates

the out- and in-going components at the construction sur-

face, i.e., ssep ¼ ½sout; sin�T , to the total pressure waves, i.e.,

ptot ¼ ½pr1; pr2�
T
, through a linear system,

ptot ¼ Lssep; (10)

and its block form for each frequency

pr1ðf Þ
pr2ðf Þ

" #
¼

Lout
r1 ðf Þ Lin

r1ðf Þ
Lout

r2 ðf Þ Lin
r2ðf Þ

" #
soutðf Þ
sinðf Þ

" #
: (11)

As mentioned previously, the total pressure ptot is in the

space-frequency domain with data points ðxr1;2
n ; zr1;2

n Þ irregu-

larly sampled along x0 and z0 axes in the local coordinate

system, while the separated in- and out-going components

ssep are in the wavenumber-frequency domain with regularly

sampled wavenumbers.

Equation (10) can be solved for ssep using the method of

least squares (Aster et al., 2013),

ssep � ðLHLþ �IÞ�1
LHptot; (12)

where the superscript H denotes conjugate transpose, I is an

identity matrix, and � is a small value compared to the larg-

est eigenvalue of the square matrix LHL. The regularization

term �I helps alleviate the problem of rank deficiency when
inverting the matrix LHL. The obtained in- and out-going
components ssep ¼ ½sout; sin�T for each frequency are still in
the regularly sampled wavenumber domain, and for the
desired separated wavefields (i.e., pin

r1) that are sampled
irregularly along x0 and z0 axes in the space domain, we can
reuse the individual Gram submatrix to do the conversion
(Duijndam et al., 1999):

pin
r1ðf Þ ¼ Lin

r1sin: (13)

The separated wavefield pin
r1 is taken at the construction sur-

face that is tangent to the inner receiver array Sr1 and finally

transformed back to the time domain. Finally, the recovered

wavefields are band limited to the bandwidth of the source

wavefield using a bandpass filter.

Figure 4 summarizes the steps in the wavefield decom-

position algorithm used to process both synthetic and labo-

ratory data. In practice, the separated wavefields along the

recording surface Srec contain small artefacts (i.e., presence

of unphysical events) toward the beginning and end of time

traces, which are suppressed using tapering.
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III. RESULTS

A. The forward problem: MDC

Since wavefield separation is key to the proposed

change of boundary conditions using MDD, we first demon-

strate the performance of the wavefield decomposition

method using the MDC relation given in Eq. (5). In a

numerical simulation, we consider the configuration shown

in Fig. 5. Both sides of Eq. (5) can be modeled and com-

puted such that their comparison can demonstrate the cor-

rectness of the wavefield separation. This synthetic example

was simulated with spectral-element modeling using the

software SALVUS (Afanasiev et al., 2019), and the parameters

used are summarized in Table I.

To generate pðxir; tÞ and pinðxr; tÞ in Eq. (5) in numeri-

cal simulations, we put a pressure source at the rigid bound-

ary. The source signature corresponds to a so-called Ricker

wavelet (i.e., the second derivative of a Gaussian), q(t), with

peak frequency fp ¼ 2000 Hz (Wang, 2015). The simulations

of the reference Green’s functions in Eq. (5) involve the

replacement of the rigid boundary with an absorbing bound-

ary condition (Kosloff and Kosloff, 1986) in the synthetic

configuration shown in Fig. 2(a). Since the Green’s function

in two dimensions has an infinitely long tail, we convolve

the simulated Green’s functions for visualization purposes

with the same Ricker wavelet (fp ¼ 2000 Hz) used in the

simulations [Fig. 6(a)]. Hence, the MDC equation can be

recast as

qðtÞ � pðxir; tÞ ¼ �2

þ
S

pinðxr; tÞ

� ð �Gdðxir; t; xr; 0Þ � qðtÞÞ dSðxrÞ: (14)

The wavefield separation algorithm proposed in Sec.

II B was applied to the simulated wavefields ptotðxr; tÞ
recorded at the recording surface Srec to obtain the in-going

component pinðxr; tÞ. The size of the selected receiver group

was N ¼ 13, and the regularization factor � used in Eq. (12)

is equal to 0.001 multiplied with the largest eigenvalue of

the square matrix LHL per frequency. The values of N and �
are chosen by trial and error using the evaluation of the

MDC relation [Eq. (14)] as an effective tool to assess the

FIG. 4. Flow chart describing the wavefield decomposition method.

FIG. 5. (Color online) Acquisition geometry of the synthetic experiment

validating the MDC relation. A pressure source (red star) is located at the

rigid boundary (solid black circle). Two circular layers of receivers (blue

dots) make up the recording surface Srec, and an extra circular array of

receivers (magenta dots for Sirec) is placed inside Srec.

TABLE I. Specifications for the synthetic and physical experiments.

Parameter Definition Value

c0 Acoustic velocity (air) 347 m=s

q0 Air density 1 kg=m3

Remt Radius of 2D waveguide and emitting sur-

face Semt
0.6621 m

Rrec1 Radius of recording surface (inner layer)

Sr1

0.3529 m

Rrec2 Radius of recording surface (outer layer)

Sr2

0.3729 m

Rirec Radius of interior receiver array Sirec 0.15 m

Nemt Number of sources 52

Nrec Number of receivers at the recording sur-

face (two layers) Srec
228

Nirec Number of receivers at the interior receiver

array Sirec
114

fp Peak frequency of Ricker wavelet 2 kHz

tmax Time length of physical/synthetic

experiments

37.5 ms

dt Time step 6.375 �10�5 s
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quality of the wavefield separation. Also, a bandpass filter

(i.e., a Butterworth filter) between 200 and 5500 Hz was

applied to the separated wavefield.

Figure 6 compares the computed left-hand side of Eq.

(14) to the right-hand side, and their good agreement dem-

onstrates the performance of the wavefield separation

method for closed, curved surfaces.

B. The inverse problem: MDD

Figure 2(b) shows a 2D waveguide used for laboratory

MDD experiments, corresponding to the schematic shown

in Fig. 2(a). The key properties of the physical experiments

are summarized in Table I. The air-filled waveguide consists

of two parallel polymethyl methacrylate (PMMA) plates

spaced da ¼ 2.5 cm apart. Waves propagating in the wave-

guide between the two plates can be considered 2D as long

as the frequency content of the waves is below the cutoff

frequency of the fundamental mode, fc ¼ 0:5c0d�1
a

(Redwood, 1960). With sound speed c0 ¼ 347 m/s, the cut-

off frequency for the waveguide shown in Fig. 2(b) is fc ¼
6:9 kHz. The rigid circular outer boundary of the waveguide

consists of synthetic resin and is placed between the two

plates. The loudspeakers (i.e., sources) are installed on the

circular boundary, while the pressure-sensitive microphones

(i.e., receivers) are mounted flush with the inside of the

PMMA plates. Note that the recording surface Srec com-

prises two circular arrays, as required for wavefield separa-

tion, each consisting of 114 electret condenser microphones.

To demonstrate our approach, a physical object of interest,

i.e., a steel block with dimensions 30 cm � 6 cm � 2.5 cm,

is placed at the centre of the waveguide. This steel block

can be regarded as a perfectly rigid scatterer due to the large

contrast in acoustic impedance (qc) between air and steel.

In the MDD experiment, each source on the circular

boundary of the waveguide is excited sequentially. The

source signature corresponds to a Ricker wavelet with peak

frequency fp ¼ 2 kHz. For each source, the experiments are

repeated 30 times and averaged to improve the signal-to-

noise ratio of recorded data. Figures 7(a) and 7(d) illustrate

the two experiments (for one source location) without and

with the steel scatterer (i.e., the homogeneous and heteroge-

neous cases). Figures 7(b) and 7(e) show the corresponding

recorded data, which contain a large number of boundary

reflections. Due to the strong dominance of the direct wave

and the multiple reflection from the rigid boundary, the

imprint of the physical scatterer is only barely visible when

inspecting the two datasets [Figs. 7(b) and 7(e)]. The

recorded data appear somewhat patchy due to some system-

atic, low-frequency noise introduced by the power supply

units (PSUs). As multiple receivers are connected to the

same PSUs, all these receivers show the same systematic

noise. Note that the actual source signatures for the sources

outside the recording surface [see Fig. 2(b)] are slightly dif-

ferent from one another due to variability in manufacturing

and mounting of the sources. However, the MDD method

works very well also in the presence of such unknown

source characteristics.

The data recorded on the surface Srec are separated to

isolate the in-going part for both the experiments without

and with the steel scatterer [Figs. 7(c) and 7(f)]. In the wave-

field separation, both the regularization factor � used in Eq.

(12) and the bandpass filter for the separated wavefields fol-

low the choices in Sec. III A.

The system of equations assembled from Eq. (5) [i.e.,

ptotal � pin scheme] can be solved as an inverse problem in

the Fourier domain (Amundsen, 2001; Holvik and

FIG. 6. (Color online) (a) Dipolar Green’s function convolved with a Ricker wavelet q(t). The upper panel shows the model used to simulate the Green’s

function with an absorbing boundary (dashed black circle). The cyan dot denotes the source location at the recording surface Srec, while receivers are at the

interior recording surface Sirec (circular green array). (b) The separated in-going pressure wavefield. The red star denotes the source location at the rigid

boundary (solid black circle), and the receivers are on Srec (blue circle). (c) The computed right-hand side of Eq. (14). (d) The computed left-hand side of

Eq. (14).

1820 J. Acoust. Soc. Am. 149 (3), March 2021 Li et al.

https://doi.org/10.1121/10.0003706

 12 D
ecem

ber 2023 14:29:09

https://doi.org/10.1121/10.0003706


Amundsen, 2005; Poletto et al., 2014; Ravasi et al., 2015;

Wapenaar et al., 2008; Weemstra et al., 2017b) or in other

domains such as the curvelet domain (van der Neut and

Herrmann, 2013). In this paper, we solve the system of

equations using an iterative damped least-squares method

(Paige and Saunders, 1982), which carries out forward MDC

in the frequency domain to minimize a regularized ‘2

normal cost function (e.g., minxjjAx� bjj2 þ d2jjxjj2) evalu-

ated in the time domain (i.e., PyLops MDD solver, see

Ravasi and Vasconcelos, 2020). The damping parameter

FIG. 7. (Color online) Laboratory MDD results. (a) A homogeneous experimental domain with a source (red star) located at the rigid boundary (solid black

circle) and receivers on Srec (blue circle) with azimuth /. (b) and (c) The data recorded for the scenario (a) and their separated in-going components. (d)–(f)

A heterogeneous experimental domain with the steel block (black rectangle), the recorded data, and separated in-going components. (g) and (h) A desired

waveguide experiment including the scatterer with a radiation boundary condition (dashed black line) and the corresponding MDD result. The cyan star

denotes a dipolar source. (j) and (k) A desired homogeneous waveguide experiment and the MDD result. (i) The scattering Green’s functions obtained by

subtracting the MDD result in the graph (k) from that in the graph (e). (l) The synthetic reference solution.
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was set to d ¼ 10�6, and 20 iterations were used to invert

for the Green’s functions.

Figures 7(h) and 7(k) show examples of the inverted

Green’s functions, which are convolved with a Ricker wave-

let with peak frequency fp ¼ 2 kHz for visualization pur-

poses. These Green’s functions correspond to the

configurations shown in Figs. 7(g) and 7(j), where the rigid

boundary of the waveguide is removed, and the dipolar sour-

ces of the Green’s functions are located at the recording sur-

face Srec. Note that the inverted Green’s functions contain

undesired direct arrivals as well as pole artefacts caused by

the integrable singularity that exists for co-located source

and receiver positions of the Green functions. Hence, we

carry out the subtraction as in Eq. (6) to obtain the scattering

Green’s functions that are only related to the steel object, as

shown in Fig. 7(i). This result is compared to a reference

MDD solution (with amplitude normalization) obtained

from a synthetic experiment [Fig. 7(l)]. Note that in the lab-

oratory, we cannot obtain a true reference solution, since

this would require removing the rigid boundary and carrying

out the physical experiment in a largely extended waveguide

FIG. 8. (Color online) Zoom-in of laboratory MDD results. (e) The comparison between the picked traces (dashed blue and red lines) in the graphs (b) and

(d). Otherwise, key as in Fig. 7.
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with a radius about 6 m. Instead, we will have a synthetic

reference solution described later.

Comparing Figs. 7(h) and 7(e) shows that almost all the

boundary reflections are removed. We further focus on the

waveforms in the obtained Green’s functions. Figure 8 shows

a zoom-in of the laboratory MDD results. In the heteroge-

neous MDD result including the steel scatterer, the direct

arrival and pole artefacts mask the imprint of the scatterer

[Fig. 8(a)]. The MDD result obtained in a homogeneous

experimental domain [Fig. 8(c)] additionally shows a non-

acoustic imprint, which is likely caused by the systematic

acquisition noise present in the acquired data [see Fig. 7(b)].

The power-supply-related noise causes systematic energy on

neighboring traces that is not related to acoustic arrivals.

This energy interacts with physical acoustic arrivals through

the MDD process and maps to coherent-looking arrivals in

the inverted Green’s functions. [i.e., non-acoustic imprint in

Figs. 8(b) and 8(c)]. This noise is in the same frequency

FIG. 9. (Color online) Synthetic MDD results. Key as in Fig. 7.
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range as the experiments and hence cannot be suppressed by

bandpass filtering. As the noise does not linearly generate

artefacts in the MDD process, its imprints in the inverted

Green’s functions do not cancel out during the subtraction

[i.e., Eq. (6)], and some undesired components exist in the

obtained scattering Green’s function [Fig. 8(b)]. Figure 8(e)

compares the waveforms of the experimental Green’s func-
tions and the synthetic solution for a single receiver. Their
match demonstrates that the desired Green’s functions
related to the steel scatterer without the scattering effects
caused by the boundary of the waveguide can be recovered
by the MDD method. Note that the inverted Green’s

functions shown in Figs. 7 and 8 only correspond to one sin-
gle dipolar source located on the recording surface Srec [e.g.,
Fig. 7(g)]. The complete MDD result (not shown here) cor-
responds to an entire set of Green’s functions that
completely sample the scattering related only to the steel
block placed inside Srec with full aperture.

Synthetic experiments were carried out using time-

domain finite-element modeling with the Acoustics Module

of COMSOL Multiphysics
VR

(Idesman and Pham, 2014). The

model used is shown in Fig. 2(a), and the parameter values

are given in Table I for the same configuration as used in the

laboratory MDD experiments. In the synthetic MDD

FIG. 10. (Color online) Zoom-in of synthetic MDD results. Key as in Fig. 9.
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experiments, the physical scatterer (i.e., the steel block)

used in the laboratory experiments is simulated with a per-

fectly rigid surface, and we deploy monopolar pressure sour-

ces at the exterior rigid boundary of the simulated 2D

waveguide with a Ricker wavelet (fp ¼ 2 kHz) as the source

signature for all the sources. The MDD scheme, wavefield

separation, and other data processing steps such as bandpass

filtering follow those in the laboratory experiments except

that the number of iterations in the MDD solver is increased

to 200.

Figure 9 shows the data, separated in-going wavefields,

and MDD results for the synthetic waveguide experiments.

The simulated data shown in Figs. 9(b) and 9(e) do not con-

tain the systematic noise present in the laboratory experi-

ments, and hence the MDD solver can run for a large

number of iterations (i.e., 200) without risk of over-fitting

the noise in the data. Figure 10 shows a zoom-in of the syn-

thetic MDD results. The reference solution (i.e., simulated

Green’s functions), as shown in Fig. 9(l) and also in Fig.

8(d), contains a vertical-line-like modeling artefact that is

present at early times before the arrival related to the interior

steel scatterer. This modeling artefact is caused by the way

that the simulation software COMSOL attempts to handle co-

located sources and receivers. However, the modeling arte-

fact is only significant at a single trace in each inverted

Green’s function and does not influence our results.

Although the difference is small, Fig. 10(e) shows that the

MDD-obtained waveform does not exactly match the refer-

ence solution [also in Fig. 8(e)]. Solving MDD equations is

inherently an ill-posed inverse problem with rank deficiency

(Ravasi et al., 2015; Wapenaar et al., 2011), and the

inverted waveforms will be slightly distorted due to inver-

sion errors.

The data obtained in the laboratory show a reduction in

amplitude with time [e.g., Fig. 7(b)], which is not present in

the synthetic experiments [e.g., Fig. 9(b)]. The energy loss

of the wavefields propagating in the laboratory 2D wave-

guide is primarily caused by wave energy leaking through

the imperfect rigid boundaries of the waveguide.

IV. DISCUSSION

The MDD method can effectively transform recorded

data contaminated by the imprint of the domain boundary to

the Green’s functions that are only related to the interior

scatterer(s). Thus, the scattering properties of the interior

medium can be studied without interference caused by the

boundary of the experimental setup (e.g., a 2D waveguide).

One critical requirement of this MDD application is that the

sources that generate wave energy for experiments should be

located outside the recording surface Srec. The sources can be

of any characteristics, and their distribution can be sparse;

namely, they do not need to be distributed according to the

spatial Nyquist sampling criterion. However, the source dis-

tribution needs to illuminate the medium inside Srec from all

directions. The receivers placed around Srec are densely dis-

tributed such that the spatial Nyquist criterion is satisfied.

Hence in MDD experiments, the number of sources used can

be smaller than the number of receivers on Srec. When such a

number of required channels for sources and receivers cannot

be satisfied, an alternative is to exploit acoustic source-

receiver reciprocity to acquire the data. A movable source

positioned on a recording surface in the waveguide together

with a small number of receivers replacing the sources can be

used. Theoretically, if the receiver is also movable, a single

source-receiver pair is sufficient for recording all required

data to carry out MDD. Note that exploiting source-receiver

reciprocity in the laboratory requires the use of physical

monopolar sources, since the radiation patterns of sources

and receivers will be exchanged and the MDD method

requires omnidirectional receivers.

The MDD method used to remove boundary reflections

can be compared to the recently developed immersive wave

experimentation application where active sources are

deployed around the boundary of the experimental domain

FIG. 11. (Color online) Configurations of the acoustic states A and B. The

wave equations for states A and B are expressed in a short form with the

spatial and angular frequency variables omitted compared to Eqs. (A3) and

(A4). State-A: The red dot denotes a source located at xa outside the volume

V, which is enclosed by the surface S with outward-pointing normal vector

n. The blue dot xr is at the surface S. State-B: The source (red dot) is

located at xb inside V.

TABLE II. Definitions of states A and B.

State A: Physical experiment State B: Desired experiment

Wavefields p̂Aðx;xÞ; vA
i ðx;xÞ p̂B ¼ Gp;qðx; xb;xÞ; vB

i ¼ Gv;q
i ðx; xb;xÞ

Sources q̂Aðx;xÞ ¼ dðx� xaÞâðxÞ q̂Bðx;xÞ ¼ dðx� xbÞ
f̂

A

i ðx;xÞ ¼ 0 f̂
B

i ðx;xÞ ¼ 0

Medium jAðxÞ ¼ jBðxÞ; qAðxÞ ¼ qBðxÞ for x 2 V
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such that the emitted wavefield cancels the outward propa-

gating waves (Becker et al., 2018, 2020). The emitted wave-

field is determined by means of extrapolating the waves

measured at a recording surface Srec placed inside the exper-

imental domain to the active domain boundary Semt. This

extrapolation has to happen in real time during a physical

experiment. Hence, immersive experimentation, as an

online, real-time method, is highly complicated with a high-

performance control and computing system required for the

wavefield extrapolation. MDD, on the other hand, is signifi-

cantly simpler to operate, since it is carried out after the

physical experiment. However, the MDD method and

immersive wave experiments are different in several

aspects. In particular, immersive experimentation allows for

nonlinear, time-variant media placed inside Srec, while the

MDD method only works with linear, time-invariant media

due to the linearity for the definition of the (inverted)

Green’s functions and the repeated measurements for each

source. In addition to canceling outward propagating waves,

immersive experimentation enables replacing boundary

reflections with interactions from an arbitrary numerical

environment, thus immersing the physical experiment in the

numerical environment in real time.

V. CONCLUSION

A MDD method was proposed and applied to 2D acous-

tic wave propagation experiments such that the scattering

imprint related to the experimental domain boundary is

completely removed. The MDD approach enables the full-

aperture reconstruction of the wavefields related to scatter-

ers placed inside a laboratory in the absence of unwanted

boundary reflections that usually contaminate such datasets.

In our experiments, the laboratory data were recorded along

a circular recording surface. A wavefield decomposition

method for in/out separation on a general curved surface

was formulated and used prior to applying the MDD

method. The quality of the wavefield separation was demon-

strated using a (forward) MDC relation.

The MDD scheme used in this paper involves in-going

pressure data multidimensionally deconvolved from the

total pressure data. For the laboratory experiment including

a rigid scatterer, the MDD result contains pole artefacts and

direct arrivals, both of which were successfully removed by

subtracting the MDD result for a homogeneous experimental

domain. By considering the limit where the evaluation point

in the MDC integral approaches the recording surface, the

scattering Green’s functions for any pair of source and

receiver on the recording surface can be obtained. Thus, the

proposed MDD method allows for both removal of any exte-

rior scattering imprints and fully sampling the scattering

wavefield related to the enclosed volume.

ACKNOWLEDGMENTS

We would like to thank Professor Kees Wapenaar and

an anonymous reviewer for their positive and constructive

comments. We thank the Mondaic team for their support in

using the SALVUS software package. We thank Professor

Lasse Amundsen and Professor Andrew Curtis for the

discussion about MDD work in exploration geophysics. We

thank Dr. Marc Serra-Garcia for the discussion about

COMSOL. We would like to thank Thomas Haag and

Christoph B€arlocher for setting up the acquisition system in

the laboratory. This project has received funding from the

European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme

(Grant Agreement No. 694407).

APPENDIX: DERIVATION OF THE TWO-WAY
REPRESENTATION INTEGRAL

The derivation of the two-way representation theorem

as given in Eq. (1) starts from the acoustic wave equations.

In an acoustic medium, propagating waves can be described

through pressures pðx; tÞ and particle velocities vðx; tÞ gov-

erned by the two following first-order partial differential

equations (Fokkema and van den Berg, 2013):

@pðx; tÞ
@t

þ qðxÞc2ðxÞr � vðx; tÞ ¼ qðxÞc2ðxÞqðx; tÞ

(A1)

and

qðxÞ @vðx; tÞ
@t

þrpðx; tÞ ¼ fðx; tÞ; (A2)

where qðxÞ and cðxÞ are medium density and wave velocity,

respectively. The source term qðx; tÞ on the right-hand side

of Eq. (A1) corresponds to a distribution of volume injection

sources (or monopoles), while the source term fðx; tÞ on the

right-hand side of Eq. (A2) corresponds to a distribution of

body force sources (or dipoles). The spatial variable x repre-

sents the Cartesian coordinate.

The acoustic wave equations expressed as Eqs. (A1)

and (A2) in the space-time ðx; tÞ domain can be transformed

into the space-frequency ðx;xÞ domain (Wapenaar and

Fokkema, 2006):

jxjðx;xÞp̂ðx;xÞ þ @iv̂iðx;xÞ ¼ q̂ðx;xÞ (A3)

and

jxqðxÞv̂iðx;xÞ þ @ip̂ðx;xÞ ¼ f̂ iðx;xÞ; (A4)

where the symbol^ in p̂ðxÞ and v̂ðxÞ denotes the equivalent

counterparts in the frequency domain, and

jðxÞ ¼ q�1ðxÞc�2ðxÞ

is the compressibility. The subscript i for v̂iðxÞ and @i

denotes the scalar value and its spatial gradient in the xi

direction. Einstein’s summation convention applies to

repeated subscripts in this appendix, and the derivation of

the following equations is done in the space-frequency

1826 J. Acoust. Soc. Am. 149 (3), March 2021 Li et al.

https://doi.org/10.1121/10.0003706

 12 D
ecem

ber 2023 14:29:09

https://doi.org/10.1121/10.0003706


domain for the convenience of expressing convolution in the

time domain as multiplication in the frequency domain.

Wavefield propagation can be defined in two indepen-

dent states, A and B, with their corresponding configurations

shown in Fig. 11. The two states A and B are linked through

the interaction quantity

@iðp̂Av̂B
i � v̂A

i p̂BÞ

composed of cross-convolution terms. One can substitute the

acoustic quantities appearing in the equations for states A and

B, given in Fig. 11, into this interaction quantity. The result is

further integrated over the volume V enclosed by the boundary

S. The volume integral is converted to a surface integral using

the divergence theorem of Gauss (Arfken, 1985), which givesþ
S

ðp̂Av̂B
i � v̂A

i p̂BÞni dSðxrÞ

¼
ð

V

p̂Aq̂B � v̂A
i f̂

B

i � q̂Ap̂B þ f̂
A

i v̂B
i

h i
dVðxÞ

þ jx
ð

V

ðjA � jBÞp̂Ap̂B � ðqA � qBÞv̂A
i v̂B

i

� �
dVðxÞ:

(A5)

Equation (A5) is called Rayleigh’s reciprocity theorem

of the convolution type (de Hoop, 1988, 1995; Fokkema and

van den Berg, 2013). Table II gives the definitions of source

fields and medium properties of states A and B. We identify

state A as a physical experiment, including a physical

source, and state B as a desired experiment with an impul-

sive, point volume injection source. The medium properties

inside the integration volume V are the same in states A and

B, and hence the second volume integral on the right-hand

side of Eq. (A5) will vanish. Since an impulsive source

exists in state B, the pressure wavefield in state B becomes

Green’s function Gp;qðx; xb;xÞ with the pressure recording

at x and an impulsive point source of volume injection rate

density at xb (superscript q for monopole), following the

notations in de Hoop (1995). The particle velocity wavefield

in state B becomes the Green’s function Gv;q
i ðx; xb;xÞ (sub-

script i for recording at xi direction). Applying the defini-

tions in Table II to Eq. (A5), we obtain

p̂Aðxb;xÞ ¼
þ

S

ðp̂Aðxr;xÞĜ
v;q
i ðxr;xb;xÞ

� v̂A
i ðxr;xÞĜ

p;qðxr;xb;xÞÞni dSðxrÞ; (A6)

where the quantities associated with state A are measured in

a physical experiment, as shown in Fig. 1(a), with a physical

source located at xs ¼ xa and a receiver inside the surface S

at xir ¼ xb. Note that the derivation of Eq. (A6) does not

require the definition of the source type in state A (physical

experiment) as long as the source location xa is outside the

volume V. The Green’s functions Ĝ
v;q
i and Ĝ

p;q
in Eq. (A6)

are associated with state B as a desired experiment. Note

that in state B, the medium property outside the volume V

has not been specified, and the property can and will be

different from that in state A, e.g., without and with an exte-

rior rigid boundary (Wapenaar et al., 2011).

1In other words, the traction free surface on land or the water-air interface

(pressure-release surface) in a marine environment.

Afanasiev, M., Boehm, C., van Driel, M., Krischer, L., Rietmann, M., May,

D. A., Knepley, M. G., and Fichtner, A. (2019). “Modular and flexible

spectral-element waveform modelling in two and three dimensions,”

Geophys. J. Int. 216(3), 1675–1692.

Amundsen, L. (1993). “Wavenumber-based filtering of marine point-source

data,” Geophysics 58(9), 1335–1348.

Amundsen, L. (2001). “Elimination of free-surface related multiples with-

out need of the source wavelet,” Geophysics 66(1), 327–341.

Amundsen, L., Ikelle, L. T., and Berg, L. E. (2001). “Multidimensional sig-

nature deconvolution and free-surface multiple elimination of marine

multicomponent ocean-bottom seismic data,” Geophysics 66(5),

1594–1604.

Amundsen, L., and Robertsson, J. O. A. (2014). “Wave equation processing

using finite-difference propagators, part 1: Wavefield dissection and imag-

ing of marine multicomponent seismic data,” Geophysics 79(6),

T287–T300.

Arfken, G. (1985). Mathematical Methods for Physicists, 3rd ed.

(Academic Press, Orlando, FL).

Aster, R., Borchers, B., and Thurber, C. (2013). Parameter Estimation and
Inverse Problems (Elsevier Science, Amsterdam).

Becker, T. S., B€orsing, N., Haag, T., B€arlocher, C., Donahue, C. M., Curtis,

A., Robertsson, J. O. A., and van Manen, D.-J. (2020). “Real-time immer-

sion of physical experiments in virtual wave-physics domains,” Phys.

Rev. Applied 13, 064061.

Becker, T. S., van Manen, D.-J., Donahue, C. M., B€arlocher, C., B€orsing,

N., Broggini, F., Haag, T., Robertsson, J. O. A., Schmidt, D. R.,

Greenhalgh, S. A., and Blum, T. E. (2018). “Immersive wave propagation

experimentation: Physical implementation and one-dimensional acoustic

results,” Phys. Rev. X 8(3), 031011.

Bellezza, C., and Poletto, F. (2014). “Multidimensional deconvolution and

processing of seismic-interferometry Arctic data,” Geophysics 79(3),

WA25–WA38.

Beranek, L. L., and Sleeper, H. P. (1946). “The design and construction of

anechoic sound chambers,” J. Acoust. Soc. Am. 18(1), 140–150.

Beyene, S., and Burdisso, R. A. (1997). “A new hybrid passive-active noise

absorption system,” J. Acoust. Soc. Am. 101(3), 1512–1515.

Blum, T. E., van Wijk, K., Snieder, R., and Willis, M. E. (2011). “Laser

excitation of a fracture source for elastic waves,” Phys. Rev. Lett. 107,

275501.

Cassereau, D., and Fink, M. (1992). “Time-reversal of ultrasonic fields. III.

theory of the closed time-reversal cavity,” IEEE Trans. Ultrason.

Ferroelectr. Freq. Cont. 39(5), 579–592.

Day, A., Kl€uver, T., Sl€oner, W., Tabti, H., and Carlson, D. (2013).

“Wavefield-separation methods for dual-sensor towed-streamer data,”

Geophysics 78(2), WA55–WA70.

de Hoop, A. T. (1988). “Time-domain reciprocity theorems for acoustic

wave fields in fluids with relaxation,” J. Acoust. Soc. Am. 84(5),

1877–1882.

de Hoop, A. (1995). Handbook of Radiation and Scattering of Waves:
Acoustic Waves in Fluids, Elastic Waves in Solids, Electromagnetic
Waves (Academic, San Diego).

Duijndam, A. J. W., Schonewille, M. A., and Hindriks, C. O. H. (1999).

“Reconstruction of band-limited signals, irregularly sampled along one

spatial direction,” Geophysics 64(2), 524–538.

Ferber, R., and van Manen, D.-J. (2017). “Noise transfer in variable-depth

streamer deghosting,” Geophys. Prospect. 65(4), 903–912.

Fink, M. (1992). “Time reversal of ultrasonic fields. I. Basic principles,”

IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 39(5), 555–566.

Fokkema, J., and van den Berg, P. (2013). Seismic Applications of Acoustic
Reciprocity (Elsevier Science, Amsterdam).

Guicking, D., and Lorenz, E. (1984). “An active sound absorber with

porous plate,” J. Vib. Acoust. Stress. Reliab. Des. 106(3), 389–392.

Habault, D., Friot, E., Herzog, P., and Pinhede, C. (2017). “Active control

in an anechoic room: Theory and first simulations,” Acta Acust. United

Acust. 103(3), 369–378.

https://doi.org/10.1121/10.0003706

J. Acoust. Soc. Am. 149 (3), March 2021 Li et al. 1827

 12 D
ecem

ber 2023 14:29:09

https://doi.org/10.1093/gji/ggy469
https://doi.org/10.1190/1.1443516
https://doi.org/10.1190/1.1444912
https://doi.org/10.1190/1.1486770
https://doi.org/10.1190/geo2014-0151.1
https://doi.org/10.1103/PhysRevApplied.13.064061
https://doi.org/10.1103/PhysRevApplied.13.064061
https://doi.org/10.1103/PhysRevX.8.031011
https://doi.org/10.1190/geo2013-0297.1
https://doi.org/10.1121/1.1916351
https://doi.org/10.1121/1.418105
https://doi.org/10.1103/PhysRevLett.107.275501
https://doi.org/10.1109/58.156176
https://doi.org/10.1109/58.156176
https://doi.org/10.1190/geo2012-0302.1
https://doi.org/10.1121/1.397152
https://doi.org/10.1190/1.1444559
https://doi.org/10.1111/1365-2478.12454
https://doi.org/10.1109/58.156174
https://doi.org/10.1115/1.3269206
https://doi.org/10.3813/AAA.919066
https://doi.org/10.3813/AAA.919066
https://doi.org/10.1121/10.0003706


Holvik, E., and Amundsen, L. (2005). “Elimination of the overburden

response from multicomponent source and receiver seismic data, with

source designature and decomposition into PP-, PS-, SP-, and SS-wave

responses,” Geophysics 70(2), S43–S59.

Hulsebos, E. M. (2004). “Auralization using wave field synthesis,” Ph.D.

thesis, Technische Universiteit Delft, Delft, Netherlands.

Hunziker, J. W., Fan, Y., Slob, E. C., Wapenaar, K., and Snieder, R. (2010).

“Solving spatial sampling problems in 2D-CSEM interferometry using

elongated sources,” Proceedings of the 72nd EAGE Conference and
Exhibition Incorporating SPE EUROPEC 2010, June 14–17, Barcelona,

Spain.

Idesman, A., and Pham, D. (2014). “Accurate finite element modeling of

acoustic waves,” Comput. Phys. Commun. 185(7), 2034–2045.

Kosloff, R., and Kosloff, D. (1986). “Absorbing boundaries for wave propa-

gation problems,” J. Comput. Phys. 63(2), 363–376.

Larose, E., Planes, T., Rossetto, V., and Margerin, L. (2010). “Locating a

small change in a multiple scattering environment,” Appl. Phys. Lett.

96(20), 204101.

McDonald, J., Gardner, G., and Hilterman, F. (1983). Seismic Studies in
Physical Modeling (Springer, Amsterdam).

Minato, S., Matsuoka, T., Tsuji, T., Draganov, D., Hunziker, J., and

Wapenaar, K. (2011). “Seismic interferometry using multidimensional

deconvolution and crosscorrelation for crosswell seismic reflection data

without borehole sources,” Geophysics 76(1), SA19–SA34.

Mo, Y., Greenhalgh, S. A., Robertsson, J. O., and Karaman, H. (2015).

“The development and testing of a 2D laboratory seismic modelling sys-

tem for heterogeneous structure investigations,” J. Appl. Geophys. 116,

224–235.

Munjal, M. L. (2002). IUTAM Symposium on Designing for Quietness
(Kluwer Academic Publishers, Dordrecht, Netherlands).

Paige, C. C., and Saunders, M. A. (1982). “LSQR: An algorithm for sparse

linear equations and sparse least squares,” ACM Trans. Math. Softw.

8(1), 43–71.

Poletto, F., Bellezza, C., and Farina, B. (2014). “Virtual reflector multidi-

mensional deconvolution: Inversion issues for convolutive-type inter-

ferometry,” Geophys. J. Int. 196(2), 1018–1024.

Rakotonarivo, S. T., Kuperman, W. A., and Williams, E. G. (2013).

“Prediction of a body’s structural impedance and scattering properties

using correlation of random noise,” J. Acoust. Soc. Am. 134(6),

4401–4411.

Ram�ırez, A. C., and Weglein, A. B. (2009). “Green’s theorem as a compre-

hensive framework for data reconstruction, regularization, wavefield sep-

aration, seismic interferometry, and wavelet estimation: A tutorial,”

Geophysics 74(6), W35–W62.

Ravasi, M., Meles, G., Curtis, A., Rawlinson, Z., and Yikuo, L. (2015).

“Seismic interferometry by multidimensional deconvolution without

wavefield separation,” Geophys. J. Int. 202(1), 1–16.

Ravasi, M., and Vasconcelos, I. (2020). “PyLops—A linear-operator

Python library for scalable algebra and optimization,” SoftwareX 11,

100361.

Redwood, M. (1960). Mechanical Waveguides: The Propagation of
Acoustic and Ultrasonic Waves in Fluids and Solids with Boundaries
(Pergamon, New York).

Riyanti, C. D., van Borselen, R. G., van den Berg, P. M., and Fokkema, J.

T. (2008). “Pressure wave-field deghosting for non-horizontal streamers,”

in SEG Technical Program Expanded Abstracts 2008 (Society of

Exploration Geophysicists, Tulsa, OK), pp. 2652–2656.

Robertsson, J. O., van Manen, D.-J., Schmelzbach, C., Van Renterghem, C.,

and Amundsen, L. (2015). “Finite-difference modelling of wavefield con-

stituents,” Geophys. J. Int. 203(2), 1334–1342.

Ruigrok, E., Campman, X., Draganov, D., and Wapenaar, K. (2010).

“High-resolution lithospheric imaging with seismic interferometry,”

Geophys. J. Int. 183(1), 339–357.

Shao, C., Long, H., Cheng, Y., and Liu, X. (2019). “Low-frequency perfect

sound absorption achieved by a modulus-near-zero metamaterial,” Sci.

Rep. 9(1), 13482.

Smith, J. P., Johnson, B. D., and Burdisso, R. A. (1999). “A broadband passive-

active sound absorption system,” J. Acoust. Soc. Am. 106(5), 2646–2652.

Sternini, S., Sarkar, J., Rakotonarivo, S., Bottero, A., Williams, E. G.,

Tippmann, J. D., and Kuperman, W. A. (2019). “Determining structural

acoustic properties from noise-based holographic measurements,”

J. Acoust. Soc. Am. 146(4), 2943–2943.

Thomsen, H. R., van Manen, D.-J., and Robertsson, J. (2018). “Exact wave-

field separation on an elastic free surface with sharp corners,” in SEG
Technical Program Expanded Abstracts 2018 (Society of Exploration

Geophysicists, Tulsa, OK), pp. 5017–5021.

Thomson, C. J. (2012). “Research Note: Internal/external seismic source wave-

field separation and cancellation,” Geophys. Prospect. 60(3), 581–587.

Trinh, V. H., Langlois, V., Guilleminot, J., Perrot, C., Khidas, Y., and

Pitois, O. (2019). “Tuning membrane content of sound absorbing cellular

foams: Fabrication, experimental evidence and multiscale numerical sim-

ulations,” Materials Design 162, 345–361.

van Dalen, K. N., Wapenaar, K., and Halliday, D. F. (2014). “Surface wave

retrieval in layered media using seismic interferometry by multidimen-

sional deconvolution,” Geophys. J. Int. 196(1), 230–242.

van der Neut, J., and Herrmann, F. J. (2013). “Interferometric redatuming

by sparse inversion,” Geophys. J. Int. 192(2), 666–670.

Vasmel, M., Robertsson, J. O. A., van Manen, D.-J., and Curtis, A. (2013).

“Immersive experimentation in a wave propagation laboratory,”

J. Acoust. Soc. Am. 134(6), EL492–EL498.

Wang, Y. (2015). “Frequencies of the ricker wavelet,” Geophysics 80(2),

A31–A37.

Wapenaar, C., and Berkhout, A. (1989). “Advances in exploration geo-

physics,” in Elastic Wave Field Extrapolation: Redatuming of Single- and
Multi-component Seismic Data (Elsevier, Amsterdam).

Wapenaar, K., and Fokkema, J. (2006). “Green’s function representations

for seismic interferometry,” Geophysics 71(4), SI33–SI46.

Wapenaar, K., van der Neut, J., and Ruigrok, E. (2008). “Passive seismic

interferometry by multidimensional deconvolution,” Geophysics 73(6),

A51–A56.

Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker, J.,

Slob, E., Thorbecke, J., and Snieder, R. (2011). “Seismic interferometry

by crosscorrelation and by multidimensional deconvolution: A systematic

comparison,” Geophys. J. Int. 185(3), 1335–1364.

Weemstra, C., Draganov, D., Ruigrok, E. N., Hunziker, J., Gomez, M., and

Wapenaar, K. (2017a). “Application of seismic interferometry by multidi-

mensional deconvolution to ambient seismic noise recorded in Malarg€ue,

Argentina,” Geophys. J. Int. 208(2), 693–714.

Weemstra, C., Wapenaar, K., and van Dalen, K. N. (2017b). “Reflecting

boundary conditions for interferometry by multidimensional

deconvolution,” J. Acoust. Soc. Am. 142(4), 2242–2257.

Williams, E. G., Tippmann, J. D., Rakotonarivo, S. T., Waters, Z. J., Roux,

P., and Kuperman, W. A. (2017). “Experimental estimation of in vacuo
structural admittance using random sources in a non-anechoic room,”

J. Acoust. Soc. Am. 142(1), 103–109.

Zhang, X., Qu, Z., and Wang, H. (2020). “Engineering acoustic metamateri-

als for sound absorption: From uniform to gradient structures,” iScience

23(5), 101110.

Zhou, F., Wang, B., Fan, J., and Peng, Z. (2019). “Theoretical and numeri-

cal studies on in vacuo structural admittance of an infinite, coated cylin-

drical shell,” Acoust. Phys. 65(1), 14–22.

https://doi.org/10.1121/10.0003706

1828 J. Acoust. Soc. Am. 149 (3), March 2021 Li et al.

 12 D
ecem

ber 2023 14:29:09

https://doi.org/10.1190/1.1897037
https://doi.org/10.1016/j.cpc.2014.04.009
https://doi.org/10.1016/0021-9991(86)90199-3
https://doi.org/10.1063/1.3431269
https://doi.org/10.1190/1.3511357
https://doi.org/10.1016/j.jappgeo.2015.03.014
https://doi.org/10.1145/355984.355989
https://doi.org/10.1093/gji/ggt430
https://doi.org/10.1121/1.4828833
https://doi.org/10.1190/1.3237118
https://doi.org/10.1093/gji/ggv062
https://doi.org/10.1016/j.softx.2019.100361
https://doi.org/10.1093/gji/ggv379
https://doi.org/10.1111/j.1365-246X.2010.04724.x
https://doi.org/10.1038/s41598-019-49982-5
https://doi.org/10.1038/s41598-019-49982-5
https://doi.org/10.1121/1.428094
https://doi.org/10.1121/1.5137225
https://doi.org/10.1111/j.1365-2478.2011.01043.x
https://doi.org/10.1016/j.matdes.2018.11.023
https://doi.org/10.1093/gji/ggt389
https://doi.org/10.1093/gji/ggs052
https://doi.org/10.1121/1.4826912
https://doi.org/10.1190/geo2014-0441.1
https://doi.org/10.1190/1.2213955
https://doi.org/10.1190/1.2976118
https://doi.org/10.1111/j.1365-246X.2011.05007.x
https://doi.org/10.1093/gji/ggw425
https://doi.org/10.1121/1.5007833
https://doi.org/10.1121/1.4990953
https://doi.org/10.1016/j.isci.2020.101110
https://doi.org/10.1134/S1063771019010184
https://doi.org/10.1121/10.0003706

