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A Robust Deformable Linear Object Perception Pipeline in 3D:

From Segmentation to Reconstruction

Sun Zhaole∗ Hang Zhou Li Nanbo Longfei Chen Jihong Zhu
Robert B. Fisher

November 28, 2023

Abstract

3D perception of deformable linear objects (DLOs) is crucial for DLO manipulation. How-
ever, perceiving DLOs in 3D from a single RGBD image is challenging. Previous DLO perception
methods fail to extract a decent 3D DLO model due to different textures, occlusions, sparse and
false depth information. To address these problems and provide a more robust DLO perception
initialization for downstream tasks like tracking and manipulation in complex scenarios, this paper
proposes a 3D DLO perception pipeline to first segment a DLO in 2D images and post-process
masks to eliminate false positive segmentation, reconstruct the DLO in 3D space to predict the
occluded part of the DLO, and physically smooth the reconstructed DLO. By testing on a syn-
thetic DLO dataset and further validating on a real-world dataset with seven different DLOs, we
demonstrate that the proposed method is an effective and robust 3D perception pipeline solu-
tion with better performance on 2D DLO segmentation and 3D DLO reconstruction compared to
State-of-the-Art algorithms.

1 Introduction

Deformable linear objects (DLOs), e.g. ropes, cables, pipes, hoses, and tubes, are found widely in
surgical theaters, offices, textile factories, and other industries [1]. A critical application for robots
is manipulating these DLOs to perform different tasks like shape control, cable plug-in, and knotting
[2]. To better manipulate DLOs, robots need an accurate 3D understanding of the DLO shapes [1, 3].
Though many papers have proposed methods to track DLOs using a sequence of video frames during
manipulation [4, 5], they often assumed a clean DLO configuration to start with like a simple curved
shape without occlusions, where the DLOs’ depth maps are also nearly complete in the first frame.
However, these assumptions do not always hold in practice. For instance, Figure 1 shows our pipeline,
which takes a common lab configuration of a grasped DLO in the air with occlusions as input like
previous works [6, 7, 8]. To accurately obtain a 3D model of a DLO with occlusions, we first obtain
2D DLO masks and then reconstruct the DLOs in 3D. The proposed 3D DLO perception pipeline
tackles both the challenges of 2D DLO segmentation and 3D reconstruction in complex scenarios
where previous methods only focused on one aspect of the problem and did not solve it as well as
proposed here.

To segment a DLO, traditional approaches commonly used color-specific DLOs with a contrasting
background for color space segmentation. Structured or simplified 2D working spaces, such as a table
with uniform color [9] or 3D workspaces with simple backgrounds, are widely adopted by DLO tracking
algorithms [5, 4, 6]. As for DLO segmentation in environments with different backgrounds, learning-
based neural network segmentation architectures have been investigated [10, 11, 12]. These works
show the importance of DLO data collection. However, collecting and labeling hundreds of real-world
DLO images or rendering realistic DLOs in software takes much human effort and performs poorly on
previously unseen DLOs with quite different textures (see the top row in Figure 2).
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Figure 1: Our 3D DLO perception pipeline.

Figure 2: Several DLO perception challenges. Top: Low-quality DLO segmentation mask from current ap-
proaches. (a) An RGB image of an occluded jute rope. (b) A segmented mask using a segmentation model
trained on the wire dataset [10]. (c) A segmented mask using FastDLO [12] (no DLO is detected in this case).
(d) A segmented mask using SAM with the text prompt “rope” [18]. Bottom: Noisy points caused by the
flying pixel issue in the DLO point cloud. (e) Flying pixels between the edge of the DLO and the table. (f)
Flying pixels between two self-intersecting parts near each other. (g) Flying pixels between the DLO and the
occlusion. (h) Noisy point cloud of reflective DLO surface.

To estimate the DLO state, a common marker-based practice is to model the DLO as connected
keypoints [13, 14, 15], which bypasses DLO segmentation and directly estimates the DLO states by
attaching markers to the DLOs. Recent markless research, such as by Keipour et al. [16], Kicki et al.
[17], and Lv et al. [6], estimate keypoints in 2D and 3D space using segmentation masks and a point
cloud. However, we found that the proposed methods do not generalize well to 3D cases [16] or are
not robust against depth noise or large occlusions [6, 17] (see noisy point cloud in the bottom row in
Figure 2, which caused the incorrect reconstruction in Figure 8).

So far, all mentioned works focused on doing DLO segmentation or DLO state estimation separately,
and there is no general and robust solution for 3D DLO perception with mentioned challenges. Existing
research in either DLO segmentation or reconstruction also has several unsolved problems. As stated
above, sequentially combining the existing algorithms on each part of DLO perception does not lead
to an accurate and robust 3D DLO perception result.

To solve both 2D DLO segmentation and 3D DLO reconstruction, the publicly available Segment-
Any-Model (SAM) process [18] was used to get DLO masks, and the masks were post-processed
to reduce false-positive segmentation (see Section 3.1), obtaining better segmentation performance
compared to previous methods on real-world DLO datasets (see Section 4.2). A geometric completion
method was used, based on Bezier curves, to connect the DLO across occlusions in the mask (see
Section 3.2), achieving a higher reconstruction success rate and lower Chamfer distance between the
reconstructed DLO and unoccluded point cloud in both the synthetic dataset and the real-world
dataset (see Section 4.3). We then use a Discrete Elastic Rod model (DER) to physically smooth the
reconstructed DLO (see Section 3.3), which produced less bending energy on average (see Section 4.3)
while still remaining close to the original point cloud.

The contributions of this paper are:
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We propose a robust DLO perception pipeline that:
1) Combines a post-processing method with the large vision model SAM to improve the segmenta-

tion performance on DLOs by reducing false positive segmentations in the background and occlusions
without any additional knowledge of previously unseen DLOs.

2) Produces 3D DLO reconstruction which is robust against sparse depth maps with occlusions
and flying pixels.

3) Models the reconstructed DLO based on the DER model to smooth and make it more physically
realistic.

Experiments on a synthetic DLO dataset and a real-world dataset of 7 different DLOs show that
the proposed method outperforms two State-of-the-Art algorithms on DLO segmentation [10, 12] and
reconstruction [6]1.

2 RELATED WORK

Thin Structure Segmentation: Thin structures and methods to segment them are common, from
large scales such as road lane lines in autonomous driving [19], drone power line inspection [20], road
networks in satellite image analysis [21], to small scales like tubular structures and blood vessels
in medical image analysis [22], to cables, tubes, ropes, wires in household and industrial robotic
manipulation tasks [16, 11, 23] which is the focus of this paper.

DLO Segmentation: Learning-based methods are widely adopted for DLO segmentation. Zanella
et al. [10] used an auto-augmented wire dataset with different backgrounds, Caporali et al. [12]
collected rendered DLO images with labels, and Thananjeyan et al. [11] proposed a UAV labeling
method on deformable objects to reduce human labeling effort.

DLO State Estimation: Using markers or not are the two common methods for DLO state
estimation. A variety of markers are used, including Vicon markers [13], colorful rings painted on
the DLO [14], and QR code markers [15]. Research on markerless DLO state estimation has emerged
recently, such as by Keipour et al. [16] who proposed an occlusion-aware DLO connection and merging
algorithm in 2D space, Kicki et al. [17] used the same method in 3D, and Lv et al. [6] used a deep
learning method to directly estimate DLO states from 3D point cloud data with occlusions.

Discrete Elastic Rods: A Discrete Elastic Rod (DER) [24] is a discrete geometric model of thin
flexible rods that can represent stiff stretching, bending, and twisting effectively based on stretching,
bending, and twisting energies. The DER was initially designed for simulating rods in computer
graphics and later generalized for DLO manipulation [25]. Unlike previous approaches, we used the
DER model to enforce DLO physical smoothness in 3D after reconstruction.

3 APPROACH

We present the reconstruction pipeline, from 2D DLO segmentation (Section 3.1), 3D DLO reconstruc-
tion (Section 3.2) to DLO smoothing (Section 3.3).

3.1 2D DLO Segmentation

Segment-Anything-Model (SAM) [18] is a large, zero-shot segmentation model trained on more than
11M images with labeled masks. This pre-trained model was used without fine-tuning or adding
additional DLO training data. After extracting detected object masks using SAM, Grounding-DINO
[26] was used, which inputs text prompts and the masks to find (without human supervision) object
masks that satisfy the given prompt (e.g. rope). Grounding-DINO is pre-trained on large detection
datasets, such as O365 [27], which contain ropes as well as other common objects.

Though SAM on DLO segmentation with text input performs well in most cases, there are some
cases containing large areas of false positives arising from the background or from occlusions (see (d)
in Figure 2). To reduce the false positive pixels, an effective post-processing method that did not
need additional labeled images was used. Masks predicted by SAM having different categories are all
regarded as the same DLO, assuming only one DLO to segment in each image. Detecting multiple

1See a video: https://youtu.be/nFoU-uAYUmg. Implementation codes and test datasets are at: https://github.com/
TheGoblinTechies/DLO-perception-pipeline
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Algorithm 1: 3D Reconstruction

Input : A 2D mask and point cloud of a DLO
Output: Sorted keypoints DLOPoints in 3D

// 2D morphological operations

1 DLOSkeleton ← ExtractSkeleton (Mask) ;
2 DLOChains ← EliminateConjunctions (DLOSkeleton) ;
3 for Chaini in DLOChains do
4 Nodes2Di ← TracePoints (Chaini) ;

5 end
6 Points3D ← KMeans (PointCloud, Centers← Nodes2D) ;
7 Nodes3D ← Median (Points3D);
8 DLOPoints ← [Nodes3D1, ..., Nodes3Dn] ;
// 3D Reconstruction

9 for i← 1 to n, j ← i to n do
10 Costi,j ← ComputeCost (Nodes3Di, Nodes3Dj) ;

11 end
12 DLOPoints ← ShortestPath (DLOPoints, Cost) ;
13 DLOPoints ← BezierCurve (DLOPoints) ;
14 DLOPoints ← BSpline (DLOPoints) ;

DLOs is not our focus and previous research can already separate multiple DLOs in one image [28]
based on the DLO semantic masks.

Regarding each connected area of the mask as a component, post-processing of masks from SAM
consists of the following (see Figure 3): 1) Remove connected components whose area is below a
threshold (e.g. 0.005% pixels). 2) Remove components whose skeletons have irregular numbers of
ends and conjunctions: morphological operations are used to count the number of endpoints and
conjunctions of each component. The allowable number of endpoints is between 0 and 4, and the
number of conjunctions is between 0 and 5. 3) Remove components of irregular width: Extract
skeletons of each DLO component mask and estimate the width of the DLO by dividing the area of
the component by the total length of the skeleton. Discard components whose width is outside an
allowable range.

3.2 3D Reconstruction

3D reconstruction takes the mask and the DLO point cloud cropped by the mask as input. The details
of each step are presented in Algorithm 1 and are illustrated in Figure 4.

Extracting keypoints: This step has four operations, ExtractSkeleton, EliminateConjunctions,
TracePoints, and KMeans, based on Keipour et al’s method [16] for the first three operations. In
detail: extract a skeleton from the 2D mask to get DLOSkeleton and use a 3 × 3 kernel to find all
endpoints and conjunctions based on morphological methods to get DLOChains consisting of several
chains after splitting the curve at conjunctions. Edge pixels are eroded to create curves with only
one-pixel widths. By selecting a suitable pixel length distance (e.g. 10 pixels), the extracted keypoints
can be connected to form a chain. However, these operations only provide keypoints in 2D space.
Extending these morphological operations into 3D (based on Keipour’s approach in 2D) is difficult
when the point cloud is noisy and has many flying pixels. To find the 3D keypoints, KMeans is used
to cluster the point cloud points. The cluster centers become the keypoints (see (a) and (b) in Figure
4). Only the 3D points whose depth is in the closest 25% are clustered, which reduces the influence
of flying pixels on the keypoint depth estimates (See (c) in Figure 4). Any chain having less than
10 points is deleted. The two points at each end of a chain are discarded to eliminate flying pixels
caused by occlusions, as shown in Figure 2 (g). Once the whole DLO is reconstructed, the two ends
are linearly extended with two additional points.

Initial reconstruction: Keipour’s method is used to decide which two chains are to be connected
and can be directly adapted to 3D with the same cost function. However, their connection strategy is
based on a combination of lines and curves with many rules in 2D. These rules are difficult to adapt
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Figure 3: Post-processing the DLO masks from SAM. (a) is the image of an occluded Ethernet cable. (b) is
the mask directly generated by SAM with a text prompt rope. The black area is the DLO mask. (c) is the
mask by removing all components whose area is below a certain threshold. (d) is the skeleton extracted from
(c), where we circle all irregular skeletons. (e) is the mask that removes all components whose skeletons have
irregular numbers of ends and conjunctions. (f) is the final post-processed mask by removing thick or too thin
width components.

Figure 4: The reconstruction method. (a) the mask and the keypoints found using morphological operations.
(b) the result of K-Means clustering on the 2D mask, where each color represents the mask pixels in the same
cluster, and the cluster center is the keypoint in (a). (c) a comparison figure where lightgreen points are the
median of all points in the same cluster (top 100%), red points are the median of those points having the top
25% smallest depth, and blue points are the original 3D points selected by the segmentation mask. Bottom:
(d) and (e) demonstrate using a Bezier curve to connect the two components of the DLO in 2D and 3D. (f)
a DLO showing both the dense directly reconstructed 3D keypoints (red), and interpolating B-Spline (blue
curve). (g) a DLO showing the blue interpolating B-Spline from (f), with sparse downsampled B-Spline points
(red).
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to 3D space, and may lead to different connections under the same scenario as they showed in their
2D examples. Besides, a combination of lines and curves is not smooth enough with non-continuous
derivatives. A similar work, DLOFTBs, used B-Splines to do 3D reconstruction [17] (whereas we use
B-Splines for identical distance downsampling - presented next). With a large gap between two chains’
ends, directly applying B-Spline connection makes the interpolated curve straight, which leads to a
performance drop when the curve should have a large curvature. To avoid this, a concise and simple
connection strategy that is easy to follow is proposed. A Bezier curve with two control points is used
to connect pieces with a smoother and more deterministic completion (see Figure 4 (d) and (e)).

B-Spline Downsampling: DLO keypoints are not located evenly in 3D when extracted from
the 2D masks due to different sample point depths. Further, more than one hundred keypoints are
typically reconstructed, whereas previous approaches to DLO state estimation usually yielded much
fewer, e.g. 64 [29] or 50 [6] points. Downsampling the keypoints and distributing them approximately
equally along the DLO is desirable. Thus, a continuous B-Spline is fitted to the sorted keypoints, which
is then downsampled to reduce the number of DLO keypoints to 60 with a more even distribution (see
Figure 4 (f) and (g)).

3.3 Discrete Elastic Rod (DER) Fitting.

The previous step extracts the DLO keypoints from the point cloud but does not guarantee the 3D
physical smoothness of the DLO, due to the depth sensor noise and flying pixels.

It is hard to define the smoothness of a DLO or how physically realistic the DLO is. We use the
Discrete Elastic Rod (DER) computer graphics model [24] where 3D curves and rods with minimal
energy are considered to be smooth and physically realistic enough [30]. Fitting a DER trades off the
3D fitting error and a fitting energy penalty. We are not the first to use a DER model, e.g. Lv et
al. [25] used a DER model for DLO shape control. Here, the DER model does shape smoothing. A
DER-modeled DLO consists of n keypoints with 3D position coordinates and n−1 cylindrical segments
between keypoints with a sectional radius r. The total energy terms of a DER are split into stretching,
bending, and twisting energy, E = Es + Eb + Et:

Es =
1

2

i=n−1∑
i=1

πY r2

|s̄i|
(|si| − |s̄i|)2 (1)

Eb =
1

2

i=n−1∑
i=2

πY r4

4|l̄i|
(κi − κ̄i)2 (2)

Et =
1

2

i=n−1∑
i=1

πY r4

4(1 + ν)|l̄i|
(λi − λ̄i)2, (3)

where Y is Young’s modulus, ν is the Poisson ratio, usually set to ν = 0.5. |si| and |s̄i| are the current
and initial length of segment i. Since the input keypoints have almost identical distances between each
other, the stretching energy is considered to be minimal already. λi and λ̄i is the discrete twist between
segment i−1 and i and the intrinsic twist. Twisting energy is difficult to measure because the twisting
angle is hard to perceive. We assume both have zero value. Thus, in the approach proposed here, a
DLO is considered smooth and physically realistic if it has low bending energy Eb. κi is the discretely
estimated curvature at point i. κi = 2tan(ψi/2), where ψ is the angle between two segments i− 1 and
i. Assuming no external contact and ignoring gravity, the DER model optimizes the total energy by
applying internal force Fi at each keypoint. Fi = − ∂E

∂qi
, where qi is the generalized coordinates which

include degrees of freedom of internal energies at the ith keypoint.
First, a Savitzky-Golay filter is applied on the depths of the reconstructed keypoints [31] with a

window size 17 to roughly smooth the DLO. Then, the DER model is applied to regularize all points
and smooth the DLO. Two points at each end are fixed, assuming they are to be grasped (i.e. in a
robot manipulation task). Our DER parameters have a similar order of magnitude to Lv’s [25], where
the DLO sectional radius is r = 2 × 10−4m and the density is 7 × 10−2kg/m3. 2 These values were
constants in all experiments. By keeping these two parameters fixed, adjusting the relative stiffness
can be done by adjusting Young’s modulus.

2These values are physically unrealistic used by Lv [25]. More realistic parameters could be estimated for the real
DLO experiments, but it would still require an estimated compensating Young’s modulus.
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Figure 5: Data Collection. (a) Seven DLOs used in the experiments. (b) Real-world DLO data collection
with two Franka arms and an Azure Kinect. (c) Synthetic DLO dataset generation, where the red points are
the DLO ground-truth, and the blue points are synthetic point cloud points created by adding different types
of noise to the DLO ground-truth. (d) Ground-truth DLO with keypoints and keypoints with added noise in
the depth-axis. (e) Gaussian noise added in all directions, but larger in the depth-axis. (f) Random occlusion
and noise added to the DLO point cloud near occlusion.

By initializing the positions of all points as described above, a single iteration of the DER fitting
optimization is applied. One iteration provides a smoother DLO while keeping close enough to the
measured 3D data (see Figure 9 for the visualization of the DER smoothing effect).

4 EXPERIMENTS

This section introduces the experiments and experimental setups, including data collection, 2D DLO
segmentation, 3D DLO reconstruction, and DER-based smoothing.

4.1 Data Collection and Evaluation Metric

1. Synthetic DLO datasets for quantitative evaluation. The ground-truth of a real 3D DLO
is hard to obtain, and it is hard to do quantitative evaluations without high-quality ground-truth.
Thus, we followed a similar strategy to [6], i.e. to quantitatively evaluate reconstructed DLOs using
a synthetic DLO dataset. We recorded 21 randomly manipulated DLOs with different stiffness and
lengths of 60 keypoints in MuJoCo [32], recorded trajectories, and got aligned 2D masks and depth
maps. Random segments of the synthetic DLOs are manually occluded, uniformly from 0% to 40%. 630
synthetic DLOs with masks and point cloud are used. Four types of noise were added to mimic different
flying pixel issues on thin objects, as shown in the bottom row of Figure 2. The four types of noise
are: (1) zero mean Gaussian noise with 6mm variance added to the keypoints in the depth direction
(Figure 5 bottom left), (2) zero mean Gaussian noise with variance 2mm in non-depth directions, and
6mm in the depth direction applied to all DLO points (Figure 5 bottom middle), (3) positive uniform
noise between 0mm to 12mm in the depth direction of random pixels (uniformly from 5% to 10%) on
the DLO (Figure 5 c, (4) negative uniform noise between 6mm to 12mm in the depth direction added
to DLO points near occlusion boundaries (within 1% of the total DLO length - see Fig 5 top right and
bottom right). Noise (1) simulates the inaccurate depth of thin objects captured from depth sensors
(see (h) in Figure 2). Noise (2) simulates noisy point cloud data. Noise (3) simulates flying pixels at
the edge of the DLO (see (e) in Figure 2). Noise (4) simulates flying pixels at occlusions (see (g) in
Figure 2). An example before and after adding depth-specific noise is shown in Figure 5.

2. Real-world DLO datasets for testing. A real dataset was collected from seven different
DLOs: 1) a jute rope, 2) a cotton rope, 3) a nylon rope, 4) a climbing rope, 5) an Ethernet wire, 6) a
translucent tube, and 7) a rubber rod. (See Figure 5 top left). These DLOs have different textures,
color patterns, and radii. We collected at least 69 images of each DLO in different configurations
with various occlusions and altogether 830 images for segmentation (94, 119, 205, 142, 69, 120, and
81 images of each DLO). The real-world dataset was reduced to 757 good-quality point cloud images
(87, 116, 167, 131, 69, 116, and 71 images of each DLO). All images have an original resolution of
1920× 1080 and were center-cropped to 1080× 1080 pixels. The depth map has an original resolution
of 640 × 576 collected by an Azure Kinect. We applied depth-to-color image alignment and center-
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cropping to get the aligned depth map with the same resolution. We used unoccluded examples to
get ground-truth point clouds and then introduced obstacles to create occlusion cases while keeping
shapes the same.

3. Evaluation metrics: Intersection over Union score (IoU) evaluated the 2D DLO segmentation
performance. Using only one metric to evaluate 3D DLO reconstruction does not comprehensively
compare the performance of different reconstruction algorithms. Thus, four different 3D evaluation
metrics were used:

a) D1bi and D1: D1bi measures the overall similarity using the Chamfer distance D1bi(X,Y ) =∑
x∈X miny∈Y L2(x, y)

2/|X|+
∑

y∈Y minx∈X L2(x, y)
2/|Y |, where X are the 3D reconstructed points

and Y are the ground-truth points in the synthetic dataset or the unoccluded point cloud in the real-
world dataset. The same interpretation of X and Y is used in the remaining formulas. D1 measures
the degree of fit: D1(X,Y ) =

∑
x∈X miny∈Y L2(x, y)

2/|X|. A lower D1 indicates the reconstructed
DLO is closer to the unoccluded point cloud, although X may be incomplete.

b)D2: When doing DLO grasping or DLO placement, D2 estimates the worst-case distance that the
reconstructed points can be away from a target grasping or placement position. We define D2(X,Y ) =
maxx∈X miny∈Y L2(x, y).

c) D3 estimates the percentage of poorly reconstructed points by using a distance threshold T .
D3(X,Y |T ) =

∑
x∈X 1(miny∈Y L2(x, y) > T )/|X| i.e. the percentage of reconstructed points whose

distance to the closest ground-truth point (in the synthetic dataset or unoccluded cloud point in the
real-world dataset) is larger than a certain threshold.

d) D4: Physical smoothness is defined as D4(X) =
∑i=n−2

i=1 angle((Xi+1 − Xi), (Xi+2 − Xi+1))
2

where angle(A,B) = arccos(A ·B)/(||A|| · ||B||)). D4 measures the sum of squares of angles between
adjacent points.

As a false DLO connection or a partial reconstruction may miss a large area of the point cloud and
lead to a significant increase in the distance metrics, Success Rate is used to measure the number of
cases the DLO is reconstructed correctly. Only ‘success’ cases are used to calculate the four metrics. A
DLO is reconstructed successfully when the metric D1bi < 50mm, when using the synthetic dataset. In
the case of the real-world dataset, a successful reconstruction requires 1) D1 < 25mm, 2) D1bi−D1 <
75mm, and 3) D2 < 30mm. The three criteria ensure that the reconstructed DLO satisfies: 1) the
overall shape and position do not largely differ from the unoccluded point cloud, 2) the DLO points
do not fit only a small part of the point cloud, and 3) a future manipulation does not fail because of
a grasp or placement that was too far from the DLO.

4.2 2D DLO Segmentation

Four segmentation algorithms are compared to find which best performs the DLO segmentation task,
with the results in Table 1. The four models are 1) Wire-dataset[10]: a segmentation model trained
on a wire dataset proposed by Zanella et al., 2) FastDLO[12]: a real-time tracking model trained on
a synthetic DLO dataset, 3) SAM: the segment anything model (SAM) [18] with the Text prompt
rope as input. SAM itself does not allow a text prompt, so Grounded DINO [26] was used, which
supports the text prompt for SAM. The box threshold and the text threshold are both 0.25, which
satisfies all seven DLO segmentations. We only used rope rather than a more specific prompt for each
image to avoid human supervision. 4) Text+, which post-processes the results from SAM using the
methods from Section 3.1.

All models are evaluated on the real-world DLO dataset, including seven different DLOs (see Section
4.1). For the baseline models, we downsampled the resolution to 640×360 which is used in the original
papers.

SAM was tested with different steps in Section 3.1, including SAM Pixel, which only removes
components with few pixels, and SAM Width, which removes too-thin or too-thick masks based
on SAM Pixel. A broad threshold range from 3 to 34 pixels was used based on typical target sizes,
distances, and camera parameters. Four successful post-processing examples are shown in Figure 6.

Table 1 presents the results mentioned above:
1) The segmentation model trained on either the wire dataset or the rendered dataset does not

perform well on other DLOs with different textures and color patterns.
2) The large vision model SAM with Grounding DINO computes a better segmentation result

given the text prompt rope as input. SAM is convenient for segmenting unseen DLOs without any
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Table 1: IoU scores ↑ and false positive rates (FPR) ↓ for the real-world DLO dataset. We use - to present the
results of SAM Text+, as it has identical performance to SAM Text in the datasets with pure color backgrounds.
As SAM achieves almost perfect results without false positive masks, post-processing provides no benefit.

Dataset
DLO-dataset based SAM based
[10] [12] Text Text+

Default .052/.028 .227/.014 .775/.119 .805/.002
Grey .021/.020 .491/.005 .870/.001 -
Green .005/.020 .299/.011 .872/.001 -
White .001/.021 .450/.009 .867/.001 -
Black .028/.019 .424/.008 .847/.001 -

Table 2: IoU scores of SAM after each step on the datasets.

Dataset
SAM
Text

SAM
Pixel

SAM
Width

SAM
Text+

Full Dataset (830) .775 .782 .794 .805
w/ occlusions (523) .757 .761 .784 .796

model fine-tuning or prior knowledge. However, the false positive segmentations on the background or
occlusions undermine the segmentation performance.

3) Post-processing based on morphological operations on SAM’s segmentation masks improved
the performance of SAM without any additional labeled training data measured by IoU scores. The
post-processing significantly reduced false positive rates (FPR).

To reduce bias from the lab background, the real-world dataset’s default background was replaced
with four types of pure color (grey, green, white, and black). The last four columns of Table 1 show
that the baseline model still cannot segment the DLO, supporting our opinions on the results in 1)
and 2). Table 2 shows the performance of SAM on the full dataset. The w/ occlusions dataset
only contains occlusions images, where SAM performs worse. Our post-processing improves DLO
segmentation against occlusions.

SAM with Grounding DINO takes 8.2s to process an image on the resolution of 1920 × 1080 on
average, and post-processing takes 0.6s to process the predicted mask at the resolution of 1080× 1080
on an Nvidia RTX 3090.

Figure 6: Examples of segmentation post-processing. Each example contains the input RGB image, the
SAM segmented mask, and the post-processed mask.

4.3 3D DLO Reconstruction and DLO Smoothing

To evaluate the 3D geometric completion stage of the DLO reconstruction, the synthetic and the real-
world DLO datasets were used with the four metrics from Section 4.1. The proposed 3D reconstruction
algorithm was compared to the baseline reconstruction algorithm of Lv et al. [6], which is the State-
of-the-Art. Two versions of the proposed method were evaluated: 1) Rec, the directly reconstructed
DLO given as the output of Algorithm 1 and 2) DER, the smoothed DLO where Young’s modulus was
set to 40000 N/m2. The ground-truth masks are used when comparing the 3D DLO reconstruction
performance.

Table 3 shows the performance on the real-world and synthetic DLO datasets. The first row shows
that the proposed model has a much lower value on all four metrics while maintaining a high success
rate on the synthetic dataset. Several cases are visualized in Figure 7. When there is larger depth noise,
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Table 3: Four metrics and success rate on the synthetic and real-world DLO datasets. D3 has a threshold of
20mm on the synthetic dataset and 10mm on the real-world dataset.

DLO Type
SuccessRate ↑ D1bi(mm) ↓ &D1(mm) ↓ D2(mm) ↓
Lv Rec DER Lv Rec DER Lv Rec DER

Synthetic (630) .57 .86 .84 25.7/- 13.1/- 13.1/- 59.7 28.1 27.6
Real (757) .21 .66 .67 16.9/5.5 19.6/3.0 20.4/3.4 18.1 10.5 11.0

Real 75% (464) - - - 32.5/14.3 18.3/4.7 19.0/4.7 61.6 19.7 20.2

DLO Type
SuccessRate ↑ D3 ↓ D4 ↓
Lv Rec DER Lv Rec DER Lv Rec DER

Synthetic (630) .57 .86 .84 .165 .054 .054 1.9 4.6 0.4
Real (757) .21 .66 .67 .101 .050 .050 1.5 1.8 0.3

Real 75% (464) - - - .374 .091 .092 2.6 1.9 0.4

Figure 7: 3D reconstruction visualization on the synthetic DLO datasets. Our result, red curves overlaying on
ground-truth curves in most cases, outperforms the baseline model with more correct connection and fitting.

the baseline model fails to estimate the correct DLO points that fit the point cloud, and performance
also deteriorates with occlusions.

The 3D reconstruction experiments used the unoccluded DLO point cloud as the ground-truth.
All depth pixels outside the workspace were cropped, which has a depth range between 0.2m to 0.8m,
though much depth noise remains close to the DLO due to the problems illustrated in the bottom row
of Figure 2. The ground-truth 3D point cloud does not describe the DLO well due to depth noise and
missing depth pixels. Visualizations of results from the real-world datasets are seen in Figure 8.

Table 3 shows that the proposed models have a much higher success rate on real-world DLO
reconstructions. Performance on the rubber rod was much worse than the other DLOs because the black
rubber rod has a more reflective surface than other DLOs, which leads to point clouds of poor quality,
even without occlusions. This increases the difficulty of both DLO reconstruction and evaluation.
Figure 8 shows one case where the point cloud is incomplete even without occlusions, and successful
reconstruction of the missing part of the point cloud increases all distance metrics.

Table 3 evaluates all models with D1 and D1bi:
1) The proposed approaches have a relatively low D1 distance compared to the baseline, and the

Figure 8: 3D reconstruction visualization on the real-world DLO dataset. Considering we do not have ground-
truth keypoints, we overlay reconstructed DLOs on unoccluded point cloud in the last row to show connection
and fitness.

10



Figure 9: An example of the DER-smoothed DLO from two views.

Figure 10: Failure cases; (a), (b) on post-processing where the DLO mask is removed. (c), (d) on 3D recon-
struction where the connection is incorrect.

direct reconstruction method performs the best. This can be foreseen because the reconstructed points
are all from the point cloud.

2) The baseline method performs well on D1bi compared to the proposed methods. However, it
has a much lower success rate (0.21 compared to 0.66 and 0.67 of the proposed methods). Because
only successful cases are calculated in D1bi, the baseline has a much lower point distance on the more
strictly selected successful cases.

3) The method using the DER to smooth the DLO performs slightly worse, because smoothing
reconstructed points makes some points not fit well. Figure 9 shows an example of the 3D points, the
reconstructed DLO, and the smoothed DLO. The smoothed DLO is clearly better.

Table 3 shows that the proposed methods have lower D2 distances (maxi-min error) on the real-
world dataset. Thus, the worst grasping or placement position can be within a bounded error, even if
the grasp position is unluckily chosen.

D3 shows that both the direct reconstruction and DER methods have the lowest percentage of
reconstructed points whose distance is larger than 10mm to the closest point in the unoccluded point
cloud.

D4 shows that the DER-based smoothing produces the physically smoothest reconstructions with
a slight sacrifice on the closeness of fit, as measured by D1, D1bi, and D2. One reason is that the
DLOs in the real world usually have different levels of plastic deformation (see the DLOs in Figure 5
a). But the DER model assumes the DLO has no plastic deformation, and its default shape should be
straight.

In the last row in Table 3, a second comparison was based on selecting the DLO images with the
lowest 75% D1bi from each of the three methods and then intersecting the three subsets to produce a
reduced test subset. This practice considers non-outlier failure cases to avoid unfair comparisons. In
this case, both proposed methods outperform the baseline, which supports the claim that the good
performance of the baseline on D1bi is a consequence of its reduced test sample selection and benefits
from samples of good quality.

Some failure cases are: 1) A false connection across large occlusions (see the first figure of Figure
7 and the last figure of Figure 8). 2) A poor reconstruction when there is a large occlusion on a
non-straight part (see 6th column of Figure 8). See also failure cases from both 2D segmentation and
3D reconstruction in Figure 10.

On average, 3D reconstruction takes 0.8s in total, and DER physical smoothing takes less than 0.1s
on Intel i9-10850K.

5 LIMITATIONS and CONCLUSIONS

Limitations: Our pipeline takes around 10 seconds to process an image of 1080×1080. Though we do
not aim to provide real-time perception, improving efficiency remains challenging, especially in DLO
segmentation. Here, we focused on the scenarios with one single DLO in the scene. Another future
work is to generalize to cases with multiple DLOs.

Conclusion: This paper proposes a 3D DLO perception pipeline, including 2D segmentation,
3D reconstruction, and smoothing based on DER, the physical model. Improved DLO segmentation
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performance was achieved by using a large vision segmentation model (SAM) and post-processing the
masks by further eliminating false positive segmentations to improve the segmentation performance
without additional training data. The proposed 3D reconstruction method, by using geometric com-
pletion, can reduce the depth noise of the DLOs. Finally, the DER method physically smooths the
reconstructed DLOs. Experiments on both a synthetic and a real-world dataset of 7 different DLOs
demonstrate that the proposed methods outperform previous algorithms on both 2D segmentation and
3D reconstruction. We believe the proposed 3D DLO perception pipeline can provide a good DLO
perception initialization suitable for downstream robotic tasks on DLOs, such as DLO tracking and
manipulation.
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