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Shareable abstract (@ERSpublications)
This is the first GWAS to report genome-wide significant SNPs for PRISm, four of which are novel
for lung function. Genetic factors associated with PRISm are strongly correlated with risk of both
other lung diseases and extrapulmonary comorbidity. https://bit.ly/3Qo0jUn
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Abstract
Background Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s
(FEV1) <80% predicted and FEV1/forced vital capacity ⩾0.70. PRISm is associated with respiratory
symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if
they provide insight into the pathogenesis of PRISm and associated comorbidities.
Methods We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants
(Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for
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replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to
determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide
genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association
studies of top SNPs were performed.
Results 22 signals reached significance in the joint meta-analysis, including four signals novel for lung
function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62,
p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide
association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood
pressure traits.
Conclusion This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the
signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162
(HLA-B), have not been described in association with lung function before, demonstrating the utility of
using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly
correlated with risk of both other lung diseases and extrapulmonary comorbidity.

Introduction
Preserved ratio impaired spirometry (PRISm), also referred to as “restrictive pattern” or “unclassified”
spirometry, is defined as forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital
capacity (FVC) ratio ⩾0.70 [1]. It has been suggested that for a subgroup of subjects, PRISm may be a
precursor of COPD, with up to 50% progressing to COPD while 15% return to “normal” spirometry over
5 years [2, 3]. A larger and younger cohort has shown that PRISm may be transient with only 12% going
on to develop airflow obstruction over 8 years [4]. Clinical interest in PRISm relates to its consistent
association with respiratory symptoms, comorbidities (e.g. obesity, diabetes and cardiovascular disease)
and all-cause mortality [2–4].

Previous studies have shown that lung function measures or traits are, in part, heritable and associated with
genetic variants, implicating a wide range of mechanisms including cilia development and elastic fibres in
obstructive lung disease [5, 6], but the individual genetic associations and pathways which underlie PRISm
are less well understood. A previous genome-wide association study (GWAS) of PRISm failed to find
associations of genome-wide significance (p<5×10−8), was modest, and was restricted to ever-smokers [7].

Genetic variants associated with PRISm could provide invaluable insight into its pathogenesis and
associated comorbidities, as well as potentially identify therapeutic targets.

Our objective was to perform a case–control GWAS of PRISm and report novel associated single
nucleotide polymorphisms (SNPs) in a two-stage study design see if they provide insight into the
pathogenesis of PRISm and associated comorbidities.

Methods
Study design
We performed a two-stage GWAS with meta-analysis. For the discovery cohort (Stage 1), we used the UK
Biobank (UKBB) (www.ukbiobank.ac.uk). For Stage 2 we used cohorts within the SpiroMETA and
Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortia as well as
COPDGene. We estimated genetic correlations with potentially related phenotypic traits. We performed a
phenome-wide association study (PheWAS) of SNPs not found to be associated with lung function in the
largest lung function GWAS to date [8].

Stage 1
The UKBB, which was used for the Stage 1 GWAS, is a large UK population-based health research
resource of ∼500 000 people aged 38–73 years old recruited between 2006 and 2010. Questionnaires,
interviews, anthropometric measures and biological samples were collected. UKBB received ethical
approval from the Research Ethics Committee (REC reference for UK Biobank: 11/NW/0382). We used
previously derived variables of quality-controlled prebronchodilator FEV1 and FVC. Only participants with
spirometry classified as acceptable were included (supplementary appendix 1). Only those of self-identified
European ancestry with very similar genetic ancestry based on principal component analysis of genotypes
were included. Patients with unknown smoking status or weight were excluded. FEV1 % predicted was
calculated as per Global Lung Function Initiative (GLI) 2012 values using RSpiro R package in R v3.6.1
(www.r-project.org). PRISm was defined as FEV1 <80% predicted and FEV1/FVC ratio ⩾0.70 and
controls as FEV1 ⩾80% predicted and FEV1/FVC ratio ⩾0.70. Participants with spirometry not meeting
the criteria for PRISm or control were excluded. Figure 1 shows the participant selection flow chart and
table 1 contains demographics of the sample used.
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The GWAS was performed using the Integrative Epidemiology Unit (IEU) GWAS pipeline, described in
detail elsewhere [9]. The pipeline contains previously derived genetic files of participants after
pre-imputation quality control, phasing and imputation, allowing fast standardised GWAS of the UKBB
population. A description of the process to create the derived genetic files can be found in detail elsewhere
[10, 11] and can be summarised as follows. Genotyping was performed using the Axiom UK BiLEVE
array and the Axiom Biobank array (Affymetrix) [12]. Before phasing, multiallelic SNPs or those with
minor allele frequency (MAF) ⩽1% were removed. Phasing of genotype data was performed using a
modified version of the SHAPEIT2 algorithm [13]. Genotype imputation to a reference set combining the
UK10K haplotype and Haplotype Reference Consortium reference panels was performed using IMPUTE2
algorithms [14]. The analyses were restricted to autosomal variants using graded filtering with varying
imputation quality for different allele frequency ranges. An in-house algorithm was then applied to
preferentially remove the individuals related to the greatest number of other individuals until no related
pairs remain. To model population structure in the sample, 143 006 directly genotyped SNPs were used,
obtained after omitting variants with MAF <0.01, genotyping missing rate >0.015 or Hardy–Weinberg
equilibrium p<0.0001; and linkage disequilibrium (LD) pruning to an r2 threshold of 0.1 using PLINK
v2.00 (www.cog-genomics.org/plink/2.0).

UK BioBank participants with spirometry,

n=457 445

"Best measure" spirometry, 

n=353 315

351 874 participants

GWAS 289 792 participants

38 639 cases, 257 643 controls

Neither PRISm nor control, n=55 592

Genotype missing, n=6490

Missing smoking status/BMI, n=1441

Not acceptable spirometry, n=104 130

FIGURE 1 Participant selection flow chart. BMI: body mass index; PRISm: preserved ratio impaired spirometry;
GWAS: genome-wide association study.

TABLE 1 Demographics of Stage 1 participants in UK Biobank

Demographic at baseline PRISm Controls

Participants (n) 38 639 257 643
Age (years) 56.4±7 56.0±7
BMI (kg·m−2) 29.1±5 27.2±4
Female (%) 55.4 55.6
FEV1 (% predicted) 74 (68–77) 98 (90–106)
FVC (% predicted) 76 (71–81) 99 (91–108)
FEV1/FVC 0.75 (0.72–0.78) 0.77 (0.74–0.80)
Never-smoker (%) 51.2 56.8
Ex-smoker (%) 36.4 35.3
Current smoker (%) 12.4 7.9
Pack-years# 23 (13–36) 16 (8–27)
Doctor-diagnosed asthma (%) 16.8 9.9
Doctor-diagnosed COPD (%) 1.7 0.3

Data are presented as mean±SD or median (interquartile range), unless otherwise stated. PRISm: preserved ratio
impaired spirometry; BMI: body mass index; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity.
#: for current and ex-smokers only.

https://doi.org/10.1183/13993003.00337-2023 3

EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE | D.H. HIGBEE ET AL.

https://www.cog-genomics.org/plink/2.0/


Using the pipeline-derived genetic files, a GWAS of PRISm versus controls was performed using
BOLT-LMM (https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html) [15]. The
association between PRISm and each SNP was calculated using logistic regression, with SNP coded
additively, and adjusting for sex, body mass index (BMI), age and smoking status (smoking status as a
dummy variable; 0=never-smoker, 1=ex-smoker, 2=current smoker).

SNPs were filtered to remove those with a MAF ⩽0.01 or that were strand-ambiguous. LD score regression
was used to estimate heritability and to assess genomic inflation by calculating λ and LD intercept [16]. To
correct for genomic inflation the p-values were corrected for the LD intercept. Stringent LD clumping
(r2=0.001, kb 10 000) was applied to SNPs reaching a significance threshold of p=5×10−8 to define
distinct sentinel SNPs. Only SNPs considered novel, based on their reference SNP cluster IDs (rsIDs) not
being reported as top signals in the SHRINE et al. [6] 2019 GWAS of lung function, were investigated in the
replicating cohorts. Figure 2 shows a flow chart of the analysis.

Stage 2 and joint analysis
Novel SNPs identified in Stage 1 were tested for association in 13 European ancestry independent cohorts
from the SpiroMeta and CHARGE consortia. The supplementary materials summarise full cohort
descriptions, spirometry methods, genotyping methods and imputation platforms. Replicating cohorts
performed a logistic regression with the lead SNPs from Stage 1 in those with PRISm and control spirometry.
Adjustment was made for age, BMI, sex, smoking history (either pack-years or status, as described above)
and population substructure by either principal components or using linear mixed models [17]. Results
were combined across the Stage 2 studies using a fixed-effect inverse variance model in Stata 17
(StatCorp., College Station, TX, USA). The nearest gene for each SNP was determined using
PhenoScanner (www.phenoscanner.medschl.cam.ac.uk).

Definition of top SNPs
We performed a joint analysis of Stage 1 and Stage 2 in a fixed-effect inverse variance model using Stata 17.
Heterogeneity was tested for using Cochrane Q. Top SNPs had to meet the following criteria: p<5×10−8 in
the joint analysis of Stage 1+2; same direction of effect in Stage 1 and Stage 2; and either p<0.05 in Stage 2
or a lower p-value in the joint Stage 1+2 than in Stage 1. Because no genome-wide significant SNPs have
ever been reported in association with PRISm, all top SNPs identified are assumed novel for PRISm.

Genetic correlation
To investigate the shared genetic architecture between PRISm and other traits, we performed a bivariate
LD score regression analysis to assess the genome-wide genetic correlation (rg) between Stage 1 PRISm
results and continuous lung function traits, moderate to severe asthma, asthma–COPD overlap,
spirometrically diagnosed COPD, respiratory tract infections and eosinophil count [18]. We also examined
the genetic correlation between PRISm and related conditions including type 2 diabetes, BMI,
hypertension and myocardial infarction.
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FIGURE 2 Manhattan plot of discovery genome-wide association study after linkeage disequilibrium score
regression filtering and adjustment.
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PheWAS
We conducted a PheWAS of each top SNP individually using https://gwas.mrcieu.ac.uk/phewas/ to
determine if SNP pleiotropy could account for the described associations with PRISm. We highlight lung
function measures, lung diseases and comorbidities previously associated with PRISm (e.g. overweight or
BMI, cardiovascular disease and diabetes) [4].

SNPs novel for lung function: deep PheWAS and gene ontology
Top SNPs that were not reported in the largest GWAS of lung function to date (r2⩾0.5) were reported as
novel for both PRISm and lung function [8]. The SNPs were analysed using deep PheWAS enriched for
lung function traits to examine for associations with lung function and other traits [19]. The nearest genes
to these novel SNPs were then investigated for gene ontology information using the Functional Mapping
and Annotation of Genome-wide association studies (FUMA) tool (https://fuma.ctglab.nl). Hypergeometric
tests were implemented using FUMA to test whether the nearest genes to novel SNPs were overrepresented
in gene sets from MSigDB, WikiPathways and reported genes from the GWAS catalogue (gene-set
enrichment analysis; see https://fuma.ctglab.nl/tutorial#gene2func for full list of gene sets) [20].

Results
Discovery GWAS
FEV1 and FVC “best measures” were available for 353 315 UKBB participants. Supplementary appendix 1
contains details of spirometric quality control to derive best measure variables. After excluding individuals
missing smoking status and/or BMI (n=1441), 38 639 PRISm cases and 257 643 controls were identified.

After further excluding 6490 individuals without derived genetic files in the GWAS pipeline described
above, a GWAS of 289 792 individuals was performed (figure 1). A total of 7 339 387 SNPs were tested
after exclusions. A Manhattan plot of the results is shown in figure 2. The chip heritability estimate (h2)
with SE was 0.0493±0.0024. The λ was 1.25 and the LD intercept 1.02. The 7 339 378 SNP p-values were
corrected for the LD intercept, leaving 6037 that met p<5×10−8.

After LD clumping (r2=0.001, kb 10 000), 33 SNPs from 18 chromosomes remained. We removed SNPs
already described in the SHRINE et al. [6] GWAS, leaving 27 SNPs from 16 chromosomes to investigate in
Stage 2.

Stage 2 analysis
The Stage 2 analysis to replicate SNPs discovered in Stage 1 was conducted in 13 cohorts (5165 PRISm
cases and 47 729 controls). Stage 2 cohorts used proxies if SNPs were not found in their panel (r2⩾0.8).
SNP rs142330941 was only found in the Framingham cohort and no proxies for it were available in other
cohorts, so it was excluded from further analysis, leaving 26 SNPs tested in Stage 2 (figure 3).

In total, 22 SNPs met the criteria for top SNPs. Five of these showed strong evidence of heterogeneity
contributing to effect with Cochrane Q p<0.05 and I2⩾40%. The large difference of sample sizes of
Stage 1 and 2 likely contributed to this heterogeneity. Full results at each stage are in table 2.

Genetic correlation
Details of GWAS used for correlation studies with the Stage 1 PRISm can be found in supplementary
appendix 2. As expected, we found very strong genetic correlation between PRISm and FEV1 and FVC,
and a gradation of increasing genetic correlation between PRISm and asthma, asthma–COPD overlap and
COPD (table 3). Type 2 diabetes showed a moderate genetic correlation with PRISm. Waist-to-hip ratio
(after adjustment for BMI) was positively genetically correlated with PRISm, whereas BMI was negatively
genetically correlated with PRISm. Cardiac diseases, systolic hypertension and myocardial infarction
showed positive genetic correlations with PRISm.

PheWAS
Almost all SNPs had associations with lung function traits (21 of 22 top SNPs). Consistent with the
genetic correlation estimates, many SNPs were associated with anthropomorphic traits such as height
(12 of 22) and weight or BMI (16 of 22). Associations with diabetes (diagnosis or medication use) or
HbA1c (18 of 22) and systolic or diastolic pressure (7 of 22) were common. Full results are in the
supplementary tables.

SNPs novel for lung function: deep PheWAS and gene ontology
During the development of this paper, the largest GWAS of lung function was released that describes
1020 SNPs associated with lung function [8]. Four of the PRISm top SNPs were distinct from lung
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function signals found in this GWAS (r2>0.5) and are therefore novel for lung function: rs7652391 (nearest
gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B). We selected these
four SNPs for a deep PheWAS enriched for lung function traits. All four SNPs were associated with lung
function traits. This is expected because the deep PheWAS used UK Biobank as did our Stage 1 analysis.
Rs9431040 was positively associated with systolic blood pressure (supplementary figure E4). As shown in
supplementary figure E5, rs185937162 had a strong negative association with inflammatory conditions
such as ankylosing spondylitis, uveitis and other spondyloarthropathies. For full results see supplementary
tables and figures. Using FUMA, HLA-B, HLX and, to a lesser extent, MECOM were all shown to be
expressed in the lung (HLA-B is expressed in nearly all cell types) (supplementary figure E6). MECOM
encodes a protein that is a transcriptional regulator and oncoprotein and may be involved in
haematopoiesis, apoptosis, development and cell differentiation and proliferation. As per the GeneCards
database (www.genecards.org), SNPs in the gene have been associated with changes in body height and
diastolic blood pressure. HLX is predicted to be involved in organ development and is associated with
diseases affecting the diaphragm. SNPs in the gene are associated with changes in body height and
cholesterol levels. TMEM114 encodes a protein that has a role in lens and eye development. SNPs in the
gene are associated with changes in vital capacity, body height and smoking initiation. HLA-B plays a role
in the immune system and may influence the susceptibility to infection or the effect of autoimmune
processes on the lung. Gene-set enrichment analyses showed that, in addition to respiratory traits, the
26 novel genes were enriched among gene sets for multiple other phenotypes, including white blood cell
traits, anthropometric traits and traits relating to diabetes, including β-cell function and glucose levels
(supplementary table E12).

Discussion
This is the first GWAS of PRISm to report genetic associations reaching significance thresholds. We show
that there is a heritable component for the development of PRISm. We report 22 distinct signals for

GWAS of PRISm in UK Biobank

(Stage 1)

Joint analysis of Stage 1 and Stage 2

using fixed-effect meta-analysis

12 321 875 SNPs

imputed/genotyped

7 339 387 SNPs

6037 SNPs

26 SNPs analysed (Stage 2)

22 SNPs

27 SNPs enter

Stage 2 (13 independent cohorts)

33 SNPs in UK Biobank

(Stage 1)

Clumping (r2=0.001, kb 10 000)

Six SNPs previously reported with lung function 

in published GWAS [6]

After LDSC intercept p-value correction,

p<5×10−8

4 982 497 SNPs removed by LDSC as

duplicate/strand ambiguous/MAF≤0.01 

One SNP not found in Stage 2 consortia, 

with no proxies available

pjoint<5x10−8 and direction of OR is the 

same in Stage 1 and Stage 2, and either 

pStage 2<0.05 or pjoint<pStage 1

FIGURE 3 Flow chart of single nucleotide polymorphisms (SNPs) analysed. GWAS: genome-wide association
study; PRISm: preserved ratio impaired spirometry; LDSC: linkeage disequilibrium score regression; MAF: minor
allele frequency; OR: odds ratio.
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TABLE 2 SNP results Stage 1, Stage 2 and joint Stage 1+Stage 2

rsID CHR:BP Nearest gene Function EA/NEA EAF Stage 1 Stage 2 Stage 1+Stage 2 joint meta-analysis

OR (95% CI) p-value OR (95% CI) p-value OR (95% CI) p-value I2 (%) Cochrane
Q p-value

rs9431040 1:221152299 HLX Intergenic T/C 0.28 0.99 (0.990–0.994) 1.88×10−15 0.94 (0.901–0.990) 0.020 0.99 (0.990–0.994) 4.56×10−16 0.0 0.74
rs9295 2:36777825 CRIM1 UTR3 G/A 0.71 1.01 (1.004–0.008) 2.72×10−9 0.97 (0.923–1.014) 0.175 1.01 (1.004–1.008) 2.61×10−9 3.6 0.41
rs7652391 3:168913273 MECOM Intron G/T 0.78 0.99 (0.992–0.996) 2.29×10−8 0.95 (0.902–1.007) 0.076 0.99 (0.992–0.996) 1.10×10−8 4.8 0.40
rs6537297 4:145502029 FHDC1 Intergenic C/T 0.45 1.01 (1.005–1.008) 7.73×10−13 1.05 (1.003–1.093) 0.040 1.01 (0.996–1.016) 2.49×10−13 43.7 0.03
rs6923462 6:7801112 BMP6 Intron T/C 0.84 0.99 (0.991–0.996) 4.06×10−8 0.91 (0.860–0.967) 0.002 0.99 (0.991–0.995) 1.45×10−8 40.7 0.04
rs1233604 6:28734676 ZFP57 Intergenic G/A 0.88 0.99 (0.986–0.992) 1.18×10−15 1.00 (0.929–1.074) 0.978 0.99 (0.985–0.993) 5.96×10−16 0.0 0.61
rs185937162 6:31325268 HLA-B Upstream T/G 0.96 0.99 (0.984–0.992) 3.69×10−8 0.95 (0.326–2.760) 0.339 0.99 (0.984–0.992) 2.16×10−8 13.7 0.29
rs6928024 6:142551082 AL356739.1 Intergenic G/A 0.75 1.01 (1.004–1.008) 2.44×10−8 1.03 (0.626–1.700) 0.226 1.01 (1.004–1.008) 1.34×10−8 39.9 0.05
rs10278266 7:14943333 DGKB Intron A/G 0.79 0.99 (0.992–0.996) 3.49×10−8 0.92 (0.875–0.976) 0.005 0.99 (0.992–0.996) 1.36×10−8 23.0 0.19
rs9649071 7:84524701 HMGN2P11 Intergenic A/G 0.75 1.01 (1.004–1.008) 2.36×10−10 1.00 (0.949–1.047) 0.915 1.01 (1.004–1.008) 1.59×10−10 23.9 0.18
rs7853305 9:4132402 GLIS3 Intron G/C 0.61 0.99 (0.993–0.996) 1.00×10−9 0.96 (0.924–1.007) 0.106 1.00 (0.993–0.997) 1.46×10−9 6.3 0.38
rs780151 10:80931481 ZMIZ1 Intron G/A 0.58 1.01 (1.003–1.007) 5.11×10−9 1.07 (1.021–1.113) 0.004 1.01 (1.003–1.007) 1.79×10−9 42.5 0.03
rs12808829 11:62378660 EML3 Synonymous G/A 0.63 1.01 (1.004–1.007) 1.35×10−9 1.05 (1.006–1.101) 0.025 1.01 (1.004–1.008) 5.25×10−10 42.5 0.03
rs79487293 12:65905126 RP11-230G5.2 Intron C/T 0.68 0.99 (0.993–0.099) 4.09×10−8 0.98 (0.604–1.611) 0.595 0.99 (0.993–0.997) 4.45×10−8 0.0 0.54
rs11113217 12:107597518 SETP7 Intergenic T/C 0.38 0.99 (0.993–0.997) 2.40×10−8 0.94 (0.902–0.988) 0.012 0.99 (0.993–0.997) 1.39×10−8 24.6 0.17
rs7326916 13:71700945 LINC00348 Intron A/T 0.39 1.01 (1.005–1.008) 9.20×10−13 1.01 (0.648–1.559) 0.817 1.01 (1.004–1.008) 1.01×10−12 0.0 0.52
rs11623779 14:93096391 RIN3 Intron T/C 0.82 1.01 (1.004–1.008) 3.58×10−8 1.04 (0.587–1.836) 0.199 1.01 (1.004–1.008) 1.95×10−8 1.2 0.44
rs11621083 14:102559538 HSP90AA1 Intron T/A 0.15 0.99 (0.991–0.995) 1.91×10−8 0.97 (0.537–1.740) 0.252 0.99 (0.991–0.995) 1.04×10−8 0.0 0.56
rs1717198 15:41465862 EXD1 Intergenic T/C 0.56 1.00 (1.003–1.007) 2.72×10−8 1.02 (0.665–1.575) 0.291 1.01 (1.003–1.007) 1.54×10−8 0.0 0.62
rs2240885 16:3647098 SLX4 Intron G/A 0.78 0.99 (0.992–0.996) 1.35×10−8 0.94 (0.546–1.611) 0.018 0.99 (0.992–0.996) 5.57×10−9 3.1 0.42
rs62018863 16:8624118 TMEM114 Upstream G/A 0.88 0.99 (0.990–0.995) 3.10×10−8 0.96 (0.479–1.904) 0.183 0.99 (0.990–0.994) 1.65×10−8 2.5 0.42
rs139077859 17:44335579 RP11-259G18.3 Downstream G/A 0.79 0.99 (0.989–0.993) 1.01×10−15 0.93 (0.459–1.896) 0.056 0.99 (0.989–0.993) 3.14×10−16 0.0 0.50
rs11651469 17:69148519 CASC17 Intron T/G 0.44 0.99 (0.993–0.996) 2.42×10−10 0.89 (0.698–0.908) 2.6×10−23 0.99 (0.992–0.996) 1.22×10−12 87.1 0.00
rs1000972 20:6621717 RP5-971N18.3 Intergenic G/A 0.36 1.01 (1.004–1.007) 1.08×10−9 1.04 (0.660–1.625) 0.127 1.01 (1.004–1.008) 4.98×10−10 0.0 0.56
rs3091552 20:45440006 AL031055.1 Upstream C/G 0.27 0.99 (0.991–0.995) 4.60×10−12 0.96 (0.913–1.01) 0.121 0.99 (0.991–0.995) 1.73×10−12 20.1 0.22
rs55791529 20:62363858 ZGPAT Intron C/T 0.33 0.99 (0.992–0.996) 2.67×10−10 0.95 (0.594–1.521) 0.032 0.99 (0.992–0.996) 1.01×10−10 27.0 0.15

Gene was determined using PhenoScanner (https://www.phenoscanner.medschl.cam.ac.uk/). SNPs reaching criteria for top signals (pjoint<5×10
−8 and direction of odds ratio is the same in Stage 1

and Stage 2, and either pstage 2<0.05 or pjoint<pstage 1) are highlighted in bold. SNP: single nucleotide polymorphism; CHR:BP: chromosome:base pair position; EA: effect allele; NEA: non-effect
allele; EAF: allele 1 frequency.
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PRISm that reach genome-wide significance across both stages of the meta-analysis; all represent novel
signals for PRISm. Of these, four SNPs were novel for an association with lung function. This
demonstrates the usefulness of performing GWAS of different lung function traits and phenotypes to
maximise discovery of heritable genetic variants of lung function and disease.

Genetic correlation and PheWAS studies showed there are shared genetic risk factors with other lung
function measures and lung conditions such as COPD (rg=0.62) and asthma–COPD overlap (rg=0.62), as
well as comorbidities of lung disease. In addition to modifiable risk factors such as smoking, COPD can
result from a complex interplay of genetic and early life factors that determine lung function trajectories
[5, 6]. PRISm is also a heterogeneous state with variable trajectories, of which some progress to COPD
over time [2]. Genetic determinants of lung function are associated with COPD [21]. Although not directly
tested, given that PRISm and COPD are strongly genetically correlated, this could partially explain the
transition between them over time.

PRISm has been consistently associated with systemic comorbidities such as diabetes, heart disease and
increased risk of mortality in observational studies [4]. In our analysis, we have shown moderate genetic
correlation between PRISm and type 2 diabetes, and the PheWAS showed that 18 of the PRISm SNPs are
associated with diabetes, diabetic medication use or hyperglycaemia. PRISm showed positive genetic
correlation with type 2 diabetes (rg=0.12) and waist–hip ratio (rg=0.12) but a weaker and negative genetic
correlation with BMI (rg= −0.04).

Several observational and cross-sectional studies of impaired lung function (including PRISm) have
demonstrated positive associations between PRISm and BMI [7, 22]. Increased BMI has been shown to
have stronger associations with restrictive patterns of lung function impairment (such as reduced FVC and
FEV1, but preserved FEV1/FVC ratio, as seen in PRISm) rather than with the classical obstructive
pattern [22]. This could be explained by the mechanical effects of adiposity, where fat accumulates around
lungs leading to airway narrowing, and around the abdomen impeding chest wall expansion during full
inspiration [22, 23]. However, in our analysis, we observed a slight negative correlation between PRISm
and BMI. Notably, in the current GWAS, PRISm was adjusted for BMI, which may have affected the
direction and magnitude of the genetic correlation observed.

Other proposed mechanisms for the association between obesity and lung function impairment include
systemic inflammation, where levels of pro-inflammatory markers such as interleukin-6, C-reactive protein,
fibronectin and other cytokines are increased in people with airway obstruction [22, 24]. The relationship
between obesity and impaired lung function may also alter with disease progression. While studies have
reported positive correlations between PRISm and adiposity, an inverse relationship is commonly reported
between adiposity and COPD, with cachexia being a feature of late-stage COPD. Given that genetic
correlations alone cannot imply a direction of causation, comparing childhood- and adult-onset obesity as a

TABLE 3 Genetic correlation between PRISm and pulmonary and extrapulmonary traits

Trait rg±SE p-value

FEV1 −0.96±0.01 <0.001
FVC −0.93±0.01 <0.001
PEFR −0.65±0.02 <0.001
FEV1/FVC −0.23±0.02 <0.001
COPD 0.62±0.03 <0.001
Asthma–COPD overlap 0.52±0.04 <0.001
Moderate to severe asthma 0.31±0.05 <0.001
Respiratory infection 0.18±0.6 0.003
Blood eosinophils 0.06±0.02 0.012
Type 2 diabetes 0.12±0.03 0.007
BMI −0.04±0.02 0.031
Waist-to-hip-ratio# 0.12±0.02 <0.001
Systolic hypertension 0.08±0.02 <0.001
Diastolic hypertension 0.05±0.02 0.035
Myocardial infarction 0.07±0.03 0.007

PRISm: preserved ratio impaired spirometry; rg: genome-wide genetic correlation; FEV1: forced expiratory volume
in 1 s; FVC: forced vital capacity; PEFR: peak expiratory flow rate; BMI: body mass index. #: adjusted for BMI.
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risk factor for PRISm or COPD may help provide insights into the nature and direction of adiposity effects
on lung function phenotypes over the life course. Moreover, given the relationship between height as a
precursor of maximally attained lung volume, comparing multiple measures of adiposity (including those
that do and do not incorporate height) may inform a deeper understanding of relationships between
anthropometric traits and lung function.

In our study, various cardiovascular traits showed a degree of genetic correlation with PRISm. Previous
observational and genetic correlation studies have shown associations between cardiovascular traits,
including high blood pressure and myocardial infarction, and FEV1 and FVC [24, 25]. There are multiple
possible mechanisms for this association, including shared risk factors, such as systemic inflammation
induced by cigarette smoking; however, a recent study demonstrated that an association between PRISm
and cardiovascular disease (CVD) remained after adjustment for multiple risk factors [26]. Other studies
have proposed causal mechanisms for a relationship between PRISm and CVD, including a suggestion that
congestive heart failure may lead to lung function impairment as a consequence of cardiomegaly and
pulmonary congestion [2]. In terms of shared genetic risk factors, beyond shared specific loci for smoking
such as the 15q25.1 locus [27], a study performing partitioned genetic correlation analysis demonstrated
genetic correlations between COPD and CVD traits, notably in histone markers (h3k9ac, h3k4me3), which
play a central role in arterial pressure and bronchial cell development [27, 28]. Genes such as HHIP and
EEFSEC are known to be associated with lung development signalling pathway and translation factors
necessary for protein synthesis associated with COPD and cardiovascular events [27].

We found that there is an overlap between the top SNPs in our PRISm GWAS and continuous lung
function traits. This is not surprising given PRISm is a diagnosis based on spirometry, as opposed to a
disease defined by a unique pathogenic mechanism. Similarly, a previous GWAS of COPD based on
spirometric criteria has discovered loci that have been described as associated with a diverse range of lung
diseases, including asthma and idiopathic pulmonary fibrosis [29]. This likely reflects the genetic
heterogeneity of lung diseases, as well as how spirometric measures are routinely used for the clinical
diagnosis and functional assessment of various lung disorders.

It is possible that better sub-phenotyping of PRISm towards a more homogeneous subpopulation (e.g. those
with PRISm and BMI <25 kg·m−2) could lead to the discovery of new genetic associations. Given that a
high proportion of those with PRISm transition to other lung function states over time [4], both normal
lung function and COPD, then future genetic studies focusing on persistent PRISm or PRISm that
progresses to COPD could be informative, although such focus could result in limited sample size and
reduced power.

The majority of published GWAS have adopted a significance threshold of p<5×10−8 [30], although more
liberal and stricter thresholds have been proposed [31]. Specifically, stricter thresholds of 3×10−8 [32] or
5×10−9 [33] have been proposed for GWAS focusing on low frequency (MAF 1–5%) and rare
(MAF <1%) genetic variants, respectively, to correct for increased multiple testing. Had we adopted the
stricter definition of p<3×10−8, all reported signals would have remained significant. We did not adopt the
even stricter threshold of 5×10−9 because we excluded rare variants (MAF <1%) from our analysis;
however, this may have been at the expense of missing rare variant associations with PRISm.

Population stratification and cryptic relatedness can cause spurious associations in GWAS. We used a
linear mixed model for our discovery GWAS, which could account for these issues [34]. To account for
genomic inflation we used LD score regression and adjusted for LD intercept. We excluded SNPs that
reached significance threshold in Stage 1 analysis if their rsID had been reported as associated with lung
function in the largest published lung function GWAS at the time of analysis of SHRINE et al. [6]. This was
in an attempt to focus on SNPs that were novel for PRISm, rather than simple lung function. If they had
not been excluded, these SNPs may have been reported in this paper as having an association with PRISm.
However, we did not exclude SNPs in LD with previously reported SNPs. Therefore, SNPs in high LD
with excluded SNPs may still have been reported. Our GWAS was only performed on those of European
heritage; therefore, these results may not be generalisable to other ancestral populations. The SNPs
discovered in Stage 1 may not successfully replicate in diverse ancestral populations. The prevalence of
PRISm varies by region and ancestral population, from 4.2% in males in Sydney, Australia, to 48.7% in
females in Manila, Philippines [35]. Rates of PRISm comorbidities also vary [35]. Future research should
aim to recruit from diverse ancestries to explore any heritable component to this variation. Our GWAS was
performed using pre-bronchodilator values, although medication was not withheld prior to spirometric
testing. Although post-bronchodilator values are not required for PRISm diagnosis, there is evidence that
spirometric values can change in those with PRISm post-bronchodilation [36].
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Conclusion
This is the first GWAS of PRISm to successfully identify genetic associations reaching genome-wide
significance. We defined 22 genetic signals for PRISm, of which four are also novel for lung function,
highlighting that GWAS of different lung function phenotypes are complementary. Genetic risk factors for
PRISm overlap with those for other lung diseases and extrapulmonary comorbidities.
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