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On the Trade-Off Between Spatial Resolution
and High Curvature Bending in FBG-based

Shape Sensing
David Hanley1 and Kevin Dhaliwal2 and Mohsen Khadem1

Abstract— Fiber Bragg grating (FBG)-based shape sensing
is an emerging technology used for the navigation of flexible
medical instruments, such as needles, catheters, and endo-
scopes. FBG-based sensors operate by measuring strain-
induced wavelength shifts in the reflected light, which are
used to determine the curvature along a fiber’s length. While
an increased number of gratings enhances shape-sensing
accuracy, incorporating many within a fixed spectrum can
induce interference in wavelength shifts, specifically dur-
ing high curvature bending, limiting the detectable bending
range. Such interference severely compromises shape es-
timation, posing challenges for instruments requiring high
curvature bends. In this paper, we study this trade-off be-
tween resolution and bending curvature. Next, we introduce
an algorithm that leverages the reflectivity and full-width half
maximum of FBG nodes for improved bend estimation, even
in high-curvature scenarios. To this end, first, we provide a
model of reflectivity of uniform gratings using coupled-mode
theory. The model is used to match spectrum measurements
with FBG nodes. Second, we develop an algorithm using
the proposed model and random walk model to estimate
the relative probability of a given reflected wavelength cor-
responding to each FBG node. This algorithm then uses
variants of the Hungarian algorithm to solve an assignment
problem and classify FBG nodes. We then collected three
datasets with FBGs experiencing varying curvature. One of
the datasets validates the proposed model and the latter
two demonstrate that, relative to a commercially available
interrogator, our approach classifies FBG nodes with 14%
higher accuracy, 13% higher precision, 35% higher recall,
and 4% higher specificity.

Index Terms— Shape Sensing, Fiber Bragg Gratings,
Coupled-mode Theory

I. INTRODUCTION

F IBER Bragg Grating (FBG) shape sensing is a technology
that uses optical fibers embedded with Bragg gratings

to monitor the real-time three-dimensional shape/position of
objects in motion. This approach serves as an alternative to tra-
ditional shape-sensing methods and offers several advantages,

1David Hanley and Mohsen Khadem is with the School of Informatics
and the Translational Healthcare Technologies Group in Centre for In-
flammation Research, Institute for Regeneration and Repair, University
of Edinburgh, UK, {dhanley,mohsen.khadem}@ed.ac.uk

2Kevin Dhaliwal is with the Translational Healthcare Tech-
nologies Group in the Centre for Inflammation Research, Insti-
tute for Regeneration and Repair, University of Edinburgh, UK,
kev.dhaliwal@ed.ac.uk

such as minimal footprint, large sensing length, high strain
sensing accuracy, and the ability to perform dynamic sensing.
FBG-based shape sensing has enabled unique advances in
various navigation tasks, such as tracking robots and medical
instruments (needles, catheters, and endoscopes) inside the
human body [1]. The use of FBGs in shape estimation go
beyond tracking medical instruments. This technology has
applications to tracking the deformations of structural compo-
nents such as carbon fiber reinforced polymers and structural
health monitoring more generally [2], [3].

FBGs allow shape estimation of a flexible instrument by
measuring strain on various points along its arclength. These
fibers are engineered to feature a periodic variation in refrac-
tive index at specific locations, known as Bragg gratings. As
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light traverses the fiber, each Bragg grating reflects a particular
wavelength. Any strain experienced at the FBG node induces
a corresponding shift in this reflected wavelength. To detect
this strain, an interrogator device introduces light into the
optical fiber and subsequently analyzes the shifted reflected
wavelength. This shift directly corresponds to the strain the
FBG node undergoes [4].

Three or more FBGs can be used to measure directional
strain along a flexible instrument and reconstruct its 3D shape
[5]–[7]. Alternatively, a single multi-core fiber with multiple
Bragg gratings can be used to remove the need to manually
position the fibers [8], [9]. This enables real-time monitoring
of the 3D shape and position of the object to which the fiber
is attached.

One of the drawbacks of FBG shape sensing is the number
of measurement points readable in a common fiber path [9].
The spatial resolution of shape estimation–i.e., accuracy in
curvature estimation along fiber arclength–improves with an
increased number of FBG nodes along the length of the fiber.
However, increasing the number of FBG nodes increases the
probability of wavelength shifts interfering with each other,
especially during high curvature bending where wavelength
shifts are relatively large. This results in a wavelength clas-
sification problem for the interrogator. An FBG wavelength
shift can be missed or classified as belonging to an incorrect
FBG node. This results in poor shape estimates. This trade-
off is particularly problematic in shape sensing of flexible
medical instruments, where precise shape sensing is crucial.
Specifically, endoscopes that are relatively long and undergo
large deflections can suffer from these problems.

To address this issue, several researchers have fused FBG-
based sensing methods with other sensing modalities to pro-
vide more accurate and reliable shape sensing. In [10], two
algorithms, namely, a Luenberger observer and Kalman filter,
are used to track the tip of a magnetically actuated catheter.
Both estimators combine FBG shape sensing and ultrasound
tracking. A similar approach was implemented in [11] to
track the tip of a continuum manipulator in a 2D plane with
a Kalman filter, combining FBG sensors and simulated low
radiation fluoroscopy imaging. Similarly, fusing FBG-based
shape estimates with biplane fluoroscopy imaging has been
used in [12]. In [13], FBG measurements are fused with
electro-magnetic sensing to optimize the control points of a
Bézier curve for shape estimation. In [14], FBG sensors are
used in conjunction with both an electromagnetic tracker and
an intravascular ultrasound for shape sensing.

One area of prior work that has been used to address this
issue is the design of a line of interrogators and FBG nodes
to apply principles of code division multiplexing. FBG nodes
designed as discrete prolate spheroidal sequences were used
for multiplexing [15]. In another work, researchers designed
nodes as super-structured FBGs to create codes for multiplex-
ing [16]. Throughout this work, we use FBG nodes without
these types of codes embedded and we use an interrogator
meant for wavelength division multiplexing as opposed to code
division multiplexing.

Another line of prior work has proposed using deep learning
to classify multiplexed FBGs along an optical fiber and esti-

mate wavelength shift with higher accuracy. Such methodolo-
gies treat raw wavelength signals aiming to discern wavelength
shifts and, consequently, estimate fiber shape, approaching the
issue as an end-to-end blackbox problem. In [17], a neural
network is proposed to classify and estimate wavelength shift
of FBG nodes for shape estimation. In [18], a gated recurrent
unit (GRU) based neural network is used to perform intensity
wavelength division multiplexing on an FBG sensor array in
a ring structure.

To improve shape sensing resolution in high curvature
bendings, researchers rely on other sensors that can be expen-
sive, have low temporal resolutions, and are difficult to use
[19]. The deep learning approaches, while promising, often
require extensive training datasets. Moreover, these models
lack interpretability, making it challenging to generalize their
shape estimation to unseen realistic clinical scenarios.

In this paper, we hypothesize that other signal features
like full-width half maximum (FWHM) or reflectivity of
FBG nodes (i.e, percentage of the intensity of light reflected
back at a given wavelength) can be used to improve the
classification of FBG nodes even during high curvature bends
with wavelength interference. Therefore, effectively resolving
the trade-off between spatial resolution and bending curvature.
To this end, we

1. Present a model of reflectivity for uniform FBG nodes as
a function of varying FWHM using coupled-mode theory.

2. Present a new classification algorithm that employs the
model to assign wavelength shifts to corresponding nodes
during high curvature bending with interfering wave-
lengths.

3. Evaluate the model and classification method on a dataset
and demonstrate superior performance relative to a com-
mercially available interrogator.

The model and classification method combined can, with a
relatively small amount of training data, allow FBG nodes
to cross on spectrum and thereby provide opportunities to
use many nodes for high-resolution shape sensing during high
curvature bending.

We describe in mathematical terms the spatial resolution
vs. high curvature bending trade-off in Section II. In Section
III, we present our methodology for resolving this trade-off,
which includes presenting the reflectivity model—beginning
with basic equations from coupled-mode theory—followed
by how we use this model for FBG node classification. We
demonstrate the efficacy of this approach through experiments
described in Section IV. Concluding remarks and discussion
of limitations appear in V.

II. SPATIAL RESOLUTION VS. HIGH CURVATURE
BENDING

In this section, we point out the limitations on shape
sensing that occur when many nodes are placed along the
fiber to improve the spatial resolution of shape sensing.
Specifically, when wavelength peaks are not able to cross on
an interrogator’s spectrum. First, we describe the relationship
between two separate FBG node’s design wavelengths and
bending curvatures. Then, we illustrate the problem that occurs



3

with shape sensing during high curvature bendings on an
example. Finally, we illustrate the potential benefit of resolving
this trade-off between spatial resolution and high curvature
bending.

Assume two uniform FBG nodes with design Bragg wave-
lengths λB,1 and λB,2 where λB,2 > λB,1. Note the difference
between the two wavelengths as δλB = λB,2−λB,1. When an
FBG experiences strain, its Bragg wavelength shifts by ∆λB
and the new wavelength is λB + ∆λB . The wavelength-strain
relation for a single mode SMF28 fiber is

∆λB = 0.79ελB (1)

where ε is the strain experienced by the FBG node [20]. When
optical fibers with FBG nodes are laid along a rod in parallel,
their strain-curvature relation is

ε = −κr sin (φ+ γ) + ε0 (2)

where κ is the curvature, r is the radius of the rod, φ is the
bending angle, γ is the orientation of the FBG node on the rod,
and ε0 is a residual strain on the FBG node [7]. Assuming no
residual strain and that curvature corresponds to the maximum
possible strain on the FBG node (e.g., φ + γ = π

2 ), we can
relate the wavelength to curvature with the relation

∆λB = −0.79λBκr. (3)

We are interested where the Bragg wavelengths may cross. In
other words, where

∆λB,1 −∆λB,2 > δλB . (4)

Using the curvature-wavelength relation we simplify by plug-
ging (3) in for each FBG’s ∆λB and then use the definition
of δλB to eliminate ∆λB,2. We arrive at the relation for the
region of design Bragg wavelength difference that will not be
admissible due to interference, if 0.79rκ2 − 1 < 0,

−0.79rλB,1 (κ2 − κ1)

0.79rκ2 − 1
> δλB (5)

or, if 0.79rκ2 − 1 > 0,

−0.79rλB,1 (κ2 − κ1)

0.79rκ2 − 1
< δλB . (6)

Note that as the difference between curvatures at two
FBG nodes (κ2 − κ1) grows, so does the required initial
difference in Bragg wavelengths δλB to prevent interference.
This is a restriction on shape sensors that can be challenging,
particularly for medical endoscopes/bronchoscopes where the
curvatures can vary significantly.

Of course, interference of two Bragg wavelengths do not
occur just when two Bragg wavelengths cross. This is because
each FBG node reflects light over a range of wavelength,
creating a bump on the interrogator’s spectrum with notable
width as well as a peak at the Bragg wavelength. Given two
FBG nodes of widths w1 and w2, the admissible region, if
0.79rκ2 − 1 < 0, becomes

−0.79rλB,1 (κ2 − κ1)− w1/2− w2/2

0.79rκ2 − 1
> δλB (7)

(a)

(b)

Fig. 1: A comparison of admissible measurements due to
wavelength shift interference (a) with and (b) without the
proposed method. (a) Inadmissible curvature measurements
are shown with shaded colors as a function of the differences
in the curvature of the two consecutive FBG nodes. Results
for different κ2 (curvature at node 2), radius of the rod (r)
on which the FBG is laid, and the width of the FBGs on the
interrogator’s spectrum is shown. (b) Inadmissible regions are
shaded as a function of the differences in the curvature of the
two nodes using our proposed approach.

or, if 0.79rκ2 − 1 > 0,

−0.79rλB,1 (κ2 − κ1)− w1/2− w2/2

0.79rκ2 − 1
< δλB . (8)

Note that while w1 and w2 can vary, we do not derive any
direct relation to difference in curvature (κ2 − κ1) or differ-
ence in the initial Bragg wavelength (δλB) here. Moreover,
we did not see an obvious relation between these variables
experimentally.

To illustrate the spatial resolution vs. high curvature trade-
off more concretely and to illustrate the impact our method has
on the admissible region of shapes, we perform a simulation
study. Given an FBG array with two nodes laid on a rod with
a radius of 0.3 mm and center wavelength of 1550 nm for
FBG 1 (roughly the center of the measured spectrum of the
interrogator used in experiments in Section IV). Assume FBG
2 has a curvature of 3.0 cm−1. Also, assume both wavelengths
have a width of 1.0 nm. Fig. 1a shows the initial difference in
wavelengths between the two FBG nodes (δλB) that would
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make this shape (defined by κ2 − κ1) admissible. Again,
note that these regions are not static over time because width
of FBGs on an interrogator’s spectrum can change. This is
visualized on the plot with colored arrows which change the
offset of the dashed lines (corresponding to the left edge of
one FBG crossing the right edge of another FBG and vice
versa). Fig. 1a also shows the admissible region for the case
where a rod with a smaller radius of 0.2 mm is used and where
FBG 2 has no initial curvature (κ2 = 0). Note that most of the
visualized region is actually inadmissible. Fig. 1b on the other
hand shows the inadmissible region when using the proposed
method to estimate wavelength shift. Note how in this case,
only a small proportion of the visualized area is inadmissible.

As a further illustration of the above result, consider the
same case above with a rod with radius 0.3 mm and FBG 1 at
1550 nm and FBG 2 at 1560 nm (i.e., δλB is 10 nm). Assume
the system follows an s-curve shape with radii of curvature of
±3 cm as shown in Fig. 2. Assuming uniform FBG nodes with
length 2 mm and uniform gratings as described in [21] with
effective refractive index 1.5 and a constant effective refractive
index change spatially averaged over a grating period of
1×10−4 (details of these variables described in more detail in
Section III), we can simulate the spectrum as shown in Fig. 2.
The same spectrum prior to bending is also shown. As can be
seen, the peak reflectivity of the two peaks switch order which
can lead to incorrect classification. The result of incorrect
classification is a substantially incorrect shape estimate. In the
2D example shown, the estimated radius curvature resulting
from an incorrect classification is 15.8 cm and 16.5 cm for
the simulated FBGs respectively. Fig. 2 illustrates the incorrect
shape estimate as dashed lines.

III. METHODOLOGY

Fig. 3 shows an overview of the process we use for peak de-
tection and classification described in this paper. This method
depends on varying the FWHM and reflectivity of FBG
nodes to create identifiable spectra and associated models. In
subsection III-A, we use coupled-mode theory to develop a
model of FBG nodes with different design FWHM and peak
reflectivity. Then we present our method for detection and
classification in subsections III-B and III-C respectively.

A. Coupled-Mode Theory and Model of Reflectivity
In this section, we use coupled-mode theory to develop a

model of FBG nodes’ peak reflectivity as a function of design
FWHM. As the node experiences strain, the FWHM and peak
reflectivity will vary. We aim to model this variation and later
leverage it for peak classification during high curvature bends.
The model is developed assuming a uniform grating.

Uniform fiber Bragg gratings have a maximum reflectivity
(rm) described by [21]

rm = tanh2

(
πvL

λmax

)
(9)

where v is the fringe visibility parameter of the index changes
in the FBG (for uniform gratings, this is usually assumed to
be equal to 1), L is the length of the FBG node, and λmax is

Fig. 2: An example case with FBGs following an s-curve
with spectrum modelled with the coupled-mode theory of
[21]. Results show that the s-curve causes the FBG peak
reflectivities to switch order resulting in confusion during
classification. Incorrect classification leads to major shape
errors as shown by the dashed line. The arrows show actual
changes in wavelengths.

the wavelength at which maximum reflectivity occurs, given
by [21]

λmax =

(
1 +

δneff
neff

)
λB (10)

where neff is the effective refractive index of the fiber. Due
to the grating pattern, the effective refractive index varies
regularly along the length of the grating. The variable δneff
is the constant effective refractive index change spatially
averaged over a grating period (often called the DC index
change due to it being analogous to the DC component of
an alternating signal), and λB is the Bragg wavelength. The
FWHM of a uniform FBG has been shown to be [20]

FWHM = λBSξ (11)

where

ξ =

((
vδneff

2(neff + δneff )

)2

+

(
1

N

)2
) 1

2

(12)

and where S is a parameter of the grating that is approximately
equal to 1 for high reflectivity grating and 0.5 for weak
reflectivity gratings and N is the number of periods on an
FBG node.

Now, to find the relationship between the maximum reflec-
tivity and FWHM we can replace the Bragg wavelength with
the maximum wavelength

FWHM =
λmaxneffSξ

neff + δneff
(13)



5

Fig. 3: The peak detection and classification process used based on the relationship between varying reflectivity and FWHM
of FBGs.

and then solving for the maximum wavelength and plugging
into (9) we get

rm = tanh2

(
πvδneffneffLSξ

FWHM
(
neff + δneff

)) . (14)

Note that in the equation above, as an FBG grating expe-
riences strain, the length L must change. We also generally
expect the FWHM and reflectivity to change. We assume a
relationship between length and FWHM, and we assume that
relationship is analytic. However, given that this relationship
is not currently known, we choose to represent it by the first
two elements of its power series

L = f(FWHM) ≈ c0 + c1FWHM. (15)

Plugging this into the above equation, we can simplify to a
function of two parameters

rm = tanh2
( απ

FWHM
+ β

)
. (16)

We use this model throughout the paper for FBG modeling
and classification.

B. Peak and FWHM Detection
Measurements made from a FBG interrogator can be noisy

(depending on model used), therefore, we use a peak detection
process similar to methods used in fields such as mass spec-
trometry [22], [23]. In keeping with these prior methods, we
first take the undecimated discrete wavelet transform (UDWT)
of the signal. We choose to use eighth order Daubechies
wavelets and we use hard thresholding to eliminate all wavelet
coefficients below some multiple of the mean average devia-
tion of the coefficients. An inverse UDWT is then used to
create a new denoised signal.

Peaks are computed on the denoised signal using a mini-
mum prominence threshold. Topographic prominence is the
height of a peak over its lowest contour line, but without
containing a higher peak within it. This process helps to
eliminate extraneous peaks created with the FBGs (due to a
non-uniform strain for example).

The FWHM for each peak is computed on the original
signal source by successively stepping to the left and right
of each computed peak until the half maximum (with respect
to some minimum baseline of the signal) is found. In the event
a half maximum is not found (i.e., the first or last measurement
of the sensing window is reached) then the detected peak is
removed. If the leftward search crosses a second peak before
finding the half maximum point, then the wave is assumed
to be symmetric and FWHM is computed using only the half
maximum found to the right of the peak (and vice versa).
If more than one peak is crossed before locating the half
maximum on the left or right side, then the measured peak
and FWHM is taken to be too ambiguous and removed. The
end result of this process is a list of peaks, FWHM, and their
corresponding wavelengths.

C. Peak Classification
Given a set of peaks, FWHMs, and their associated wave-

lengths identified, our objective is to associate each identified
peak with a known FBG node. It is also possible that a peak
that is identified may not be associated with any known FBG
node and, likewise, a known FBG node may not have a peak
identified with it at any given point in time. This can occur in
particular when the FBG nodes interfere (i.e., their peaks occur
at very similar wavelengths) or when an FBG node experiences
stresses that move the peak wavelength beyond the range of
the interrogator. In general, we believe that it is preferable to
leave a given peak measurement unmatched with an FBG node
at any given point in time than to associate it with the incorrect
FBG node. The logic for this preference is grounded in the
fact that there are established ways to deal with uncertainty
in robotic state estimation, planning, and control. However,
significantly incorrect measurements with high certainty is
problematic and more challenging to deal with.

We formulate this problem as an assignment problem with
M being the number of possible assignment for measured
peaks. The variable M is equal to the number of known FBG
nodes plus the number of measured peaks (which could all be
left unassigned to known FBG nodes in an extreme case). We
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define NR as the number of measured FBG peaks (therefore,
M ≥ NR). The assignment problem then is

x∗ = arg min
x

NR∑
i=1

M∑
j=1

ci,jxi,j (17a)

subject to
M∑
j=1

xi,j = 1 ∀i (17b)

NR∑
i=1

xi,j ≤ 1 ∀j (17c)

xi,j ∈ {0, 1}. (17d)

Here xi,j is a binary assignment variable where 1 is defined as
corresponding to when peak measurement i is associated with
known (or unassigned) FBG node j and xi,j is 0 otherwise.
The variables ci,j is a cost associated with matching peak
measurement i associated with known (or unassigned) FBG
node j. The variable x∗ is a matrix of optimal binary assign-
ment variables where rows correspond to peak measurements
and columns correspond to the known (or unassigned) FBG
nodes. An established solution to this type of problem is the
Hungarian algorithm and its variants [24], [25].

Note that in the prior subsection, interrogator measurements
of the spectrum can be used directly (in terms of intensity
and wavelength, for example). Here, however, we assume
interrogator measurements have been converted into a set of
wavelengths and reflectivity.

The costs in our particular assignment problem is deter-
mined by computing the likelihood of peak measurements
given prior measurements and models of the peak as a function
of FWHM. The likelihoods can then be used to compute
the Bayes factor of FBG node j with respect to unassigned
case M (here we assume that for MK known FBG nodes,
j = 1, ..., NK correspond to the known FBG nodes and
j = MK + 1, ...,M correspond to the unassigned cases. The
Bayes factor for case j then is

Bi,j =
p(w̃t,i−wt−1,j ,p̃t,i−rm,j( ˜FWHMt,i)|j)

p(w̃t,i−wt−1,M ,p̃t,i−rm,M ( ˜FWHMt,i)|M)
. (18)

We assume that the prior model is independent of measure-
ment model

Bi,j =
p(w̃t,i−wt−1,j |j)p(p̃t,i−rm,j( ˜FWHMt,i)|j)

p(w̃t,i−wt−1,M |M)p(p̃t,i−rm,M ( ˜FWHMt,i)|M)
. (19)

We also assume that for an unassigned peak measurement, the
measured reflectivity follows a uniform distribution between
0 and 1. Therefore, p(p̃t,i − rm,M ( ˜FWHM t,i)|M) = 1.
Similarly, we assume that for unassigned peak measurement,
the measured peak wavelength follows a uniform distribution
over the Interrogator wavelength window, LIW . Therefore,
p(w̃t,i − wt−1,M |M) = 1

LIW
. The simplified Bayes factor is

then

Bi,j = LIW p(w̃t,i − wt−1,j |j)p(p̃t,i − rm,j( ˜FWHM t,i)|j). (20)

We also assume that the prior model and measurement models
follow normal distributions with standard deviations Q and R

p(w̃t,i − wt−1,j |j) ∼ N
(
0, Q2

d

)
(21)

p(p̃t,i − rm,j( ˜FWHM t,i)|j) ∼ N
(
0, R2

)
(22)

Fig. 4: Experimental setup used for collecting our datasets. A
Smartfibres SmartScan interrogator is used to stream spectrum
and peak data to a computer which records the dataset.
An optical fiber with three FBG nodes is attached to the
interrogator’s first channel and the FBG nodes are glued to
a flexible rod which is then wrapped with heat shrink.

For the process model, note that if a known FBG node has
unassigned measurement at t−1, then the assignment at t−2
(or earlier) must be used and Q must be computed using the
propagation of uncertainty function Qd = Q

√
∆t where ∆t is

the time difference between the last assigned measurement and
the current measurement. Note that the assignment problem
minimizes cost and a higher Bayes factor for model j generally
implies a better match than model M . Therefore, we simply
take the negative of Bayes factors to compute the cost. ci,j =
−Bi,j . Finally, note that for the unassigned models j = MK+
1, ...,M , ci,j = −1 by definition.

IV. EXPERIMENTS

To demonstrate the utility of varying FBG reflectivity and
FWHM for shape sensing, as well as to verify our FBG
spectra model, detection, and classification method, we collect
a series of datasets with an FBG array as shown in Fig. 4. We
use a SmartScan interrogator (Smart Fibres Ltd, UK) and an
optical fiber with three 4 mm FBGs with center wavelengths of
1538, 1548, and 1558 nm with a tolerance of 0.04 nm, a full
width half maximum of 0.6 nm with a 0.05 nm bandwidth
tolerance, a reflectivity of 35%, 60%, and 80% with a 5%
tolerance, and a side lobe suppression ratio greater than 15
dB. This FBG array was manufactured by Technica Optical
Components LLC using an SM1250BI(9.8/125)P optical fiber
with polyimide coating. The optical fiber was glued along a
flexible plastic tube 2.75 mm in diameter. The tube was then
manually bent for several minutes and three datasets were col-
lected. Spectrum messages state the reflected signal intensity
(with the default automatic gain tuning turned off) at regular
wavelength intervals. Peak messages state the wavelengths of
the measured peaks using the interrogator’s default process for
peak detection and classification.

In subsection IV-A, we evaluate the model with our dataset,
and in subsection IV-B, we evaluate our entire method. In sub-
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Fig. 5: Hand labeled data and the regressed models for the
FBG nodes on the first portion of the dataset. α and β for the
first FBG node was found to be 0.2194 and 0.1271 respectively
and the covariance matrix of the estimated parameters have a
Frobenius norm of 1.045× 10−5. For the second node, α and
β was found to be 0.1269 and 0.1187 with norm 1.9220 ×
10−5. The third node’s α and β was found to be 0.0797 and
0.0817 with norm 1.0334×10−5. The R2 values for the three
models were 0.9753, 0.9072, and 0.9012 for FBG’s 1, 2, and
3 respectively.

section IV-C we evaluate our method with specific components
removed to show that the model we presented in (16) and the
varying reflectivity is an essential component of our method.

A. Evaluating the Model

To evaluate the model expressed in (16), we estimate
parameters α and β for each of the three FBG nodes using the
first of three collected dataset. Peaks and FWHMs in this case
were classified as corresponding to FBG 1, 2, or 3 by hand.
Ambiguous cases (a person could not reliably identify which
FBG corresponded to which peak) were simply left unlabeled
and unused here. In total, 254 points were identified as FBG
1, 249 points were identified as FBG 2, and 275 points were
identified as FBG 3. Peaks and FWHM were identified using
the same procedure as described in subsections III-B and III-
C (with no wavelet-based denoising). Since the interrogator
reports reflected intensity values, these are scaled using initial
intensity values and reflectivities reported in the optical fiber’s
datasheet to measure reflectivity. Results are shown in Fig. 5.
The data agrees with the regressed models well (with R2

all above 0.9) and, moreover, there is a clear and visually
recognizable difference between the three FBG nodes. This
clear difference (due to the chosen reflectivity and FWHM
of the three FBG nodes) is what will enable the nodes to be
classified by our proposed method.

B. Evaluating the Classification Method

To evaluate the ability of our method to classify FBG nodes,
we compute the accuracy, precision, recall, specificity, and

TABLE I: Classification Statistics with our Method and
Method used with FBG Interrogator (Test dataset)

Accuracy Precision Recall Specificity F1 Score
FBG 1 (Ours) 0.9911 0.9819 0.9909 0.9912 0.9864
FBG 1 (Int.) 0.8829 0.8951 0.7264 0.9588 0.8020

FBG 2 (Ours) 0.9861 0.9692 0.9875 0.9855 0.9783
FBG 2 (Int.) 0.8542 0.8312 0.6176 0.9432 0.7086

FBG 3 (Ours) 0.9613 1.0 0.8917 1.0 0.9427
FBG 3 (Int.) 0.7798 0.8286 0.4833 0.9444 0.6105

Average (Ours) 0.9795 0.9837 0.9567 0.9922 0.9691
Average (Int.) 0.8390 0.8516 0.6091 0.9488 0.7071

F1 score for each of the three FBG nodes using the second
and third collected datasets. We call the second dataset the
validation dataset and permit tuning of hyperparameters (e.g.,
prominence lower bound, wavelet hard threshold, variance of
FBG random walk model, and variance of the model) de-
scribed in subsections III-B and III-C. We call the third dataset
the test dataset and evaluate this only after hyperparameters
are tuned. Results for the testing dataset is shown in Table I.
Across all measures used on the testing dataset, our proposed
approach outperforms the peak detection and classification
method used by the commercially available interrogator. In
particular, note that the interrogator has a high specificity on
our datasets and a relatively low recall. Our proposed method
on the other hand has comparable specificity and recall.

C. Evaluating Components of the Classification Method
Our method includes several components (e.g., wavelet-

based denoising, a likelihood computed based on a random
walk model, etc.) that are not related to our main objective to
use differing design FWHM and peak reflectivity to classify
measurements using the proposed model in (16). While we
believe each of these components are useful for a variety of
reasons (for example, prominence-based peak finding speeds
up the execution time of the method substantially), we conduct
an ablation study in this section to show that the model we
presented in (16) and the varying reflectivity is an essential
component of our method. Table II shows accuracy, precision,
recall, specificity and F1 score on the testing dataset with
different components of the proposed method removed. Across
all measures and for all elements removed—except for the use
of the FBG model—scores remain above 0.9. When the FBG
model is removed, accuracy, recall, and the F1 score suffer
significantly. For example, the F1 score drops from 0.9691
with the FBG model to just 0.3988.

V. DISCUSSION AND CONCLUSIONS

In this paper, we present a method that can be used to
classify FBG nodes on interrogator spectra despite crossing
wavelengths, which enables high-resolution sensing at high
curvature bendings. The proposed method relies on varying
reflectivity and FWHM of FBG nodes along a fiber and using
the reflectivity model presented in (16). When compared to
a commercially available peak detection and classification
system, our method outperforms across all the metrics we
considered. We show that this can have useful implications for
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TABLE II: Ablation Study of method (Test dataset)

Accuracy Precision Recall Specificity F1 Score
Average
(Ours) 0.9795 0.9837 0.9567 0.9922 0.9691

Without
Wavelets 0.9798 0.9847 0.9567 0.9927 0.9696

Without
Prominence 0.9696 0.9748 0.9373 0.9878 0.9534

Without
Prior Model 0.9785 0.9857 0.9520 0.9932 0.9675

Without
reflectivity
model

0.7811 1.0 0.3257 1.0 0.3988

shape sensing in robots and medical instruments that undergo
high curvature bends.

The focus of our experiment is on FBG nodes that have
crossed. This is due to the difficulty of establishing ground
truth design wavelengths when FBG nodes are closely interfer-
ing and fall exactly on top of each other. However, our method
classifies wavelength peaks before and after this region. This
region corresponds to a small portion of data shown with
shaded colour in Fig. 1b. We would need to develop accurate
models of how these spectra behave when interfering. While
we were not be able to classify closely interfering cases by
hand, the method we propose often does assign measured
peaks to FBG nodes.

We modelled FBGs assuming a uniform grating. There
are several other, smaller effects in FBGs that have been
documented that can also cause changes in the relationship
between FWHM and reflectivity in practice. One of these
effects is apodization [21]. Bending (as opposed to stretching)
can also introduce nonlinear effects on FBGs due to the
differences in the fiber across its cross-section and activation
of cladding coupling modes [26]. This is particularly notable
since, in shape sensing, we often expect the FBGs to bend.
In future work, we will investigate these effects, particularly
during interference and bending. Additionally, as we rely on
data to fit FBG nodes to our model, upcoming research should
aim for online parameter estimation or derive these values a
priori via coupled-mode theory.
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