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ABSTRACT
Covering ∼5600 deg2 to rms sensitivities of ∼70−100 μJy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-
DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio
cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies
within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared
to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise
≥7.5 across ∼80% of the observed area. Using the clustering we infer the bias assuming two evolutionary models. When fitting
angular scales of 0.5 ≤ 𝜃 < 5 deg, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying
matter, with a bias of 𝑏𝐶 = 2.14+0.22

−0.20 (assuming constant bias) and 𝑏𝐸 (𝑧 = 0) = 1.79+0.15
−0.14 (for an evolving model, inversely

proportional to the growth factor), corresponding to 𝑏𝐸 = 2.81+0.24
−0.22 at the median redshift of our sample, assuming the LoTSS

Deep Fields redshift distribution is representative of our data. This reduces to 𝑏𝐶 = 2.02+0.17
−0.16 and 𝑏𝐸 (𝑧 = 0) = 1.67+0.12

−0.12 when
allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly
lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.

Key words: cosmology: large-scale structure of Universe – radio continuum: galaxies – galaxies: haloes

1 INTRODUCTION

The LOw Frequency ARray (LOFAR; van Haarlem et al. 2013) is a
key radio telescope array, transforming views of the low-frequency
radio skies. Based in Europe, its full array combines a dense core of
stations in the Netherlands with additional stations that have much
larger baselines both across the Netherlands and Europe. This allows
baselines of up to ∼ 100 km across the Netherlands and ∼ 2000 km

★ E-mail: Catherine.Hale@ed.ac.uk

across Europe, producing 6′′ resolution using the Dutch stations only
and sub-arcsecond resolution imaging using the full array (Morabito
et al. 2022, Sweĳen et al. 2022), at 150 MHz. These stations combine
two types of antennas to operate in two low frequency ranges: the
Low-Band Antennas (LBA; 10− 80 MHz) and High-Band Antennas
(HBA; 120 − 240 MHz). Such low frequency observations lead to
a large field of view for each LOFAR observation, making it an
excellent instrument for survey science. As part of this, LOFAR is
currently focusing on several large-area survey projects, including:
the LOFAR LBA Sky Survey (LoLSS; de Gasperin et al. 2021) and

© 2022 The Authors
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2 C.L. Hale et al.

the LOFAR Two-metre Sky Survey (LoTSS; Shimwell et al. 2017,
2019, 2022) with the HBA, which is what we use for this work.
LoTSS aims to observe the entire northern hemisphere at 144 MHz
to a typical rms sensitivity of 𝜎144 MHz ∼ 70 − 100 μJy beam−1

and trace a combination of Active Galactic Nuclei (AGN) and Star-
Forming Galaxies (SFGs) across large periods of cosmic time. At
such frequencies, the dominant radiative mechanism is synchrotron
emission from relativistic electrons spiraling in the magnetic fields.
This leads to a typically power-law-like distribution for flux densities
as a function of frequency (𝑆𝜈 ∝ 𝜈−𝛼) with a range of spectral
indices, typically assumed to be 𝛼 ∼ 0.7 − 0.8 for an average radio
population (Kellermann et al. 1969, Mauch et al. 2003, Smolčić et al.
2017a, de Gasperin et al. 2018), though much larger or smaller values
can be observed for individual sources with flat or peaked spectra
(e.g. Massaro et al. 2014, Callingham et al. 2017, O’Dea & Saikia
2021).

LoTSS has developed over a series of data releases, improving
in properties such as angular resolution, sensitivity, image fidelity
and areal coverage. Initially, observations covering 350 deg2 were
released with direction-independent calibration only at a resolu-
tion of 25 ′′, detecting ∼44 000 sources with a typical noise of
∼ 0.5 mJy beam−1. This was then improved upon in both resolu-
tion and sensitivity with the first fully direction-dependent calibrated
data release for LoTSS: LoTSS-DR1 (Shimwell et al. 2019). This
data release covered 424 deg2 over the The Hobby-Eberly Telescope
Dark Energy Experiment (HETDEX) Spring Field (Hill et al. 2008)
with a corresponding catalogue of ∼325 000 sources, with a 1𝜎 sen-
sitivity of ∼ 70− 100 μJy beam−1 at 6′′ angular resolution. This sky
coverage has now been enlarged in the latest data release, LoTSS-
DR2 (Shimwell et al. 2022), which covers ∼ 5600 deg2 with an
accompanying catalogue of ∼ 4.4 million sources. This is the largest
catalogue of radio sources within an individual radio survey to date.
Such a combination of area and large source numbers means that
LoTSS-DR2 provides an excellent dataset for radio cosmology stud-
ies, allowing for a more detailed understanding of the distribution of
radio sources in the Universe.

The study of the distribution of sources observed in galaxy surveys
throughout the Universe is important for a number of reasons. Most
importantly, it allows us to understand more about how galaxies trace
the large-scale structure of the Universe and the underlying dark mat-
ter distribution. Starting from initial primordial over-densities, dense
regions of matter have come together and evolved over time. This has
resulted in the large-scale distribution of matter we observe today
(Colless et al. 2001, Doroshkevich et al. 2004, Springel et al. 2006).
This coming together of dark matter forms haloes in these initially
over-dense regions, and leaves an absence of dark matter, known as
voids, in regions of initial under-densities. Filaments then connect
dense regions together. Luminous matter, that we observe in astro-
physical objects such as stars and galaxies, is also attracted together
under the effects of gravity but is further influenced by factors such as
the effect of feedback associated with both star formation and from
active galactic nuclei (see e.g. Ceverino & Klypin 2009, Hopkins
et al. 2012, Fabian 2012, Morganti 2017). Since galaxies form in
dense regions, they trace peaks in the underlying matter distribution,
leading galaxies to be known as biased tracers of the matter distri-
bution in the Universe (see e.g. Peebles 1980, Kaiser 1984, Mo &
White 1996, Desjacques et al. 2018).

On large scales, the galaxy overdensity, 𝛿𝑔 (x, 𝑧), can be considered
to trace the matter overdensity, 𝛿𝑚 (x, 𝑧), related by a quantity known
as “galaxy bias”, 𝑏(𝑧):

𝛿𝑔 (x, 𝑧) = 𝑏(𝑧) 𝛿𝑚 (x, 𝑧). (1)

To quantify galaxy bias, a common method is to first determine
the excess probability to observe galaxies within different spatial
separations, compared to if they were randomly distributed. This
is known as the spatial two-point correlation function, 𝜉 (𝑟, 𝑧). The
redshift dependent linear bias, 𝑏(𝑧), can then be measured and is
related to the ratio of spatial clustering of galaxies, 𝜉 (𝑟, 𝑧), to the
clustering of matter, 𝜉𝑀 (𝑟, 𝑧), as given by:

𝑏2 (𝑧) =
𝜉𝑔 (𝑟, 𝑧)
𝜉𝑀 (𝑟, 𝑧) . (2)

The spatial clustering of galaxies, 𝜉𝑔 (𝑟), defines the excess cluster-
ing of galaxies observed at a given spatial separation, compared to
if they were randomly distributed. Such measurements of the spatial
clustering rely on accurate redshifts and corrections due to pecu-
liar velocities. Where highly accurate redshifts are not available for
sources in a survey, it is still possible to estimate the spatial clus-
tering by combining the observed projected angular clustering of
sources with their redshift distributions using methods such as Lim-
ber inversion (Limber 1953, 1954). Radio surveys provide excellent
catalogues to measure the large-scale structure of the Universe as
they predominately trace extragalactic sources over a broad redshift
range and over large areas, but typically rely on angular clustering
measurements instead of spatial measurements.

The angular two-point correlation function (𝜔(𝜃), see e.g. Totsuji
& Kihara 1969, Peebles 1980, Cress et al. 1996, Blake & Wall 2002,
Overzier et al. 2003, Wang et al. 2013) does not rely on redshifts
for its calculation and quantifies the excess probability (𝑑𝑃) of pairs
of sources observed within a survey catalogue at a given projected
angular separation, 𝜃, compared to if the sources were randomly
distributed on the sky, with no intrinsic large-scale structure. This is
defined by:

𝑑𝑃 = 𝑁 [1 + 𝜔(𝜃)] 𝑑Ω, (3)

where 𝑑Ω is the solid angle of the observations and 𝑁 is the mean
number of sources per unit area.

Radio continuum surveys rely on multi-wavelength information
for redshifts (see e.g. Smolčić et al. 2017b, Prescott et al. 2018,
Algera et al. 2020), which are typically dominated by less accurate
photometric redshifts for a large fraction of the sources. For LOFAR,
in the first LoTSS data release (Shimwell et al. 2019), sources were
cross-matched to sources in surveys such as Pan-STARSS (Chambers
et al. 2016) and WISE (Wright et al. 2010, Williams et al. 2019),
with ∼50% of LoTSS-DR1 sources having redshift information (see
Duncan et al. 2019). Similarly for the LoTSS Deep Fields, the wealth
of multi-wavelength data has been used to obtain redshifts for 97%
of sources across the multi-wavelength defined regions in the three
fields LoTSS Deep Fields (see Sabater et al. 2021, Tasse et al. 2021,
Kondapally et al. 2021, Duncan et al. 2021) which was used to
help classify such sources (see Best et al. 2023). The accuracy of
redshifts for such radio sources will be improved upon with future
spectroscopic surveys (such as WEAVE-LOFAR; Smith et al. 2016).

Combining measurements of the angular clustering and redshift
distribution, the spatial clustering for a population of sources can
be inferred. The spatial clustering can then be used to estimate the
galaxy bias of radio sources (as in Equation 2), this will be discussed
further in Section 5. Such clustering and bias measurements have
been presented in a number of works (see e.g. Magliocchetti et al.
1999, 2004, Negrello et al. 2006, Lindsay et al. 2014a, Nusser &
Tiwari 2015, Magliocchetti et al. 2017, Hale et al. 2018, Siewert
et al. 2020, Tiwari et al. 2022, Mazumder et al. 2022). A number
of such studies suggest an evolving bias model for radio sources,
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suggesting radio sources are more biased tracers of the underlying
matter distribution at higher redshift. Moreover, studies which further
consider the bias for radio SFGs and AGN separately have shown
that these sources have different bias distributions and trace different
mass haloes (see e.g. Magliocchetti et al. 2017, Hale et al. 2018,
Chakraborty et al. 2020, Mazumder et al. 2022). Such studies have
shown that AGN appear to inhabit more massive haloes than for SFGs
at similar redshifts, reflecting the fact that they preferentially inhabit
massive ellipticals. Further studies which classify AGN suggest that
the haloes hosting radio AGN may be related to the accretion mode
of AGN (using high redshift analogues to high/low excitation radio
galaxies, see Hale et al. 2018). Such differences in the bias of different
source populations can be advantageous for cosmological analysis,
using the multi-tracer techniques (see e.g. Ferramacho et al. 2014,
Raccanelli et al. 2012, Gomes et al. 2020). These techniques require
understanding of the bias evolution for different source populations
and make use of such difference to help place constraints on, for
example, non-Gaussianity.

Further cross-correlating radio data with other cosmological trac-
ers (see e.g. Allison et al. 2015, Alonso et al. 2021) can also
help remove some of the systematics which remain in the data and
have added further constraints on the galaxy bias evolution of radio
sources, and Alonso et al. (2021) further used this to place constraints
on the redshift distributions for radio sources, where no redshift in-
formation was available. Measurements of bias have been used in
numerous studies to relate such measurements to the typical mass
of the dark matter haloes which are hosting such sources (see e.g.
those described in Mo & White 1996, Tinker et al. 2010), but there
are caveats to such measurements, especially if full halo occupation
models are not taken into account (see e.g. Aird & Coil 2021).

In this paper, we investigate the angular clustering of radio sources
within ∼ 4500 deg2 of the LoTSS-DR2 survey and use this to infer
the average bias of LoTSS-DR2 sources. The paper is arranged as
follows: in Section 2 we describe the LoTSS-DR2 data used in this
analysis, as well as the methods to measure the angular clustering
of radio galaxies in Section 3. This includes a detailed description
of the methods used in order to obtain accurate random sources that
mimic the distribution of observational biases across the field of
view, which develops the techniques used for LoTSS-DR1 (Siewert
et al. 2020). Then, in Section 4 we present our measurements of the
angular clustering of sources and our validation of these measure-
ments before presenting our methods to determine galaxy bias in
Section 5. This allows us to place constraint on how such sources
trace the underlying matter and dark matter haloes across cosmic
time. We then discuss our results in Section 6. We then go on to draw
final conclusions in Section 7. For this paper we assume standard
cosmological parameters from Planck Collaboration et al. (2020)
in a flat model Universe, specifically: 𝐻0 = 67.4 km s−1 Mpc−1,
Ω𝑏=0.0493, Ω𝑐=0.264, Ω𝑚 = Ω𝑏 + Ω𝑐 , ΩΛ = 1 − Ω𝑚, 𝑛𝑠=0.965,
𝜎8=0.811, unless otherwise stated.

2 DATA

For this work we make use of the data and associated data products
from two LOFAR survey projects: (i) the large area LoTSS-DR2 sur-
vey (Shimwell et al. 2022) and (ii) the associated redshift information
from sources in the smaller LoTSS Deep fields (Duncan et al. 2021).

2.1 LoTSS-DR2

The majority of data used in this work consists of images and cata-
logues from the mosaics generated from combining 841 individual
pointings of LoTSS-DR2 (Shimwell et al. 2022) covering∼5600 deg2

over two regions. The first of these is centered at 13h in RA, covering
4178 deg2, and the second region is centred at an RA of 1h, cover-
ing 1457 deg2. The data were reduced in a two stage process which
consists of both a direction-independent and a direction-dependent
calibration pipeline. The former flags, calibrates and averages the data
in order to reduce the large data volumes, whilst the latter does further
calibration and imaging to account for direction-dependent effects.
This includes the effect of the varying ionosphere across the field
of view, which is more prominent at the observing frequencies that
telescopes such as LOFAR operate at, compared to higher-frequency
radio observations. As presented in works such as van Weeren et al.
(2016), Williams et al. (2016), Shimwell et al. (2019), Tasse et al.
(2021), such direction-dependent calibration of LOFAR data is cru-
cial for improving image fidelity and for producing higher resolution
imaging of the field at 6′′ angular resolution, compared to 25′′ with-
out this accounted for (see e.g. Shimwell et al. 2017), when using only
the Dutch LOFAR stations. Source catalogues were generated using
the source finder PyBDSF (Mohan & Rafferty 2015) which detected
a total of ∼4.4 million sources across the full LoTSS-DR2 coverage.
The distribution of these sources over the northern hemisphere can
be seen in Figure 1. This distribution varies significantly across the
field of view due to a combination of factors. These include intrin-
sic large-scale structure, and non-uniform detection across the field
of view resulting from instrumental, calibration and source finding
effects. Understanding the factors which cause such non-uniformity
in the data is important in order to accurately measure the true an-
gular clustering of sources and will be discussed further in Section
3.2. Unless otherwise stated, any mention of images and pointings
from LoTSS-DR2 refer to the mosaic images which are available
from https://lofar-surveys.org, and are the mosaiced region
closest to the pointing centre.

2.2 LoTSS Deep Fields

In order to relate any observed angular clustering to the spatial clus-
tering and bias, it is crucial to have knowledge of the redshift distribu-
tion of the sources within the field. As there are not direct measure-
ments of redshifts for the full population of LoTSS-DR2 sources1

we make use of the LoTSS Deep Fields data (Sabater et al. 2021,
Tasse et al. 2021) which targets a handful of fields in the northern
hemisphere with an abundance of multi-wavelength data, these are
observed to deeper sensitivities than in LoTSS-DR2. Observations
within these fields are important to help infer the redshift distribution
of the sources observed within LoTSS-DR2. The first LoTSS Deep
Fields data release consisted of three fields: Boötes, Lockman Hole
and the European Large-Area ISO Survey Northern Field 1 (ELAIS-
N1) field. These were observed for a total of 80, 164 and 112 hours
respectively, covering ∼ 20 deg2 in each field.

For each field, a smaller region was defined for which there exists
deep multi-wavelength information. In such regions, the source cat-
alogues from PyBDSF were cross-matched to host galaxies (Konda-

1 Redshifts for a number of sources will be available in the value added
catalogue of Hardcastle et al. (2023) which is cross-matching sources ≥4
mJy, to ensure accurate host positions for source ≥8 mJy. However, there will
be significant incompleteness compared to the full population of sources used
in this work.
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Figure 1. Sky density distribution of all sources in the LoTSS-DR2 survey (upper) from Shimwell et al. (2022) and for the random catalogues generated for this
work (lower; prior to any flux density, SNR or spatial cuts). This shows the two large regions covered by the survey, centred on right ascensions of 1h (15 deg)
and 13h (195 deg). The figure is plotted in the Mollweide projection using HealPix (Górski et al. 2005, Zonca et al. 2020) with an Nside=256. The colour scale
indicates the source density per sq. deg across the field of view.

pally et al. 2021) using a wealth of ancillary data. This cross-matched
area constituted a total area of 8.6 deg2 in the Boötes field, 6.7 deg2

in ELAIS-N1 and 10.3 deg2 in the Lockman Hole field, totalling
25.6 deg2 across the three fields. For the cross-matched sources, a
redshift was also associated to the source using a combination of tem-
plate fitting to the multi-wavelength data as well as machine learning
methods in order to obtain probability density functions (PDFs) for
the redshift distributions, denoted 𝑝(𝑧). A ‘best redshift’ was then
assigned to each source based on the PDF, or a spectroscopic red-
shift if such was available for the sources. More detail on this can
be found in Duncan et al. (2021). We use these redshift distributions
to estimate the redshift distribution, 𝑝(𝑧), for sources in the wider
LoTSS-DR2 survey. This will be discussed further in Section 5.1.

3 ANGULAR CLUSTERING AND RANDOMS
GENERATION

3.1 Angular Clustering

As discussed in Section 1, one way to investigate the clustering of
sources within a galaxy catalogue is through measuring the angular
two point correlation function (TPCF) , denoted by 𝜔(𝜃). The TPCF
quantifies the excess clustering observed at a given angular separation
in the catalogue data, compared to what would be observed over the
field of view if there was no large-scale structure within the data.
Naively, such excess probability to detect galaxies in the data at a
given angular separation compared to the distribution from random
sources is given by:

𝜔(𝜃) = 𝐷𝐷 (𝜃)
𝑅𝑅(𝜃)

− 1. (4)

In this estimator, 𝐷𝐷 (𝜃) is the counts of pairs of galaxies within
the data catalogue at a given angular separation 𝜃 (normalised such

that Σ𝜃𝐷𝐷 (𝜃) = 1) and 𝑅𝑅(𝜃) is the corresponding normalised
pair counts within a random catalogue. This random catalogue is
generated to mimic observational effects across the field of view. If
the data were indeed randomly distributed and exhibited no large-
scale structure behaviour, 𝜔(𝜃) would fluctuate around a value of
0. Any deviation from this suggests intrinsic large-scale structure.
A number of predictions for galaxies as well as observations have
suggested that this angular clustering behaves as a power law for
galaxies and specifically radio sources (see e.g. Peebles 1980, Blake
& Wall 2002, Lindsay et al. 2014a, Magliocchetti et al. 2017, but see
Section 4). Whilst Equation 4 could be used to estimate 𝜔(𝜃), work
by Landy & Szalay (1993) has shown that a more accurate estimator
of 𝜔(𝜃) is given by

𝜔(𝜃) = 𝐷𝐷 (𝜃) − 2𝐷𝑅(𝜃) + 𝑅𝑅(𝜃)
𝑅𝑅(𝜃)

. (5)

In this estimator, 𝐷𝑅(𝜃) is the corresponding normalised pair counts
between the data and random catalogues within a given angular
separation. This estimator has been shown to have minimal variance
and be less biased than other estimators such as Equation 4 (see
Landy & Szalay 1993). As such, we use Equation 5 to calculate 𝜔(𝜃)
in this work.

To calculate 𝜔(𝜃), a random catalogue must first be generated to
compare to the data. If source detection across the field of view were
uniform, such a random catalogue could be generated through sam-
pling random positions across the observed field of view. However,
the detection of sources is not uniform (see Figure 1) and will be
affected by a number of observational effects across the sky. Thus,
the generation of randoms which accurately mimic the detection of
sources across the sky is crucial to avoid observational effects being
mistaken for intrinsic large-scale structure. We therefore employ a
number of methods (discussed in Section 3.2) to mimic such obser-
vations across the field of view.

MNRAS 000, 1–29 (2022)
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To measure 𝜔(𝜃), we make use of the package TreeCorr (Jarvis
2015) to calculate the pairs of galaxies within angular separation
bins that are uniformly spaced bins in ln(𝜃) and cover the range of
angular scales possible with the data. Due to the large area coverage
of LoTSS-DR2, we ensure that the metric for calculating separations
within TreeCorr is set to ‘Arc’. This helps to more accurately
calculate separations across large fields of view, using great circle
distances. We also set the parameter bin_slop to 0 which enforces
that exact calculations are made to calculate the number of pairs of
sources within each angular separation bin, as opposed to the default
method which has some flexibility between the separation bins in
order to help speed up the calculation of pairs. Such parameters were
determined to be important in the work of Siewert et al. (2020),
where a non-zero bin_slop was found to introduce larger errors in
the measurement of 𝜔(𝜃). The associated uncertainties in 𝜔(𝜃) will
be discussed in greater detail in 3.4 and its connection to linear bias
also discussed in Sections 5.2-5.3.

3.2 Randoms

As discussed in Section 3.1, in order to measure the angular clustering
from LoTSS-DR2 we need to have a catalogue of random sources
which mimics the detection of data across the field of view. Figure
1 highlights the non-uniform detection of radio sources across the
field of view, due to a combination of factors including sensitivity
variations across the field of view due to bright sources, reduced
sensitivity with declination and smearing of points sources across
the field of view. In building our random catalogue we will take a
series of steps to account for these effects. An outline of these steps,
as well as the section in which these shall be applied is as follows:

(i) Survey Area - we generate randoms across the survey field of
view, ensuring we remove any masked regions within pointings which
are masked out due to failures within the data reduction process. We
consider this in Section 3.2.1.

(ii) Smearing - There may be position-dependent smearing effects
across the field of view of a pointing, as well across the 5600 sq. deg.
Smearing will affect the detection of sources (which is based on
signal-to-noise ratio ‘SNR’, defined here as peak flux density/rms
(root mean square noise), for which the Isl_rms column is used
for rms of the data2), and could arise from effects such as residual
calibration uncertainties and uncorrected smearing effects inherent
to the data averaging. We model smearing across the field of view
and its dependence on field elevation and correct for this, which is
discussed in Section 3.2.2.

(iii) Incompleteness and measurement errors - The sensitivity
(rms) will vary across the survey area, such as with elevation or
declination (see Fig. 2 of Shimwell et al. 2019) or location within the
mosaic and proximity to bright sources, where the noise is known
to be elevated. Variations may also exist towards the edge of the
field, where there are fewer neighbouring pointings that can be mo-
saiced together (as mosaicing would reduce the noise). This will
affect source detection and hence the completeness. Furthermore,
the source finder may have a completeness dependence with SNR
and its measurement errors can affect the properties such as flux
density associated with sources. We account for completeness as a
function of source input SNR and the effect that noise and the source

2 For the randoms, we use the pixel rms value at the source centre. Using a
central rms value for the data makes a negligible difference to the number of
sources when the final flux density and SNR cuts are applied are described in
Section 3.3.2

finder may have on the measured flux properties of sources in Section
3.2.3.

(iv) Additional spatial masking - Finally, there may be additional
spatial regions which should be masked to avoid regions such as the
unmosaiced edges of pointings; this is described in Section 3.3.

We note, though, that there may be limitations to generating the
randoms which may be more challenging to account for, especially
over the large area of LoTSS-DR2. This includes residual primary
beam uncertainties which are unknown and that mosaicking pointings
together may cause additional smearing which can very spatially due
to pointing dependent astrometric offsets. To minimise the effects of
these, additional flux limit and SNR limits can be applied to both the
data and random samples. Specifically, for our final analysis we limit
the sample to ≥1.5 mJy and ≥ 7.5𝜎. We discuss these and additional
cuts in Sections 3.3.2 - 3.3.3.

3.2.1 Input Simulated Catalogue

The first step in generating accurate random catalogues for the
LoTSS-DR2 survey is to generate a sample of input positions which
are uniformly distributed across the field of view of LoTSS-DR2,
accounting for masked regions within the fields. For this work, we
generated random positions in the range: RA from 0◦ to 360◦ and Dec
from 20◦ to 80◦. This wide area encompasses the full LoTSS-DR2
footprint, but a significant fraction of such a region is not covered
by LoTSS-DR2. Therefore, we use the associated rms maps of each
individual pointing to identify the sources within the LoTSS-DR2
area. We assign each random position an rms value, based on the
pixel value at the source location, using the rms map for the closest
pointing. This also allows sources within masked regions, or regions
not surveyed in LoTSS-DR2 to be identified. Random sources falling
within the surveyed region are retained and consist of ∼ 200 million
input simulated positions across the field of view of LoTSS-DR2.

To account for sensitivity variations and the effect that this has
on the detection of sources, we take a number of iterative steps.
Firstly, we assign simulated properties of radio sources to each of
the ∼ 200 million random positions. Such properties include the flux
density of the simulated source, as well as source shape information.
To do this, we make use of the SKA Design Studies Simulated
Skies (hereafter SKADS Wilman et al. 2008, 2010), which provide
a simulated catalogue of sources covering 100 deg2 with multiple
observable properties for each simulated source. These properties
include an associated redshift, flux density measurements at several
frequencies in the range 151 MHz − 18 GHz, shape information and
source type (e.g. AGN or SFG). Recent observations suggest that
SKADS underestimated the number of SFGs at the faintest flux
densities (see e.g. Bonaldi et al. 2016, Smolčić et al. 2017a, van
der Vlugt et al. 2021, Matthews et al. 2021, Hale et al. 2023, Best
et al. 2023). Therefore, we employ a modified version of the SKADS
catalogue where the number of SFGs in the original catalogue are
doubled, as also done in Hale et al. (2023). The source counts from the
modified SKADS catalogue better reflects deep data from the LoTSS
Deep Fields (Mandal et al. 2021), source counts presented for LoTSS-
DR2 (Shimwell et al. 2022) and data from other wavelengths scaled
to 144 MHz, assuming a spectral index3 of 𝛼 = 0.7, We initially use a
minimum flux density of 0.1 mJy for the SKADS sources to validate
the randoms, but increase this to 0.2 mJy once flux density cuts are

3 We use this value for the spectral index unless otherwise stated, under the
convention 𝑆𝜈 ∝ 𝜈−𝛼.
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applied (see Section 3.3.2). We note that the relatively limited area of
SKADS compared to LoTSS-DR2 means that the contribution of the
much rarer, bright sources may be undersampled and so may differ
from LOFAR observations. However such bright sources are rare in
the observations and simulations and so will not contribute largely to
the clustering. Moreover, those sources will not be sensitivity limited.
Due to the nature of the large area of LoTSS-DR2, SKADS sources
will need to be repeated in our random sample, to ensure both spatial
coverage and to allow the random sample to be significantly larger
than the data. Whilst other simulated radio catalogues exist, such
as T-RECS (Bonaldi et al. 2019, 2023), we will demonstrate later
that the source counts used from this modified SKADS model can
accurately represent the source counts of our data and other deeper
observations, and have been shown to be successful in estimating
completeness in other studies (Hale et al. 2023). Therefore, we feel
we are able to adopt SKADS for use in this work. With future studies
which split by source type and redshift, it will become increasingly
important to use simulated catalogues which both have overall flux
distributions which reflect the data as well as reflect the evolving
luminosity functions for different populations.

As PyBDSF relies on peak SNR in order to determine whether a
source is detected above the local noise, we need a peak flux density
for the simulated sources. For a given integrated flux density, a point
source is more likely to be detected than an extended source, due
to the decreasing peak SNR for more extended sources. To assign a
peak flux density to our simulated sources, we use the component
catalogue which corresponds to the modified SKADS catalogue.
The catalogue used for this work has a flux density limit of 5 μJy at
1.4 GHz (∼ 25 μJy at 144 MHz), and includes the shapes and ori-
entations of components that make up the individual sources in the
SKADS catalogue. Following Hale et al. (2021, 2023), we model
each SKADS source through combining the emission related to the
modelled components of a source. For each component, we model
this as an ellipse randomly positioned within a pixel of the same
pixel scale as the LOFAR observations. We convolve this ellipse
with a Gaussian kernel representing the restoring beam which is an
approximation to the point spread function (PSF) of the LOFAR ob-
servations (6′′) and sum these components together4. This procedure
provides an input catalogue of sources which have information on the
integrated flux density, redshift, source type and peak flux density,
which we can assign to our random catalogues. Unlike in Hale et al.
(2021, 2023), though, we do not inject sources into the images and
re-extract sources using the source finder, PyBDSF. This is due to
the large area of the field being considered, for which a significant
computational effort would be required to create sufficient random
sources to measure the clustering. Instead we make use of informa-
tion from the simulations performed in Shimwell et al. (2022) to
account for incompleteness across the sky. However, we must firstly
account for smearing across the field of view.

3.2.2 Smearing

Smearing effects can reduce the peak flux densities of sources, and
hence their detection. This smearing can originate from a range of

4 We note that the knowledge of the true underlying source size distribution is
challenging to understand from current observations, due to complexities such
as source deconvolution and smearing in the image. Whilst SKADS provides
one source size model, knowledge of these for the data will be improved with
deep, high-resolution imaging of galaxies, such as with observations from the
LOFAR International stations (see e.g. Morabito et al. 2022, Sweĳen et al.
2022).

factors including: bandwidth and time smearing (Bridle & Schwab
1999); residual calibration errors; the size of the facets used in the
reduction; and residual effects from the ionosphere interacting with
the radio signals. The first of these, bandwidth and time smearing,
is described in detail in Bridle & Schwab (1999) and is related to
the averaging of data, which causes an increasing smearing with
distance from the pointing centre. In LoTSS-DR1, Shimwell et al.
(2019) suggested that the use of DDFacet reduced the effects of such
smearing at the largest angular separations compared to Bridle &
Schwab (1999) (see Fig. 10 of Shimwell et al. 2019). This is because
DDFacet uses a different PSF in each facet which can be used to
account for smearing in the data. The 6′′restoring beam of LOFAR
images is then used uniformly across the images. However, such a
process leads to residual effects. For example, sources which are not
fully deconvolved may still exhibit smearing and as only one PSF
per facet is assumed, this can also lead to residual effects. We do not
adopt the relation for smearing as presented in Fig 10 of Shimwell
et al. (2019), but instead investigate the smearing for the LoTSS-DR2
data and how it varies with observational properties.

Given the large survey area of LoTSS-DR2 (∼5600 deg2), we con-
sider whether there is a possibility of smearing being a function of
position across the survey, in particular with the elevation of the
observations, as the primary beam size of an individual pointing
increases at low elevation with LOFAR as it is not a steerable tele-
scope, and as there are larger ionospheric effects, because more of the
Earth’s atmosphere is along the line of sight. This leads to larger and
more elongated PSF sizes and observational area at lower declination
(see LOFAR observations at lower declinations in Hale et al. 2019).
Therefore, we consider the dependence of the observed smearing as
a function of these parameters.

To investigate the relationship of the position-dependent smearing
we make use of sources from the Faint Images of the Radio Sky at
Twenty-cm survey (FIRST; Becker et al. 1995, Helfand et al. 2015)
where we have overlap between the two surveys (mostly in the 13h
field). FIRST is a 1.4 GHz survey with the VLA which observed the
northern sky to 𝜎1.4GHz ∼ 0.15 mJy at 5′′ resolution. To study the
smearing, it is important to identify sources which are believed to be
unresolved. Such sources should have a ratio of integrated to peak flux
densities ( 𝑆𝐼

𝑆𝑃
) of 1, though scatter will exist due to the effects of noise

at lower signal-to-noise (SNR). Due to the higher angular resolution
in FIRST compared to LoTSS-DR2, we make the assumption that
those sources which are unresolved in FIRST will also be unresolved
in LoTSS-DR2. To identify unresolved sources in FIRST, we took
those which are isolated (no neighbours within 12′′) and are high
signal-to-noise (SNR≥10). For those sources we follow the methods
of previous works such as Smolčić et al. (2017a), Shimwell et al.
(2019), Hale et al. (2021) and use a 95% SNR envelope of the form:

𝑆𝐼

𝑆𝑃
= 𝐴 ± 𝐵 × SNR−𝐶 , (6)

where the ± reflects the upper/lower envelopes. 𝐴 is found using
the value of 𝑆𝐼

𝑆𝑃
at high SNR, and sources with 𝑆𝐼

𝑆𝑃
below 𝐴 are

used to fit for 𝐵 and 𝐶 in order to define the envelope. The form
of the envelope fit for these sources can be seen in Figure 2. Those
FIRST sources which are below the upper envelope are considered
to be unresolved. These unresolved FIRST sources are then cross-
matched within a 3′′matching radius to LoTSS-DR2 sources which
are isolated (again, within 12′′), high-SNR sources (Eddington 1913,
SNR≥20, to ensure sources are less affected by Eddington bias, see),
and those sources which were considered single sources by PyBDSF
(i.e. S_Code=‘S’).
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Figure 2. SNR envelope for integrated to peak flux density ratio as a function
of SNR that is determined for isolated, high SNR sources in FIRST (see
Section 3.2.2) Sources in blue are considered to be unresolved and in red are
resolved. The model for the envelope is also provided.

We then consider the position-dependent median ratio of the
integrated-to-peak flux densities as a function of distance to the
nearest pointing centre and its dependence on RA, Dec and mean
elevation of the field observation. Only those separation bins that
have at least 200 sources within them are presented in Figure 3 and
errorbars are generated by bootstrap resampling the sources within
the bin 100 times after resampling one third of the sources.

Figure 3, shows an increase in smearing across the field of view as
a function of distance from the pointing centre. However, there is also
an apparent dependence on the declination and elevation of the field.
The relationship with the right ascension of the observations is more
complicated. If we first consider the effects of declination, the me-
dian flux density ratios appear to increase with declining declination,
whilst for the two lowest declination bins considered there is similar-
ity in the trend of the observed smearing as a function of separation.
If we consider the dependence on RA this does not appear to have
a clear trend, but at the largest RA considered the smearing is mini-
mized. However, we note that the comparison with FIRST does not
have sufficient RA coverage to investigate the full RA range observed
with LOFAR. Finally, if we investigated the elevation dependence of
this smearing, we see increasing smearing with distance from the
pointing centre, which also appears to decrease with elevation above
an elevation of ≥ 65◦, and to be constant at elevations below this.
As the elevation of an observation is related to the declination of the
source combined with the time of observation, such smearing effects
are likely correlated. For this work we only consider the elevation-
dependent smearing to correct the peak flux densities of the random
sources, using for a model of the form:

𝑆𝐼

𝑆𝑃
= 𝐶1 + 𝑒−𝐷1×𝜃 , (7)

where 𝜃 is the angular separation (in degrees) from the pointing
centre of the nearest pointing and 𝐶1 and 𝐷1 are values to be fit.
We calculate the best fit values of 𝐶1 and 𝐷1 in bins of elevation
and then model the average distribution of these parameters using a
linear equation:

𝐶1 = 𝛼𝐶 + 𝛽𝐶 × 𝜖, (8)

and similarly for 𝐷1. Here 𝛼𝐶 and 𝛽𝐶 are constants, and 𝜖 is the
mid point of the elevation bin in degrees. These are fit for elevation

bins with an elevation ≥60◦. For those elevations ≤ 62.5◦ we apply
the same relation to that fit for the 60-65◦elevation range. These
models5 are presented in Figure 3. When applied to the random
sources, angular separations are measured to the nearest pointing
centre and the mean elevation is taken as that of the nearest pointing.
As can be seen from Figure 3, this functional form appears to be a
good visual fit to the data. This smearing shows that for those sources
at the largest angular distances from the pointing centre have greater
smearing and so would be less easy to detect than for a source with
the same integrated flux density close to the pointing centre.

3.2.3 Correcting the Simulations for Completeness and Source
Measurement Effects

Once we have information for the flux density properties (both inte-
grated and peak) for each simulated source, we consider the likeli-
hood a random source would be detected, accounting for complete-
ness. Due to the variations in rms across the image and the source
finder itself, the completeness will vary across the sky and not all
sources with intrinsic peak flux densities above 5𝜎 will be detected
by the source finder, and some source with intrinsic SNR below the
threshold will be pushed above the threshold. It is then important to
use this understanding of the completeness variation to determine
which of our simulated randoms would be detected if they were
observed through the LoTSS-DR2 survey.

To measure this, we make use of the image plane completeness
simulations which were presented and used in Shimwell et al. (2022)
and investigate the recovery of sources over a range of flux density
and source shapes. We use the output from these simulations in order
to investigate completeness and the source counts for the survey.
These simulations involved generating 10 simulated images for each
field in which sources of varying flux densities and shapes6 are
injected within the residual images of the individual pointings. This
uses a source counts model from Mandal et al. (2021) to determine
the number of sources to inject into a field. PyBDSF is then used to
re-extract the sources over the simulated images. This then allows the
completeness to be measured, which is presented as a function of flux
density in Shimwell et al. (2022) for both point source completeness
and using simulations which include extended sources, which we
use for this work. These simulations can help quantify which of
our simulated sources are likely to be detected, but also to establish
what the “measured” flux densities of these sources may be, if they
had theoretically been detected by the source finder. It is with a
combination of accounting for these two effects that we generate our
random catalogue of simulated sources.

Whilst the completeness is shown to have a large variation as a
function of flux density for each LoTSS pointing (see Shimwell et al.
2022), the scatter is greatly reduced when its dependence on SNR is
considered (see Figure 4). This smaller scatter is due to the fact that
source finding with PyBDSF uses thresholding which is based on
the peak flux density of pixels within a source, compared to the local

5 The model parameters that we find and use in this analysis are: 𝛼𝐶 = 0.506,
𝛽𝐶 = −0.00428, 𝛼𝐷 = 0.0557 and 𝛽𝐷 = −0.000217 (to 3 significant
figures).
6 We note these shapes are based on deconvolved source sizes, which may
have smearing effects. We also note the SKADS models use elliptical based
models, not Gaussians, and so this may lead to some residual differences
when comparing the detection of extended sources. We use these simulated
sources from Shimwell et al. (2022), though, as they are more appropriate
than point sources, and allow some indication of the effect of non-point like
objects.
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Figure 3. The measured integrated to peak flux density ratio (an indicator of source smearing, y-axis) as a function of separation from the closest pointing centre
(x-axis). The dependence of such smearing is shown as a function of declination (left), RA (centre) and elevation (right). The dashed-dot line in the right hand
panel indicates the elevation dependent smearing model which will be used in this work. For elevation bins ≤65◦ a constant model is used (green, orange and
red data).

noise, i.e. SNR. Both the boundary of pixels which contribute to a
source island and the criteria which define which sources contribute
to the catalogue both use a SNR threshold. This is a 3𝜎 and 5𝜎
thresholding limit respectively for the two criteria defined. Therefore,
while the rms values vary between the different fields of LoTSS-DR2,
so each field has a different flux density dependence on completeness,
the SNR dependence is more likely to be consistent across the fields.
This can be seen in the inset of Figure 4 which also demonstrates
that at a 5𝜎 limit, which is used to generate the source catalogue,
the completeness is in fact only ∼50%, rising to ∼95% at 7𝜎. Due
to this consistency between fields, we therefore believe that using
completeness as a function of SNR is a much more appropriate way
to resample our simulated sources, instead of using solely a flux
density dependence.

However, it is possible that while the average completeness as
a function of SNR is consistent across the fields, it may be that
completeness has both a dependency on SNR and flux density. This
is because the intrinsic size distribution of sources is likely to have a
dependence on flux density, such as AGN (which may have jets and
be resolved) are likely to be brighter than star forming galaxies. For
extended sources, these may be more likely to be detected at a given
peak SNR as the larger sizes means that while the peak of the sources
may be affected by a noise trough, pushing it below a detection limit,
but the large size means that other neighbouring pixels could push
the source above the detection limit, making it detectable. For smaller
sources, they may be less likely to have a pixel above the detection
threshold, given the smaller size. Therefore we also consider the
flux density dependence of the completeness as a function of SNR
(Figure 4). As can be seen in Figure 4, there does appear to be a weak
flux density dependence of the completeness for the same SNR. For
example at 5𝜎, there is a variation in completeness from ∼0.3 at
∼0.2 mJy to ∼0.65 at ∼5 mJy. This behaves in the way expected, as
discussed above, with larger sources better detected. However, at ∼6-
7𝜎 for sources with the highest flux densities considered in Figure 4
there is the opposite behaviour, where the completeness appears to
decrease with increasing flux density of the simulated sources.

Moreover, the simulations from Shimwell et al. (2022) allow us to
also consider (i) the combined effects of Eddington bias (Eddington
1913), where faint sources are preferentially boosted to higher flux
densities, and (ii) source finder measurement errors. Combined, this
allows sources which would be inherently fainter than 5𝜎 to be
detected by PyBDSF but leads to sources at lower SNR to have

Figure 4. Completeness as a function of peak SNR (x-axis) and as a function
of flux density (see colourbar) for sources across the 841 pointings of LoTSS-
DR2. Inset: the completeness as a function of SNR only for each individual
field (light blue) and the average across all fields (navy, dotted).

measured integrated and peak flux densities at values different to their
intrinsic values. Hence, we also consider the ratio of the measured
to input flux density for each simulated source as a function of input
SNR. This is shown for both the integrated and peak flux densities
in Figure 5. As can be seen, at high SNR, the measured-to-input flux
density ratio tends to a value of 1, indicating that these sources can
be accurately characterised by the source finder. At lower SNR there
is a scatter for both the integrated and peak flux density ratios which,
at the lowest flux densities, are biased to measured flux densities that
are larger than the intrinsic flux densities.

We therefore resample our randoms to correct for the effects of:

(i) The completeness as a function of both input SNR (peak flux
density/rms) and integrated flux density;

(ii) The ratio of the input simulated peak flux density (𝑆P, in) to
the measured peak flux density (𝑆P, meas) as a function of input SNR
(to obtain a “measured" peak flux density);

(iii) The ratio of the input integrated-to-peak flux density ratio
to the measured integrated-to-peak flux density ratio ( 𝑆I, in𝑆P, meas

𝑆I, meas𝑆P, in
)

as a function of input SNR (to obtain a “measured" integrated flux
density).

We use the simulations of Shimwell et al. (2022) to take our input
simulated catalogues and resample them to determine which sources
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Figure 5. Comparison of the measured to input simulated flux density as a
function of input SNR for the simulated sources in Shimwell et al. (2022) for
both the integrated (left) and peak (right) flux densities.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Int/Peak

Data
Rand
Data  5 sig
Rand  5 sig
Data  7.5 sig, 1.5 mJy
Rand  7.5 sig, 1.5 mJy

Figure 6. Normalised distribution of the integrated (Int) to peak flux density
ratio for the data (blue) compared to the random sources (red). This is shown
for all sources in LoTSS-DR2 and also those sources when a SNR cut of 5𝜎
is applied, and for the finally adopted cuts of 7.5𝜎, 1.5 mJy (see Sections
3.3.1 - 3.3.3). A lighter colour indicates a higher SNR cut.

are “detected” based on their expected completeness, given their SNR
and integrated flux density. For those sources which were considered
to be detected, we calculate a “measured” integrated and peak flux
density for the simulated source.

To generate the final catalogue of randoms to be used to investigate
the angular clustering we therefore take the input catalogue of random
sources from SKADS discussed in Section 3.2.1 and calculate the
peak flux densities that have been corrected for smearing (see Section
3.2.2). We also apply a further constant smearing ratio by dividing
the peak flux densities by a ratio of 0.95; this was found to be essential
to allow the peak of the integrated-to-peak flux ratio of the simulated
sources to match that of the data, see Figure 6. The value was chosen
to align the peak of these ratios and likely reflects a residual smearing
issue from the data reduction processes such as from the effects of
the ionosphere or residual calibration errors. Then, given the rms at
the source location, it is possible to determine an input SNR.

Using this input source SNR and integrated flux density for an in-
dividual randoms source, we then calculate its completeness through
interpolating from a 2D grid of completeness as a function of both
SNR and flux density which have been calculated from the simu-

lations of Shimwell et al. (2022), across all fields7. For regions in
SNR and flux density space where there is no or limited information
from the simulations of Shimwell et al. (2022) to interpolate a com-
pleteness we extrapolate to reflect the detection. For example, at high
SNR (≥ 10) and high flux densities where there is limited simulation
information (and so can be affected by smaller number statistics),
we assume all sources will be detected, and at low SNR (≤ 1), we
assume the completeness is zero. From this 2D interpolation, we
are able to calculate a probability associated with the completeness
which is compared to a randomly chosen probability and is consid-
ered to be “detected” if the completeness value is larger than the
random probability.

For these “detected” random sources, we then determine the “mea-
sured” peak and integrated flux densities for a source. This is impor-
tant to consider because if we want to apply flux density or SNR cuts
on the data (see Section 3.3) then such cuts would need to be applied
to the random sources as well. Therefore, we again make use of the
simulations of Shimwell et al. (2022) in order to generate a simulated
“measured” peak and integrated flux density for each random source.
To do this we again take the simulations from Shimwell et al. (2022)
and construct a 2D histogram of the input SNR distribution vs. the
ratio of the input to measured integrated flux density distribution
(or similarly for peak flux density), for each pointing observed in
LoTSS-DR2. To generate the measured flux densities, we use the
input SNR of each random source and use random sampling to ob-
tain a measured peak flux-density input-to-output ratio and to obtain
a “measured” peak flux density. For the integrated flux density we
sample to find the ratio between the input-to-output peak flux den-
sity to integrated source flux density ratio, given the source SNR.
Again, we make sensible extrapolations in those regimes where we
have fewer sources, for example at high SNR. Using this combined
method means that we now have a distribution of random sources
with not only positions, but also knowledge of the “measured” flux
densities and SNR for the source.

3.2.4 Distribution of Randoms

This methodology leads to a distribution of randoms that can be
seen in the lower panel of Figure 1. This, in general, matches that
of the data (Figure 1) in that both under- and over-densities within
the data are also apparent within the randoms in similar locations.
This highlights that the process we are using to generate the randoms
appears to broadly represent the observational biases across the field
of view. However, as we believe there is real structure within the
distribution of galaxies, there will be differences between the distri-
bution of data and randoms across the image. There may, however,
be additional SNR, flux density and positional cuts that need to be
applied to the data to ensure the randoms reflect the data. We discuss
such additional constraints in the next sub-section.

3.3 Additional Positional Constraints on the Data and Randoms

While these randoms have been generated across the full field of
view of the LoTSS-DR2 survey, it is important to apply additional
position-based constraints in order to account for known observa-
tional systematics within the data.

As discussed in Section 3.3.2 of Shimwell et al. (2022) and shown

7 Above 5 mJy there is more uncertainty due to the smaller number of sim-
ulated sources and so we assume the completeness variation with integrated
flux density does not change above the maximum flux density shown.
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Figure 7. Distribution of sources in the 1h (top) and 13h (bottom) fields of
LoTSS-DR2 for the full area (grey) and inner masked region (blue) that is
presented in Table 1. The black dots indicate the pointing centres for each of
the 841 fields observed. White regions indicate areas where the images are
masked or outside the coverage of LoTSS-DR2.

Region RA (◦) Dec (◦) Region RA (◦) Dec (◦)
1 [1, 37] [25, 40] 5 [127, 248] [30, 67]
2 [1, 32] [19, 25] 6 [193, 208] [25, 30]
3 [0, 1] [19, 35] 7 [248, 270] [30, 45]
4 [113, 127] [27.5, 39] 8 [332, 360] [19, 35]

Table 1. Definition of inner regions used to mask both the data and random
catalogues as described in Section 3.3.

in their Figure 9, there appears to be variations in the flux scale across
an individual pointing within the LOFAR field. This appears to be a
result of differences in the model of the primary beam across the field
of view. Such flux scale variations were seen to reduce by Shimwell
et al. (2022) when pointings were mosaiced together. Therefore, we
only include regions where pointings have been mosaiced together
and by reducing the area of observations for both the data and the
randoms to remove the outer edges. Furthermore, and for a similar
reason, we want to remove those areas where there are a large number
of gaps within the images due to facets that failed the data reduction
process. These often, though not exclusively, lie towards the outer
edges of the observations.

The reduced area is defined in Table 1 and shown in Figure 7,
alongside the locations of the centres of the 841 pointings which
make up the DR2 region. The RA and Dec cuts are chosen to ensure
that the data is at least a pointing radius from the outer edges of the
observations. These cuts are employed to be conservative and remove
regions where uncertainty may be introduced in the flux scale across
the image as the region is not mosaiced with neighbouring pointings.
With these cuts applied, we have ∼80% of the total area of LoTSS-
DR2 remaining. This reduces the number of pointings which the data
cover to 791.

3.3.1 Validation of Randoms

In order to validate that our randoms are accurate before using them
and to determine any additional cuts to apply in order to study the
angular clustering, we first make comparisons to check that the data
and randoms have similar distributions, using those within the re-
gion defined above (see Table 1). First, we consider the apparent
completeness produced by the random catalogues and what this im-
plies for the “intrinsic” source counts that would be estimated based
on this completeness. We present the Euclidean normalised source
counts distribution in Figure 8, where the raw data are compared to
the “detected” random sources. As can be seen, there is good agree-
ment between the raw source counts from the LoTSS-DR2 data and
the “detected" randoms to a flux density of ∼0.3 mJy. Below 0.3
mJy, deviations likely arise from the fact that the minimum flux den-
sity used for the random catalogues was 0.1 mJy. Therefore, below
∼ 0.3 − 0.4mJy it is likely that the corrections are mis-estimated as
the full effects of detection biases (e.g. measurement and Eddington
biases) in the flux densities for low SNR sources will not be probed
fully. Further comparing the LoTSS random completeness corrected
source counts to our input randoms sources, there are similar dis-
crepancies below ∼0.3-0.4 mJy, which combines the resultant effects
of not fully probing the correction for faint sources (as above) as well
as the effect that the raw LOFAR data includes sources found from
the wavelet fitting mode of PyBDSF, which is not modelled by the
randoms. The effect of the wavelet fitting on the data can be better
understood when we consider the SNR envelope of the data, which
we discuss below.

We compare the SNR envelope of our data to that of the randoms
catalogue in Figure 9. This presents the integrated to peak flux ratio
as a function of detected SNR (measured peak flux density/rms). In
theory, this would consist of sources with an integrated to peak flux
density ratio of 1 if they are unresolved or a ratio greater than 1 if
they are resolved. In reality, an envelope distribution is observed with
increasing scatter in the ratio at low SNR. Figure 9 also shows there
are a wealth of LoTSS-DR2 sources with SNR<5. These originate
from PyBDSF’s wavelet fitting mode which was used during the
source detection process. This is due to the fact that a new rms
map is recalculated for each wavelet fitting scale. This mode is used
for finding larger extended sources. However, the simulations from
Shimwell et al. (2022) use smooth models for their simulated sources,
so do not employ the wavelet fitting mode when source finding with
PyBDSF. Therefore, a SNR cut of at least 5𝜎 should be employed to
ensure we use sources not detected through the wavelet fitting mode
which have a different associated rms map that is not used here for the
randoms. We present the comparison of the SNR envelope at ≥ 5𝜎
for both the randoms and the data in Figure 9, which are in better
agreement and for the final cuts to the data which are discussed in
Section 3.3.1-3.3.3.

Both of the comparisons presented in Figures 8 and 9 examine
the random populations as a whole, not as a distribution across the
field of view and so we also consider the distribution of randoms and
data across the field of view, within the inner regions bounded by the
ranges listed in Table 1. In Figure 10 we present the distribution of the
ratio of normalised number of data sources (normalising the number
of sources in a bin to total number of sources) to the normalised
number of randoms as a function of declination with various SNR and
integrated flux density cuts applied. As can be seen, the comparison
of data to randoms is shown both when the randoms are uniformly
distributed across the sky as well as the randoms generated from
the resampling process discussed in Section 3.2 above. An accurate
distribution of randoms which reflect the underlying observational
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systematics should show a ratio which is close to, or scatters around,
a value of 1.

Figure 10, demonstrates that up to a 5 mJy flux density limit, there
is a clear difference between the uniform randoms and those which
have the systematics of the data taken in to account. With just uni-
form randoms there is a clear declination dependence compared to
the data, which likely reflects sensitivity variations across the sky.
For example, the sensitivity becomes poorer at the lowest declina-
tion, therefore the uniform randoms will appear to be much more
numerous than the sources observed in the data. However, the ran-
doms generated for this work which account for sensitivity variations
and observational systematics across the field of view show a more
similar distribution to the data, oscillating around a value of 1. For
higher flux density cuts, the comparison between the data and ran-
doms becomes more similar to a ratio of 1, staying within ∼5% of a
ratio of 1 above a flux density cut of 1 mJy.

Given the comparisons presented, it is clear that a 5𝜎 SNR (at
least) is needed to avoid using those sources fit within the wavelet
fitting mode of PyBDSF, whose rms maps will not reflect those
used in this work. Furthermore, from the source counts distribution
it has been discussed that at least a 0.3 mJy integrated flux density
cut needs to be applied.

3.3.2 Additional SNR and Flux Density Constraints

Despite the more advanced random catalogues presented in this work
compared to Siewert et al. (2020) for the clustering of sources in
LoTSS-DR1, we still may be limited by systematics in the data and
may need to include additional cuts on the data and randoms. While
Figure 10 has demonstrated that our randoms are smooth across the
field of view as a function of declination, it cannot categorically
show what flux density and SNR cuts to apply to the data and ran-
doms in order to calculate the TPCF. We therefore consider the ratio
across each pointing of the numbers of real sources to randoms (both
normalised by the total numbers of real sources and randoms respec-
tively) across the observations as a function of SNR and flux density
cuts, specifically how the standard deviation in this ratio changes
across each pointings. We use standard deviation, as opposed to the
mean values as the mean values will fluctuate around a constant
value, but it is the deviations in these which illustrate the variation
of fields which appear to have an over- or under-density of randoms
compared to data around a mean value. If there are observational
effects which are unaccounted for in the generation of our randoms,
these would cause larger standard deviations in the normalised ratios
of data to randoms across the sky coverage.

In Figure 11 we present the variation of this ratio both across the
full field of view (all 841 fields) and within the subset of pointings
for which at least half of their sources lie within the inner region
defined in Table 1 (where this limit is applied to avoid the effects
of small number statistics). As can be seen, at a given SNR cut, the
standard deviation declines with increasing flux density to ∼ 2 mJy,
where it begins to flatten. The right hand side of Figure 11 shows
how the number of such sources in the data changes, given the cuts
applied. As a compromise to balance both the number of sources
we have as well as the variation in data compared to randoms, we
apply a flux density limit of 1.5 mJy and SNR cut of 7.5𝜎 for this
work8. Referring back to Figure 10, it is clear that the distribution
as a function of declination for such a SNR and flux density cut

8 Given this higher flux density cut, we adopt a 0.2 mJy lower limit for our
randoms as opposed to the 0.1 mJy described earlier.

varies around a ratio of 1 within ±5%. Hence we believe this will be
sufficient and have a good reliability for our clustering measurements.

Therefore, we are still limited in this work to a similar high flux
density cut (1.5 mJy) which is ∼ 15 − 20× the typical point source
sensitivity limit within the survey (70-100 μJy), despite our addi-
tional investigations into generating accurate random sources. We
believe that contributing to this may relate to residual field-to-field
systematics across the field of view. Whether this relates to flux scale
differences between pointings, as presented in Figure 9 of Shimwell
et al. (2022), imperfect primary beam models or another residual ob-
servational systematic, remains unclear. Accounting for such residual
systematics is something which is challenging to do within the sim-
ulations due to a lack of knowledge about, for example, these flux
scale variations as a function of pointing. In order to assess any flux
variations across the field of view, the LoTSS-DR2 sources would
need to be compared with similar large area, deep radio surveys
across the field of view, using a catalogue with known high flux
density accuracy. However, such a similar large area, high-resolution
and moderately deep survey which allows a relatively large number
of sources at a similar frequency for flux density comparison across
the full field of view is not available at present. For those large area
surveys that are currently available, applying SNR cuts, isolation cri-
teria and other cuts to ensure accurate comparisons of source flux
densities between the two catalogues would lead to too few sources
to accurately study the flux variations across each pointing. We there-
fore are reliant on applying flux density and SNR cuts until we can
fully understand and account for additional remaining observational
systematics.

3.3.3 Final data set

After applying the above SNR and flux density cuts as well as restrict-
ing to an inner region and also flagging three HealPix pixels (using
𝑁side=256) which were contaminated by a nearby spiral galaxy (see
Pashapour-Ahmadabadi et al. in prep), the number of sources which
are used for these clustering studies is reduced. We present the num-
ber of data and random sources that are available after applying such
cuts in Table 2. Such cuts help produce a random catalogue which
we believe is accurate to measure the intrinsic large scale structure.
The distribution of the final data and randoms used in this analysis
can be seen in Figure 12.

3.3.4 Changes in the process to create Randoms compared to
LoTSS-DR1 and Remaining Limitations

As this paper follows on from the clustering studies within the first
data release of the LoTSS survey (DR1) (see cosmology analysis pre-
sented in Siewert et al. 2020), we briefly summarise the developments
in random catalogues generated in this work compared to in Siewert
et al. (2020) as well as the additional cuts applied to the data. Firstly,
in Siewert et al. (2020) the assumption was made that any sources
above 5𝜎 are detected. However, as shown in the inset of Figure
4, at 5𝜎 the completeness is ∼50% on average. This work, instead,
uses the completeness curves as a function of SNR from Shimwell
et al. (2022) which take into account the varying completeness with
SNR and, therefore, do not use a hard cut off. This will result in
fewer sources in the 5-10𝜎 range (based on input signal-to-noise)
being included within the random sample, though with a 7.5𝜎 cut
(on measured signal-to-noise), this will reduce the impact of such ef-
fects. Secondly, we also take into account the source sizes and do not
assume all sources are point sources. This aims to take into account
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Figure 8. Euclidean normalised source counts for the input and recovered randoms compared to that from previous data and simulated models. The randoms that
are used as an input model (pink, right facing triangles) and recovered (red, left facing triangles) are shown, both scaled to reflect the larger ratio of randoms to
data. The raw LoTSS-DR2 counts are also shown (black open circles) as well as the corrected source counts from the completeness derived from the recovered
randoms (navy crosses) and the corrected source counts from the raw counts across DR2 using the completeness from the simulations of Shimwell et al. (2022)
both accounting for flux shifts between the simulated and detected flux density for a source (light blue dotted line) and not accounting for flux density shifts (blue
solid line). Also shown is previous data from the LoTSS Deep Fields (Mandal et al. 2021, data - light grey stars and model - grey dot-dashed line) and source
counts converted to 144 MHz from (Smolčić et al. 2017a, dark grey squares) and (Matthews et al. 2021, grey triangles). Also compared is the source counts
model from the model of SKADS (Wilman et al. 2008, black dashed line) and modified SKADS model used in this work (black dotted line). Errors associated
with source counts not presented in previous papers are determined using the relations from Gehrels (1986). When applying completeness corrections, we do
not include uncertainty on the completeness as we only use a single randoms realisation. We also include the LOFAR corrected source counts using the raw
data and completeness corrections from randoms when a 7.5𝜎 cut is applied over the inner region described in Table 1 (navy plus symbols, see Sections 3.3.1 -
3.3.3).

Cut Applied NData % of Initial Data Catalogue NRandom % of Initial Random Catalogue NRandoms/NData

No Cuts 4,396,228 100 50,336,145 100 11.4
Inner Region 3,696,448 84 42,655,772 85 11.5
7.5𝜎 SNR cut 2,160,232 49 27,364,838 54 12.7
1.5 mJy Flux Density cut 1,401,782 32 16,206,613 32 11.6
All cuts applied 903,442 21 11,378,354 23 12.6

Table 2. Number of data and random sources used when different cuts to the data are applied: using the inner region, a SNR cut and a flux density cut. The
effects of these cuts on the data are presented individually as well as their combined effect on the catalogues (alongside the masking of 3 Healpix pixels, see
text), in the bottom row. Presented are the number of data sources; the percentage of sources in the total catalogue that this consists of; the number of random
sources; percentage of random sources compared to the initial (i.e. no cuts applied) random catalogue and the ratio of random sources to data sources with the
same cuts applied.

the effects of resolution bias, which will affect completeness within
our catalogue, though it does rely on a source shape model which has
uncertainties in the true distribution. Observations at higher angular
resolution, such as sub-arcsecond LOFAR surveys (see e.g. Sweĳen
et al. 2022), may aid with such knowledge but will be affected by
resolution bias. Finally, we also calculate more accurately, for each
random source, its “measured” peak and integrated flux densities. In
Siewert et al. (2020) a flux density cut could be applied to the sources
by ensuring the flux density added to the sampled noise associated
with each source (which provides an estimate for a measured flux
density) was greater than a given flux density limit. However, this
used the same noise term which would be applied to the peak flux

density. With this work, we are able to calculate the simulated to
detected flux ratio as a function of SNR separately for the peak and
integrated flux densities. This allows both SNR and flux density cuts
to be applied on the appropriate “measured” flux density value.

While we have endeavoured to improve the generation of such
random catalogues, residual caveats within the data still remain,
which we discuss here for full clarity. Firstly, as discussed above,
residual uncertainties in the beam model, flux density scale across
the field of view and other un-accounted for observational biases
may impact the accuracy of the random catalogues. We believe that
these are a significant contribution to the inability to use fainter
flux density/SNR cuts. While such flux offsets will average out
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Figure 9. Distribution of integrated-to-peak flux density ratio (y-axis) as a function of measured SNR (x-axis) for the full LoTSS-DR2 survey (upper left), for
the data with a 5𝜎 cut applied (upper centre) and for the randoms with a 5𝜎 cut applied (upper right) and with the 1.5 mJy and 7.5𝜎 final cuts applied (lower
panels, see Sections 3.3.1 - 3.3.3).

Figure 10. Comparisons of the ratio of the fraction of the total random sources to the fraction of the total data as a function of declination (accounting for
differences in sample sizes) for the randoms generated using the methods in Section 3.2 (solid lines) and for randoms generated uniformly across the sky area
(dotted lines) for sources ≥5𝜎 (light blue), 7.5𝜎 (blue) and 10𝜎 (dark blue) respectively in the regions defined by Table1. This is shown with increasing flux
density cut applied when moving from top left to bottom right.
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Figure 11. Standard deviations in the field-to-field scatter of the ratio of the LoTSS-DR2 sources to randoms across each individual pointings for different flux
density and signal-to-noise cuts. Shown are the results for using the full field (dotted lines) and for those pointings which are within the inner region of Table 1
and contains at least 50% of the data sources in that pointing contained within the inner region (solid lines). The right hand figure uses the same colour scheme,
but instead indicates the number of LoTSS-DR2 sources available for analysis.

Figure 12. Sky distribution of data (upper) and randoms (lower) used in this work after cuts are applied to the data. These are plotted using Healpy in the
mollweide projection. Note that the random sample is larger than the data sample, to minimise any Poisson errors associated with the randoms.

when measuring e.g. source counts and declination dependencies
over a full population, these will still exist on a field-to-field level.
Furthermore, as we are not passing our randoms through a full
end-to-end pipeline, there may be issues from the full LOFAR data
reduction process, which we may not be fully able to account for
the effects of. These include the effect of the ionosphere across
each individual pointing, astrometric errors, the direction dependent
calibration introduced by DDFacet or how individual fields are
mosaiced together. The latter, especially, can lead to smearing of
sources due to positional offsets within overlapping areas, which
cover a large fraction of the observations. This smearing of sources
may lead to a reduced sensitivity to detecting sources in the overlap
regions and may affect the smearing model used at the largest

distances from the pointing centre. These effects are challenging
to model, as are the uncertainties in the intrinsic size distribution
of radio sources. Whilst full end-to-end simulations (starting from
simulating sources in the uv-data) could help such understanding,
they are computationally expensive, especially for changes in the
input source models considered.

With the methods discussed we have aimed to characterize as many
of the systematics as possible in order to generate accurate random
catalogues. While the effectiveness of the detailed analysis when
creating random catalogues through mimicking observational biases
is reduced by the effect of the larger flux density and SNR cuts
adopted in this work, our presentation of a detailed discussion of
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the methods employed to generate the randoms as an example of
methods which will be important for future analyses with deep radio
surveys.

3.4 Errors on the TPCF

Once the randoms catalogues have been generated, it is possible
to calculate 𝜔(𝜃) through Equation 5 and attribute uncertainties to
our measurements. We consider several methods for quantifying the
errors on the angular correlation function measurements. Possible
errors include those from Poissonian statistics (i.e. just based on the
number of sources observed within the data), bootstrap errors (where
a random number of sources are replaced across the field of view)
and jackknife errors (where regions are removed one area at a time
and the scatter on the measured TPCFs assessed). Poissonian errors
are known to underestimate the true errors (see e.g. Cress et al. 1996)
and do not take in to account systematic variations in the data. For the
naive estimate of 𝜔(𝜃) given in Equation 4, these Poissonian errors
are given by:

𝛿𝜔Poisson (𝜃) =
1 + 𝜔(𝜃)√︁
𝐷𝐷 (𝜃)

(9)

However, when including the cross-terms (𝐷𝑅) in with the Landy-
Szalay model, small changes to this are expected (see e.g. the equa-
tions presented in Landy & Szalay 1993, Chen & Schwarz 2016).
Either way, such estimates of the errors do not account for poten-
tial systematics in the errors across the field. Therefore, we consider
several methods which resample the data to assess the errors more
accurately across the field of view. For bootstrap resampling, ∼1/3 of
sources are randomly removed from the data and randomly replaced
with the same number of randomly selected data sources. This means
that a source from the original catalogue may not be in the bootstrap
sample, be in it a single time, or multiple times. This process is then
repeated in order to make 𝑁𝐵 resamples. For each resample, 𝜔(𝜃) is
then calculated using TreeCorr as used for the original sample. The
errors are then calculated from these as in Barrow et al. (1984), Ling
et al. (1986):

𝛿𝜔𝐵 (𝜃) =

√√√
1

𝑁𝐵 − 1

𝑁𝐵∑︁
𝑖=1

[𝜔𝑖 (𝜃) − 𝜔𝐵 (𝜃)]2, (10)

where 𝜔𝐵 is the mean value across the bootstrap samples. However,
bootstrap resampling randomly removes sources and is not able to
trace systematic trends across the data. If such systematics exist or
if there is significant variation in source density across the field, it
is therefore possible that bootstrap resampling underestimates the
errors on 𝜔(𝜃).

We therefore, also consider using jackknife errors (see e.g. Norberg
et al. 2009) which are calculated by splitting the field into a number
of sub regions (𝑁𝐽 ). One sub-region is then removed in turn and
we measure the 𝜔(𝜃) from the remaining areas. The error is then
calculated as:

𝛿𝜔𝐽 (𝜃) =

√√√
𝑁𝐽 − 1
𝑁𝐽

𝑁𝐽∑︁
𝑖=1

[𝜔𝑖 (𝜃) − 𝜔𝐽 (𝜃)]2, (11)

where 𝜔𝐽 is the mean value of the angular two-point correlation
function across the samples where a sub-region has been removed.

For completeness, we present the errors measured for the TPCF for
jackknife resampled errors, using TreeCorr to calculate the effect

of changing the number of jackknife bins from 10 to 200. Finally, we
consider the effect of field-to-field variations between the individual
pointings of LoTSS-DR2. This method will directly probe the varia-
tions introduced from uncertainties between the different individual
pointings of LoTSS-DR2. We calculate the errors from this using
each pointing as a jackknife sample. We note that jackknife errors
typically use regions of similar areas when calculating such errors,
this will not be the case when calculating for the individual LoTSS-
DR2 pointings being removed in turn. The internal pointings should
be of roughly similar areas, but those towards the outside of the
regions defined in Table 1 could be significantly smaller. However,
such jackknife scales are more relevant to understand the variation
across the field of view. A comparison of these resampling errors is
presented in Figure 13, relative to the Poissonian errors. The relative
sizes of the bootstrap and jackknife errors varies at different angular
scales. At the smallest angles, 𝜃 ≲ 0.1−0.2◦, bootstrap errors appear
larger. At larger angular scales the jackknife errors are, as expected,
significantly larger than found from bootstrap errors. This likely re-
flects variations in the data across the field of view either due to real
variation across the field of view or systematics within the survey
across the field of view. The bootstrap errors are a factor of ∼2 larger
than the Poissonian errors at angles ≲1◦, increasing to a factor of ∼5
at 10◦. In contrast, the jackknife errors are similar to within a factor of
2 to the Poissonian errors for 𝜃 ≲0.2◦, rapidly increasing to a factor
of ∼10 larger at angles of ∼2◦. In general, since our fitting of 𝜔(𝜃)
will focus on the largest angular scales, our comparison suggests we
should use jackknife errors, compared to bootstrap errors, in order to
not underestimate uncertainties at large angular scales ≳ 0.2◦. These
larger angular scales are important for fitting linear bias, see Section
5.2.

The errors from jackknife resampling appear to be dependent on
the number of jackknife samples considered, with larger errors for
smaller samples and more comparable errors for ≳50 resamples.
The errors generated using the individual field-to-field variations
are comparable to those calculated using Treecorr when 100-200
resampling bins are used, which is expected as ∼800 pointings are
used for the field-to-field variations. As the field-to-field sizes are the
most physically motivated binning as they are based off scales of the
pointings within the LoTSS-DR2 samples, we present result using
such errors. The covariance matrix for such errors is presented in
Figure 14. We note that whilst the errors from TreeCorr compared
to the field-to-field variation presented in Figure 13 appear similar
for 𝑁Jack ≥ 100, the covariance matrix using TreeCorr has a larger
contribution of off-diagonal covariance values, especially for small
𝑁Jack. As such off diagonal covariance values can affect the fitting
of the source, we therefore will also briefly discuss the effect on the
measured bias values of instead assuming 100 jackknife bins as well,
in Section 6.

4 ANGULAR TWO-POINT CORRELATION FUNCTION,
𝜔(𝜃)

We present the angular two-point correlation function for LoTSS-
DR2 sources with 𝑆 ≥ 1.5 mJy and SNR≥7.5 in Figure 15. This is
shown above a minimum angular scale of ∼3× the PSF of the data
(∼ 3×6′′ ∼ 18′′). As discussed in many previous studies (e.g. Peebles
1975, Roche & Eales 1999, Blake & Wall 2002, Brodwin et al. 2008,
Lindsay et al. 2014a, Hale et al. 2018), we can often describe the
angular clustering at small angular scales (𝜃 ≪ 𝜋) as a power law
distribution, given by:

𝜔(𝜃) = 𝐴𝜃1−𝛾 , (12)
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Figure 14. Covariance matrix from resampling the errors using a Jackknife
approach where each individual observed LOFAR pointing (791 within the
inner region) is removed in turn.

where 𝐴 is the amplitude, 𝜃 is measured in degrees and the power law
slope is given by 1 − 𝛾. Observations suggest 𝛾 has a typical value
of ∼1.8 (see e.g. Peebles 1975, 1980, Blake & Wall 2002, Wilman
et al. 2003), meaning that 𝜔(𝜃) follows a power law of slope -0.8.

As can be seen in Figure 15, our results for 𝜔(𝜃) appear to follow
a power law with 𝛾 = 1.8 over a large range of angular scales
(0.03 ≤ 𝜃 < 1◦), at larger angles (𝜃 ≳ 10◦) there is more uncertainty
on the value of𝜔(𝜃) and so we do not present such scales in this work.
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Figure 15. Angular TPCF, 𝜔 (𝜃 ) for the final LoTSS-DR2 sample used in
this work (black, see Section 3.3) from the range of 𝜃 : 5× 10−3 − 102◦. Also
shown if the fit to 𝜔 (𝜃 ) of the form 𝐴𝜃−0.8 and the probability distribution
in the value of 𝐴 is shown in the figure inset (top right). These are shown
for fitting over the angular ranges: 0.03-5◦ (red), 0.1-5◦ (blue), 0.5-5◦ (gold)
as well as for the range where we reduce the largest fitting angle 0.03-1◦
(grey) both without (light colours) and with (dark colours) the full covariance
matrix, see Sections 4 and 5.2.

Figure 16. Comparison of 𝜔 (𝜃 ) for LoTSS-DR1 Data (Shimwell et al. 2019,
Siewert et al. 2020) for the raw PyBDSF catalogue compared to the source
associated and cross-matched catalogue described in Williams et al. (2019)
using a 1.5 mJy flux density cut and a 7.5𝜎 SNR cut and presented with
bootstrapped uncertainties.

At small angles (𝜃 ≲ 0.03◦), there is a deviation from this power
law distribution. This could arise from a combination of factors: (a)
clustering of galaxies within the same dark matter halo and (b) the
effect of multi-component sources.

The first of these contributions to the excess clustering at small
angular scales is related to whether the clustering of galaxies we
are observing is from sources that are residing within the same dark
matter halo (this is observed at small angular scales and is known as
the ‘1-halo’ clustering, see e.g. Zehavi et al. 2004). Measurements of
the ‘1-halo’ clustering require observations which are both sensitive
enough to observe multiple galaxies within the same dark matter
halo and also have the resolution to ensure any galaxies within the
same dark matter halo are not confused into a single source. In
the radio, this ‘1-halo’ clustering has been challenging to observe
due to the depths and resolutions of surveys previously observed,
however it will become increasingly possible with future deep, high-
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Figure 17. Angular TPCF fitting parameter constraints for both 𝐴 and 𝛾

(with contours at 1 and 3𝜎) for fitting over the angular ranges: 0.03-5◦ (red),
0.1-5◦ (blue), 0.5-5◦ (purple) as well as for the range where we reduce the
largest fitting angle 0.03-1◦ (black) both without (dark colours) and with
(light colours) the full covariance matrix, see Sections 4 and 5.2.

resolution radio surveys. When discussing clustering previously, we
have instead focused on the clustering from galaxies in different dark
matter haloes (known as the ‘2-halo’ clustering) which presents as the
power law behaviour given in Equation 12 on large angular scales).

The second contribution to the excess clustering at small angular
scales, on the other hand, relates to the source detection within radio
catalogues. For example, a jetted radio galaxy could be observed
to have a core and two lobes separated from it. Depending on the
separation of these lobes, conventional source finders (e.g. Whiting &
Humphreys 2012, Mohan & Rafferty 2015, Hancock et al. 2018) may
not be able to accurately characterise the components of the radio
galaxy into a single source. As such, accurate cross matching of
radio components relies on techniques such as visual identification
(see e.g. Banfield et al. 2015, Williams et al. 2019), or machine
learning/algorithm based techniques (see e.g. Galvin et al. 2020,
Barkus et al. 2022, Alegre et al. 2022). If, in this example, the
three components of the single radio source are catalogued to be
different objects, then this will result in seeing an apparent excess
angular clustering at small angular scales (see e.g. Blake & Wall
2002, Overzier et al. 2003), which can be described as a power law
with a steeper slope. To determine the angular scales below which
such multi-component sources may become important in our work
we consider the clustering in LoTSS-DR1 with both the raw PyBDSF
catalogue and the value added catalogue of Williams et al. (2019),
where PyBDSF source components were combined into physical
sources. We use the randoms generated for Siewert et al. (2020) and
apply a 1.5 mJy and 7.5𝜎 cut, as used in this work, and present
the clustering with and without source associations in Figure 16.
This demonstrates a deviation between the raw and merged (source
associated) catalogues, for which a deviation is seen at angles below
0.03◦. This therefore suggests that the impact of multi-component
sources is likely important below such an angular threshold and so
we should not fit our 𝜔(𝜃) for LoTSS-DR2 below this scale.

We fit𝜔(𝜃) using Equation 12, with a maximum angular separation

of 5◦ and a minimum angular separation of either (i) 0.03◦, below
which multi-component source clustering becomes important; (ii)
0.5◦ below which models that include both 1- and 2-halo clustering
can diverge (see Section 5.2 for fitting with the cosmology code CCL,
Chisari et al. 2019)9 and (iii) 0.1◦ as a compromise between the two
angular fitting ranges. Finally, we also include an angular fitting range
of 0.03 ≤ 𝜃 < 1◦to reflect the fact that the approximation of a power
law model for𝜔(𝜃) breaks down at large angles. In our model we also
include an extra term known as the integral constraint which accounts
for finite field sizes (see e.g. Roche & Eales 1999). We therefore
calculate the 𝜒2 through the difference between the observed data
and the model (with the integral constraint subtracted10), using two
methods. The first method, that we adopt, solely accounts for the
diagonal elements of the errors (𝛿𝜔, as compared in Figure 13),
defining 𝜒2 as:

𝜒2 =

𝑁𝜃∑︁
𝑖=1

(
𝜔(𝜃𝑖) − 𝜔𝑀 (𝜃𝑖)

𝛿𝜔𝑖

)2
, (13)

where 𝜔𝑀 (𝜃𝑖) is the model for the angular clustering, as in Equation
12, for a given angular bin (𝜃𝑖) and is fit across the 𝑁𝜃 bin in
the angular range considered. This does not encapsulate the full
systematic correlations between 𝜃 bins, but allows for a comparison
to previous works who use such methods for fitting𝜔(𝜃). The second
method uses the full covariance matrix, which allows correlations
between 𝜃 bins to be accounted for. For this method, we calculate 𝜒2

as:

𝜒2 = ( ®𝜔 − ®𝜔𝑀 )𝑇Cov−1 ( ®𝜔 − ®𝜔𝑀 ) (14)

where Cov is the associated covariance matrix for our measurements
of 𝜔(𝜃), as calculated by TreeCorr. The 𝑇 indicates that the trans-
pose is being used. We fit a model for 𝜔(𝜃) using both Equations
13 and 14 to highlight the differences of accounting for the full
covariance.

When fitting solely for 𝐴 (and fixing 𝛾 to 1.8), we measure the
variation in 𝜒2 when fitting the data using values of log10 (𝐴) which
are uniformly sampled from −4 to −2. From the 𝜒2 distribution we
calculate a probability distribution (𝑃 ∝ e−𝜒

2/2) and use a resam-
pling method with 5000 samples to calculate a median value and
associated error bars from this sample. The results are presented in
Table 3 and Figure 15. As can be seen in Figure 15, the chosen angu-
lar scale below which we do not fit the data, 𝜃 < 0.03◦, appears to be
an appropriate scale to restrict the fitting over. Below these angular
scales we observe a significant increase in 𝜔(𝜃), which we attribute
to the contribution of the combination of multi-component sources
and 1-halo clustering. Figure 15 shows the best fit models to the clus-
tering amplitude, log10𝐴, of -2.50±0.01 (using 𝜒2 as in Equation 13)
and -2.54±0.01 (using the full covariance) when fit over the largest
angular range (0.03-5◦). When fitting to the lower maximum angular
scale (0.03 ≤ 𝜃 < 1◦) we find little difference to that when fitting
in the range 0.03 ≤ 𝜃 < 5◦. Whilst fitting 𝜔(𝜃) using Equation
13 shows a good fit to the data on a large range of angular scales,
there is a deviation from such a power law around 1◦. This results
in an increased clustering amplitude when fitting across the largest
angular scales only 0.5-5◦, which then over-estimates clustering on
smaller scales. This may suggest some excess residual systematics in
the data, on the scale of ∼ 1◦. The fits using Equation 14 also appear

9 which makes use of CAMB Lewis et al. (2000) and CLASS Lesgourgues
(2011)
10 We note that the integral constraint will be very small due to the large field
of observation in LoTSS-DR2, on the scales considered.
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to underestimate the values for 𝜔(𝜃) to more of an extent than with
Equation 13.

To test whether the assumed slope of -0.8 is suitable for this work,
we also fit 𝜔(𝜃) for both 𝐴 and 1 − 𝛾, using a fitting range of −4 to
−1, for log10 (𝐴) and −2 to 0 for 1 − 𝛾. We fit this using the Markov
Chain Monte Carlo (MCMC) code, emcee (Foreman-Mackey et al.
2013). We fit using 100 walkers, each with 5000 chain steps and
remove the first 90% of chains as burn in. From this, we fit for 𝐴 and
𝛾 using likelihoods based on the 𝜒2 described in Equations 13 and
14. The results for such fitting across the angular ranges described
above are presented in Figure 17 which, for the majority of angular
scales, find a value of 1−𝛾 ∼ −0.6 to −0.75, shallower than the −0.8
slope assumed when fixing 1 − 𝛾. However, previous measurements
of 1 − 𝛾 using radio surveys (see e.g. Magliocchetti et al. 2017,
Lindsay et al. 2014a,b) have found that such slopes (1 − 𝛾) observed
for radio surveys are typically closer to −1.2 to −0.8. The differences
observed here may therefore relate to a combination of factors, such
as residual systematics in the data (as discussed above and in Section
3.3.4) as well as effects of combining multiple source populations in
our measurement of 𝜔(𝜃). As such, we will predominately use our
measurements where we fix the slope of 𝛾 in order to measure bias,
though in Section 5 and 6 we will discuss the effect on the bias of
assuming a variable slope.

4.1 Variation with Location and Flux Density

In order to investigate the uniformity of 𝜔(𝜃) given the possibility of
systematics we are unable to correct for, we also present comparisons
of the angular clustering of the LoTSS-DR2 data as a function of
Right Ascension, Declination and position within the full field of
view. To do this, we consider the TPCF in RA angular ranges spanning
40◦ and declination in angular ranges spanning 10◦ and finally within
nine different regions spread across the field of view in RA and Dec
bins as presented in Figure 18. Uniform RA and Dec ranges are
used to generate the RA and Dec bins, this will lead to significant
differences in the number of sources in each of the bins which will
have a more substantial impact on the measured 𝜔(𝜃) in regions
where there are fewer sources. This analysis, follows on from the
comparisons of Siewert et al. (2020), in which three regions were
used to consider the variation in the angular clustering of LoTSS-
DR1.

The resulting variations in𝜔(𝜃) are presented in Figure 19. As can
be seen, the variation of the angular clustering is typically restricted
to larger angles 𝜃 ≳ 0.5◦, whilst smaller angles are typically in
much better agreement with one another. Whilst there are no apparent
trends with RA, there may be a suggestion of a systematic trend in the
angular clustering observed with declination, with higher observed
angular clustering at typically lower declinations. However, this is not
seen at all angular scales. We also see there is more variation in the
measured 𝜔(𝜃) when split into RA ranges and the regions presented
in Figure 18. As discussed in Sections 3.3.2 and 3.3.4, we believe
there are still limitations in the data which the randoms do not account
for, such as individual flux shifts between pointings, uncertainty in
the beam models and remaining systematics not modelled as full end-
to-end simulations were not used to generate the random sources. It is
possible that the effect of these can be a cause of the variation of𝜔(𝜃)
when split by these sky regions however, true underlying large scale
structure may also play a role. The spread with declination is much
smaller, with𝜔(𝜃) in the Dec: 60-70◦ bin showing the most variation,
likely due to the smaller area and number of sources in this region.
This smaller variation is likely due to the corrections implemented for
elevation dependent smearing, which is related to the declination for

Figure 18. Regions used to investigate the TPCF variation as presented in
Figure 19. Each colour indicates a different region used to quantify the TPCF.

fields observed with a good hour angle coverage. If there are residual
systematics relating to flux shifts between pointings (as described in
Shimwell et al. 2022), these are challenging to identify and model
using available radio surveys. These effects and a combination of
other residual systematics may relate to why there can be variations
between 𝜔(𝜃) in different regions of the data. Identifying the cause
of these and making further corrections may be possible in the future,
with further understanding of the systematics.

5 GALAXY BIAS

Whilst fitting a clustering amplitude, 𝐴, allows for a comparison with
previous work, it is also challenging to compare with previous studies
due to its dependence on flux density, luminosity and source type
within the same sample (see e.g. Wilman et al. 2003, Overzier et al.
2003, Magliocchetti et al. 2017, Hale et al. 2018, Chakraborty et al.
2020). We calculate the more physical parameter of bias, 𝑏(𝑧). As
discussed in Section 1, bias traces the clustering compared to matter
and can be used to estimate the typical dark matter halo mass hosting
a population of sources (see e.g. Berlind & Weinberg 2002, Zehavi
et al. 2004). By calculating the bias, we not only calculate a more
physical parameter, but also account for the redshift distribution of the
sources being investigated. However, this will also have a dependence
on flux density, as the relative contribution of different source types
to the overall population (e.g. AGN, SFGs) varies with flux density
(see Best et al. 2023, for a comparison of this in the LoTSS Deep
Fields). These populations can have different bias values and so will
affect the bias measured for a full population (see e.g. Magliocchetti
et al. 2017, Hale et al. 2018, Chakraborty et al. 2020).

In order to obtain measurements of the bias for the LoTSS-DR2
sources, knowledge of the redshift distribution, 𝑝(𝑧), for the data
is required. This is because 𝜔(𝜃) is a projected measurement of
the clustering of galaxies over the sky, and to understand the bias,
we need to understand the true spatial distribution. Using a given
𝑝(𝑧) we then take two approaches to modelling the clustering: (1)
fitting using the cosmology code, CCL (Chisari et al. 2019) and (2)
using the power law model fit for the amplitude, described in Section
4, and using Limber’s inversion (see Limber 1953, 1954, Peebles
1980, assuming a power law model for 𝜔(𝜃) to calculate a clustering
length, 𝑟0, and subsequently a measurement of the bias), as has been
commonly employed in clustering studies for radio surveys (see e.g.
Magliocchetti et al. 2004, Lindsay et al. 2014a, Magliocchetti et al.
2017, Hale et al. 2018, Chakraborty et al. 2020, Mazumder et al.
2022). We will describe both approaches, below, however we first
describe how the redshift distribution, 𝑝(𝑧), for the data is obtained,
as this is critical for both approaches.
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Figure 20. Weighted redshift distribution generated from combining redshift
distributions in the LoTSS deep fields (grey) as described in Section 5.1. The
distribution of models fit to the resampled 𝑝 (𝑧) as described in Section 5
are presented as the median in blue (solid line) alongside the 16th and 84th

percentiles respectively (as dashed lines).

5.1 Redshift distribution

In order to calculate the bias, we must assume a redshift distribution
for the sources in our sample, which is not possible from radio
continuum measurements alone. Instead, a catalogue where radio
data and multi-wavelength data have been cross-matched together
(as with LoTSS-DR1, see Williams et al. 2019, Duncan et al. 2019),
may provide redshifts for some sources however, redshifts are not
currently available for a relatively complete population of LoTSS-
DR2 sources. Therefore, in order to estimate the expected redshift
distribution of the sources observed in LoTSS-DR2, we make use
of the LoTSS Deep Fields observations (Tasse et al. 2021, Sabater
et al. 2021, Kondapally et al. 2021, Duncan et al. 2021). The LoTSS
Deep Fields data are more sensitive than in LoTSS-DR2 (reaching
an rms ∼ 20 − 40 μJy beam−1) over three extragalactic fields (see
Section 2.2 for details). For the Deep Fields sources, 97% have been
cross-matched to a multi-wavelength host galaxy (Kondapally et al.
2021) and have an associated redshift (Duncan et al. 2021). A full
probability distribution for the photometric redshift, 𝑝𝑖 (𝑧), of those
sources with an associated host galaxy is presented in Duncan et al.
(2021), which we use in this work.

To determine the redshift distribution for the sources observed

here, we first apply a 1.5 mJy flux density cut to the cross-matched
radio deep-field catalogues, matching that used here for LoTSS-DR2.
Specifically, we take an individual field and generate 𝑁 𝑓 estimates for
the redshift distribution, where 𝑁 𝑓 across the three fields totals 1000
samples. The 𝑁 𝑓 values are weighted for each field to gives more
samples where there are larger number of 𝑆 ≥ 1.5 mJy sources in the
field. To make a single resample within a field, we use those sources
which have 𝑆 ≥ 1.5 mJy and generate a resampled redshift for those
sources through the following process. For those sources with a pho-
tometric redshift, we sample from the full 𝑝𝑖 (𝑧) distribution for the
individual source. For those sources where a spectroscopic redshift
exists, we instead consistently use the spectroscopic value. From the
resampled redshifts for the 𝑆 ≥ 1.5 mJy sources, we create a 𝑝(𝑧)
by binning the redshifts and normalising the resultant distribution.
When binning the redshift distribution, we use bins which have more
frequent binning at low redshifts (𝑧 ≤ 1, using 𝛿𝑧 = 0.02, where we
have more accurate spectroscopic information) and coarser binning
at higher redshifts (𝑧 > 1 , using 𝛿𝑧 = 0.1)11. To generate the redshift
distribution across the fields, we combine the samples from each field
to produce 1000 resampled 𝑝(𝑧) distributions. From this we are able
to determine a mean 𝑝(𝑧) distribution and associated errors from
the standard deviations of the sample. The final 𝑝(𝑧) and errors is
presented in Figure 20.

To use this 𝑝(𝑧) in our fitting and modelling of 𝑏(𝑧), we gener-
ate 1000 resampled 𝑝(𝑧) distributions using the mean and standard
deviation across each redshift bin. We do this, as opposed to using
the 1000 samples combined from the three fields, to avoid extreme
models in each field that are driven by cosmic variance affecting such
measurements, as well as the effects of multi-wavelength data avail-
ability. In order to ensure that such randomly sampled values does
not lead to a highly varying 𝑝(𝑧) and satisfies 𝑃(0) = 0. We model
the resampled redshift distribution using a functional form given by:

𝑝(𝑧) ∝ 𝑧2

1 + 𝑧

[
exp

(
− 𝑧

𝑧0

)
+ 𝑟2

(1 + 𝑧)𝑎

]
, (15)

which we normalise such that it becomes a probability density func-
tion.

Such a functional form is found to appropriately represent the
redshift distribution, and was chosen to allow contributions from

11 We note that low redshifts also have an important contribution to 𝜔 (𝜃 ) on
larger angular scales (∼O(1◦)), and we found that averaging in larger redshifts
bins affected the fitting of 𝜔 (𝜃 ) on such scales.
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AGN and SFGs to the full redshift distribution. The form reflects
the probed volume of a ΛCDM model at small redshifts with the
exponential and power law terms representing the high luminosity
cut-offs at large redshifts of SFGs and AGNs respectively (for more
description see Nakoneczny et al. in prep). The model parameters
(𝑧0, 𝑟 and 𝑎) are fit for each resample using scipy’s curve_fit
function. The range of the modelled redshift distribution from these
resamples are presented in Figure 20.

We note that with this method, the ∼5% of LoTSS Deep Fields
sources above 1.5 mJy which have no associated redshift distribution
cannot be included in 𝑝(𝑧). This may bias the results slightly, likely
by missing some very high redshift AGN or SFGs and those which
are dust obscured. Furthermore, there are potential biases in the
𝑝(𝑧) due to the band selection and magnitude limits of the multi-
wavelength data. For example, sources may not be detectable in all
bands and there is differing availability of multi-wavelength data in
the three deep fields, both of which will affect constraints which can
be placed on their redshift distributions. Moreover, the deep fields
are much smaller areas than the full LoTSS-DR2 survey, and so
are more likely to be affected by variances in large-scale structures,
however we mitigate this by averaging across the three fields. Finally,
it is challenging to apply similar SNR cuts to the deeper LoTSS
Deep Fields data, which may lead to residual systematics in the 𝑝(𝑧)
models. However, this combined 𝑝(𝑧) is the best model available
for a representative radio population and those sources without any
redshift information only represent a very small fraction of sources
in the data.

5.2 Measuring 𝑏(𝑧) using CCL

In the first method to determine 𝑏(𝑧), we use CCL to fit 𝜔(𝜃), assum-
ing a bias model. For this work we follow the work of Alonso et al.
(2021) and assume two possible bias models either (i) a constant bias
i.e. 𝑏(𝑧) = 𝑏0 or (ii) an evolving bias of the form 𝑏0/𝐷 (𝑧), where
𝐷 (𝑧) here is the normalised (to 𝑧 = 0) growth factor as described in
e.g. Hamilton (2001). We also consider two matter power spectrum
models (i) a ‘linear’ model where only linear perturbation theory
was assumed and (ii) a ‘HaloFit’ (Smith et al. 2003, Takahashi et al.
2012) model where non-linear effects within a dark matter halo are
also accounted for. Both models are considered as we may not expect
to observe a strong contribution from ‘1-halo’ clustering at the depth
of this survey, or that if such 1-halo contribution does exist that this
may dominate predominately in the angular region where effects of
multi-component sources is also important (see Figure 16). We use
the ℓ range 1 ≤ ℓ ≤ 10, 000 in 256 logarithmically spaced bins to
generate the 𝐶ℓ power spectrum with CCL and then use this to de-
termine 𝜔(𝜃) over the 𝜃 range used in this work using a Legendre
polynomial transform given by:

𝜔(𝜃) = 1
4𝜋

∑︁
ℓ

(2ℓ + 1)𝐶ℓ𝑃ℓ (cos 𝜃). (16)

Such a conversion from 𝐶ℓ to 𝜔(𝜃) was also used in Siewert et al.
(2020). To obtain 𝐶ℓ , we use the conversions in CCL which convert
the 3D power spectrum to 𝐶ℓ using the equations in Section 2.4.1 of
Chisari et al. (2019), but assuming the redshift space distortion and
magnification bias terms can be neglected:

𝐶ℓ =

∫
𝑑𝜒

𝜒2 𝑞2 (𝜒) 𝑃
(
𝑘 =

ℓ + 1/2
𝜒

, 𝑧(𝜒)
)
, (17)

where 𝜒 is the comoving radial distance, 𝑃(𝑘, 𝑧) is the matter power
spectrum, and the radial kernel 𝑞(𝜒) is:

𝑞(𝜒) = 𝐻 (𝑧)
𝑐

𝑏(𝑧) 𝑝(𝑧), (18)

with 𝐻 (𝑧) the Hubble parameter. This relation relies on Limber’s
approximation (Limber 1953, 1954), which is valid for the broad
redshift distribution explored here.

We fit for 𝑏0 through calculating 𝜔(𝜃) with CCL and fitting to
the data using Equations 13 and 14. Again, when fitting the data we
consider three angular ranges: 0.03◦ − 5◦, 0.1◦ − 5◦ and 0.5◦ − 5◦.
We also consider all possible combinations of linear and HaloFit
models with the two bias evolutionary models. To determine 𝑏0 we
use the 1000 redshift resamples described in Section 5.1. Firstly, we
calculate 𝜔(𝜃) for each resampled redshift distribution, assuming
𝑏0 = 1 (denoted here as 𝜔𝑏0=1 (𝜃)). Using this, we select random
bias values within the range 0.5-3.5 and generate a model 𝜔(𝜃)
through multiplying 𝜔𝑏0=1 (𝜃) by 𝑏2. Using such a predicted model
and comparing to the data we then calculate the associated 𝜒2 across
the angular fitting ranges described above and calculate this both
assuming only diagonal elements as well as using the full covariance
matrix. The full covariance will highlight if there are correlations in
the 𝜔(𝜃) values at different 𝜃 which can affect the fitting of 𝑏. In both
cases we take the “model” to be the model produced from CCL with
the integral constraint as modelled in Roche & Eales (1999), though
the contribution of an integral constraint will be negligible. Using
such a 𝜒2 value we then calculate an associated probability for 𝑏0
assuming 𝑃(𝑏0) ∝ 𝑒−𝜒

2/2 (which makes the assumption that errors
on the data can be approximated as Gaussian).

To determine final values of 𝑏0 found from fitting our observations
we then resample from 𝑃(𝑏). To do this, we consider two possibilities
of how to include the redshift distribution to determine 𝑏0. The first
case assumes that the individual redshift resamples described in Sec-
tion 5.1 are all equally probable. In this case, any differences which
may remain between the model and observations will reflect resid-
ual systematics in the data which are unaccounted for in the random
catalogues or that a different bias evolution model is appropriate.
For this method, we renormalise the 𝑃(𝑏) model from each redshift
sample to 1. The second case assumes that there are no remaining
systematics and so redshift resamples which better fit the data reflect
the intrinsic 𝑝(𝑧) of our sample can be determined. In this case we
do not normalise 𝑃(𝑏) for each sample to 1 before resampling and
instead retain the difference in probabilities based on the magnitude
of the 𝜒2.

Through resampling the data we determine 𝑏0 accounting for the
uncertainty in 𝑝(𝑧) models. In the first method, this means that the
contribution of 𝑝(𝑧) samples from those models which satisfy the
resampling criteria are approximately evenly distributed across the
1000 redshift resamples and, as such, some 𝑝(𝑧) samples may lead
to large 𝜒2 values where the magnitude of the 𝜒2 for such a 𝑝(𝑧)
was large. In the second method, there will instead be preferred 𝑝(𝑧)
samples and others may not have any (or very little) contribution
to the bias values which satisfy the resampling criteria, whilst other
𝑝(𝑧) models may substantially dominate the sample. This can lead
to only a small fraction of 𝑝(𝑧) samples actually contributing to the
fit, especially when the fit is poor. Due to this method, the associated
𝜒2 values of the fit will be lower to that of the previous method. The
𝑏0 values these are quoted as the median value with errors measured
from the 16th and 84th percentiles and are presented in Table 4
and Figure 22. To present associated models of 𝜔(𝜃) we use 10000
realisations of the final 𝑏0 sample to determine 𝜔(𝜃) models, this is
shown in Figure 21 for the evolving and constant bias models.

MNRAS 000, 1–29 (2022)



Angular Clustering in LoTSS-DR2 21

5.3 Fitting 𝑏(𝑧) using Limber’s equation for a power law model
of 𝜔(𝜃)

The second commonly used method to infer the spatial clustering of
galaxies from the angular clustering is by using Limber’s equations
after assuming a power law model for 𝜔(𝜃) (see e.g. Limber 1953,
1954, Peebles 1980). This method has been frequently employed in
studies of the clustering of galaxies both at radio frequencies (see
e.g. Lindsay et al. 2014a, Hale et al. 2018, Chakraborty et al. 2020,
Mazumder et al. 2022) and other frequencies (see e.g. Puccetti et al.
2006, Starikova et al. 2012, Cochrane et al. 2017). To quantify 𝑏(𝑧),
we use the fitting of 𝜔(𝜃) as described in Equation 12, discussed in
Section 4, with the parameterisation of the spatial clustering:

𝜉𝑔 (𝑟) =
(

𝑟

𝑟0 (𝑧)

)−𝛾
=

(
𝑟

𝑟0

)−𝛾
(1 + 𝑧)𝛾−(3+𝜖 ) , (19)

where 𝑟0 is a spatial clustering length which parameterises the clus-
tering of galaxies and 𝜖 describes the evolving clustering model.
𝜉𝑔 (𝑟) is the spatial clustering of galaxies, as introduced in Section
1. We present 𝑟0 and 𝑏 measurements using two assumptions for 𝜖 :
(i) assuming ‘comoving’ clustering, where 𝜖 = 𝛾 − 3, to make com-
parisons with previous studies (e.g Lindsay et al. 2014a,b, Hale et al.
2018, Mazumder et al. 2022) and (ii) assuming ‘linear’ clustering12,
where 𝜖 = 𝛾−1, which probes a different range of bias evolution, see
Lindsay et al. (2014a). In order to determine the spatial clustering,
we need both knowledge of 𝛾 and 𝐴 from Equation 12 as well as 𝑝(𝑧)
to determine the spatial clustering length, 𝑟0. As discussed, in the
majority of cases we fix 𝛾 to a value of 1.8, though we also consider
the case for a variable 𝛾 for comparison. The value of 𝑟0, can then
be calculated using Limber’s equation (see e.g. Limber 1953, 1954,
Peebles 1980):

𝑟0 =
©«

𝐴r 𝑐
(∫ ∞

0 𝑝(𝑧)𝑑𝑧
)2

𝐻𝛾𝐻0
∫ ∞
0 𝐸 (𝑧)

1
2 𝑝(𝑧)2𝜒(𝑧)1−𝛾 (1 + 𝑧)𝛾−(3+𝜖 )𝑑𝑧

ª®®¬
1
𝛾

, (20)

where 𝑐 is the speed of light in km s−1, 𝐸 (𝑧) = Ω𝑚 (1+𝑧)3+(1−Ω𝑚)
and 𝜒(𝑧) is the comoving distance at redshift, 𝑧. 𝐴𝑟 is related to the
amplitude (𝐴) in Equation 12 when 𝜃 is in the unit of radians. Finally,
𝐻𝛾 is given by:

𝐻𝛾 =
Γ( 1

2 )Γ(
𝛾−1

2 )
Γ( 𝛾2 )

, (21)

where Γ represents the gamma function. As described in Section 1
and Equation 2, the spatial clustering of galaxies can be related to
that of matter to parameterise galaxy bias. Following analysis from
Peebles (1980) and discussed and used in works such as Koutoulidis
et al. (2013), Lindsay et al. (2014a), Hale et al. (2018), Mazumder
et al. (2022), the bias can then be inferred from 𝑟0 using:

𝑏(𝑧) =
(

𝑟0 (𝑧)
8Mpcℎ−1

)𝛾/2 𝐽
1/2
2

𝜎8𝐷 (𝑧)/𝐷 (0) , (22)

where 𝐷 (𝑧) is the growth factor, and 𝐽2 is given by
72

2𝛾 (3−𝛾) (4−𝛾) (6−𝛾) and 𝑧 is evaluated at the median redshift of the
redshift distribution (which is found here to be 𝑧𝑚 ≈ 0.9 for the full
redshift distribution).

In order to perform this fitting, we use the fit for 𝜔(𝜃) described in

12 We note that ‘linear’ here does not refer to the mode used in CCL described
earlier, but refers to an assumption of growth under linear perturbation theory,
as discussed in Lindsay et al. (2014a).

Section 4 and the modelled resampled redshift distributions (using
Equation 15) described in Section 5.2. We calculate 𝑟0 and 𝑏 and their
associated uncertainties by using 5000 random values of log10 (𝐴)
(and 𝛾 for a two parameter model) from our sample which were
generated to fit 𝐴 in Section 4 and evaluate these using the random
samples for the 𝑝(𝑧) distribution to then quantify 𝑏(𝑧). Using this
method, we have no reason a priori to assume a certain redshift
distribution and so use the 1000 modelled 𝑝(𝑧) resamples equally to
calculate 𝑏. This is therefore most comparable to the first resampling
method described in Section 5.2. From the 𝑟0 and 𝑏 samples we then
quantify the median value as well as the errors from the 16th and
84th percentiles.

We note though, that using Limber inversion used in this method
does make assumptions, which could affect the results presented.
These assumptions include that the angles considered are small. At
larger angles, approximations in Limber’s equation break down and
𝜔(𝜃) deviates from a power law. For the majority of angular fitting
ranges considered (up to 5◦), these use large scales where deviations
from a power law are expected. Therefore, we also considered the fit-
ting range for the power law fitting of 𝐴, 0.03 ≤ 𝜃 < 1◦, as discussed
in Section 4 where such a power law distribution appears appropriate.
Moreover, assumptions are used to obtain Limber’s equation, which
can include that 𝑟0 is independent of luminsosity; this is likely not be
the case (see e.g. Zehavi et al. 2011, Cochrane et al. 2017), however
without an ability to split by luminosity for our sources, our anal-
ysis will give an average value across the population. We continue
to present the bias measurements from this method as a number of
previous radio clustering papers (as well as at other wavelengths, see
e.g. Lindsay et al. 2014a, Magliocchetti et al. 2017, Hale et al. 2018,
Chakraborty et al. 2020, Mazumder et al. 2022) all determine 𝑟0 and
bias through this method and so allows for comparison with previous
works.

We note that CCL also uses Limber’s inversion in order to obtain
a measurement of the bias, but does not rely on assumptions about a
power law functional form for 𝜔(𝜃) and 𝜉𝑔 (𝑟, 𝑧) and accounts for the
deviation from a power law at the largest angular scale. Therefore,
different results for the bias may be obtained through these different
models and we present results for measurements of 𝑏 from both
methods to make direct comparison of the results obtained.

5.4 𝜔(𝜃) and 𝑏(𝑧) models

We present the results from fitting 𝜔(𝜃) assuming the evolving bias
and constant bias model in Figure 21. For each model we present
the fits using the three different angular ranges described above, for
both the diagonal only errors and also the full covariance array. The
associated bias models are then presented in Figure 22 along with the
values from the Limber method assuming a power law distribution of
𝜔(𝜃), with additional comparisons to previous results from analysis
of the large area NVSS survey (Nusser & Tiwari 2015) as well as
other individual measurements of bias evaluated at specific redshifts
from Lindsay et al. (2014a), Hale et al. (2018), Chakraborty et al.
(2020), Mazumder et al. (2022). The results of such fitting for both
the power law amplitude, spatial clustering length (𝑟0) and bias for
both the Limber and CCL derived bias models are also provided in
Tables 3 and 4. A comparison of the amplitude fit assuming a power
law distribution as in Equation 12 is also presented in Figure 24
compared to the work of Lindsay et al. (2014a), Hale et al. (2019),
Siewert et al. (2020), Bonato et al. (2021), Mazumder et al. (2022).
As these surveys are at different frequencies and flux density limits
(shown in the inset), this may affect the populations observed and
hence the estimated biases for such sources, and so an equivalent
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survey limit scaled to 144 MHz is used. We note that Figure 22
includes the bias values from the 2 parameter fitting model compared
to the fixed slope model, which appear in good agreement

6 DISCUSSION

In this section we shall discuss our results in context of the different
models used to fit the data as well as comparing to previous studies
of the angular clustering of radio sources.

6.1 Comparing CCL derived models for 𝜔(𝜃) and 𝑏(𝑧)

First we compare the fitting of 𝜔(𝜃) using the linear and HaloFit
models of CCL. As can be seen in Figure 21, the fit of 𝜔(𝜃) using
the linear model appears to have relatively good agreement with the
data across the angular range 0.06-1◦ using all three angular fitting
ranges considered in this work when using the more simplistic 𝜒2 for
both the evolving and constant bias models. Above 1◦, the evolving
bias model appears to underestimate slightly 𝜔(𝜃), compared to the
constant bias model, especially when using fitting ranges that cover
the largest angular range and the full covariance is considered. As the
full covariance accounts for correlations between different angular
bins, this allows the model to under-predict 𝜔(𝜃) on these scales
relative to what might be expected by simply looking at minimizing
𝜒2 using the diagonal errors on 𝜔(𝜃) only. However, such an effect
is less notable in Figure 21b where we allow the 𝑝(𝑧) resamples
to be preferentially selected to best fit the model. Below 0.06◦, the
measured value for 𝜔(𝜃) appears to be larger than expected from the
linear model for both the evolving and constant bias models, with an
even larger discrepancy for 𝜃 < 0.03◦, where we believe the effect
of multi-component sources within the LoTSS-DR2 survey is impor-
tant. On the contrary, the HaloFit model, shows greater agreement
with 𝜔(𝜃) for 𝜃 ≤ 0.06◦ when fitting with minimum angular scales
𝜃 ≤ 0.1◦. However, in doing so these models greatly underestimate
𝜔(𝜃) on the majority of larger angular scales (𝜃 ≥ 0.1◦), which is
where linear bias is dominating. This results in significantly larger
reduced 𝜒2 values compared to the linear models. For the narrow-
est angular fitting range (fitting between 0.5-5◦), instead, there is
much better agreement with the measured 𝜔(𝜃) on the largest angu-
lar scales (comparable to that when using a linear model), but the
model significantly over predicts the clustering at angles ≲ 0.5◦.

This comparison suggests that neither the linear or HaloFit models
can completely reproduce the measured 𝜔(𝜃) across the full range of
angular scales presented in Figure 21, though above the angular scale
where we believe the effects of multi-component sources is negligi-
ble (𝜃 ≥ 0.03◦), the linear models are able to much more accurately
fit the data across a wider range of angular scales using both 𝑝(𝑧)
resampling methods. The linear and HaloFit models should agree on
the largest angular scales and only deviate at small angular scales
due to the ‘1-halo’ clustering from sources within the same dark
matter halo. When measuring the linear bias, where we measure the
‘2-halo’ clustering relating to galaxies in different dark matter haloes,
it is important that the model 𝜔(𝜃) from the fitting be an accurate
representation on the largest angular scales. Therefore, the bias mea-
sured by the HaloFit models using the angular ranges 0.03-5◦ and
0.1-5◦ appears to underestimate 𝜔(𝜃) on the largest angular scales
compared to the linear models and so will underestimate the linear
bias. These should therefore not be used to draw conclusions of 𝑏0.
When fitting for angular scales of 𝜃 ≥ 0.5◦ there is better agreement
between the linear and HaloFit models and so measurements of bias
from such models are more likely to represent the true bias.

Given that cross-matched data for the LoTSS-DR2 is not currently
available for the full LoTSS-DR2 sample, and instead cross-matching
is only complete above 8 mJy (Hardcastle et al. 2023), it is not
possible to conclusively determine whether we do have a significant
contribution of 1-halo clustering to 𝜔(𝜃) in this work. However,
from the LoTSS-DR1 clustering measurements shown in Figure 16,
the correction for multi-component sources is relatively small and
would be insufficient to explain the excess clustering seen here at
small angular scales (𝜃 ≲0.03◦). This therefore suggests that we are
indeed observing some 1-halo clustering within LoTSS-DR2. Given
the uncertainty in the effect of multi-component sources, however, we
are also unable to do a full halo occupation distribution modelling
(HOD; see e.g. Berlind & Weinberg 2002, Zheng et al. 2005) in
order to determine properties of the haloes which allow them to host
multiple radio sources of the type observed in this data.

At the largest angular scales, we note that the linear and HaloFit
models are slightly lower than the measured 𝜔(𝜃) from the data
when the full covariance is used (especially when uniform weight-
ing is used for each 𝑝(𝑧) resample). This may suggest that residual
systematics remain within the data which are not fully captured by
the randoms but are accounted for by the covariance. Alternatively,
it could also represent a contribution of the radio dipole to the ob-
served TPCF, which can cause an excess clustering at larger angular
scales (see Chen & Schwarz 2016), but is not included in our mod-
els. More likely, these differences could suggest the assumed bias
models used in this analysis may be too simplistic for the sources
observed in this work. Our sample is a combination of different
sources types and luminosities which dominate at different redshift
ranges and so contribute differently across the redshift distribution.
Such sub-populations have different bias evolution models (see e.g.
Magliocchetti et al. 2017, Hale et al. 2018, Chakraborty et al. 2020,
Mazumder et al. 2022), which are complex to combine when con-
sidering only a single population. As we are unable to separate the
LoTSS-DR2 sources into different source classes we rely on more
simplistic models to probe the population as an average population,
until the time where such sources can be studied in greater detail, split
by source type. Such studies which account for differences in bias
models are more beneficial for those data where sources have been
associated with a galaxy host, assigned a redshift and source clas-
sification has been undertaken to identify the source type. This will
be aided in future over such large sky areas with WEAVE-LOFAR
(Smith et al. 2016), where spectra can be used to attribute redshifts
to sources and to classify the source type. At present, though, such
studies should focus on deep, multi-wavelength fields, as in the recent
works of Hale et al. (2018), Chakraborty et al. (2020), Mazumder
et al. (2022).

Alternatively, if the systematics within the data have been fully
accounted for it could imply that the true 𝑝(𝑧) is different from that
currently estimated from the LoTSS Deep Fields. Figure 23 shows
the preferred 𝑝(𝑧) models (using a linear model, fit over the angular
range 0.5-5◦), which favour a model with a greater fraction of sources
at these low redshifts. As discussed, this provides a much better fit to
the data at the largest angular scales than using a uniform weighting of
our resampled 𝑝(𝑧) models, reflected in the smaller average 𝜒2/𝐷𝑂𝐹

values for our samples. For other angular fitting ranges which may
give poorer fits to the data, the preferred 𝑝(𝑧) may shift to higher or
lower redshifts, however we present the 0.5-5◦ range which we believe
is the most trustworthy to measure linear bias. We note that over the
0.5-5◦ fitting range, the measured bias values presented in Table 4
are lower using the weighted 𝑝(𝑧) resampling, but are consistent with
one another within ∼ 1𝜎. Discerning between whether we expect a
𝑝(𝑧) with a stronger preference to low redshift sources or that there
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(a) Using method 1 - when each 𝑝 (𝑧) sample is equally weighted.

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.03 5.00  - Without Covariance
Linear, constant
HaloFit, constant
Linear, evolving
HaloFit, evolving
Data

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.10 5.00  - Without Covariance

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.50 5.00  - Without Covariance

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.03 5.00  - With Covariance

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.10 5.00  - With Covariance

10 2 10 1 100 101

( )
10 4

10 3

10 2

10 1

100

(
)

Fitting, : 0.50 5.00  - With Covariance

(b) Using method 2 - when each 𝑝 (𝑧) sample is not equally weighted.

Figure 21. Comparisons of 𝜔 (𝜃 ) for LoTSS-DR2 and their modelled fits (subtracting the integral constraint) assuming errors without accounting for covariance
between 𝜃 bins (upper row of each sub figure) and using the full covariance matrix is shown (lower row of each sub figure). These models are shown for the
angular fitting ranges 0.03 − 5 deg (left), 0.1 − 5 deg (centre) and 0.5 − 5 deg (right), with the dashed vertical lines indicating the angular scales used for fitting.
Black stars correspond to the measurements from LoTSS-DR2, and the shaded regions correspond to (i) the linear constant bias model (red), (ii) the HaloFit
constant bias model (yellow), (iii) the linear evolving bias model (blue) and (iv) the HaloFit evolving bias model (purple). The upper panel presents the results
when all redshift resamples are weighted equally, whilst the lower panel allows preferential 𝑝 (𝑧) resamples to be weighted preferentially.

are residual systematics in our data is challenging, but will be aided
with future spectroscopic surveys such as WEAVE-LOFAR (Smith
et al. 2016).

Next, we consider the comparison between the evolving, 𝑏(𝑧) =

𝑏0/𝐷 (𝑧), and constant, 𝑏(𝑧) = 𝑏0, bias models for our data, as pre-
sented in Figure 22. The model used in analysis of NVSS in Nusser
& Tiwari (2015) was an evolving bias model and we also note that

for previous measurements using Limber inversion, the choice of co-
moving clustering assumes a non-evolving 𝑟0 and so an evolving bias
model inversely proportional to the growth factor, as can be seen in
Equation 22. As can be seen in Figure 21, both the evolving and con-
stant bias model appear to accurately recreate the observed angular
TPCF across a diverse range of angular scales (∼ 0.07−1◦). However,
whilst at 𝜃 ∼ 1−5◦ the model for 𝜔(𝜃) using the constant bias model
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Figure 22. Comparisons of the bias models fit (using the full covariance) for the data for a constant bias model and evolving bias model for the three angular
fitting ranges: 0.03 − 5 deg (red), 0.1 − 5 deg (blue) and 0.5 − 5 deg (yellow) for linear (lighter colours) and HaloFit (darker colours) models. The left panel
shows the results when each 𝑝 (𝑧) resamples is weighted as equally probable (method 1, Section 5.2) and the centre panel shows the results when preferential
𝑝 (𝑧) models are upweighted (method 2, Section 5.2). This is presented alongside previous measurements from Nusser & Tiwari (2015) (grey dashed line),
Lindsay et al. (2014a) (grey pentagons), Hale et al. (2018) (grey triangles), Chakraborty et al. (2020) (grey squares) and Mazumder et al. (2022) (grey diamonds).
Also shown are the fitting of 𝑏 (𝑧) from Equation 22 using the angular fitting range 0.03-1◦ (evaluated at the median redshift of the sample) for the fixed slope (𝛾)
model (black) and 2 parameter model (magenta) for both the comoving (diamond) and linear (circle) Limber models. The right hand panel shows a comparison
of the bias values (evaluated at 𝑧𝑚𝑒𝑑 ≈ 0.89) from CCL (in the 0.5-5◦ fitting range) using the linear constant (up facing triangle), HaloFit constant (right facing
triangle), linear evolving (down facing triangle) and HaloFit evolving (left facing triangle) with and without covariance (indicated by a fainter symbol). The
filled markers for the CCL fitting represent those models where the 𝑝 (𝑧) samples are uniformly weighted and open markers indicate where a preferential 𝑝 (𝑧)
model was preferentially selected. These are presented alongside the Limber comoving linear models across the three angular fitting ranges. Values on the right
hand panel are shown with an arbitrary offset on the y-axis to highlight the differences in the values.

𝜃 Range Fitting Type log10 (𝐴) 𝑟0,𝑐 (Mpc) 𝑏𝑐 (𝑧𝑚 ) 𝑟0,𝑙 (Mpc) 𝑏𝑙 (𝑧𝑚 )
(◦)

0.03 - 5.00 Without Cov −2.50+0.01
−0.01 11.55+0.92

−0.77 2.58+0.25
−0.21 15.41+1.99

−1.44 1.77+0.20
−0.14

0.10 - 5.00 Without Cov −2.47+0.01
−0.01 12.02+0.96

−0.81 2.68+0.26
−0.22 16.04+2.06

−1.50 1.83+0.20
−0.15

0.50 - 5.00 Without Cov −2.38+0.02
−0.02 13.51+1.11

−0.96 2.97+0.29
−0.25 18.03+2.33

−1.74 2.04+0.23
−0.17

0.03 - 1.00 Without Cov −2.50+0.01
−0.01 11.48+0.92

−0.77 2.57+0.25
−0.21 15.32+1.97

−1.43 1.76+0.20
−0.14

0.03 - 5.00 With Cov −2.54+0.01
−0.01 10.96+0.88

−0.75 2.46+0.24
−0.21 14.63+1.88

−1.38 1.69+0.19
−0.14

0.10 - 5.00 With Cov −2.52+0.02
−0.02 11.22+0.91

−0.78 2.51+0.24
−0.21 14.97+1.93

−1.43 1.72+0.19
−0.14

0.50 - 5.00 With Cov −2.42+0.03
−0.03 12.83+1.13

−1.01 2.84+0.29
−0.25 17.14+2.26

−1.76 1.95+0.22
−0.18

0.03 - 1.00 With Cov −2.54+0.01
−0.01 10.96+0.88

−0.75 2.46+0.24
−0.21 14.62+1.88

−1.38 1.69+0.19
−0.14

Table 3. Results from fitting 𝜔 (𝜃 ) for models across a range of angular fitting ranges. Presented is the fitting range, Fitting type, amplitude of power law (𝐴)
as in Equation 12, clustering length, 𝑟0, and bias, 𝑏𝐿 , from Limber inversion using both a comoving (c) and linear (l) assumption. Bias values are evaluated at
the median value of the median redshifts (𝑧𝑚) from the 𝑝 (𝑧) resamples, as in Figure 20, 𝑧𝑚 ≈ 0.89. This is for both the case where the full covariance matrix
is (With Cov) and is not (Without Cov) used.

(and assuming equal weighting for our 𝑝(𝑧) resamples, see Figure
21a) can be seen to better model𝜔(𝜃) at the largest angular scales, the
evolving bias model under predicts the observed angular-two-point
correlation function. This would therefore imply that a constant bias
model appears to more accurately represent the measurements made
in this work. However, in the literature, bias models which evolve
and increase with redshift have typically been assumed due to expec-
tations that at higher redshifts a halo of the same mass represents a
more extreme fluctuation from the average, and so is more biased. In
SKADS (Wilman et al. 2008), the authors used an assumption of a
constant mass haloes for each different source population, these re-
sult in an evolving bias model for such an assumption. These models
have been used in numerous cosmology forecasts (Raccanelli et al.
2012, Ferramacho et al. 2014, Square Kilometre Array Cosmology
Science Working Group et al. 2020). The model used in the analysis
presented in this work, however, includes a more simplistic evolving
bias model, inversely proportional to the growth factor, and more
complicated evolutionary models taking into account the contribu-
tions of different source populations are likely more appropriate. If
the 𝑝(𝑧) resamples are allowed to be preferentially chosen to best
fit the data (see Figure 21b), the constant and evolving bias models

both appear to become more similar compared to the measurements
of 𝜔(𝜃).

Finally, comparisons can be made for the results when using the
full covariance matrix, compared to errors based on the diagonals of
the covariance matrix. Work such as Lindsay et al. (2014a) and Hale
et al. (2018) have followed methods where only the uncertainties on
a 𝜃 bin and not the full covariance matrix was assumed, which could
affect the measurements of bias. As can be seen in Figures 21-22
and in Tables 3-4, there do exist differences in the measured bias
and 𝜔(𝜃) models depending on whether or not the full covariance
matrix is provided. These often find a lower bias value when the full
covariance matrix is used, although the values are typically consistent
within 1-2𝜎. Differences between the results with and without the
full covariance imply a correlation between angular scales which
needs to be accounted for in the fitting of 𝜔(𝜃). We therefore use
the models in which the full covariance is incorporated for drawing
conclusions. We also note that when weighting all 𝑝(𝑧) resamples
equally (and modelling these as in Equation 15), the results when
using the covariance matrix from TreeCorr (with 𝑁Jack = 100)
were consistent within ∼ 1𝜎 and using a 𝛿𝑧 = 0.1 binning for the
𝑝(𝑧) from the LoTSS Deep fields also resulted in 𝑏0 values consistent
within ∼ 1 − 1.5𝜎 to those presented in this work.
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𝜃 Range Fit 𝑏0,𝐿 𝑏𝐿 (𝑧𝑚 ) 𝜒2
𝐿

/ 𝑏0,𝐻 𝑏𝐻 (𝑧𝑚 ) 𝜒2
𝐻

/ 𝑏0,𝐿 𝑏𝐿 (𝑧𝑚 ) 𝜒2
𝐿

/ 𝑏0,𝐻 𝑏𝐻 (𝑧𝑚 ) 𝜒2
𝐻

/
(◦) Type DOF DOF Cov Cov DOF Cov Cov DOF

Cov Cov
0.03 - 5.00 E/U 1.90+0.10

−0.09 2.97+0.15
−0.15 9.34 1.51+0.12

−0.10 2.37+0.19
−0.16 13.69 1.83+0.08

−0.08 2.87+0.13
−0.13 10.50 1.41+0.11

−0.10 2.21+0.18
−0.15 4.43

0.10 - 5.00 E/U 1.83+0.10
−0.10 2.87+0.16

−0.15 4.12 1.57+0.13
−0.11 2.46+0.21

−0.17 14.58 1.73+0.08
−0.08 2.71+0.13

−0.13 2.73 1.41+0.12
−0.10 2.21+0.18

−0.16 5.52
0.50 - 5.00 E/U 2.04+0.20

−0.17 3.20+0.32
−0.27 3.53 2.04+0.21

−0.17 3.20+0.33
−0.27 4.49 1.79+0.15

−0.14 2.81+0.24
−0.22 3.18 1.75+0.16

−0.15 2.74+0.25
−0.23 4.05

0.03 - 5.00 C/U 2.37+0.19
−0.17 - 12.74 1.79+0.20

−0.15 - 11.40 2.36+0.17
−0.15 - 14.01 1.68+0.19

−0.14 - 3.95
0.10 - 5.00 C/U 2.27+0.19

−0.16 - 2.24 1.87+0.22
−0.16 - 11.62 2.21+0.16

−0.15 - 3.05 1.69+0.20
−0.15 - 4.81

0.50 - 5.00 C/U 2.33+0.28
−0.22 - 1.76 2.32+0.30

−0.23 - 2.63 2.14+0.22
−0.20 - 1.81 2.07+0.24

−0.20 - 2.79

0.03 - 5.00 E/W 1.98+0.05
−0.06 3.11+0.07

−0.10 7.81 1.18+0.01
−0.01 1.84+0.02

−0.02 10.27 1.97+0.09
−0.05 3.09+0.14

−0.08 9.07 1.35+0.08
−0.08 2.11+0.13

−0.13 4.19
0.10 - 5.00 E/W 1.69+0.04

−0.07 2.66+0.06
−0.11 1.46 1.21+0.06

−0.02 1.90+0.09
−0.03 11.49 1.71+0.07

−0.06 2.68+0.11
−0.10 2.15 1.33+0.08

−0.09 2.09+0.13
−0.13 5.18

0.50 - 5.00 E/W 1.81+0.15
−0.12 2.84+0.24

−0.19 1.46 1.78+0.14
−0.13 2.79+0.22

−0.21 2.59 1.67+0.12
−0.12 2.62+0.19

−0.18 1.86 1.62+0.12
−0.11 2.54+0.19

−0.18 3.11
0.03 - 5.00 C/W 2.77+0.17

−0.15 - 9.54 1.49+0.22
−0.18 - 9.20 3.04+0.05

−0.06 - 10.63 1.67+0.17
−0.13 3.83

0.10 - 5.00 C/W 2.28+0.13
−0.11 1.68 1.57+0.15

−0.20 - 10.56 2.33+0.13
−0.13 - 2.59 1.65+0.18

−0.13 - 4.65
0.50 - 5.00 C/W 2.15+0.17

−0.18 - 0.74 2.10+0.18
−0.18 - 1.67 2.02+0.17

−0.16 - 1.03 1.94+0.17
−0.16 - 2.24

Table 4. Results from fitting bias with CCL across a range of angular fitting scales, with both the linear (𝑏𝐿) and HaloFit (𝑏𝐻 ) models of CCL. These are both
given by their value at 𝑧 = 0 and, for the evolving bias model, are evaluated at the median value of the median redshifts (𝑧𝑚) from the 𝑝 (𝑧) resamples, as
in Figure 20, 𝑧𝑚 ≈ 0.89. These are given for both the case where the full covariance matrix is not used and where it is included (denoted by Cov). For each
model the median reduced 2𝜒2 (𝜒2/DOF) from the resampled bias values is also given. This will be larger than the best fit model found across the samples,
but is provided to show representative values for the fit. A fit type is given by the combination of the bias evolution type (E=evolving, C=constant) and redshift
resampling method (U = unweighted i.e. all 𝑝 (𝑧) samples weighted equally and W = weighted i.e. preferential 𝑝 (𝑧) resamples are selected).
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Figure 23. 𝑝 (𝑧) for the data (grey) compared to the range of 𝑝 (𝑧) models
when uniformly sampling the data (blue) compared to allowing the 𝑝 (𝑧)
resamples to preferentially selected in the fitting process (see Section 5.2)
for a linear model across the angular range 0.5-5◦ using the full covariance
array with an evolving (red) and constant (yellow) bias model. All models are
shown in the range given by the 16th and 84th percentiles.

6.2 Comparison of 𝑏(𝑧) to other surveys

We next present comparisons to the results made from previous mea-
surements with similar large area surveys. As this work follows from
the previous work of LoTSS-DR1 presented in Siewert et al. (2020),
we first make comparisons to the results found in that work. In Siew-
ert et al. (2020), redshifts were not available for the full population
of LoTSS-DR1 sources and no redshift data for LOFAR sources
in the Deep Fields were available at that time. Therefore for bias
measurements this relied on those sources which had cross-matched
hosts (from Williams et al. 2019) and redshifts (from Duncan et al.
2019). This meant that approximately 50% of sources had redshifts
available, but that measurements of bias in redshift bins were skewed
to those sources. Therefore it is challenging to make direct compar-

isons to that work. However, it is possible to make comparisons to
the fitting parameters for 𝜔(𝜃) provided in Siewert et al. (2020).

In Figure 24 we present comparisons of the best fit models to
Siewert et al. (2020) as well as a number of other previous works from
Lindsay et al. (2014a), Hale et al. (2019), Bonato et al. (2021) and
Mazumder et al. (2022). For these works we include an indication
of the equivalent flux limit used, scaled to 144 MHz. For those
with fainter populations we note that differences in the populations
being observed, which will be increasingly dominated by SFGs below
1 mJy, will affect the comparison of such measurements. As can be
seen from Figure 24, our work finds a smaller clustering amplitude to
that found in Mask 1 used in Siewert et al. (2020) at 2 mJy (their best
model from their paper). We do note that our result is in excellent
agreement to that of Siewert et al. (2020) using their 2 mJy cut in
Mask d (not shown in Figure 24), which used a less conservative
masking of regions they considered to have ‘good’ sensitivity. As
discussed though in Section 3.3.4, there are differences introduced
in this work for the method of generating random sources compared
to that in Siewert et al. (2020), which may also affect comparisons
of the measurements, as systematics in the data were accounted for
using some different methods.

At both similar flux densities and a similar frequency to this work
is the clustering presented in Hale et al. (2019). In their work, the
clustering of sources within the XMM-LSS field as observed with
LOFAR was presented, and Hale et al. (2019) found a clustering am-
plitude approximately three times larger to the work presented here.
These difference could arise from cosmic variance as the XMM-LSS
field covers a much smaller area (∼25 sq. deg) compared to the∼5000
sq. deg used in this work. However, we also note that Hale et al. (2019)
discuss the fact that the corrected source counts appear to suggest
that the completeness corrections applied are an underestimation.
This could affect the measurement of 𝜔(𝜃) in their work. Our work
is consistent with that of Lindsay et al. (2014a) who study the clus-
tering of sources in FIRST (Becker et al. 1995, Helfand et al. 2015)
with an equivalent limit at 144 MHz of ∼ 5 mJy, yet there are large
uncertainties in their work. We derive a larger amplitude than that of
Mazumder et al. (2022), who use 325 MHz observations of the Lock-
man Hole field which are the equivalent of ∼3× more sensitive than
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for LoTSS-DR2, but restricted over smaller areas. Whilst previous
work has investigated how the amplitude of clustering changes with
flux density (see e.g. Wilman et al. 2003, Overzier et al. 2003), who
find a typical declining amplitude at smaller flux densities, the com-
plication between the different populations introduced and changes
in redshift distribution as flux limits decrease means that discussion
of the power law amplitude is complicated to make direct compar-
isons. We provide the inset in Figure 24 to show the flux density
dependence in context with the other work presented.

Next, comparing the bias evolution models implied from this work
to those from other works, we note that again there exists challenges
when making comparisons due to the variety of radio populations,
and their variation with flux density. Radio surveys are dominated by
AGN at the brightest flux densities, with SFG dominating at fainter
flux densities (see e.g. Smolčić et al. 2017b, Algera et al. 2020, Hale
et al. 2023) and Best et al. (2023). For example, Nusser & Tiwari
(2015) used a quadratic polynomial model to investigate an evolving
bias model for NVSS sources with 𝑆1.4GHz ≥ 2.5 mJy. This is an
equivalent flux density limit of ∼ 12.5 mJy at 144 MHz, approxi-
mately 8× the flux density limit used in this work. These sources
will be dominated by AGN and have very little contribution of SFG,
whereas we expect a much larger contribution of SFGs within this
work. As shown in radio clustering studies such as Magliocchetti et al.
(2017), Hale et al. (2018) and Mazumder et al. (2022), these two pop-
ulations are believed to have different biases and so by investigating
the bias for a source population as a whole, the bias measured will
be an average between the bias of the two populations. Moreover, if
such previous studies use comoving clustering, these should be com-
pared to the evolving bias models instead of a constant bias model.
Therefore the results shown for the Limber derived bias values for
comoving clustering in this work are only comparable for the evolv-
ing bias model and not the constant model. Our measurements of bias
with Limber’s equation (when assuming a power law spatial cluster-
ing model) can underestimate the bias model (if comparing to those
from CCL), though these are typically consistent within 1-2𝜎. The
remaining differences highlight the challenges when making com-
parisons of bias evolution models using these different approaches.
.

Evolving bias models (with the covariance) are consistent with
some of the measured values from Chakraborty et al. (2020) and Hale
et al. (2018) as well as the evolving bias model from NVSS (Nusser
& Tiwari 2015), especially when the linear model is assumed. We
note that whilst for Hale et al. (2018) we present results for the full
population in Figure 22, the results for Chakraborty et al. (2020),
Mazumder et al. (2022) are separated by source type, with those for
SFGs found to have lower bias values. Therefore our agreement with
Chakraborty et al. (2020) is to their AGN population measurements
and similarly, as discussed, NVSS will also be dominated by AGN at
the flux densities applied. Recent work from Best et al. (2023) for the
LoTSS Deep Fields, suggests ∼20% of SFGs and ∼6% of radio quiet
quasars (RQQs, which become more important at faint flux densities,
see e.g. Jarvis & Rawlings 2004) at the limiting flux density used in
this work.

It is also important to compare to the results of Alonso et al. (2021)
who used a combination of LoTSS-DR1 and CMB measurements to
jointly constrain both 𝑝(𝑧) and 𝑏(𝑧) (for sources ≥2 mJy). Their
results suggested that for an evolving bias model the value of 𝑏0 is
expected to be ∼1.2-1.7, assuming a redshift distribution similar to
that of Smolčić et al. (2017b) using an appropriate flux density cut.
Our measurements over the 0.5-5◦ angular fitting range using the full
covariance matrix to determine 𝑏0 are slightly larger than the results
of Alonso et al. (2021) (when the 𝑝(𝑧) samples are equally weighted),

10 2 10 1 100 101 102
 ( )

10 5

10 4

10 3

10 2

10 1

100

(
)

(1) Siewert+2020 - 2mJy, Mask 1
(2) Hale+2019 - S144=1.4mJy
(3) Bonato+2021 - S144=0.6mJy
(4) Mazumder+2022 - S144=0.5mJy
(5) Lindsay+ 2014 - S144=4.9mJy
Data

0.5 1.0 1.5 2.0
S144 (mJy)

10 3

10 2

A

(1
)(2

)(3
)

(4
)

0.03 < 5.00
0.10 < 5.00
0.50 < 5.00

Figure 24. Comparison of the 𝜔 (𝜃 ) from this work (black stars) compared
to previous power law fitting from the studies of Siewert et al. (2020) using a
2 mJy (solid purple) cut as well as the works of Hale et al. (2019) (turquoise
dotted), Bonato et al. (2021) (dark red dot-dashed), Mazumder et al. (2022)
(orange dashed) and Lindsay et al. (2014a) (light grey dotted). Inset: Am-
plitude variation as a function of flux density compared to the fitting here
using the simple 𝜒2 method across the three fitting ranges: 0.03-5.00◦ (red),
0.10-5.00◦ (yellow) and 0.50-5.00◦ (black). The quoted flux limits are scaled
to 144 MHz to allow more equivalent comparisons.

though our results are consistent with their upper limits within our
1𝜎 uncertainties. However, when we allow more preferential 𝑝(𝑧)
models to be weighted, we find 𝑏0 ∼ 1.6 − 1.7, consistent with the
work of Alonso et al. (2021). In their work, Alonso et al. (2021) fit for
both the 𝑝(𝑧) and 𝑏(𝑧) model, and so are more comparable to when
we allow preferential selection of the 𝑝(𝑧) samples. For the constant
bias models, on the other hand, our 𝑏0 values are typically lower than
those found in (Alonso et al. 2021, who find 𝑏0 ∼ 2.3− 4). However,
their redshift distribution which they find for such a constant bias
model is skewed to a much higher redshift than shown in Figure 20.
Our redshift distribution peaks significantly below 𝑧 ∼ 1, similar
to the evolving bias model of Alonso et al. (2021), whereas their
constant bias model predicts a redshift distribution peaking at 𝑧 ∼
1 − 2. From Figure 23, we see that the LoTSS Deep Fields data
do not indicate such a peak at higher redshifts. Therefore, to have
agreement between this work and that of Alonso et al. (2021) this
suggests a preference towards an evolving bias model for LoTSS
sources assuming a redshift distribution similar to that of the LoTSS
Deep Fields.

7 CONCLUSIONS

The LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2;
Shimwell et al. 2022) provides a catalogue of ∼4.4 million low fre-
quency radio sources over ∼ 5600 deg2, making it an ideal data set
for radio cosmology studies of the large-scale structure of the Uni-
verse. In this work we provided analysis of the angular clustering of
sources in the LoTSS-DR2 survey and comparison of the bias models
implied for such sources. We provide a comprehensive description
of the methods used to improve upon the accuracy of the random
catalogues generated in this work compared to those used in the
LoTSS-DR1 clustering analysis of Siewert et al. (2020). Our random
catalogues account for a variety of observational biases within the
data including: rms sensitivity variations across the field of view; res-
olution bias; smearing variations across the observations; detection
completeness of PyBDSF; and the effect of Eddington and measure-
ment biases on the measured flux density properties of sources.

Using the random catalogues generated we measure the angular
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two-point correlation function, 𝜔(𝜃), for sources with SNR≥7.5 and
integrated flux density ≥1.5 mJy, which shows an approximate power
law behaviour (𝜔(𝜃) ∝ 𝜃1−𝛾) over the angular scales between 0.03
and 2◦. We model 𝜔(𝜃) using a variety of models which account
for both an evolving and constant bias model as well as using matter
power spectrum models which account for linear effects only (‘lin-
ear’) or with non-linear effects also included (‘HaloFit’). Our results
show that in order to best model the 𝜔(𝜃) measured from LoTSS-
DR2 across a range of angular scales (∼ 0.1−1◦), the linear model is
preferred, which suggests that at the sensitivities probed by this work,
we are typically only observing a single radio source per dark matter
halo, and do not have a strong contribution from ‘1-halo’ clustering.
However, we note that the linear model underestimates the clustering
at smaller angular scales, where a combination of 1-halo clustering
and multi-component source clustering may play a role.

Comparing bias evolutionary models with the linear halo model,
assuming the models based on the redshift distributions from the
LoTSS Deep Fields accurately represent that of our data, our work
suggests that for an evolving bias model of the form 𝑏(𝑧) = 𝑏0/𝐷 (𝑧),
the best fit value of 𝑏0 ∼ 1.7 − 1.8 over the angular scales which we
believe are most accurate for measuring bias (0.5-5◦). Instead for a
constant bias model, of the form 𝑏(𝑧) = 𝑏0, we find 𝑏0 ∼ 2.1. At the
largest angles (≥ 1◦), we see that the constant bias model provides a
slightly better fit to the observed data when we use equally weighted
𝑝(𝑧) models from the LoTSS Deep fields to measure bias. Such dif-
ferences are reduced if we allow our models to have preferential 𝑝(𝑧)
models, based on the fit to the data. Where we allow our 𝑝(𝑧) model
to be preferentially selected, the bias values in both the constant and
evolving bias models also reduced slightly, to 𝑏0 ∼ 1.6 − 1.7 in
an evolving model, and 𝑏0 ∼ 2.0 for a constant model. Assuming
an evolving bias model and taking into account the full covariance
matrix, we find good agreement with the results from NVSS of
Nusser & Tiwari (2015) up to 𝑧 ∼ 1 and previous results from Hale
et al. (2018), Chakraborty et al. (2020), though we note that these
probe different populations at both different frequencies and different
equivalent sensitivities to that used in this work.

Moreover, in comparison with work from LoTSS-DR1 of Alonso
et al. (2021) who used both CMB and LOFAR measurements to
jointly constrain the redshift distribution and bias evolution model
of LoTSS-DR1 sources (≥2 mJy), we find that given the greater
knowledge of the redshift distributions contributed by the LoTSS
Deep Fields (see Sabater et al. 2021, Tasse et al. 2021, Duncan et al.
2021), an evolving model from Alonso et al. (2021) is necessary to
reflect the redshift distribution found in their work. We find that the
bias values presented from Alonso et al. (2021) for their evolving
model is similar to that of the evolving bias models presented in
this work, especially when we allow 𝑝(𝑧) models to be preferentially
determined during the fitting process. Using a linear model for the
matter power spectrum to fit across the largest angular scales (0.5-5◦)
and equally weighting 𝑝(𝑧) models from the LoTSS Deep Fields, we
find, for an evolving bias model, a value of 𝑏0 = 1.79+0.15

−0.14 which is
equivalent to 𝑏𝐸 = 2.81+0.24

−0.22 at the median redshift of our sample,
𝑧m ≈ 0.9 when we do not show a preference to the 𝑝(𝑧) models,
reducing to 𝑏0,𝐸 = 1.67+0.12

−0.12 which is equivalent to 𝑏𝐸 = 2.62+0.19
−0.18

and 𝑏0,𝐶 = 2.02+0.17
−0.16 when we allow our measurements to suggest

preferential 𝑝(𝑧) models13, which are found to peak more strongly
at lower redshifts.

Observations from future spectroscopic surveys such as WEAVE-
LOFAR (Smith et al. 2016) will allow us to more accurately de-
termine the redshift distribution of LOFAR sources at low redshifts
and allow more understanding of the 𝑝(𝑧) models we expect for
the sources observed in this work. This will allow us to disentan-
gle whether small systematics remain within our data or we have a
population of radio sources which are more highly skewed to low
redshifts (e.g. from SFGs). As the low redshift 𝑝(𝑧) appears impor-
tant for this work in modelling 𝜔(𝜃) at the larger angular scales,
such accurate redshifts at 𝑧 < 1 are important for constraining the
results of future studies. This work has highlighted how a number
of observational systematics can be corrected for future deep radio
cosmology studies, whilst also demonstrating that the understanding
of systematics in wide field mosaiced images is complex, and needs
deep understanding for use in cosmological studies.
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