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RADA: Robust Adversarial Data Augmentation for Camera Localization in
Challenging Conditions

Jialu Wang1, Muhamad Risqi U. Saputra2, Chris Xiaoxuan Lu3, Niki Trigoni1 and Andrew Markham1

Abstract— Camera localization is a fundamental problem
for many applications in computer vision, robotics, and
autonomy. Despite recent deep learning-based approaches,
the lack of robustness in challenging conditions persists due to
changes in appearance caused by texture-less planes, repeat-
ing structures, reflective surfaces, motion blur, and illumina-
tion changes. Data augmentation is an attractive solution, but
standard image perturbation methods fail to improve local-
ization robustness. To address this, we propose RADA, which
concentrates on perturbing the most vulnerable pixels to gen-
erate relatively less image perturbations that perplex the net-
work. Our method outperforms previous augmentation tech-
niques, achieving up to twice the accuracy of state-of-the-art
models even under ’unseen’ challenging weather conditions.
Videos of our results can be found at https://youtu.be/niOv7-
fJeCA. The source code for RADA is publicly available at
https://github.com/jialuwang123321/RADA.

I. Introduction
Camera localization refers to the problem of recovering

the 6-DoF camera poses from input images. It is a
fundamental problem in robotics for applications such
as augmented reality and autonomous driving. Tradi-
tional hand-crafted features are vulnerable to changes
in illumination, scene dynamics, or texture-less regions
[1]. Deep-learning-based models have been proposed to
extract informative features automatically [1], [2], but
maintaining robustness in the face of challenging con-
ditions remains a struggle, especially if these conditions
have not been observed (or only sporadically) in the
training set [3]. Such conditions include changes in
lighting, dynamic objects, texture-less surfaces, repeating
patterns, reflective objects, or motion blurs [4], [5], [6].

One possible solution to tackle this problem is to
use well-known basic data augmentation techniques,
such as shifting RGB pixel values or using Gaussian
noise, have been employed [2], [1], [7], [8], [9]. However,
these ”data agnostic” techniques may corrupt important
information by perturbing all image pixels uniformly.
Adversarial training (AT) [10], a deep-learning-based
data augmentation method, has been shown to improve
robustness in classification problems [10], [11], [12], but
has not yet been used to improve deep learning-based
camera localization.
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3Chris Xiaoxuan Lu is with the School of Informatics, the
University of Edinburgh, UK, xiaoxuan.lu@ed.ac.uk

In this paper, we propose a novel adversarial data
augmentation approach for robust camera localization,
dubbed as RADA. RADA learns to generate relatively
less image perturbations that are still capable of perplex-
ing the network by concentrating more on perturbing the
most vulnerable pixels. As a result, RADA can improve
the robustness of the localization models in challenging
and even ‘unseen’ cross-domain situations. This is the
product of the generalization benefits of RADA which
allows us to work without prior-information of the target
domain [13]. We show that if we trained a localization
model using RADA with outdoor dataset taken only from
good weather condition, the localization model can have
satisfactory robustness in a variety of challenging and
unseen test scenarios (e.g., snow, over-exposure sunny
day etc.).

It is worth noting that Generative Adversarial Network
(GAN) [14] and Adversarial Training (AT) [10] are
different concepts [15], although they share terminology.
AT improves model robustness using adversarial attacks,
while GAN generates synthetic images. They can be
combined for complementary advantages [10]. While
GAN has been used for camera localization, it requires
some target domain information [16], [17], [18], whereas
AT can generalize without prior information of the target
domain [13]. Furthermore, some other works also use AT
technique, but they focus on different tasks [19], [20], [21],
[3], [8].

In summary, our key contributions are given as follows:

• We propose RADA, a Robust Adversarial Data
Augmentation system, which is to our knowledge
the first adversarial training (AT) approach applied
to the problem of camera localization. It creates
relatively less alteration to the original image by se-
lectively perturbing only the most vulnerable pixels.

• We demonstrate that the proposed RADA approach
can significantly improve the robustness of the
localization models in challenging and even ’unseen’
cross-domain conditions.

• We evaluate RADA and competing approaches on
diverse datasets (e.g., RGB-D, RGB, and 3D point
clouds) and various localization models, demonstrat-
ing its efficacy for diverse localisation problems,
namely both 2D (e.g., RGB) and 3D data (e.g.,
point clouds).
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Fig. 1. Upper: Traditional training method for deep learning-based camera localization. Lower: Our proposed training method with
RADA.

II. Related Work

A. Camera Localization
Camera localization, also known as camera pose es-

timation, aims at recovering camera 6-DoF pose from
given query images under a world coordinate system.
This problem was initially solved as a place recognition
problem [22], [23] which estimate the pose of the query
image by retrieving the most similar images from the
database. With the rapid progress of deep learning in
the field of computer vision, the solutions to camera lo-
calization problems have developed from the traditional
structure based camera localization methods (recovering
the camera pose from 3D scene through the extracted
local feature descriptors [24], [25], or using a random
forest [26], [27]) to Absolute Pose Regression (APR)
(directly predicting the 6-DoF pose from input images
by optimizing an CNN [1], [28], [2] ).

B. Data Augmentation Approaches
Data augmentation improves model robustness by

artificially generating data without changing labels or
requiring target domain data [29], [30], [15]. Approaches
can be grouped into two categories: 1) Basic image
manipulation, which employs random color and geo-
metric transformations or Gaussian noise, and offers
limited improvements in robustness. 2) Deep-learning
approaches, such as GAN [14] and AT [10], which
utilize generator networks and can be combined for
complementary advantages.

C. Adversarial Training (AT)

Adversarial training is a deep-learning-based data
augmentation technique proposed by [13]. FGSM [31]
improved training speed by using a small step size, while
FGM [32] used a unit vector to avoid perturbing different
pixels by the same step size. PGD [10] added a constraint
through multiple iterations, while EAT [33] increased
sample diversity and ALP [11] used a ”pairing loss.”
JSMA [34] proposed saliency maps to select features with
the most significant impact on the output.

(a) (b)

power>1

0<power<1

power=1

Jacobian Matrix Using Output Jacobian Matrix Using Loss Re-weighted Jacobian Matrix Using Loss

x x x
y y y

z z z

Fig. 2. (a) Visualization of f(x) = (Jx)pow with different power
range. The x-axis refers to JL

x , while the y-axis is their scaled values.
When power > 1 (red), it re-assign higher weights to greater JL

x ,
and vice versa. We do not use either 0 < power < 1 (gray) that
gives an unwanted opposite effect, or the linear function power =
1 (blue) that cannot even widen their disparity. (b) Visualized
distribution of different Jacobian matrix. The x-y-plane is the input
pixels while the z-axis is the corresponding Jacobian matrix. Since
the loss L(p, p∗) does not change the monotonicity of the output p,
three Jacobian matrices Jp

x (left), JL
x (middle) and JLpow

x (right)
have similar distributions. We can therefore replace JL

x with the
Jp
x (obtained in step 1) to save the computational cost.



III. Methods
A. Background

In this section, we take a deeper dive into the two
techniques that our proposed approach is closer to (and
inspired by), namely FGSM and JSMA, highlighting
their strengths and limitations.

FGSM [31] is one of the fastest AT methods that uses
gradient-based perturbations. Similar to other gradient
ascent methods, the perturbation radv is calculated by
Eq. (1), where x is the input image, constant ε is the step
size, ▽xL is the gradient of loss function w.r.t the image,
(·)pow is the element-wise power. Existing methods either
set pow to 0 (e.g., FGSM) or 1 (e.g., FGM, PGD, etc.).

radv = ε · sign(▽xL) · (▽xL)
pow (1)

Then they perform xadv = x + radv to perturb
the original image along the gradient sign direction.
However, Using it directly for camera localization would
perturb all pixels equally, even irrelevant ones, creating
confounding dots (see Fig. 4).

JSMA [34] advances that, vulnerable pixels are those
that have a higher impact on the output of a network in a
computer vision task. In other words, they are the pixels
that, when perturbed or altered, are more likely to cause
mis-classification or errors in the network’s output. By
focusing on perturbing most vulnerable part of inputs,
even a constant perturbation (e.g., radv = 1) can lead
to successful attacks. Assume F is the network output
and x is the input image in a computer vision task, the
vulnerable pixels can be identified through the Jacobian
matrix JF

x = ∂F (x)
∂x , where greater magnitude elements

indicate which pixels are more vulnerable. However, this
method incurs significant computational overhead from
repetitive forward derivative estimation.

B. Proposed Adversarial Training for Camera Localiza-
tion

As discussed before, JSMA perturbs only the top-
k vulnerable pixels but is slow due to the Jacobian
matrix computation, while FGSM is fast but perturbs all
pixels. RADA combines the strengths of both methods
and mitigates their limitations, proposing a novel AT
technique in four steps.

Step 1: Calculate gradient-based perturbations. A
localization model is trained to predict camera poses by
back-propagating the loss function Lr

θ(p, p
∗) with respect

to the input image x. The perturbation is obtained by
computing the gradient ▽xL and substituting it into Eq.
(1).

Step 2: Find the most vulnerable pixels. In a similar
way to JSMA, we use the Jacobian Matrix to find out
vulnerable pixels of the input image. Notice that, in
the camera localization problem, large derivative of the
loss function Lr

θ(p, p
∗) is typically linked with large

elements in the Jacobian matrix of the model’s output
F (x) = p (see Fig. 2(a)). Therefore, when calculating

the Jacobian matrix, we replace J
F (x)
x = ▽xp with

J
Lr

θ(p,p
∗)

x = ▽xL
r
θ(p, p

∗) which was obtained in step 1
(see Fig. 2(b)). This reduces the computational cost
(We tested naively combining JSMA and FGSM attacks
on DSAC⋆, but the model didn’t converge after 7 days.
In contrast, RADA converged in 14 hours, compared to
the typical 7 hours for vanilla DSAC⋆ ).

Step 3: Re-weigh and apply perturbations. We use a
soft re-weighting function to amplify the perturbation on
the most vulnerable pixels and preserve more localization
information compared to JSMA’s piece-wise approach.
The function, f(Jx) = (Jx)

pow assigns higher weights
to more vulnerable pixels and pow > 1 amplifies the
perturbation super linearly. Increasing pow amplifies the
effect of perturbing the most vulnerable pixels.

Next, we scale (Jx)
pow to the pixel value range by

multiplying it with a scaling factor. Mk% denotes the
set of pixels xi, whose

∣∣Jpow
xi

∣∣ are ranked in the top k%
among those of other pixels. Its corresponding scaling
factor εk% is calculated as in Eq. (2)).

εk% = (
∑ |Jpow

xi
|

|xi|
)avg if xi ∈ Mk%, (2)

We use two scaling factors, ε0.1% and ε50%, due to
the large slope variation in f(Jx). ε0.1% is applied to
the most vulnerable pixels in the top 0.1 percentile of∣∣Jpow

xi

∣∣, while ε50% is applied to the remaining pixels in
the image based on the top 50th percentile.

After evaluating scaling factors for the two classes of
pixels, we then apply the perturbation radv as shown in
Eq. (3).

radv =


ε0.1% · sign(▽xiL

r
θ(p, p

∗)) · (▽xiL
r
θ(p, p

∗))pow

if xi ∈ M0.1%,
ε50% · sign(▽xiL

r
θ(p, p

∗)) · (▽xiL
r
θ(p, p

∗))pow

Otherwise.
(3)

Step 4: Threshold and Clipping. Then we used two
mechanisms to add constraints on the magnitude of
obtained perturbation (radv) and the final xadv respec-
tively.

(1) Threshold. Before each batch of training, we
calculate a perturbation threshold (ηth) from the pixel
range so as to limit the size of the perturbation. This
design enables the perturbation to be adaptive to the
input dataset. As shown in Eq. (4), xmax and xmin are
the maximum and minimum pixel values of each batch.
The number of thresholds η is calculated accordingly to
limit the percentage of threshold-ed out pixels to each
image to a preset upper bound.

ηth = (xmax − xmin)÷η (4)

(2) Clipping. To avoid invalid values, we further clip
the value of the perturbed pixels into the range of [0,255].
Our ablation study in IV-G shows that this restriction
can effectively reduce the confounding pixels.



The overall workflow of generating RADA adversarial
samples is shown in Algorithm 1. The RADA system
pipeline is illustrated in Fig. 1.

Algorithm 1: RADA Algorithms
for each epoch do

1. Use the range of x to calculate the
perturbation threshold ηth (Eq. (4)) and the
adversarial step size εk% (Eq. (2));

2. Freeze the model parameter θ and calculate
the perturbation radv (Eq. (3));

3. If any radv exceeds the ηth, assign ηth to
that perturbation;

4. Calculate adversarial sample xadv using
xadv = x + radv ;

5. If any pixel value in xadv exceeds the range
[0, 255], assign the nearest boundary (0 or
255) to that pixel;

6. Use xadv to train the model and update the
weights θ;

end

IV. EXPERIMENTS

A. Localization Models and Evaluation Metrics

We enhance DSAC⋆ [35], MapNet [2], and AtLoc [1],
which are state-of-the-art camera localization models,
using our proposed RADA approach. DSAC⋆ predicts
3D point clouds and derives the pose afterward, while
MapNet and AtLoc belong to the APR branch, which
directly regress the pose of each image. MapNet is
a deep learning-based camera localization model that
recovers the absolute camera pose from input images
while achieving a relatively higher robustness to illu-
mination changes. Atloc is a camera localization model
that uses a self-attention mechanism to handle dynamic
objects and changing illumination. DSAC⋆ estimates
scene coordinates from RGB images, RGB-D images or
3D point clouds using a CNN and then determines the
optimal camera pose by evaluating multiple sampled
pose hypotheses through a RANSAC optimization pro-
cess. In this paper, we used the same evaluation strategies
and datasets as the original papers for all models,
whether augmented or vanilla versions, to ensure a fair
comparison. More specifically, mean translation error
(m) and mean rotation error (degree) for MapNet and
AtLoc, and median translation error (cm) and median
rotation error (degree) for DSAC⋆.

B. Datasets

TABLE I
RobotCar [36] Dataset Selection

Sequence Time Tag Model
loop 2014-06-26-09-24-58 overcast Training
loop 2014-06-26-08-53-56 overcast Training
loop 2014-06-23-15-36-04 overcast Testing
loop 2014-06-24-14-09-07 over-exposure Testing
fullA 2014-11-28-12-07-13 overcast Training
fullA 2014-12-02-15-30-08 overcast Training
fullA 2014-11-25-09-18-32 rain Testing
fullB 2015-02-13-09-16-26 overcast Training
fullB 2015-02-03-08-45-10 snow Testing

Oxford RobotCar Dataset [36] is a large-scale dataset
collected from a 10km autonomous driving route in
central Oxford. For this study, we used input images
from the stereo centre camera sequence 01 with a
resolution of 1280 x 960, and ground truth poses obtained
from INS data interpolations. 7Scenes Dataset [37] is an
indoor localization dataset with RGB and RGB-D image
sequences from seven scenarios, with ground truth cam-
era poses obtained from KinectFusion. Cambridge Land-
marks Dataset [28] is an outdoor localization dataset
with RGB images, 3D point clouds, and ground truth
camera poses reconstructed using structure-from-motion.
All datasets contain challenging conditions, making them
suitable for testing the robustness of localization models.

C. Implementation Details
For RADA adversarial perturbations, we set pow = 1.5

and calculate the threshold η to limit the percentage of
thresholded out pixels to 20%. FGSM perturbations use
a typical value of ε = 0.3. The Gaussian perturbation
uses a mean of 0 and variance of 0.05, both commonly
used values. To ensure a fair comparison, we maintained
the same hyper-parameters as the original papers for
all models, whether augmented or vanilla versions. All
models were trained until convergence and in IV-E,
challenging test weather conditions were either hidden
or excluded from the training data. We used all scenes
of 7scenes and Cambridge Landmark datasets, and the
details about selected sequences of RobotCar Dataset
are provided in Table I. All models were trained to
convergence using a single Nvidia RTX-3090 GPU.

D. Performance on Indoor and Outdoor Environment
with Challenging Situations

We firstly trained DSAC⋆ on 7Scenes [37] and Cam-
bridge [28] datasets. Table II shows the numerical evalu-
ation results. All competing systems work properly when
they were tested on the unchallenging data, but suffer
from translation accuracy degradation on the challeng-
ing conditions (Stairs, Redkitchen, Pumpkin (7Scenes
[37], indoor), OldHospital, StMarysChurch, GreatCourt,
KingsCollege (Cambridge [28], outdoor)). RADA mod-
ified DSAC⋆ outperforms the other techniques on the



TABLE III
Comparing RADA with SOTA methods using MapNet and AtLoc

Testing Sequence AtLoc [1] AtLoc with Gaussian AtLoc with FGSM AtLoc with RADA (ours)
overcast 8.86m, 4.67◦ 10.93m, 5.97◦ 8.11m, 3.60◦ 6.93m, 3.40◦

over-exposure 22.17m, 17.72◦ 8.80m, 9.38◦ 9.54m, 8.76◦ 9.23m, 8.84◦

rain 8.99m, 2.15◦ 12.40m, 2.96◦ 12.90m, 2.74◦ 6.87m, 1.90◦

snow 37.99m, 8.18◦ 29.21m, 10.82◦ 24.56m, 11.12◦ 13.07m, 8.15◦

average 19.50m, 8.18◦ 15.34m, 7.28◦ 13.78m, 6.55◦ 9.02m, 5.57◦

Testing Sequence MapNet [2] MapNet with Gaussian MapNet with FGSM MapNet with RADA (ours)
overcast 9.84m, 3.96◦ 69.48m, 50.22◦ 16.89m, 11.65◦ 17.26m, 6.82◦

over-exposure 18.49m, 12.88◦ 49.80m, 39.33◦ 19.74m, 8.27◦ 16.89m, 11.65◦

rain 15.00m, 3.72◦ 16.11m, 3.60◦ 13.39m, 3.60◦ 12.10m, 2.56◦

snow 29.16m, 9.06◦ 36.22m, 12.04◦ 23.18m, 8.63◦ 12.91m, 2.65◦

average 18.12m, 7.41◦ 42.90m, 26.30◦ 18.3m, 8.04◦ 14.79m, 5.92◦

Basic AtLoc AtLoc with FGSM Perturbation 
(Conventional adversarial perturbation)

AtLoc with Gaussian Perturbation AtLoc with RADA Perturbation  
(ours)
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Fig. 3. Trajectories on over-exposure day (upper) and snowy day (lower) test set. The ground truth (black line), predicted trajectories
(red line) and starting point (star) are visualized above.

majority of good and challenging weather conditions.
The visualized trajectory for DSAC⋆ can be found in
the supplementary material. On average, RADA yields
40.55% and 18.67%, 13.7% and 9.1% smaller translation
and rotation error respectively for 7Scenes [37] and
Cambridge [28] datasets.

E. Performance on Cross-Domain Situations
We then trained both AtLoc and MapNet on Ox-

ford RobotCar Dataset [36]. We compared RADA with
different traditional data augmentation methods, and
then tested them in good weather as well as ‘unseen’
challenging weathers. For the non-augmented system,
we trained basic AtLoc and MapNet [2] by utilizing
the original, unmodified dataset. For naive augmentation
system, we add Gaussian noise to the training dataset.
For conventional deep learning-based augmentation sys-
tem, we employ FGSM [31] to perturb the dataset. Apart
from the basic MapNet and AtLoc, all models were
trained by using both the original and the perturbed
data. Fig. 3 visualizes some of the predicted trajectory

for AtLoc.

Table III shows the numerical evaluation results. The
unmodified AtLoc and MapNet models performed well
during testing under good weather conditions (overcast).
However, the MapNet model exhibited a degradation
in translation-only accuracy during testing under rainy
conditions. Additionally, both models experienced sig-
nificant degradation in performance when tested under
snowy and over-exposed conditions. Sometimes, Gaus-
sian and FGSM can improve the network’s robustness,
but most of the time they confuse the network since
the generated perturbation is either random or too
noisy such that it corrupts critical pixel information
used for camera localization. In contrast, AtLoc and
MapNet modified with RADA outperform the other
techniques on most of good and challenging weather
conditions. On average, RADA yields 36.7% and 26.5%
smaller translation and rotation error respectively for
both AtLoc and MapNet.



TABLE II
Performance on Indoor/Outdoor Challenging Situations of DSAC⋆ with RADA

Dataset Sequence Method Chess Fire Heads Office Pumpkin RedKitchen Stairs

7scenes
RGB w.o. RADA 1.9cm, 1.11◦ 1.9cm, 1.24◦ 1.1cm, 1.82◦ 2.6cm, 1.18◦ 4.2cm, 1.41◦ 3.0cm, 1.7◦ 4.1cm, 1.42◦

w. RADA 1.64cm, 0.56◦ 1.73cm, 0.77◦ 1.0cm, 0.73◦ 2.5cm, 0.74◦ 3.63cm, 0.93◦ 2.7cm, 1.3◦ 4.0cm, 1.2◦

RGB-D w.o. RADA 1.0cm, 1.03◦ 1.1cm, 1.05◦ 1.0cm, 1.88◦ 1.2cm, 1.0◦ 2cm, 1.17◦ 2.1cm, 1.41◦ 2.6cm, 1.15◦
w. RADA 0.98cm, 0.42◦ 1.0cm, 0.58◦ 0.9cm, 0.8◦ 1.2cm, 0.48◦ 1.8cm, 0.6◦ 2cm, 0.84◦ 2.5cm, 0.7◦

Dataset Sequence Method StmarysChurch Great Court Old Hospital King’s College ShopFacade
Cambridge 3D point clouds w.o. RADA 13.4cm, 0.45◦ 48.5cm, 0.25◦ 21cm, 0.41◦ 14.7cm, 0.29◦ 4.6cm, 0.25◦

w. RADA 11.4cm, 0.40◦ 39.0cm, 0.20◦ 19.5cm, 0.37◦ 13.3cm, 0.27◦ 5.0cm, 0.30◦

F. Perturbation Histogram

We compared different perturbation methods using
histograms. As shown in Fig. 4, Gaussian and FGSM
perturbations are evenly distributed on the whole image,
generating a lot of noise. In contrast, RADA produces
targeted perturbations on small, informative regions such
as trees and buildings. This improves the network’s
robustness to challenging and even ’unseen’ cross-domain
variations.

G. Ablation Study

We also conducted ablation study under different
weather conditions using AtLoc model. In Table IV, basic
AtLoc is compared with a version trained with complete
RADA, a clipping version of RADA trained without
threshold, a threshold version trained without clipping,
and a no-threshold-no-clipping version of RADA. All
models were trained in good condition (overcast) and
then tested in different ‘unseen’ challenging conditions
(over-exposure and rainy). The rest settings are kept the
same for fair comparison. The complete RADA achieved
the best performance among all. This comparison indi-
cates that all incomplete RADA versions are less accurate
than the complete RADA, showing that the threshold
and clipping mechanism can produce effective constraints
(see Fig. 5).

V. CONCLUSIONS

We propose RADA, an adversarial data augmentation
system for camera localization, which aims to performs
relatively less alteration to the original image by concen-
trating more strongly on perturbing the most vulnerable
pixels. By using RADA, we demonstrated the possibil-
ity of using AT to improve the robustness of camera
localization models in challenging and even ‘unseen’
cross-domain conditions. It is a simple plugin that can
be used on virtually any deep-learning based camera
localization network to generate adversarial training
examples. As part of our future work, we plan to improve
RADA’s robustness for challenging testing conditions,
such as nighttime scenarios. This will advance the field
of robotics and autonomous systems and make RADA a
more effective tool for real-world applications.

RADA (Ours)

Perturbation generation process Perturbation Histogram

Gaussian

FGSM

x r adv x adv

x r adv x adv

x r adv x adv

Fig. 4. The comparison of perturbation results between Gaussian,
FGSM [32], and RADA (ours). x, ∆x, and x′ are the original image,
the generated perturbations, and the perturbed image respectively.
We obtained the histogram of perturbations by equally dividing
∆x′ into 9 sub-squares and computing the frequency, omitting pix-
els without interference, and clipping Gaussian perturbed outputs
within [0,1]. Both Gaussian and FGSM perturbations are uniformly
distributed in all regions. In contrast, RADA perturbations are
concentrated in regions with important geometrical structures for
localization, such as trees and buildings. Training the localization
model on x′ mitigates over-fitting to weather-specific structures
and improves the network’s robustness to challenging and ’unseen’
cross-domain variations.

TABLE IV
Ablation study of RADA on RobotCar [36] (Basic AtLoc denotes

the original AtLoc Model without RADA)

Over-exposure Rainy
Basic AtLoc 22.17, 17.72◦ 8.99, 2.15◦
Complete RADA (ours) 9.23m, 8.84◦ 6.87m, 1.90◦
No clipping RADA (ours) 12.39, 10.98◦ 10.96, 2.69◦
No threshold RADA (ours) 11.99, 10.79◦ 8.82, 2.05◦
no threshold, no clipping RADA (ours) 12.66, 12.75◦ 17.28, 2.95◦
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a) Original Image b) Image with RADA 
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