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Stacking Revenues from Flexible DERs in
Multi-Scale Markets using Tri-Level Optimization

Ángel Paredes ID , Student, IEEE, José A. Aguado ID Member, IEEE, Chaimaa Essayeh ID ,
Yuxin Xia, Student, IEEE, Iacopo Savelli ID , Thomas Morstyn ID , Senior, IEEE,

Abstract—Rapid proliferation of flexible Distributed Energy
Resources (DERs) as a result of Net Zero Emissions objectives
entails a profound shift in the paradigm of local and national
energy systems. Currently, DERs’ simultaneous participation
in multiple markets is generally restricted, which undermines
their profitability. With the aim of increasing the number of
business cases for them, a tri-level optimization problem that
seeks the maximisation of revenues from DERs is proposed.
The optimization problem considers simultaneous participation
of different flexible DERs, such as, Electric Vehicles (EVs), Bat-
tery Energy Storage Systems (BESSs) and Heating, Ventilation
and Air Conditioning (HVACs), in national and local markets.
Markets are cleared sequentially, and the model is recast into
a tractable single-level problem using its dual formulation and
strong duality condition. Results from a case study based on
the IEEE 14 bus transmission network, a realistic distribution
network and SimBench dataset demonstrate the effectiveness of
the proposed approach in increasing profits compared with a
baseline scenario.

Index Terms—Distributed Energy Resources, Duality, Local
Markets, Profit Maximisation, Sequential Markets, Stacking
Revenues, Tri-Level Optimization.

NOMENCLATURE

Parameters are in upper case letter and variables in lower
case letter. |Ω| denotes the cardinality of the set Ω. Vector and
matrices are denoted by lower and upper case bold letters.

Acronyms

BESS Battery Energy Storage System.
DAM Day-Ahead Market.
DER Distributed Energy Resource.
DSO Distribution System Operator.
EV Electric Vehicle.
FG Flexible Generator.
FL Flexible Load.
FSP Flexibility Service Provider.
HVAC Heating, Ventilation and Air Conditioning.
LEM Local Energy Market.
LFM Local Flexibility Market.
LMO Local Market Operator.
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MO Market Operator.
RM Reserve Market.
SOC State of Charge.
TSO Transmission System Operator.

Indices and sets

a,Ωa Index and Set for agent a, a ∈ Ωa.
f,Ωf Index and Set for FLs, f ∈ Ωf .
g,Ωg Index and Set for FGs, g ∈ Ωg .
s,Ωs Index and Set for BESSs, s ∈ Ωs.
b,Ωb Index and Set for HVACs b ∈ Ωg .
t,Ωt Index and Set for time periods, t ∈ Ωt.
i,Ωn Index and Set for network nodes, i ∈ Ωn.
i, j,Ωl Indices and Set for network branches, (i, j) ∈ Ωl.

Parameters

Gi,j , Bi,j Conductance and susceptance of the line (i, j) (S).
πp
a,t Price of product p of agent a in time period t

(e/kW, e/kWh).
ηCs , η

D
s Charging (C) and discharging (D) efficiencies for

BESS s.
P ref
a,t Baseline power of agent a in time period t (kW).

P a, P a Lower and upper power bounds of agent a (kW).
SOCs, SOCs Lower and upper State of Charge bounds of

BESS s (kWh).
P conv
s Power converter rating of BESS s (kW).

Si,j Thermal limit of branch (i, j) (kVA).
τoutb,t Outdoors out temperature of the building b in time

period t (◦C).
Cb, Rb Thermal constants of the building b.
Ru

t , R
d
t Upward u and downward d reserves in time period

t (kW).
P

he

b , P
co

b Heating he and cooling co rating of HVAC system
b (kW).

ηheb , ηcob Heating he and cooling co efficiencies of HVAC
system b.

Am,Bm Matrix of coefficients of market m.
bm Vector of independent terms of market m.

Variables

ωp
a,t Energy product p from agent a at time period t (kWh).

νpa,t Capacity product p from agent a at time period t (kW).
soca,t SOC of agent a in time period t (kWh).
τb,t Temperature of building b in time period t (◦C).
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pi,j,t, qi,j,t Active and reactive power flow through line (i, j)
at time period t (kW, kVAr).

vi,t, θi,t Voltage magnitude and phase angle of node i at time
period t (V, rad).

xm General vector of variables for market m.
λ, µ Dual variables associated to equality and inequality

constraints (e/kW, e/kWh).

I. INTRODUCTION

THE ever-increasing penetration of Distributed Energy
Resources (DERs), the decarbonisation, sustainability

and electrification of mobility and heating are motivating a
profound change in the power landscape [1]. The proliferation
of clean DERs is mainly driven by the Net Zero emissions
objectives, which increases the penetration of technologies
such as household and factory energy arbitrage systems, utility
scale batteries, Electric Vehicles (EVs) and PV systems [2].
Distribution systems will be characterized by a strong renew-
able and uncontrollable foundation, which eventually would
lead load to follow generation. [3] In this context, Distribution
System Operators (DSOs) will face new challenges concerning
those new consumption and generation patterns. Flexibility
and Local Energy Markets (LEMs) are key elements of modern
renewable energy systems that enable DSOs to deal with this
change of paradigm [4]. Timescale is of paramount importance
as generation and demands must remain in equilibrium at every
instant. Moreover, given the intrinsic uncertainty associated
to renewable generation and its hurried deployment, the risk
of contingencies increases [5]. In this context, energy and
flexibility markets offer resilient and cost-effective solutions at
a national and local level to system operators, which previously
could only resort to grid reinforcements to meet these chal-
lenges. Extensive research has been conducted regarding the
design of these short-term Local Flexibility Markets (LFMs)
[6], and numerous innovative industry-lead projects have been
developed to test them [7]. Moreover, system operators could
capitalise on the particular suitability of DERs for providing
multiple types of services simultaneously at national and local
scale [8]. Despite of this, individual DERs are limited in size
to directly participate in national markets [9]. Then, although
aggregation allows their participation in individual markets at
a national scale, the determination of the optimal stacking of
revenue across multiple scales remains a major challenge.

Concurrent participation in several markets enables adding
worth to management techniques of DERs by stacking rev-
enues. However, being too small, their participation is limited
when they are operated independently. Flexibility Service
Provider (FSP) figure naturally arises as a market facilita-
tor for DERs aiming to maximise their profitability. Thus,
there is a desire of improving the business cases for those
resources as they provide low-cost solutions and promotes
energy independent societies while accelerating transition to
sustainable energy systems [10]. In this context, there is a
strong motivation to study a business model for DERs with
revenue stacking from the provision of flexibility services in
multiple markets.

Various methodologies have been studied to manage DERs.
Markov Decision Process was used in [11] to stack revenues

from energy arbitrage and frequency regulation in PV-Battery
Energy Storage System (BESS) systems. Deep-Learning was
used in [12] to accelerate the solution of the energy man-
agement problem of a community of DERs under uncertainty.
Those techniques only address the problem of DERs providing
transmission or local services, but not both at the same time.

Optimization techniques were also used to manage simple
business cases. Scalar indices are used in [13] and [14] to
manage the participation of BESSs in national markets. Au-
thors in [15] use Particle Swarm Optimization to co-optimize
BESS size along wind systems to maximise profits. Reference
[16] stacks revenues streams for BESSs in microgrids, with
the aim of making them financially viable using linear pro-
gramming. Long term BESSs bidding strategy in day-ahead
and frequency markets is investigated at national scale by
[17]. Energy, capacity and ancillary services were stacked in
[18] considering different DER technologies over a monthly
planning horizon for national energy and capacity markets.
Nevertheless, hierarchical structures cannot be modelled by
these single-level approaches.

Multi-level optimization is a well-suited method for the
modelling of leader-follower problems, in which the results of
the lower level problem depends on the variables upper level
problem. In this sense, multiple time scales were considered
in [19], stacking revenues from energy arbitrage and residuals
unit commitments. Virtual Power Plant services were co-
optimized in [9] using a multi-level framework. Multi-level
optimization also captures strategic decisions made by a profit
maximising operator. Bi-level optimization was used in [20],
[21] to model the maximisation of revenues of BESSs in day-
ahead and reserve markets. Microgrids bidding strategy in
national day-ahead and real-time markets were investigated
in [22], also considering their possible reconfiguration [23].
Besides of these assets, clusters of buildings with BESSs
were used for the stacking of flexibility benefits in national
markets [24]. Clusters of BESSs were used at national [25] and
local markets [26] to stack flexibility revenues using two-stage
programming. However, the main limitation of these proposals
is that they do not address the sequential market clearing as all
of them includes market with different timescales in the same
level of the problem. To overcome this, Stackelberg games
were used in [27] and [28] for multi-time scale allocation of
energy and reserves. Equilibrium models were proposed in
[29] and [30] to determine the optimal bidding strategy of
virtual power plants participating in national day-ahead and
real-time markets. Both Multi-Level and Equilibrium Problems
are usually recast into single-level optimization using KKTs
conditions. These MINLP suffer from tractability issues, which
hinders the proliferation of new business cases. To address this
issue, authors in [31] proposed a bi-level approach that address
the sequential market clearing of heat and electricity markets.
Nevertheless, in this proposal short-term decision-making were
placed over day-ahead decisions, which is unrealistic. Refer-
ence [32] overcome this issue using a tri-level optimization
model for sequential clearing of heat and electricity markets.
However, how to deal with the sequential market clearing of
national and future local electricity markets inside a revenues-
maximization strategy has not been addressed.
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TABLE I: Summary of the literature review.

Reference Markets Agents Time Scale Spatial Scale Problem
[17] Energy arbitrage, Frequency regulation BESS Monthly National QCP
[13] Energy arbitrage, Fast Frequency Response BESS Monthly National Scalar
[14] Energy arbitrage BESS Monthly National MILP
[16] Energy arbitrage BESS, PV Hourly Local NLP
[15] Energy arbitrage BESS, Wind Monthly National MINLP
[11] Energy arbitrage, Frequency regulation BESS, PV Monthly National Heuristics
[9] Energy arbitrage, Fast Frequency Response, Ancillary

Services
Virtual Power Plant Multiple National MILP

[19] Energy arbitrage, Reserve provision, Residual unit-
commitment

CHP, BESS Multiple National MILP

[27] Energy arbitrage, Reserve provision EV Hourly National MIQCP
[18] Energy arbitrage, Reserve provision PV, BESS, EV, Wind Monthly National MILP
[29] Energy arbitrage, Real-time markets Virtual Power Plant Hourly National MPEC
[30] Energy arbitrage, Real-time markets Virtual Power Plant Hourly National MPEC
[22] Energy arbitrage, Reserve provision, Real-time markets Microgrids Hourly National MILP
[23] Energy arbitrage, Reserve provision, Real-time markets Microgrids Hourly National MINLP
[24] Energy arbitrage, Reserve provision, Regulation services Buildings with BESS Hourly National MILP
[25] Energy arbitrage, Reserve provision, Real-time markets BESS Hourly National MINLP
[26] Energy arbitrage, Reserve provision, LFM BESS Hourly National, Local MINLP
This paper DAM, RM, LEM, LFM BESSs, HVACs, FLs, FGs Multiple National, Local NLP

A summary of the conducted literature review is shown in
Table I, where the number of markets, DER technologies, time
and spatial scales and type of problem are compared. In light
of the above, the identified gaps in knowledge are,

G1 The sequential clearing of national and local markets
has not been well addressed by literature. Research to
date has not yet determined how to strategically manage
DERs participating in national and local markets that are
cleared sequentially.

G2 Aggregation of disparate DER technologies, consider-
ing the expected grow in Heating, Ventilation and Air
Conditioning (HVAC) systems and the electrification
of the mobility, when they participate in national and
local markets, is not properly addressed. Future local
flexibility markets will be another source of incomes
to DERs, which could unlock new business studies and
boost their deployment.

G3 Few studies have investigated the need of considering
the influence of strategic decisions made by a FSP. This
requires a multi-level optimisation approach, and the
number of methodologies to address it is scarce.

To fill these gaps, this paper proposes a tri-level optimiza-
tion problem for the maximisation of stacked revenues from
flexible DERs. Disparate DERs technologies are managed to
provide both national and local services, taking into account
that markets are cleared sequentially. A tri-level optimization
problem is recast into a single-level NLP using the method-
ology based on duality proposed in [32]. Contributions of the
proposed work are,

C1 A novel framework that supports simultaneous partici-
pation of DERs in local and national markets, providing
both energy and capacity services. This methodology
can deal with the physical interface of national and local
markets and with their sequential clearance.

C2 Integration of multiple DER technologies including EVs
and electric HVACs providing spatial and temporal flex-
ibility coverage. The proposed framework can deal with
multiple sources of flexibility providing several services

to national and local markets.
C3 A tri-level optimization problem that models the stack-

ing of flexibility revenues of DERs participating in
sequential national and local markets. This tri-level
problem is then converted into a tractable single-level
problem which captures strategic decisions made by a
FSP when dealing with temporal and spatial scales.

The remaining sections are organised as follows. Section
II presents the problem formulation. Section III proposes a
method for solving the tri-level optimization problem that
maximise stacked revenues. Results of the case study are
depicted in Section IV. Lastly, Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, the national and local market problems,
the agent constraints and the profit maximiser objective are
described. The scheme of the problem formulation is depicted
in Fig. 1. A FSP manages DERs connected to the distribution
grid. Those assets participate in two markets at national level,
i.e., the Day-Ahead Market (DAM) and Reserve Market (RM),
and other two at local level LEM and LFM. Those markets
are linked by power flows pi,j,t between transmission and dis-
tribution networks. Besides, the deployment of the FSP’s bids
in national and local market scales are mutually affected by
each other. This setting provides a new framework for strategic
decision-making, using a tri-level optimisation problem. This
methodology captures both the sequential market clearing of
national and local markets and the strategic behaviour of the
FSP, which is reflected in the modification of the bids when
the FSP is participating in multiple markets. Then, we use
duality theory and the method proposed by [32] to find an
equivalent single-level optimisation problem.

The FSP aims to stack flexibility revenues from all markets.
National markets are cleared first on an hourly basis, then,
local markets are run with a timescale of 15 minutes. Clearing
price of DAM is λDA

t , RM are µru
t and µrd

t , LFM is λLFM
t

and LEM is λLEM
t . FSP decides the price of the bids πt and

the limits of the bids of energy ωt, and capacity νt products
for each time period t.



IEEE TRANSACTIONS ON POWER SYSTEMS 4

Service Provider
Stacked Revenues 

Maximization
Upper Level

Middle Level 
(Cleared first)

𝝅!, 𝝎!, 𝝂!𝜆!"#, 𝜇!$%, 𝜇!$&
𝜆!'() , 𝜆!'*)

DAM
(𝑒𝑏, 𝑒𝑠)

LFM
(𝑓𝑢, 𝑓𝑑)

LEM
(𝑒𝑢, 𝑒𝑑)

RM
(𝑟𝑢, 𝑟𝑑) 

Lower Level 
(Cleared second)

Δ𝑡 = 1ℎ

Δ𝑡 = 15 𝑚𝑖𝑛

Capacity Energy

𝑝+,-,!

Fig. 1: General scheme of the proposed structure. FSP sets bids
prices πt and limits for energy ωt and capacity νt products,
for the participation in national DAM and RM, and LEM
and LFM, which set prices for energy λDA

t , upward µru
t and

downward µrd
t reserve, and local energy λLEM

t and flexibility
λLFM
t products.

The timeline of the market is presented in Fig. 2. The
DAM, which is managed by the Transmission System Operator
(TSO), is the market for clearing energy trading at trans-
mission level. Market Operator (MO) receives asks and bids
from agents at transmission level and the FSP, and network
information from the TSO. Then, the DAM is cleared and
agents are dispatched. After that, RM is cleared on an hourly
timescale. In this market, TSO asks for reserves to the MO,
which receives bids from agents connected to the transmission
network. Before local markets are cleared, network constraints
at the interface are sent to the DSO.

Each distribution network has its own LEM and LFM

FSP

Network layer

DB

Market layer

Control 
signals

TN

DN

𝝀!

𝒑",!

𝒑$,!

𝒑%,!

𝒑&,!
𝒑',!

𝜔(,!
𝜈(,!

𝝂", 𝝎"

𝝂% , 𝝎%
𝝂& , 𝝎&

𝝂' , 𝝎'

Fig. 3: Conceptual diagram of the data exchanged in the
proposed approach within the market/network layer and the
FSP. Control signals are represented by grey dashed arrows
while products dispatched are presented by green arrows

running in parallel with a 15 min timescale. The LEM supplies
the local energy mismatch between DAM clearing and real
scheduling of the assets. Energy bids are submitted to the
Local Market Operator (LMO) and the market is cleared
maximizing the social welfare of participants. Then, a LFM
is cleared in case any congestion or imbalance appears near
real-time operation in the distribution network. Flexibility bids
are sent by independent DERs and by the FSP.

The proposed approach aims to maximize revenue stacking
from DERs in the market layer, the FSP serves as an interface
between the network and control layers, leveraging historical
data and sending control signals to ensure efficient market
participation πt,ωt,νt. FSP collects information about past
results to forecast future market states, and the flexibility

D
A

M
            R

M
              L

E
M

            L
FM

MO DSO DERs
(DN-level)TSO Agents

(TN-level) FSP LMO

Supply & 
Demand Bids

Network
Constrains

Energy Bid

DAM results

Up/Down Bids
Up/Down BidReserve

Requirement
RM results

Energy OffersEnergy Mismatch

LEM results

Up/Down Bids

Flexibility Ask
LFM results

Energy Bid

Flexibility Bids

Flexibility Bids

Network constraints at interface

D
ay-ahead

Intra-hourly
15-m

in
R

T

Network Constraints

Fig. 2: Timeline diagram of the market interactions among participants.
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availability of its DERs. Figure 3 shows how the FSP manages
this data to compute the optimal bid strategy and the control
signals pa,t it sends to the DERs once the markets are cleared
and the products ω, ν are dispatched. Note that no sensitive
information about the DERs leaves the domains of the FSP.
Thus, privacy is ensured.

A. Day-Ahead Market

Problem (1) represents the DAM problem, where the social
welfare of the participating agents is maximised. Let πeb

a,t and
πes
a,t be the offer prices and ωeb

a,t and ωes
a,t be the quantity of

the energy bought eb and energy sold es of the agent a in
time period t in the DAM.

max
ωeb

a,t,ω
es
a,t,θ

TN
i,t

∑
t∈Ωt

∑
a∈Ωa

(πeb
a,tω

eb
a,t − πes

a,tω
es
a,t) (1a)

Subject to,

ωeb
a,t ≤ ωeb

a,t ≤ ωeb
a,t ∀a ∈ Ωa,∀t ∈ Ωt (1b)

ωes
a,t ≤ ωes

a,t ≤ ωes
a,t ∀a ∈ Ωa,∀t ∈ Ωt (1c)∑

a∈Ωa

ωeb
a,t =

∑
a∈Ωa

ωes
a,t : λDA

t ∀t ∈ Ωt (1d)∑
j∈ΩTN

n

BTN
i,j (θTN

i,t − θTN
j,t ) = pTN

i,t ∀i ∈ Ωn,∀t ∈ Ωt (1e)

∥BTN
i,j (θTN

i,t − θTN
j,t )∥ ≤ P i,j ∀(i, j) ∈ Ωl,∀t ∈ Ωt (1f)

− π ≤ θTN
i,t ≤ π ∀i ∈ Ωn,∀t ∈ Ωt (1g)

Equations (1b) and (1c) represent the limit of the offers for the
products traded in DAM. Demand is matched with generation
through (1d). A DC power flow model is considered in (1e) –
(1g) to characterize the node power balance as the DAM takes
place in the transmission network. pTN

i,t represents the nodal
injections of the agents connected to the grid. The prices of
the products traded in the market are settled on a marginal
basis using dual variables λDA

t associated with (1d).

B. Reserve Market

The RM is described by (2), where the cost of acquiring
upward ru and downward rd reserves are minimised.

min
νru
a,t,ν

rd
a,t

∑
t∈Ωt

∑
a∈Ωa

(πru
a,tν

ru
a,t + πrd

a,tν
rd
a,t) (2a)

Subject to,

νrua,t ≤ νrua,t ∀a ∈ Ωa,∀t ∈ Ωt (2b)

νrda,t ≤ νrda,t ∀a ∈ Ωa,∀t ∈ Ωt (2c)∑
a∈Ωa

νrua,t ≥ Ru
t : µru

t ∀t ∈ Ωt (2d)∑
a∈Ωa

νrua,t ≥ Rd
t : µrd

t ∀t ∈ Ωt (2e)

Upward ru and downward rd offer blocks are described by
(2b) and (2c). TSO asks for upward Ru

t and downward Rd
t

reserves in the market in prevision of future eventualities in
the grid. The price of the upward and downward products are
settled by dual variables µru

t and µrd
t , respectively.

C. Local Energy Market

LEM is organized at the local level to adjust for the lack
of demand or generation (i.e. ∆Et) considering what has
been previously settled up in the DAM. This market aims to
maximise social welfare of participants as (3) states.

max
ωeu

a,t,ω
ed
a,t

∑
t∈Ωt

∑
a∈Ωa

(πeu
a,tω

eu
a,t − πed

a,tω
ed
a,t) (3a)

Subject to

ωeu
a,t ≤ ωeu

a,t ∀a ∈ Ωa,∀t ∈ Ωt (3b)

ωed
a,t ≤ ωed

a,t ∀a ∈ Ωa,∀t ∈ Ωt (3c)∑
a∈Ωa

(ωeu
a,t − ωed

a,t) = ∆Et : λLEM
t ∀t ∈ Ωt (3d)

Equations (3b) and (3c) represent the upward eu and
downward rd energy offer limits. Then, the mismatch is
compensated by those energy products in (3d). Dual variable
λLEM
t associated to (3d) represents the price of the products

traded.

D. Local Flexibility Market

LFM is organized to mitigate congestions in the distribution
grid. DSO minimizes the cost of acquiring flexibility in (4).

min
νfu
a,t,ν

fd
a,t,θ

DN
i,t ,

vDN
i,t ,pi,j,t,qi,j,t

∑
t∈Ωt

∑
a∈Ωa

(πfu
a,tν

fu
a,t + πfd

a,tν
fd
a,t) (4a)

Subject to

νfua,t ≤ νfua,t ∀a ∈ Ωa,∀t ∈ Ωt (4b)

νfda,t ≤ νfda,t ∀a ∈ Ωa,∀t ∈ Ωt (4c)∑
j∈Ωn

[GDN
i,j vDN

j,t −Bi,jθ
DN
j,t ] = pDN

i,t ∀i ∈ Ωn,∀t ∈ Ωt (4d)∑
j∈Ωn

[−BDN
i,j vDN

j,t −Gi,jθ
DN
j,t ] = qDN

i,t ∀i ∈ Ωn,∀t ∈ Ωt (4e)

pi,j,t = Gi,jvi,j,t −Bi,jθi,j,t ∀(i, j) ∈ Ωl,∀t ∈ Ωt (4f)
qi,j,t = −Bi,jvi,j,t −Gi,jθi,j,t ∀(i, j) ∈ Ωl,∀t ∈ Ωt (4g)

p2i,j,t + q2i,j,t ≤ S
2

i,j ∀(i, j) ∈ Ωl,∀t ∈ Ωt (4h)∑
a∈Ωa

νfua,t =
∑
a∈Ωa

νfda,t : λLFM
t ∀t ∈ Ωt (4i)

− π ≤ θDN
i,t ≤ π ∀i ∈ Ωn,∀t ∈ Ωt (4j)

V DN
i ≤ vDN

i,t ≤ V
DN

i ∀i ∈ Ωn,∀t ∈ Ωt (4k)

Upward fu and downward fd limits are represented by (4b)
and (4c), respectively. Let pDN

i,t and qDN
i,t be nodal injections at

node i and time period t in the distribution network. Let vi,j,t
and θi,j,t be the voltage magnitude and phase angle difference
between nodes i and j in time period t. We consider a linear
approximation of the active and reactive node balance of the
distribution grid in (4d) and (4e) as in [33]. Then, power flows
are computed in (4f) and (4g). Thermal limit of the branch is
computed in conic constraint (4h). Equation (4i) ensures that
the total amount of upward and downward products are the
same, so the solution of the LFM market is compatible with
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previously settled markets. Lastly, voltage phase angle and
magnitude limits are described by (4j) and (4k). Price of the
products are settled by dual variable λLFM

t associated to (4i).

E. FSP objective

The FSP seeks the maximization of the revenues obtained
from all the markets previously described, as (5) presents.

max
πt,ωt,νt

∑
t∈Ωt

[
λDA
t (ωes

t − ωeb
t ) + µu

t ν
ru
t + µd

t ν
rd
t

+ λLEM
t (ωed

t − ωeu
t ) +

∑
a∈Ωa

λLFM
t (νfua,t + νfda,t)

] (5a)

Subject to

πeb
t , πes

t ,πru
t , πrd

t , πeu
t , πed

t ,

ωeb
t , ωes

t , νrut , νrdt , ωeu
t , ωed

t ,≥ 0 ∀t ∈ Ωt

(5b)

πfu
a,t, π

fd
a,t, ν

fu
a,t, ν

fd
a,t ≥ 0 ∀a ∈ Ωa,∀t ∈ Ωt (5c)

ωes
t =

∑
a∈Ωa

ωes
a,t, ωeb

t =
∑
a∈Ωa

ωeb
a,t ∀t ∈ Ωt (5d)

νrut =
∑
a∈Ωa

νrua,t, νrdt =
∑
a∈Ωa

νrda,t ∀t ∈ Ωt (5e)

ωeu
t =

∑
a∈Ωa

ωeu
a,t, ωed

t =
∑
a∈Ωa

ωed
a,t ∀t ∈ Ωt (5f)

(12) − (16) (5g)

FSP stacks revenues from the markets it participates in
by defining the optimal bid, i.e., price and quantity. The
objective described in (5a) maximises the revenues obtained
from the DAM, RM, LEM and LFM. Prices and offers are
positive as (5b) and (5c) defines. Aggregation of the bids
for the DAM is described in (5d), for RM in (5e) and for
LEM in (5f). The agents constraints for Flexible Loads (FLs),
Flexible Generators (FGs), BESSs, EVs and HVACs systems
are explained in Appendix A and included in the model in
(5g).

III. TRI-LEVEL OPTIMIZATION FOR REVENUES
MAXIMIZATION

The maximization problem of the FSP is subject to the se-
quential market clearing of the DAM, RM, LEM and LFM. We
propose a tri-level optimization problem for stacking revenues
of DERs managed by a FSP in those markets. The sequential
clearing of the national and local markets is represented by
the mid and lower-level problem, respectively, following [32].

A. Sequential problem formulation

We use matrix notation to represent the tri-level optimiza-
tion problem. Let xm, λm be the vector of primal and
dual decision variables for a given market m. Constraints of
the markets are represented without loss of generality with
inequalities for the sake of readability. Let Am and Bm be
the matrices of coefficients and bm the vector of independent
terms for market m. Bm is the matrix associated to FSP
agents, and Am is the matrix of the rest of agents. Lastly,

vector cm represents the price of the offers in the market m.
Thus, the full tri-level optimization is presented in (6).

min−λT
DAx

FSP
DA − λT

RMxFSP
RM − λT

LEMxFSP
LEM

− λT
LFMxFSP

LFM

(6a)

s.t. AFSPxFSP ≤ bFSP (6b)

min−cTDAxDA − cFSPT

DA xFSP
DA

+ cTRMxRM + cFSPT

RM xFSP
RM

(6c)

s.t. ADAxDA +BDAx
FSP
DA ≤ bDA : λDA (6d)

ARMxRM +BRMxFSP
RM ≤ bRM : λRM (6e)

min cTLEMxLEM + cFSPT

LEM xFSP
LEM

+ cTLFMxLFM + cFSPT

LFM xFSP
LFM

(6f)

s.t. ALEMxLEM

+BLEMxFSP
LEM ≤ bLEM : λLEM

(6g)

ALFMxLFM

+BLFMxFSP
LFM ≤ bLFM : λLFM

(6h)

Equation (6a) and (6b) represents the maximization problem
of the FSP, which is subject to the mid and lower level
problems. Mid-level problem objective (6c) represents the
joint clearing of the DAM and RM. Equations (6d) and
(6e) represents the DAM and RM constraints. Lower level
problem (6f) jointly minimize costs for LEM and LFM, which
constraints are represented by (6g) and (6h).

B. Equivalent problem

In this section, the tri-level problem in (6) is converted into
a single-level problem using lexicographic optimization and
duality theory. Note that variables from the mid-level problem
(6c) – (6e) do not depend on the variables of the low-level
problem (6f) – (6h). This enables to reformulate (6c) – (6h)
as a single-level problem using the following lexicographic
function [34].

min


−cTDAxDA − cFSPT

DA xFSP
DA

+ cTRMxRM + cFSPT

RM xFSP
RM

cTLEMxLEM + cFSPT

LEM xFSP
LEM

+ cTLFMxLFM + cFSPT

LFM xFSP
LFM

 (7a)

s.t. ADAxDA +BDAx
FSP
DA ≤ bDA : λDA (7b)

ARMxRM +BRMxFSP
RM ≤ bRM : λRM (7c)

ALEMxLEM +BLEMxFSP
LEM ≤ bLEM : λLEM (7d)

ALFMxLFM +BLFMxFSP
LFM ≤ bLFM : λLFM (7e)

This lexicographic problem can be asymptotically approx-
imated by the linear problem (8) when γ → 1 [32]. Let
f(y) and g(z) be the objective of the mid and lower level
problems. The resulting lexicographic function is l(y, z) =
γf(y)+(1−γ)g(z). The term (1−γ)g(z) becomes negligible
when γ → 1, so the objective first find the optimal value of y
that minimises f(y), and then optimises g(z), approximating
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the sequential clearing behaviour. The sequential clearing is
then approximated by,

minγ[−cTDAxDA − cFSPT

DA xFSP
DA + cTRMxRM

+ cFSPT

RM xFSP
RM ] + (1− γ)[cTLEMxLEM

+ cFSPT

LEM xFSP
LEM + cTLFMxLFM + cFSPT

LFM xFSP
LFM ]

(8a)

s.t. (7b) - (7e) (8b)

At this point, the tri-level problem has been converted into a
bi-level problem. To tackle this, the lower-level problem will
be replaced by its set of primal and dual constraint. After that,
the resulting bi-level optimization is solved by replacing the
inner problem for its set of primal (9c) – (9f), dual (9g) –
(9n) and strong duality constraint (9o). The optimality of this
problem will be guaranteed by also including the strong duality
condition into the single-level problem [35]. Strong duality
condition guarantees that any feasible solution of the proposed
single level problem is an optimal solution of the lower level
problem. The objective function is composed by two terms:
FSP profit maximisation in national and local markets.

However, the previous approximation affects to the scale of
the dual variables of the inner problem. Thus, the original scale
of the dual variables of the inner problem should be recovered
by dividing mid-level dual variables by γ and lower-level dual
variables by (1 − γ) in the final objective function (9a). The
final result is presented in (9).

min− 1

γ

[
λT
DAx

FSP
DA + λT

RMxFSP
RM

]
− 1

1− γ

[
λT
LEMxFSP

LEM + λT
LFMxFSP

LFM

] (9a)

Subject to,

AFSPxFSP ≤ bFSP (9b)

ADAxDA +BDAx
FSP
DA ≤ bDA (9c)

ARMxRM +BRMxFSP
RM ≤ bRM (9d)

ALEMxLEM +BLEMxFSP
LEM ≤ bLEM (9e)

ALFMxLFM +BLFMxFSP
LFM ≤ bLFM (9f)

λT
DAADA ≤ −γcTDA (9g)

λT
DABDA ≤ −γcFSPT

DA (9h)

λT
RMARM ≤ γcTRM (9i)

λT
RMBRM ≤ γcFSPT

RM (9j)

λT
LEMALEM ≤ −(1− γ)cTLEM (9k)

λT
LEMBLEM ≤ −(1− γ)cFSPT

LEM (9l)

λT
LFMALFM ≤ (1− γ)cTLFM (9m)

λT
LFMBLFM ≤ (1− γ)cFSPT

LFM (9n)

γ

[
− cTDAxDA − cFSPT

DA xFSP
DA + cTRMxRM

+ cFSPT

RM xFSP
RM

]
+ (1− γ)

[
− cTLEMxLEM

− cFSPT

LEM xFSP
LEM + cTLFMxLFM + cFSPT

LFM xFSP
LFM

]
=

bDAλ
T
DA + bRMλT

RM + bLEMλT
LEM

+ bLFMλT
LFM

(9o)

Equation (9b) represents FSP constraints, primal constraints
of each market are depicted from (9c) to (9f). Equations (9g) -
(9n) represent dual constraints of the sequential markets clear-
ing considering the previously lexicographic function. Lastly,
(9o) ensures that strong duality condition of the sequential
markets clearing is satisfied.

C. Stochastic formulation

In this section, a stochastic formulation of the problem is
described using a scenario tree, as Fig. 5 depicts. We assume
that the FSP have access to historical data of previous market
clearing results. This enables the FSP to build forecast tools
which can predict the future values of the bids πe,a,t, the
quantities ωe,a,t, νe,a,t for all agent a ∈ Ωa, and time period
t ∈ Ωt for a set of scenarios e ∈ Ωe. Following authors
in [36], the errors of the forecasting tools are characterized
using a normal distribution, with a standard deviation of 25%
and a mean value equal to the forecasted value. To avoid
computational burden, we use a scenario reduction technique
to include the most representative scenarios into the final
problem [37].

The stochastic version is described as follows. Let X̂ be the
mean of the uncertain parameter X and ∆ẽXe be the forecast
error in the scenario e for the parameter X . Thus, the bids
πe,a,t and their quantities ωe,a,t, νe,a,t are decomposed as
follows,

πe,a,t = π̂a,t +∆ẽπa,t
e ∀e ∈ Ωe,∀a ∈ Ωa,∀t ∈ Ωt (10a)

ωe,a,t = ω̂a,t +∆ẽωa,t
e ∀e ∈ Ωe,∀a ∈ Ωa,∀t ∈ Ωt (10b)
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Fig. 4: (a) IEEE 14 network (b) N5 1 DSS network. Assets managed by the FSP are noted in red.
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𝑤
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Scenario (1,1,1) 

Scenario (𝑢, 𝑣, 𝑤) 

…
…

Scenario (1,1, 𝑤) 

Scenario (1, 𝑣, 𝑤) 

Fig. 5: Scenario tree of the stochastic version of the problem.
Unrepresentative scenarios are deleted using a scenario reduc-
tion technique.

νe,a,t = ν̂a,t +∆ẽνa,t
e ∀e ∈ Ωe,∀a ∈ Ωa,∀t ∈ Ωt (10c)

Then, the expected value of the profits is maximised for all
scenario e in the set of possible realizations Ωe. Let Pe the
probability of the scenario e, the stochastic formulation of the
problem stand as follows,

min
∑
e∈Ωe

Pe

[
− 1

γ

[
λT
e,DAx

FSP
e,DA + λT

e,RMxFSP
e,RM

]
− 1

1− γ

[
λT
e,LEMxFSP

e,LEM + λT
e,LFMxFSP

e,LFM

]] (11a)

s.t. (9b) − (9o) ∀e ∈ Ωe (11b)

IV. CASE STUDY AND SIMULATION RESULTS

In this section, results based on a case study that builds
on IEEE 14 bus network, acting as transmission network, and
N5 1 DSS [38], acting as distribution network, are shown.
Transmission and distribution networks are depicted in Fig. 4
(a) and (b), respectively. Bus 1 of the distribution network is
connected to bus 14 of the transmission network. A realistic
dataset for generation and load profiles is used from [39].
Bids of the different market participants are randomly gen-
erated following Spanish markets average prices. 11 agents
are connected to the transmission network as depicted in
Fig. 4 (a), with a power of 3,85 MW. There are 105 agents
connected to the distribution network as Fig. 4 (b) shows,
with a power of 1,26 MW. FSP manages 4 FLs, 3 FGs, 2
BESSs and 1 HVACs connected to the distribution grid, they
are noted with red text in Fig. 4 (b). National markets, i.e.,
DAM and RM are cleared at transmission level, while local
markets, i.e., LEM and LFM, are cleared at distribution level.
Simulations are carried out using PYOMO [40] and large-
scale non-linear solver CONOPT v3.17A using an Apple M1,
3.2 GHz processor with 16 GB of RAM. CONOPT solver
was used as it outperforms heuristics techniques to solve NLP
problems, obtaining consistent solutions and computational
times more than 30 times lower [41]. The optimization prob-
lem has 557,437 variables and 100,608 constraints. Time until

convergence was 323.9165 seconds, which is compliant with
the clearing timeframe of the short-term markets. The number
of internal solver iterations until convergence was 3,769.

A. Stacked revenues from market participation
In this section, simulation results are presented for the case

study to show how the FSP stacks profits by participating
in different markets simultaneously. Figure 6 presents the
products traded in the markets. Energy products eb, es, eu
and eb are depicted in Fig. 6 (a), while capacity products
ru, rd, fu and fd are depicted in Fig. 6 (b). What stands
out in this figure is the multi-temporal scale of the products.
Local products are traded with 15 min time granularity, while
national products are traded on an hourly basis.
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Fig. 6: Stacked energy (a) and capacity (b) products traded by
FSP when it participates in national and local markets.

Energy products are traded in the DAM to maximise profits.
Minimum demand is ensured for FLs and HVAC systems,
while maximising the injection of the FGs. A summary of the
traded products can be found in Table II. Trading in the DAM
represents a 45.7% of the total trades of the case study. Then,
national reserve trading accounts for a 28.6% while LEM and
LFM have a 15.2% and 10.5%, respectively. Trading shares
among agents are 34.4% for FLs, 37.4% for FGs, 20.2% for
BESSs and 8% for HVAC systems.

Temporal distribution of the profits obtained in each market
is depicted in Fig. 7. 86.22% of the energy profits obtained in
Fig. 7 (a) are due to energy sold es in the DAM. Revenues
obtained from the participation in capacity markets are shown
in Fig. 7 (b), where benefits from RM and LFM obtained. Total
profits for this case study add up to 336.04 C for one day of
operation. A summary of the revenues obtained by product,
and by technology, is presented in Table II. Energy trade in
the DAM is specially profitable for BESSs, obtaining 72.46 C
of profits. In the case of the HVAC system, its participation in
RM and LFM allows it to recover a part of its energy costs.

Figure 8 represents the evolution of the variables of the
HVAC system controlled by the FSP. It buys energy from the
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Fig. 7: Stacking energy (a) and capacity (b) revenues for the
products traded by the FSP.

TABLE II: Summary of the products quantities and profits
obtained by DER technology.

FLs FGs BESSs HVACs Total

Pr
ofi

ts

eb (C) -64.11 - -13.76 -6.62 -84.50
es (C) - 277.30 86.22 - 363.52
eu (C) -0.43 -0.19 -0.28 -0.19 -1.09
ed (C) 0.18 0.74 0.00 0.06 0.98
ru (C) 0.05 27.67 4.43 - 32.15
rd (C) 7.42 4.79 3.07 3.41 18.70
fu (C) 1.16 - 1.25 0.58 2.99
fd (C) 0.01 2.05 1.24 - 3.29

Pr
od

uc
ts

eb (kWh) 857.640 - 141.184 74.052 1,072.88
es (kWh) - 615.064 165.220 - 780.284
eu (kWh) 135.863 37.247 88.844 61.440 323.393
ed (kWh) 40.518 239.180 - 11.960 291.659
ru (kW) 38.586 415.061 96.526 18.793 568.967
rd (kW) 244.465 63.686 170.092 115.191 593.434
fu (kW) 77.603 - 70.592 41.140 189.335
fd (kW) 0.387 148.124 88.240 - 236.751

DAM and LEM, and takes advantage of its thermal inertia to
obtain profits from RM and LFM. Evolution of the temperature
is depicted in Fig. 8 (b), which is maintained inside of
the comfort limits. Figure 9 represents the evolution of the
variables of one of the BESS systems controlled by the FSP.
Energy profits are obtained in the short term, for example,
energy is bought before 03:00 to sell it in the following
period of time when energy price increases. Moreover, it also
participates in the LEM by selling energy that was bought in
the DAM. Trading of reserve and flexibility services increase
profits, as Fig. 9 (d) shows.

B. Profitability comparison with baseline scenarios

In this section, the proposed approach is compared with
four different baselines where the FSP maximise profits in
one single market at a time. The baselines are computed as
a bi-level program where the FSP problem is subject to the
market clearing. These bi-level problems are converted into a
single-level problem by incorporating the lower-level primal,
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Fig. 8: Evolution of the variables of the HVAC system man-
aged by FSP, Power (a) temperature (b) energy products (c)
capacity products (d).
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Fig. 9: Evolution of the variables of the BESS managed by
FSP, Power (a) State of Charge (SOC) (b) energy and (c)
capacity products (d).

dual, and strong-duality equations into the upper-level problem
[35].

The quantity of the products traded, and the profits obtained
are compared in Fig. 10. The total profits obtained by the
proposed strategy are 878.59 C. This supposes an increase of
in profits compared with the individual baselines, as Fig. 10 (a)
presents. The quantity of products exchanged are compared in
Fig. 10 (b). Products exchanged over the markets are lower
individually, as the proposed method calculate the optimal
bidding strategy to maximise profits, as the flexibility managed
by the FSP is limited.

Figure 11 presents a comparison of one of the FLs man-
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Fig. 10: Comparison of the profits (a) and products (b) traded
by the FSP in the baselines and using the proposed strategy.

aged by the FSP under the baselines (right column) and the
proposed strategy (left column). The demand in the DAM
strategy is displayed in Fig. 11 (a) for the DAM baseline,
where the consumption is at minimum level for most of the
day. In the LEM baseline (depicted in lilac) the strategy
tries to obtain short term profits for its participation in the
market, taking advantage of short variations in price. Lastly,
the baselines for the RM and LFM are depicted in Fig. 11 (f),
where the participation of the FL is maximised for the sake of
benefits. Meanwhile, the profit maximiser strategy identifies
the most profitable strategy. In this sense, it combines the
short-term profit strategy of the LEM with the minimization of
participation of consumption from DAM, while also providing
products in the RM and LFM. Note that the products showed
in the right column of the figure are not stacked together, while
those of the left column are.

Market clearing results are compared in Fig. 12. A closer
inspection to the figure shows that the proposed strategy
increases the price variability in the markets, however, it does
lower mean prices in LEM and LFM markets. Energy cleared
in the DAM and the LEM is lower, this is since if the energy
price is low, generators do not get cleared in the market,
and if it is high, demands are no longer willing to pay the
price. Reserve quantities are the same in both cases, as it
is assumed that the TSO will not modify its asking. Then,
to maximize its participation, the FSP sends bids with lower
prices to maximise its profits. Lastly, LFM market reduces its
operation costs, spreading the products all over the day.

Following this comparison, Table III presents the results
that the strategic behaviour of the FSP has in the markets.
As shown, social welfare is reduced in the DAM, while
increased in the LEM. In term of the costs of the reserve
markets, RM costs increase, while LFM costs decrease. Then,
although the DAM and LEM profits are reduced with the
proposed approach, the overall balance is positive, as the net
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Fig. 11: Comparison of the behaviour of a FL between profit
maximiser strategy and the baselines (left and right column).
Power: (a) and (b), energy products (c) and (d), capacity
products (e) and (f).

profits are 878.59C, a 17.86% more than the most profitable
single-market strategy, i.e., DAM maximisation strategy with
745.47C.

C. Impact of the uncertainty in the stacking of revenues

In this section, the impact that the uncertainty in the prices
and in the dispatch have in the stacking of revenues is assessed.
Considering a normal distribution of the forecast error, 50
values per uncertain parameter are considered, originating
125,000 possible scenarios. Nevertheless, after the scenario
reduction only the 125 most representative scenarios were
simulated in parallel.

TABLE III: Comparison of the market objectives and profits
in the FSP maximization and the baselines.

Baselines Profit max. Diff. (%)
DAM Social Welfare (C) 31.18 27.44 -13.62
RM Costs (C) 19.37 53.62 63.88
LEM Social Welfare (C) 14.16 63.66 77.75
LFM Costs (C) 13.65 10.27 -32.87
FSP DAM Profits (C) 745.47 719.69 -3.58
FSP RM Profits (C) 22.63 49.05 53.86
FSP LEM Profits (C) 5.62 -8.01 -170.16
FSP LFM Profits (C) 96.12 117.86 18.45
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Fig. 12: Comparison of the market clearings between the FSP
maximization (left column) and the baselines (right column).
DAM: (a) and (b), RM: (c) and (d), LEM: (e) and (f), LFM:
(g) and (h). Prices are shown in lines, and traded quantities in
bars.

The probability density function of the products that the
FSP exchange in the market is shown in Fig. 13. This
representation extends what has been obtained in Fig. 10 (b),
giving information to the FSP regarding the likelihood of its
offers being matched in the market, and the possible outcomes
of a determined strategy. The expected profits are depicted
in Fig. 14 along with the 95% Interval Confidence, which
demonstrate the feasibility of the proposed approach to obtain
benefits under uncertainty.

V. CONCLUSION

This paper proposed a tri-level optimization problem for
the maximisation of stacked revenues of DERs participating
to multiple sequential markets. This approach responds to
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ucts quantities exchanged in the stochastic formulation.
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Fig. 14: Expected FSP profits and 95% Interval Confidence
for the stochastic formulation.

the necessity of increasing the number of business cases for
flexible distributed technologies such as FLs, BESSs, EVs and
HVACs systems, with the aim of achieving long-term Net Zero
Emissions objectives. Using duality theory and strong duality
condition, the sequential tri-level optimization is recast into
a tractable single-level problem, which maximises the profits
of DERs for their participation in different markets through a
FSP. A case study based on the IEEE-14 transmission network,
N5 1 DSS distribution network and a realistic dataset demon-
strates the feasibility of the approach. Profitability of flexibility
procurement is enhanced when the FSP adopts the proposed
strategy, compared with four different baselines, where profits
were maximised for one market at a time. The proposed model
increases the profits of the FSP as it takes a holistic view of
the market participation of the FSP. In the case study, profits
where increased a 17.86% compared with the most profitable
single-market strategy, while reducing 32.87% the costs in the
LFM and increasing a 77.75% the social welfare of the LEM.
Future works will assess the market participation of the FSP
considering only its partial access to the market information.

APPENDIX A
AGENT CONSTRAINTS

With the aim of modelling disparate DER technologies,
constraints of FLs, FGs, BESSs, EVs and HVACs are de-
scribed in this appendix. FLs are modelled as elastic demands
which can modify their consumption pd,t between an upper
and lower bound P d ≤ pd,t ≤ P d [42]. Let P ref

d,t be the static
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consumption of the FL d in time period t, it can offer upward
ωu
d,t and downward ωd

d,t products following,

pd,t = P ref
d,t + (ωu

d,t − ωd
d,t)/∆t ∀d ∈ Ωd,∀t ∈ Ωt (12)

In addition, FLs can also offer upward νud,t and downward
νdd,t capacity products restricting their limits of demand, as
P d+νdd,t ≤ pd,t ≤ P d−νud,t. Similarly, FGs can modify their
energy production pg,t between an upper and lower bound
while providing upward and downward capacity products P g+

νdg,t ≤ pg,t ≤ P g−νug,t. Then, considering P ref
g,t its generation,

pg,t = P ref
g,t + (ωu

g,t − ωd
g,t)/∆t ∀g ∈ Ωg,∀t ∈ Ωt (13)

Let s be a storage system with a SOC socs,t that could
charge at power pchs,t ≥ 0 and discharge at power pdiss,t ≥ 0,
with efficiencies charging ηchs and discharging ηdiss [42].
The internal constraints that model storage agents are the
following,

socs,t+1 = socs,t +∆t

(
ηchs pchs,t −

pdiss,t

ηdiss

)
∀s ∈ Ωs,∀t ∈ Ωt

(14a)

SOCs ≤ socs,t ≤ SOCs ∀s ∈ Ωs,∀t ∈ Ωt (14b)

0 ≤ pchs,t ≤ P s,t, 0 ≤ pdiss,t ≤ P s,t ∀s ∈ Ωs,∀t ∈ Ωt (14c)

Using this model, is possible to include the behaviour of
EVs. Let tarre , tdepe be arrival and departure times of the EV
e, considering it must leave at departure time with SOCOBJ

e ,
two additional constraints must be added [43],

P e,t =

{
0, ∀t /∈ [tarre , tdepe ]
pEV
e ∀t ∈ [tarr, tdep]

∀e ∈ Ωe,∀t ∈ Ωt (15a)

soce,tdepe
= SOCOBJ

e ∀e ∈ Ωe (15b)

Thermal characteristics of the HVAC systems are modelled
by a first order discrete temperature model in (16). Let τb,t be
the temperature of the building, τoutb,t be the ambient temper-
ature, pheb,t, p

co
b,t be the heating and cooling power, Rb, Cb, be

thermal constants and ηheb , ηcob are efficiencies of the heating
and cooling [44]. Then, the HVAC system is modelled by,

τb,t+1 =τb,t +
∆t

RbCb

[
τoutb,t − τb,t

]
+

∆t

Cb

[
ηheb pheb,t − ηcob pcob,t

]
∀b ∈ Ωb,∀t ∈ Ωt

(16a)

τ b,t ≤ τb,t ≤ τ b,t ∀b ∈ Ωb,∀t ∈ Ωt (16b)

0 ≤ pheb,t ≤ P
he

b , 0 ≤ pcob,t ≤ P
co

b ∀b ∈ Ωb,∀t ∈ Ωt (16c)

REFERENCES

[1] N. K. Dhaliwal, F. Bouffard, and M. J. O’Malley, “A Fast Flexibility-
Driven Generation Portfolio Planning Method for Sustainable Power
Systems,” IEEE Trans. Sustain. Energy, no. 1, pp. 368–377, 2021.

[2] G. Tsaousoglou, J. S. Giraldo, and N. G. Paterakis, “Market Mechanisms
for Local Electricity Markets: A review of models, solution concepts
and algorithmic techniques,” Renew. Sustain. Energy Rev., vol. 156, no.
754462, pp. 82–96, 2022.

[3] P. Pinson, “What may future electricity markets look like?” 2023.
[Online]. Available: arXiv:2302.02833

[4] J. Villar, R. Bessa, and M. Matos, “Flexibility products and markets:
Literature review,” Electr. Power Syst. Res., vol. 154, pp. 329–340, 2018.

[5] F. Escobar, J. M. Viquez, J. Garcia, P. Aristidou, and G. Valverde, “Coor-
dination of DERs and Flexible Loads to Support Transmission Voltages
in Emergency Conditions,” IEEE Trans. Sustain. Energy, vol. 13, no. 3,
pp. 1344–1355, 2022.

[6] X. Jin, Q. Wu, and H. Jia, “Local flexibility markets: Literature review
on concepts, models and clearing methods,” Appl. Energy, vol. 261, pp.
114 387–114 422, 2020.

[7] T. Schittekatte and L. Meeus, “Flexibility markets: Q&A with project
pioneers,” Util. Policy, vol. 63, pp. 101 017–101 028, 2020.

[8] K. Zhang, S. Troitzsch, and X. Han, “Distributionally robust co-
optimized offering for transactive multi-energy microgrids,” Int. J.
Electr. Power Energy Syst., vol. 143, pp. 108 451–108 462, 2022.

[9] J. Naughton, H. Wang, M. Cantoni, and P. Mancarella, “Co-Optimizing
Virtual Power Plant Services under Uncertainty: A Robust Scheduling
and Receding Horizon Dispatch Approach,” IEEE Trans. Power Syst.,
vol. 36, no. 5, pp. 3960–3972, 2021.

[10] Y. Zhou, J. Wang, C. Wei, and Y. Li, “Active energy interaction between
multiple distributed energy systems with flexible decentralization oper-
ation: Energy bank,” Sustain. Cities Soc., pp. 104 071–104 085, 2022.

[11] B. Huang and J. Wang, “Deep-Reinforcement-Learning-Based Capacity
Scheduling for PV-Battery Storage System,” IEEE Trans. Smart Grid,
vol. 12, no. 3, pp. 2272–2283, 2021.

[12] G. Tsaousoglou, K. Mitropoulou, K. Steriotis, N. G. Paterakis, P. Pinson,
and E. Varvarigos, “Managing Distributed Flexibility Under Uncertainty
by Combining Deep Learning With Duality,” IEEE Trans. Sustain.
Energy, vol. 12, no. 4, pp. 2195–2204, 2021.

[13] P. V. Brogan, R. Best, J. Morrow, R. Duncan, and M. Kubik, “Stacking
battery energy storage revenues with enhanced service provision,” IET
Smart Grid, vol. 3, no. 4, pp. 520–529, 2020.

[14] P. Zamani-Dehkordi, H. Chitsaz, L. Rakai, and H. Zareipour, “A price
signal prediction method for energy arbitrage scheduling of energy
storage systems,” Int. J. Electr. Power Energy Syst., vol. 122, pp.
106 122–106 131, 2020.

[15] F. Fan, G. Zorzi, D. Campos-Gaona, G. Burt, O. Anaya-Lara, J. Nwobu,
and A. Madariaga, “Sizing and coordination strategies of battery energy
storage system co-located with wind farm: The uk perspective,” Ener-
gies, vol. 14, no. 5, pp. 1439–1460, 2021.

[16] A. O. Gbadegesin, Y. Sun, and N. I. Nwulu, “Stacked value streams
of hybrid energy storage systems in prosumer microgrids,” J. Eng. Des.
Technol., vol. 19, no. 5, pp. 1063–1079, 2020.

[17] Y. Tian, A. Bera, M. Benidris, and J. Mitra, “Stacked Revenue and
Technical Benefits of a Grid-Connected Energy Storage System,” IEEE
Trans. Ind. Appl., vol. 54, no. 4, pp. 3034–3043, 2018.

[18] A. A. Mohamed, C. Sabillon, A. Golriz, and B. Venkatesh, “Value-stack
aggregator optimal planning considering disparate DERs technologies,”
IET Gener. Transm. Distrib., vol. 15, no. 18, pp. 2632–2644, 2021.

[19] A. W. Dowling, R. Kumar, and V. M. Zavala, “A multi-scale optimiza-
tion framework for electricity market participation,” Appl. Energy, vol.
190, pp. 147–164, 2017.

[20] E. Nasrolahpour, J. Kazempour, H. Zareipour, and W. D. Rosehart, “A
Bilevel Model for Participation of a Storage System in Energy and
Reserve Markets,” IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 582–
598, 2018.
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