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A B S T R A C T   

Indirect optical measurement techniques enable efficient and non-destructive estimation of plant area index 
(PAI). However, because they cannot distinguish between foliage and other canopy elements, corrections are 
needed to determine leaf area index (LAI), which is typically the property of interest. In this study, we investigate 
near-infrared digital hemispherical photography (DHP) as a means of estimating and correcting for woody 
material. Using data collected at a deciduous broadleaf forest site, we show that near-infrared DHP could suc-
cessfully estimate effective wood area index (WAIe) and wood area index (WAI) during leaf-on conditions, 
providing similar mean values (WAIe = 0.88, WAI = 1.53) to those determined from visible DHP during leaf-off 
conditions (WAIe = 0.87, WAI = 1.38). This information was used to correct estimates of effective PAI (PAIe) and 
PAI, enabling effective LAI (LAIe) and LAI to be derived with low RMSD (0.33 for LAIe and 0.76 for LAI), NRMSD 
(12% for LAIe and 19% for LAI), and bias (− 0.01 for LAIe and − 0.16 for LAI). Not correcting for woody material 
led to overestimation of LAIe by 31% on average and 46% in the worst observed case, and the degree of over-
estimation was further enlarged for LAI (42% on average and 61% in the worst observed case). In agreement with 
previous studies, the effects of clumping and woody area were found to be partly compensatory. On average, PAIe 
provided a reasonable approximation of LAI without correction, though overestimation of 52% and underesti-
mation of 20% occurred at the lowest and highest LAI values, respectively. Compared to WAIe and WAI mea-
surement using leaf-off visible DHP, near-infrared DHP offers two crucial advantages: i) data collection can be 
conducted at the same time as leaf-on PAIe and PAI measurements, and ii) it is likely that the approach could 
provide an indirect WAIe and WAI measurement option for evergreen species.   

1. Introduction 

Defined as half the total intercepting area of leaves per unit hori-
zontal ground surface area (Chen and Black, 1991), leaf area index (LAI) 
is a crucial parameter in defining the vegetated environment, deter-
mining size of the interface between the biosphere and atmosphere, and 
thus the interception of light, which in turn regulates photosynthesis. A 
related quantity is plant area index (PAI), which incorporates all plant 
material rather than only leaves, and is represented by the sum of LAI 
and wood area index (WAI). Of these terms, it is accurate estimates of 

LAI in particular that are required in a wide range of applications 
(including modelling vegetation productivity, carbon exchange, and the 
weather and climate systems), and LAI is designated an essential climate 
variable (ECV) for this reason (GCOS, 2019; Richardson et al., 2013; 
Sellers et al., 1997). Direct LAI measurement approaches involve har-
vesting all leaves from a given portion of ground and measuring their 
area (Bréda, 2003; Jonckheere et al., 2004). Alternatively, leaves can be 
weighed, from which LAI can be calculated if leaf mass per area (LMA) 
or specific leaf area (SLA), which corresponds to the inverse of LMA, is 
known or has been determined for a smaller subset of leaves (Bréda, 
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2003; Jonckheere et al., 2004). 
The laborious and time-consuming nature of direct LAI measurement 

approaches led to the development of indirect optical in situ measure-
ment techniques, including ceptometry, digital hemispherical photog-
raphy (DHP), digital cover photography (DCP), and dedicated 
instruments such as the LI− COR LAI− 2000, LAI–2200C, and Tracing 
Radiation Architecture of Canopies (TRAC) series of devices (Bréda, 
2003; Chen and Cihlar, 1995; Jonckheere et al., 2004; Welles and 
Norman, 1991; Yan et al., 2019). These techniques enable efficient and 
non-destructive estimation of effective PAI (PAIe), in which a random 
distribution of plant material is assumed, with some also correcting for 
clumping to enable PAI to be derived. However, because they cannot 
distinguish between foliage and other canopy elements, corrections are 
needed to determine LAI, which is typically the property of interest. 
Because it is easily obtained, in many studies, PAI is simply assumed 
equal to LAI (Camacho et al., 2013; De Kauwe et al., 2011; Heiskanen 
et al., 2012; Verger et al., 2011). This may be a reasonable assumption in 
the case of leafy vegetation types such as grasses, but will lead to 
considerable biases in the case of forests, where up to 35% of the total 
plant area may be comprised of woody material (Gower et al., 1999). It 
is worth noting, however, that several studies have indicated that the 
effects of clumping and woody area may be compensatory, potentially 
enabling PAIe to be used as a proxy of LAI without correction (Fang, 
2021; Fang et al., 2019; Schlerf et al., 2005). For deciduous species, WAI 
can be determined as the PAI measured during leaf-off conditions and 
subtracted from leaf-on PAI. However, this requires additional sampling 
during the winter, and is infeasible for evergreen species (Bréda, 2003; 
Dufrêne and Bréda, 1995; Gower et al., 1999; Yan et al., 2019; Zou et al., 
2009). 

It is has long been known that leaves reflect and transmit strongly in 
the near-infrared region of the electromagnetic spectrum (as photons 
undergo internal scattering at the interface between interstitial air space 
and the walls of the spongy mesophyll cells), whilst reflectance and 
transmittance at visible wavelengths is comparatively lower (due to 
absorption by pigments such as chlorophyll) (Curran, 1989; Gates et al., 
1965; Gausman, 1977; Knipling, 1970). Despite this, and with the 
exception of more costly terrestrial laser scanning (TLS) approaches 
(Béland et al., 2014; Calders et al., 2018b; Danson et al., 2007, 2014; 
Douglas et al., 2015; Li et al., 2018), almost all indirect optical in situ LAI 
measurement techniques rely on visible light, and only a handful of 
studies have attempted to exploit near-infrared wavelengths to distin-
guish foliage from other material. One of the first was Baret et al. (1993), 
who described the early use of near-infrared hemispherical photography 
with an analogue film camera, enabling foliage to be distinguished from 
the underlying soil background for downwards-facing images. It is 
known that tree bark has ‘soil-like’ reflectance properties (Juola et al., 
2022), and that stems and branches have negligible transmittance, 
making such an approach potentially applicable for distinguishing be-
tween foliage and woody material. Nevertheless, having to develop and 
digitise analogue film meant that the efficiency of the method was 
necessarily restricted. 

The advent of digital cameras opened up new opportunities, since 
their silicon-based charge coupled device (CCD) and complementary 
metal oxide semiconductor (CMOS) sensors are inherently sensitive to 
near-infrared light. Indeed, to avoid near-infrared light contaminating 
visible imagery, commercially available digital cameras typically 
contain a blocking filter, which can be removed to restore near-infrared 
sensitivity (Milton, 2002; Nijland et al., 2014; Petach et al., 2014). Using 
this principle, Kucharik et al. (1997, 1998) developed an instrument 
known as the ‘multiband vegetation imager (MVI)’, which was based on 
a CCD camera coupled to a visible/near-infrared filter exchange mech-
anism, whilst Zou et al. (2009) described a similar ‘multispectral canopy 
imager (MCI)’ comprised of two co-registered cameras (one acquiring 
visible and one near-infrared imagery). The primary disadvantage of 
these systems was their limited field-of-view (10◦ to 15◦), which pre-
vented the efficient measurement of gap fraction for a wide range of 

zenith and azimuth angles. To derive PAI, WAI and LAI, many manually 
pointed images had to be acquired and processed (or else ancillary data 
on canopy leaf angle distribution had to be collected), substantially 
reducing practicality in the field. 

To overcome this drawback, a small number of preliminary studies 
have since experimented with near-infrared DHP, extending the early 
work of Baret et al. (1993) to digital rather than analogue film cameras. 
With a 180◦ field-of-view, DHP offers full zenithal and azimuthal sam-
pling. Chapman (2007) described the modification of a Nikon Coolpix 
950 digital camera, highlighting its potential for distinguishing between 
foliage and woody material in DHP, whilst Kirby et al. (2018) presented 
similar results using the Raspberry Pi NoIR coupled to a fisheye lens. 
Likewise, Osmond (2009) and Konarska et al. (2021) modified Nikon 
Coolpix 990 and D5100 cameras, respectively, demonstrating their 
utility for DHP in urban environments by enabling foliage to be distin-
guished from surrounding buildings and structures. Whilst these pre-
liminary studies have highlighted the promising potential of near- 
infrared DHP, a comprehensive evaluation against reference WAI 
values in forest rather than urban environments is lacking. Using data 
collected at a deciduous broadleaf forest site with both visible and near- 
infrared digital hemispherical cameras, in this study, we address the 
following research questions:  

1. Can leaf-on near-infrared DHP provide comparable WAI estimates to 
leaf-off visible DHP?  

2. If leaf-on WAI values derived from near-infrared DHP are used to 
correct estimates of PAI for the effects of woody material, are the 
results comparable to correction using leaf-off WAI values derived 
from visible DHP?  

3. What magnitude of overestimation in LAI might be expected if no 
correction for woody material is carried out?  

4. To what extent might the effects of clumping and woody area be 
compensatory? 

2. Materials and methods 

2.1. Study site 

Data collection was carried out at Wytham Woods, Oxfordshire, 
United Kingdom (51.7734◦N, 1.3384◦W) (Fig. 1) during leaf-on condi-
tions at the peak of the growing season (20th to 22nd July 2021), and 
leaf-off conditions during dormancy (23rd March 2022). Leaf-off sam-
pling was undertaken after the peak of the growing season, rather than 
before, to minimise the effects of cumulative plant growth between the 
two dates. Note that continuous data acquired by an automated DHP 
system at Wytham Woods (Brown et al., 2020b) reveal little change in 
WAI between 2018 and 2022, indicating that any plant growth between 
July 2021 and March 2022 was minimal (Appendix A). The site is 
managed by the University of Oxford and affiliated to the UK Environ-
mental Change Network (ECN) and Forest Global Earth Observatory 
(ForestGEO). It consists of 400 ha of ancient semi-natural woodland 
dominated by oak (Quercus robur), ash (Fraxinus excelsior), beech (Fagus 
sylvatica), hazel (Corylus avellana), and sycamore (Acer pseudoplatanus), 
with a canopy height of approximately 15 m. Several previous studies 
have attempted to characterise canopy structure at the site using TLS, 
DHP, and LAI-2200 measurements (Brown et al., 2020b, 2021a; Calders 
et al., 2018a, 2018b; Origo et al., 2017), making it a good choice for 
benchmarking a new measurement approach. 

2.2. Data collection 

Leaf-on DHP data were collected in ten woodland elementary sam-
pling units (ESUs) (Fig. 1) during the Fiducial Reference Measurement 
for Vegetation (FRM4VEG) Phase 2 campaign, which took place be-
tween 20th and 22nd July 2021 (Table 1). In each ESU, which was 
approximately 20 m × 20 m in size, images were acquired at 15 
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sampling locations (Fig. 2) (Brown et al., 2021a). Due to the height of 
the canopy, the DHP footprint was likely to extend beyond the nominal 
20 m × 20 m extent of the ESU (Appendix B). As such, care was taken to 
locate ESUs within larger patches of the same species composition. Im-
ages were acquired during daylight hours under overcast conditions 
suitable for DHP acquisition (Bréda, 2003; Chianucci and Cutini, 2012; 
Jonckheere et al., 2004). To capture both the overstory and understory, 
upwards- and downwards-facing visible imagery was acquired with a 
Canon EOS 60D digital single lens reflex (DSLR) camera equipped with a 
Sigma 4.5 mm F2.8 EX DC fisheye lens. The EOS 60D was selected due to 
its large articulating display, enabling the operator to maintain a view of 
the frame even when the camera was pointing downwards. The camera 
was held at shoulder height (approximately 1.5 m), rotated manually to 
face upwards or downwards from this point, and hand-levelled 
following Origo et al. (2017) with use of a monopod for stabilisation 
(Fig. 1d). 

In addition to visible imagery, upwards-facing near-infrared imagery 
was acquired with a Nikon Coolpix 4500 camera equipped with an FC- 
E8 fisheye lens (Table 1). In this case, the camera was modified to restore 
near-infrared sensitivity, following the approach detailed and illustrated 
by Chapman (2007) for the Coolpix 950, which is of a very similar 
design. The first step involved disassembling the side of the camera 

containing the CCD sensor, before locating and removing the near- 
infrared blocking filter. Note that the presence of a Bayer filter on the 
camera's sensor means that when the near-infrared blocking filter is 
removed, the three bands of the camera become sensitive to near- 
infrared wavelengths in addition to their original wavelengths (Burg-
graaff et al., 2019; Nijland et al., 2014). Therefore, a near-infrared 
bandpass filter was installed, in place of the near-infrared blocking fil-
ter, to block visible light from reaching the camera's sensor. We returned 
to the same ESUs on 23rd March 2022, to collect leaf-off DHP data. In 
this case, only upwards-facing visible imagery was acquired, using a 
non-modified Coolpix 4500 and FC-E8 fisheye lens (Table 1). 

2.3. Camera spectral characterisation 

To better understand the sensitivity of the cameras to different 
wavelengths, we conducted a laboratory spectral characterisation 
experiment, in which the modified and non-modified Coolpix 4500 
cameras were positioned to view the output of an Oriel 7420 mono-
chromator. The monochromator was equipped with a 1200 lines per mm 
diffraction grating blazed at 500 nm, and variable entrance and exit slits, 
which were adjusted to 0.4 mm, yielding a monochromatic light source 
with a full width at half maximum (FWHM) of approximately 3 nm. The 

Fig. 1. Location of the study site and ten woodland elementary sampling units (ESUs) at which DHP data were collected (a), in addition to illustrative photographs of 
the study site during leaf-off (b) and leaf-on (c) conditions (photographs not acquired on DHP measurement dates), image acquisition using the Nikon Coolpix 4500 at 
shoulder height (d), and example downwards-facing visible (e), upwards-facing visible (f) and upwards-facing near-infrared (g) images. The background image (a) is 
a Sentinel-2B Multispectral Instrument (MSI) true colour composite acquired on 18th July 2021. 

Table 1 
Summary of data collection during leaf-on and leaf-off conditions.  

Canopy 
condition 

Date Camera Fisheye lens Type of 
imagery 

Image direction Camera 
height 

Derived 
variables 

Leaf-on 20th to 22nd July 
2021 

Canon EOS 60D 
(non-modified) 

Sigma 4.5 mm F2.8 EX 
DC 

Visible Upwards & 
downwards 

1.5 m PAIe & 
PAI 

Leaf-on 20th to 22nd July 
2021 

Nikon Coolpix 4500 
(modified) 

Nikon FC-E8 Near-infrared Upwards 1.5 m WAIe & WAI 

Leaf-off 23rd March 2022 Nikon Coolpix 4500 (non- 
modified) 

Nikon FC-E8 Visible Upwards 1.5 m WAIe & WAI  
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aperture and shutter speed of the cameras were set to avoid saturation, 
and were fixed throughout the experiment to ensure a consistent inte-
gration period. Images were then acquired whilst the monochromator 
was adjusted from 400 nm to 900 nm. To account for differences in the 
intensity of the monochromator's output at different wavelengths, the 
radiance of the output was measured using a radiometrically calibrated 
Analytical Spectral Devices (ASD) FieldSpec 3 Visible Near-Infrared 
(VNIR) spectroradiometer. This enabled the relative intensity of the 
monochromator's output to be determined at each wavelength interval. 
Thus, the relative spectral response (RSR) of each band to wavelength λ 
was calculated as 

RSRλ =
DNλ/kλ

max
400 nm≤λ≤900 nm

(DNλ/kλ)
(1)  

where DNλ is the mean digital number (DN) value of a region-of-interest 
covering the centre of the monochromator's exit slit at wavelength λ, and 
kλ is the relative intensity of the monochromator's output at that 
wavelength, which was computed as 

kλ =
Lλ

max
400 nm≤λ≤900 nm

(Lλ)
(2)  

where Lλ is the radiance at wavelength λ as measured with the spec-
troradiometer. 

2.4. DHP image processing 

Leaf-on visible imagery was used to estimate PAIe and PAI, whilst 
leaf-on near-infrared and leaf-off visible imagery was used to estimate 
effective WAI (WAIe) and WAI (Table 1). Note that estimating WAIe and 
WAI from leaf-on visible imagery is not possible, as visible images 
correctly exposed for gap fraction estimation demonstrate very little 
contrast (Fig. 1f) (Woodgate et al., 2016). All DHP images were pro-
cessed using HemiPy (Brown et al., 2023a), which classifies upwards- 
facing images using Ridler and Calvard's (1978) clustering algorithm. 
The option to ignore zero values (which may bias the resulting threshold 
for circular fisheye images that contain considerable black space) was 
selected. In the case of the upwards-facing visible imagery, analysis was 

restricted to the blue band to i) ensure good contrast between the canopy 
and sky, ii) minimise the effects of chromatic aberration, and iii) mini-
mise the effects of multiple scattering within the canopy (Leblanc et al., 
2005; Macfarlane et al., 2014; Zhang et al., 2005). In the case of the 
upwards-facing near-infrared imagery, analysis was restricted to the red 
band to enable woody material to be distinguished. It has been shown 
that the red band typically demonstrates the greatest near-infrared 
sensitivity (Berra et al., 2015, 2017), and our analysis indicated that 
the red band provided sensitivity to the widest range of near-infrared 
wavelengths (Section 3.1). Downwards-facing visible imagery was 
classified using Meyer and Neto's (2008) colour index-based approach, 
which separates green vegetation from its underlying background by 
subtracting the excess green (ExG) from the excess red (ExR) index. 
Results less than zero are considered the background. The ExG and ExR 
index were calculated as 

ExG = 2 DNgreen − DNred − DNblue (3)  

ExR = 1.4 DNred − DNgreen (4)  

where DNred, DNgreen, and DNblue are digital number values in the red, 
green, and blue bands of the image, respectively. 

Once classified, images were divided into six zenith rings, each 
corresponding to a zenith range of 10◦, and each containing 36 azimuth 
cells. This enabled gap fraction to be determined for a discrete range of 
zenith and azimuth angles as the number of background pixels within 
each cell divided by total number of pixels within the cell. To avoid 
mixed pixels, analysis was restricted to zenith angles of < 60◦ (Jonck-
heere et al., 2004; Weiss and Baret, 2017). PAIe and WAIe were 
computed according to Miller (1967) as 

PAIe or WAIe = 2
∑6

i=1
− ln[P(θi) ]cos(θi)wi (5)  

where P(θi) is the mean gap fraction in zenith ring i, with central zenith 
angle θi, over all azimuth cells and images, and wi is its weight. Weights 
were computed to sum to one (accounting for the zenithal restriction) as 

wi =
sin(θi)dθi

∑6

i=1
sin(θi)dθi

(6) 

(Leblanc et al., 2005; LI-COR, 2013). To derive PAI and WAI, the 
effects of directional apparent clumping (Fang et al., 2018) were 
accounted for using the logarithm averaging approach of Lang and 
Yueqin (1986), such that 

PAI or WAI = 2
∑6

i=1
− ln[P(θi) ]cos(θi)wi (7)  

where ln[P(θi) ] is the mean of the natural logarithm of gap fraction 
values in zenith ring i over all azimuth cells and images. 

2.5. Assessing near-infrared DHP for woody material correction 

Processed PAIe or PAI values derived from upwards-facing (over-
story) and downwards-facing (understory) images were combined to 
provide a total value, such that 

PAI = PAIup +PAIdown (8)  

where PAIup and PAIdown are PAIe or PAI values derived from upwards- 
and downwards-facing images, respectively (Brown et al., 2020a, 
2021b, 2023b; Fernandes et al., 2023; Morisette et al., 2006). Note that 
because the downwards-facing images have a smaller footprint than the 
upwards-facing images (Appendix B), this assumes that despite their 
reduced footprint, the 15 replicate measurements are sufficient to 
adequately represent understory heterogeneity within the ESU. Since 

Fig. 2. Within-ESU spatial sampling scheme, in which 13 sampling locations 
were arranged in a systematic pattern, and a further two sampling locations 
were randomly located (not shown). Figure adapted from Brown et al. (2021a). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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the downwards-facing classification is sensitive only to green vegetation 
(Meyer and Neto, 2008), it was assumed that values derived from 
downwards-facing images contained no contribution from woody ma-
terial. Therefore, total LAIe or LAI was determined as 

LAI = PAIup − WAIup +PAIdown (9)  

where WAIup represents the WAIe or WAI value determined from either 
i) upwards-facing visible imagery during leaf-off conditions, or ii) 
upwards-facing near-infrared imagery during leaf-on conditions. In the 
absence of other reference data, the former approach was considered the 
‘benchmark’, enabling the latter approach based on near-infrared im-
agery to be evaluated. 

3. Results and discussion 

3.1. Camera spectral sensitivity 

The non-modified Coolpix 4500 was characterised by a spectral 
response typical of an RGB camera, with peak sensitivity of the red, 
green, and blue bands observed at approximately 460 nm, 540 nm, and 
620 nm, respectively (Fig. 3a). Each band was relatively broad, with a 
FWHM approaching or exceeding 100 nm, and all bands demonstrated 
some degree of out-of-band sensitivity. The presence of the near-infrared 
blocking filter was clearly evident, with negligible sensitivity observed 
above 680 nm (Fig. 3a). In contrast to the non-modified camera, the 
modified Coolpix 4500 demonstrated no sensitivity to wavelengths 
below 680 nm, as a result of its near-infrared bandpass filter (Fig. 3b). In 
this case, the peak sensitivity of the red, green, and blue bands was at 
approximately 720 nm, 780 nm, and 780 nm, respectively, and a 
considerably broader response was observed in all bands, with sensi-
tivity appearing to continue beyond 900 nm (Fig. 3b). Whilst we did not 
investigate the spectral sensitivity of models other than the Coolpix 
4500, it is likely that comparable results would be obtained for any 
similarly modified digital camera featuring a silicon-based CCD or 
CMOS sensor, given the inherent sensitivity of such sensors to near- 
infrared light (Milton, 2002; Nijland et al., 2014; Petach et al., 2014). 

3.2. Comparison of WAIe and WAI derived from leaf-off visible and leaf- 
on near-infrared imagery 

If near-infrared DHP is to be used to derive WAIe and WAI during 
leaf-on conditions, a key requirement is that it can provide similar values 
to those obtained from other WAIe and WAI estimation methods (though 
is important to note that because foliage is likely to obscure a varying 
amount of woody material in the leaf-on near-infrared imagery, but not 
the leaf-off visible imagery, perfect correspondence is not expected). Our 

results reveal that leaf-on WAIe values derived from near-infrared im-
agery were comparable to leaf-off WAIe values derived from visible 
imagery (Fig. 4a), yielding an almost identical mean WAIe of 0.88 and 
0.87, respectively (Table 2). However, the leaf-on WAIe values derived 
from near-infrared imagery were subject to slightly greater variability 
(standard deviation = 0.24, range = 0.80) than the leaf-off WAIe values 
derived from visible imagery (standard deviation = 0.17, range = 0.54) 
(Table 2). 

Greater (though still small) differences between the two approaches 
were observed in the case of WAI (Fig. 4b), where on average, the leaf-on 
near-infrared imagery slightly overestimated WAI (mean = 1.53) when 
compared to the leaf-off visible imagery (mean = 1.38) (Table 2). This 
result is somewhat unexpected, as the occlusion of woody material by 
leaves in the leaf-on near-infrared imagery should theoretically result in 
a lower WAI (Bréda, 2003; Dufrêne and Bréda, 1995; Gower et al., 
1999). One potential explanation is the occurrence of multiple over-
lapping leaves, which may act to reduce near-infrared transmittance 
when compared to single non-overlapping leaves, leading to DN values 
similar to woody material (and subsequent misclassification). On the 
other hand, the lower WAI in the leaf-off visible imagery could have 
equally been due to misclassification. As with WAIe, leaf-on WAI values 
derived from the near-infrared imagery were more variable (standard 
deviation = 0.58, range = 1.80) than the leaf-off WAI values derived 
from visible imagery (standard deviation = 0.46, range = 1.63) 
(Table 2). The observed variability may reflect random errors associated 
with imperfect illumination conditions and image classification. 
Notably, the values derived in this study are in broad agreement with 
Calders et al. (2018b), who collected leaf-off DHP, TLS, and LAI-2200 
measurements at Wytham Woods in 2015 and 2016, reporting mean 
values of between 1.26 and 1.90 depending on the adopted method. 

3.3. Using leaf-on near-infrared WAIe and WAI to correct PAIe and PAI 
for woody material 

Having confirmed that near-infrared DHP can be used to derive WAIe 
and WAI in leaf-on conditions, a primary application of the approach is 
the correction of PAIe and PAI measurements for woody material, 
enabling LAIe and LAI to be determined. Our results indicate that LAIe 
calculated by subtracting leaf-on WAIe (derived from near-infrared im-
agery) from PAIe provided an unbiased estimate of LAIe calculated by 
subtracting leaf-off WAIe (derived from visible imagery) from PAIe (bias 
= − 0.01). Agreement between the two approaches was high, with a root 
mean square difference (RMSD) of 0.33, normalised RMSD (NRMSD) of 
11.41%, and correlation (r) of 0.70 (Fig. 5a). Similar results were ob-
tained for LAI calculated by subtracting leaf-on WAI (derived from near- 
infrared imagery) from PAI, which also provided a nearly unbiased es-
timate of LAI calculated by subtracting leaf-off WAI (derived from 

Fig. 3. Relative spectral response of the red, green and blue bands of the non-modified (visible) (a) and modified (near-infrared) (b) Nikon Coolpix 4500 digital 
cameras to each monochromator input wavelength. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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visible imagery) from PAI (bias = − 0.16). In this case, a slightly 
increased RMSD of 0.76 (NRMSD = 18.96%) and decreased correlation 
(r = 0.60) was observed (Fig. 5b). 

3.4. Impact of not correcting for woody material 

Despite woody material reportedly accounting for up to 35% of total 
plant area in forests (Gower et al., 1999), in the absence of WAIe and 
WAI measurements, many studies have assumed that PAIe and PAI are 
equal to LAIe and LAI (Camacho et al., 2013; De Kauwe et al., 2011; 
Heiskanen et al., 2012; Verger et al., 2011). The results of this study 
reveal that, for our study site, estimates of PAIe overestimated LAIe by 
31% on average, and by 46% in the worst observed case (Table 3), 
leading to a positive overall bias (0.88) and RMSD of 0.91 (NRMSD =

Fig. 4. PAIe, leaf-on WAIe (derived from near-infrared imagery), and leaf-off WAIe (derived from visible imagery) (a), as well as PAI, leaf-on WAI (derived from near- 
infrared imagery), and leaf-off WAI (derived from visible imagery) (b), in each woodland ESU. Error bars represent expanded uncertainties at the k = 3 
coverage interval. 

Table 2 
Summary statistics associated with PAIe and PAI values derived from leaf-on (visible) imagery WAIe and WAI values derived from leaf-on (near-infrared) and leaf-off 
(visible) imagery.     

WAIe WAI 

Statistic PAIe PAI Leaf-on (near-infrared) Leaf-off (visible) Leaf-on (near-infrared) Leaf-off (visible) 

Minimum 3.19 4.50 0.55 0.58 0.81 0.77 
Maximum 4.51 6.92 1.35 1.12 2.61 2.40 
Mean 3.78 5.40 0.88 0.87 1.53 1.38 
Standard deviation 0.42 0.79 0.24 0.17 0.58 0.46  

Fig. 5. Relationship between LAIe (a) and LAI (b) derived by subtracting leaf-off visible and leaf-on near-infrared WAIe and WAI from PAIe and PAI. Error bars 
represent expanded uncertainties at the k = 3 coverage interval. 

Table 3 
Summary statistics for the degree of underestimation/overestimation in LAIe 
and LAI that would be experienced under various assumptions, if no correction 
for woody material was applied.   

Assumption 

Statistic PAIe = LAIe PAI = LAI PAIe = LAI 

Minimum 20% 18% − 20% 
Maximum 46% 61% 52% 
Mean 31% 42% − 2% 
Standard deviation 8% 18% 20%  
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31.25%). Despite this overestimation, a strong correlation was observed 
(r = 0.83) (Fig. 6a). Notably, the degree of overestimation was further 
enlarged when considering estimates of PAI, which overestimated LAI 
by 42% on average, and 61% in the worst observed case (Table 3), 
leading to an increased bias (1.53), RMSD (1.63) and NRMSD (42.20%). 
In this case, a reduced correlation was observed (r = 0.71) (Fig. 6b). In 
agreement with previous studies (Fang, 2021; Fang et al., 2019; Schlerf 
et al., 2005), we found the effects of clumping and woody area to be 
partly compensatory, meaning that PAIe could provide a reasonable 
approximation of LAI (RMSD = 0.62, NRMSD = 15.36%, bias = − 0.24, r 
= 0.91), with an underestimation of 2% on average (Fig. 6c and 
Table 3). Nevertheless, at the very lowest LAI values, overestimation of 
52% was observed, whilst conversely, underestimation of 20% occurred 
at the highest LAI values (Table 3). 

4. Conclusions 

The results of this study highlight that woody material can account 
for a substantial proportion of total plant area in forests. We show that 
near-infrared DHP can successfully estimate WAIe and WAI during leaf- 
on conditions, and that this information can be used to correct estimates 
of PAIe and PAI, enabling LAIe and LAI to be derived with good accuracy. 
Compared to WAIe and WAI measurement using leaf-off visible DHP, 
near-infrared DHP offers two crucial advantages. Firstly, data collection 
can be conducted at the same time as leaf-on PAIe and PAI measure-
ments, saving time and expense that would otherwise be associated with 
additional sampling during the winter period. Secondly, whilst not 
explicitly evaluated in this study, it is likely that the approach could 
provide a viable indirect WAIe and WAI measurement option for ever-
green broadleaf species, for which leaf-off conditions are not experi-
enced (and thus for which leaf-off visible DHP is infeasible). Having said 
this, further evaluation is required for these species, as well as for nee-
dleleaf canopies characterised by a very different structure. Whilst not 
possible in this study due to the conservation status of the study site, 
additional assessment of the approach against direct, destructive mea-
surements of LAI and WAI should also be undertaken. Unlike previous 
attempts to use near-infrared imagery for WAIe and WAI estimation 
(such as the MVI and MCI), near-infrared DHP is considerably more 

practical, since its full zenithal and azimuthal sampling means it does 
not necessitate the acquisition of many manually pointed images or the 
collection of ancillary data on canopy leaf angle distribution. 
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Appendix A

Fig. A1. Time series of PAI derived from an automated DHP system installed at Wytham Woods, demonstrating little change in leaf-off PAI (i.e. WAI) between 2018 
and 2022. Further details on the automated DHP system and data processing are provided by Brown et al. (2020b). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Appendix B 

The measurement footprint of a single DHP image can be estimated as 

2 h tan(θ) (B1)  

where h is the distance between the camera and the top (or bottom) of the canopy and θ is the maximum zenith angle analysed (Brown et al., 2020a, 
2023b). In our case, for upwards-facing images, h = 13.5 m (the camera was held at 1.5 m below a 15 m canopy) (Sections 2.1. and 2.2), and θ = 60◦

(Section 2.4), yielding a footprint of approximately 46.8 m. For downwards-facing images, h = 1.5 m, yielding a footprint of approximately 5.2 m. By 
extension, and assuming that the sampling design features measurement locations at the ESU perimeter, as was the case in our study (Fig. 2), the 
measurement footprint of an ESU can be approximated as 

2 h tan(θ) + l (B2)  

where l is the one-sided length of the ESU (Brown et al., 2020a, 2023b). In our case, l = 20 m (Section 2.2), yielding an ESU footprint of approximately 
66.8 m for upwards-facing images, and approximately 25.2 m for downwards-facing images. 
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