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A Side-channel Analysis of Sensor Multiplexing
for Covert Channels and Application
Fingerprinting on Mobile Devices
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Abstract—Mobile devices often distribute measurements from a single physical sensor to multiple applications using software-based
multiplexing. On Android devices, the highest requested sampling frequency is returned to all applications even if other applications
request measurements at lower frequencies. In this paper, we comprehensively demonstrate that this design choice exposes
practically exploitable side-channels based on frequency-key shifting. By carefully modulating sensor sampling frequencies in software,
we show that unprivileged malicious applications can construct reliable spectral covert channels that bypass existing security
mechanisms. Moreover, we present a novel variant that allows an unprivileged malicious observer app to fingerprint other victim
applications at a coarse-grained level. Both techniques do not impose any special assumptions beyond accessing standard mobile
services from unprivileged applications. As such, our work reports side-channel vulnerabilities that exploit subtle yet insecure design

choices in mobile sensor stacks.

Index Terms—Side-channel analysis, sensor stacks, mobile systems security.

1 INTRODUCTION

OBILE devices contain an array of sensors that mea-
M sure the device’s location, position, and ambient envi-
ronment. The Android operating system currently supports
over a dozen sensors, from traditional accelerometers and
gyroscopes to magnetic field, temperature, humidity and air
pressure sensors [7]. Devices can host several, sometimes
multi-sensor integrated circuits (ICs) in millimeter-sized
packages. This has been driven by the proliferation of low-
cost micro-electromechanical systems (MEMS), which has
miniaturised physical measuring apparatus to the microme-
ter scale. Today, on-board sensors are used ubiquitously for
implementing game controllers, detecting screen orientation
changes, and gesture and human activity recognition [7],
[20], [46], [22], [16], [17], [18].

At run-time, multiple software applications may attempt
to access measurements from one or more physical sensors.
For example, a fitness tracker and navigation app may
both poll the device’s magnetometer for detecting the user’s
directional heading. To resolve this, a widely used approach
is to use software-based multiplexing, where measurements
are returned to all applications at the maximum requested
sampling frequency. That is, if apps A and B request the
same sensor at 100Hz and 50Hz respectively, then measure-
ments are returned at 100Hz to both A and B. Consequently,
there is no guarantee that measurements will arrive at the
specified rate if another app requests the same sensor at a
higher frequency.
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In this work, we show that sensor measurement mul-
tiplexing exposes a design flaw that can be leveraged
as a software-controlled side-channel. In the first part of
this work (§4), we show how unprivileged applications
can construct spectral covert channels for unauthorised
inter-process communication (IPC). At a high level, this
is achieved using a low-frequency carrier signal gener-
ated by the receiver application. A transmitting applica-
tion can then deteministically modulate the receiver’s sig-
nal by requesting the same sensor at a higher sampling
frequency. This is based on frequency-shift keying (FSK),
where high-frequency transmission signals are multiplexed
into the lower-frequency receiver signal. For the first time,
we present detailed experimental results showing that com-
mon mobile device sensors can be exploited on different
devices from major manufacturers. Our approach enables
arbitrary bit-string transmission between two same-device
applications, including low resolution images. The method
bypasses existing IPC protection mechanisms, such as appli-
cation sandboxing, with low error depending on the chosen
sensor and device.

In the second part of this paper (§F), we present a novel
variant of this technique that enables coarse-grained appli-
cation fingerprinting. This follows the same approach of
creating low-frequency carrier signals. However, this time,
a single malicious application establishes carrier signals for
all device sensors simultaneously. One of these signals is
then modulated when a sensor-enabled victim app starts
requesting measurements, which can be detected by the
malicious app. We evaluate this approach using a two-
part study. Firstly, we show how various sensor sampling
constants provided by the Android SDK [8] can be detected
with high accuracy and near real-time latency. These con-
stants are designed to developers balance utility and bat-
tery consumption for various sensor use cases (e.g. games,



detecting screen orientation changes, and Ul interactions).
In the following study, the top 250 Android applications
according to AndroidRank [10] (February 2022) are tested.
We show how 1-in-5 of all tested applications (57/250;
22.8%) used detectable sensor and sampling frequencies,
which could be leveraged for user behavioural profiling.

For both attacks, design and implementation informa-
tion, detailed experimental results, and corrective recom-
mendations are presented. Furthermore, we analyse how
recent measures introduced in Android 9, intended to limit
long-polling continuous sensors, are ultimately insufficient.
Our presented techniques do not impose any special re-
quirements, e.g. rooting or kernel-mode access, beyond the
use of sensor APIs available to developers through the
Android Sensor SDK.

1.1 Contributions

We extensively examine the extent to which sensor measure-
ment multiplexing can be used for: D spectral covert chan-
nels for app-wise IPC; and @ fingerprinting sensor-enabled
victim applications. The methods are evaluated against a
large range of standard mobile sensors using devices from
separate major OEMs, thus affecting millions of devices
globally. Moreover, we show how 22.8% of the top 250
Android applications are vulnerable to our fingerprinting
technique to some degree. Proof-of-concept code for the
attacks is made open-source to facilitate future researchﬂ

1.2 Responsible Disclosure

The results in this paper were disclosed to Google’s Android
Security Team on 3rd June 2021 under a 90-day disclosure
period. They were acknowledged on the same day, a sever-
ity assessment was provided on the 21st June 2021. The
issues will be addressed in a forthcoming major Android
release.

2 RELATED WORK

Current research has focussed on timing side-channels
using CPU cache contents (PRIME+PROBE [41],
FLUSH+RELOAD [49], FLUSH+FLUSH [19], and their
variants [28], [15], [51l, [36], [50], [26], [37], [29]), exploiting
contention in DRAM memory controllers [44] and GPU
access patterns [47], [39], [24]. Additionally, mobile sensors
have found wide utility for out-of-band channels using
the device’s ambient environment. MEMS gyroscopes have
been used as low-frequency microphones for detecting
ambient speech [38] and accelerometers for inferring
touch interactions [48], [42], [14], [31], [32]. CPU core
temperature sensors have been used for same-core and
cross-core thermal side-channels, where victim processes
deterministically increase the core temperature observed
by a malicious application [33], [11]], [30]. Novak et al. [40]
described how camera flashes, vibrations, and device
speakers can be used to transmit data to a (same-device)
receiver. Block et al. [12] used a similar approach with
ultrasonic frequencies. In 2016, Matyunin et al. [34] showed

1. Proof-of-concept repository URL: hittps://github.com/cgshep/
android-multiplexing-security-pocs
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Figure 1: Components, corresponding owners, and informa-
tion flow of the Android sensor stack (adapted from [§]).

how EM emissions of I/O operations can be detected by
mobile magnetic field sensors. In 2019, the MagneticSpy [35]
attack showed how a malicious app could fingerprint same-
device apps and web pages using the magnetic field sensor
with >90% accuracy.

To distinguish this work, we do not use physical trans-
mission media. Instead, we exploit side-effects of the soft-
ware interfaces used for resolving simultaneous accesses to
sensing hardware. We take inspiration from Ulz et al. [45],
who presented methods for creating covert channels on
embedded systems using: @, unused /reserved registers of
sensing microcontroller units (MCUs); @), reading/writing
to MCU register configuration bits; and @), timing differ-
ences between the activation of sensor MCUs. The authors
posit that observable effects of different requested sampling
periods could be used for frequency-based information
encoding. However, detailed experimental evidence was
not presented using various sensors and devices, and their
error rates. In this work, we comprehensively and empiri-
cally show that continuous sensors on Android devices are
vulnerable to covert channels using sensor measurement
multiplexing. Moreover, we develop a novel attack variant
for fingerprinting sensor-enabled victim applications.

3 THE ANDROID SENSOR STACK

The Android framework supports 13 hardware- and
software-based sensorsP] Hardware sensors take measure-
ments directly from a sensor IC, e.g. a MEMS gyroscope.
Software (virtual) sensors derive their measurements using
signals from one or more hardware sensors within a sensor
hub or the operating system. The exact separation between
physical and virtual sensors is OEM-dependent. As a guide,
accelerometers, gyroscopes and magnetic field sensors are
usually implemented in hardware, while rotation vector and
linear acceleration sensors are common virtual sensors [7].
The Android sensor stack (Figure [I) comprises several
layers for translating raw physical values, which are device-
and OEM-dependent, into standard interfaces that can be
used by application developers. At an application level,

2. We exploit continuous sensors defined in the Android Sensor
SDK [Z]l. GPS location, sound levels, and detecting nearby Bluetooth
and Wi-Fi devices have also been treated as so-called ‘sensors’ [21], [23]],
[40], [12]. However, these use modalities do not use sensor multiplexing
and are not vulnerable to the same attacks.
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developers use the SensorManager class for sensor enu-
meration and for measurement acquisition. Measurements
are requested using the SensorEventListener interface
and by calling the registerListener with the desired
sensor and sampling rate. The SDK routes requests to
the HAL—a single-client layer that abstracts OEM-specific
firmware—which is shared by Android OS and all user
applications. The HAL communicates directly with sensing
hardware or, optionally, to a sensor hub for pre-processing
measurements without waking the main application pro-
cessor. The HAL returns the resulting data to the Android
framework using FIFO fast message queues (FMQs), thus
avoiding kernel involvement [2]. The framework returns
sensor data to the requesting application as SensorEvent
objects on an event-driven and first-in first-out (FIFO) basis
to its SensorEventListener interface. When multiple
apps register requests to a single sensor simultaneously,
the multiplexing mechanism is used irrespective of whether
physical or virtual sensors are requested.

4 BUILDING COVERT CHANNELS FROM SENSOR
MULTIPLEXING

We recognised that a lack of appropriate controls at the Sen-
sor API layer enables applications to influence the sampling
frequencies of other applications. This section develops an
FSK-based covert channel based on this observation.

4.1 Threat Model

The covert channel involves two colluding applications—a
transmitter, T'rn, and receiver, Recv—who wish to estab-
lish a uni-directional communication channel that bypasses
Android’s IPC security mechanisms. The attack scenario
assumes that T'rn has access to security- or privacy-sensitive
data; for example, permission to access accessing SMS data
or GPS co-ordinates. T'rn wishes to send this data to Recwv,
which does not possess these permissions. However, Recv
does have the ability to extract data from the device, such
as permissions for accessing the internet to leak data to a
remote server. Crucially, the user may not wish to download
Recv if it requests permissions to sensitive data and a data
transmission medium. Our proposed channel enables Trn
to leak data to Recv using only standard methods for
receiving sensor measurements. These are implemented as
separate services launched independently by Trn and Recv,
which may be disguised as two legitimate applicationsﬂ

4.2 Channel Design

The channel relies on T'rn and Recv targeting a shared
sensor, S. Initially, Recv registers a sensor listener for S
using a long (slow) sampling period, T.. After this, Trn
repeatedly registers and unregisters listeners for S using a
faster sampling period, T3.. The repeated registering/un-
registering corresponds to the bits of information that Trn
it wishes to transmit. Due to the multiplexing phenomenon,
Recv’s observed sampling period will modulate between T,

3. One-to-one communication is described for simplicity; however,
our approach can be used without alteration as a covert broadcast chan-
nel to multiple receivers. This is possible because sensor multiplexing
modulates the sampling frequency of all applications.
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Figure 2: Simplified bit transmission procedure; the multi-
plexed frequency is observed by both applications.

and T},. After each listener (un-)registration, Trn must wait
for a short time period (pulse width), w, to allow the new
sampling period to be multiplexed into Recv’s signal. Note
that the channel is not limited to two frequencies, T, and T},
It is possible to register multiple sampling periods at higher
frequencies than T},, which are modulated at their own
rates. Using this observation, we constructed a transmission
protocol using four sampling periods: @ to define the start
of a message transmission, i.e. a syncword, Tsyn.; @ to indi-
cate transmission endings, Tenq; @ Recv’s carrier period, T;
and @ T'rn’s modulating period, T},. By setting appropriate
sampling periods and pulse widths—explored in §4.3—an
FSK-based binary transmission channel is established.

The channel involves three stages:

1. Channel initialisation: Recv registers measurements
using a target sensor, S, with period T¢.. Trn registers a
listener for the same sensor, .S, but at a significantly higher
frequency, Tyync, to signal the start of a transmission.

2. Data transmission (Figure ): Trn unregisters the
listener with sampling period Tsync. Trn transmits a bit-
encoded secret, v = [bg,b1,...,b,], by registering a new
listener at 7}, when b; = 1 for time w. Conversely, Trn
unregisters the listener and waits for time w to transmit
b; = 0. This causes Recv’s sampling frequency to return
to T,. In the background, Recv observes these frequency
changes and appends the bit values to an internal buffer.

3. Channel termination: 7'rn ends the transmission by
registering a listener with period T,q4. After detecting this,
Recv conducts any post-transmission operations, such as
sending the buffer to an external server.

4.3

State machines were implemented for managing our proto-
col using two separate Android applications for T'rn and
Recv. The full implementations are released as open-source
software (see §I). The applications targeted continuous sen-
sors on the devices under test, which deliver measurements
as SensorEvent objects as soon as they are available
from the HAL. Continuous reporting sensors comprise the
majority of sensors available in Android [7]. In this work,
the accelerometer (AC), gyroscope (GY), gravity (GR), linear
acceleration (LA), magnetic field (MF), and rotation vector
(RV) sensors were successfully utilised. While theoretically

Implementation



vulnerable, sensors with other reporting modes, e.g. one-
shot and on-change reporting, cannot be leveraged as effec-
tively. These modalities require constant user interaction for
consistent event generation.

4.3.1 Test Devices and Hardware Information
Three test devices from separate OEMs were evaluated:

1) Xiaomi Poco F1 with a Qualcomm Snapdragon 845 (octo-
core at 2.8GHz, 6GB RAM) and Android 10 (build
QKQ1.190828.002). Cost: £309/~$370 USD (2019).

2) Google Pixel 4A with a Qualcomm SDM730 Snap-
dragon 730G (octo-core at 2x2.2GHz and 6x1.8GHz,
6GB RAM) and Android 11 (build RQ2A.210405.005).
Cost: £349/~$450 USD (2020).

3) Motorola Moto G5 with a Qualcomm MSM8937 Snap-
dragon 430 (octo-core at 1.2GHz, 2GB RAM) and An-
droid 8.1 (build OPP28.82-19-4-2). Cost: £120/~$170
USD (2017).

The covert channel leverages changes in sampling fre-
quencies, thus the fastest supported sampling rate acts
as a hard throughput limit for a given sensor. Sens-
ing hardware information can be gathered using the
(int type) function
from the SensorManager class, where int type is
Sensor.TYPE_ALL. Next, getMinDelay () can be used
to find the minimum latency allowed between two
SensorEvent objects in microseconds for continuous sen-
sors. We used this approach to find the minimum supported
sampling periods for each device and sensor, including their
hardware models (where known). This is shown in Table

List<Sensor> getSensorList

4.3.2 Challenges

During preliminary experiments, it became evident that the
protocol implementation must overcome two obstacles:

[O1]: Measurements from mobile device sensors are sub-
ject to significant temporal jitter.

Sampling jitter complicated the ability to precisely in-
fer the current sampling period. According to the sensor
batching documentation: “Physical sensors sometimes have
limitations on the rates at which they can run and the accuracy of
their clocks. To account for this, the actual sampling frequency
can differ from the requested frequency as long as it satisfies
the [following] requirements.” [1I]. If the requested frequency
is below the min. frequency, then between 90%-110% of
the min. frequency must be returned. If the request is
between the min. and max. frequency, then 90%-220% of the
requested frequency must be returned. Lastly, if the request
is above the max. supported frequency, then 90%-110% of
the max. frequency must be returned, but below 1100Hz [1].
Measurement jitter was studied by sampling each sensor at
its maximum supported rate on each device (Table[T). 10,000
measurements were collected per sensor and per device,
before calculating the inferred sampling period using the
microsecond-level time between consecutive SensorEvent
objects. (Sensor measurements are managed internally using
FIFO FMQs, thus accurate period inferencing is possible
using the timestamps of sequential SensorEvents [6]).

Figure[8|shows the distributions of the inferred sampling
periods. The disparity in device- and sensor-wise jitter likely
arises from varying sensor manufacturing tolerances. This

4

is compounded by implementation differences in propri-
etary, OEM-specific sensor HALs. To overcome this, an error
threshold, ¢ = 0.1 (10%), was used as a detection tolerance
for each protocol frequency band. In general, the MF sensor
exhibited the lowest jitter (<0.5% error from the mean,
Xiaomi Poco F1 and Google Pixel 4A; no MF sensor on the
Moto G5). The AC, GR and LA sensors were the next best
performing (<1-2%, Xiaomi Poco F1; <2%, Pixel 4A; <2.5%,
Moto G5). The GY and RV exhibited the largest jitter (<2-
4%, Xiaomi Poco F1; <2%, Pixel 4A; <2.5-5%, Moto Gb). It is
noteworthy that jitter tends to increase when the minimum
supported sampling period decreases.
[O2]: The requested sampling period can significantly dif-
fer from the actual period at which measurements are
returned.

On the Xiaomi Poco F1, the GR, LA and RV sensors
exhibited step function-like behaviour, and regularly over-
sampled the requested period (Figure ). In the worst case,
the GR and LA sensors sampled at a ~40% faster rate than
requested. This differed between IC manufacturers on the
same device: the least accurate (GR and LA) belonged to
an undisclosed Qualcomm IC, while the most accurate—
the AC, GY and MF sensors—were provided by a Bosch
BM160 and AKM AK0991x. The RV sensor also consis-
tently over-sampled, but without the step-like behaviour
of the GR and LA sensors. Generally, the Google Pixel 4A
exhibited the best response rates: all actual periods were
within >95% of the requested period, exceeding 99% in
most cases. Only two Moto G5 sensors responded well: the
AC and GY sensors (from a Bosch IC). The remaining Moto
G5 sensors returned only a single frequency irrespective of
the requested frequency. This prevented the use of multiple
frequencies for our channel, so these sensors were removed
from further consideration.

4.4 Evaluation

This section evaluates the developed covert channel using
the six continuous sensors from

4.4.1 Methodology

The average error rate and throughput (bit rate) of the
proposed covert channel was evaluated for each device.
The pulse width—the length of time between transmitting
individual bits—was the dominating factor for the channel’s
throughput. Intuitively, the shorter the pulse width, then the
greater the bit rate. Protocol sampling bands were based on
the maximum supported frequency as the base signal. Other
frequencies were derived from multiples of this period ac-
cording to the relationship in Equation [} Where this method
could not be used, the next distinct sampling rate at a longer
period was selected. The full set of sampling bands used on
each device is provided in Appendix

Trn(Tend) < Trn(Tsyne) < Trn(Ty) < Recv(T.) (1)

We measured 100 transmissions of 64-256 bit random
sequences on a per-sensor and per-device basis. For each
configuration, pulse widths were evaluated in the following
range: the minimum value was the shortest period before
total channel failure was observed (no bits detected by



Table 1: Sensing hardware and their minimum supported sampling periods (us).

Xiaomi Poco F1 Motorola Moto G5 Google Pixel 4A
Sensor Vendor Min. Period Vendor Min. Period Vendor Min. Period
AC | Bosch BM160 2500 Bosch* 10000 STM LSM6DSR 2404
GR Qualcomm* 5000 Motorola* 10000 Google* 5000
GY | Bosch BM160 5000 Bosch* 5000 STM LSM6DSR 2404
LA Qualcomm* 5000 Motorola 10000 Google* 20000
MF | AKM AK0991x 10000 — — STM LIS2MDL 10000
RV Xiaomi* 5000 Bosch* 5000 Google* 5000
*: Specific model not known, —: Not supported.
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Figure 3: Inferred sampling period distributions using the lowest supported periods for each device and sensor.
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Figure 4: Sensor measurement sampling responses.

Recv). This value was increased until error-free transmis-
sion was achieved (across 100 bit-strings) or the error rate
was unchanged. In total, 74 configurations were evaluated
across the devices and sensors.

Data files were created on Trn and Recv at each chan-
nel instance, containing the transmitted and received bit-
strings, and timestamps for each sensor and pulse width.
The timestamps corresponded to immediately before the
syncword transmission (1'rn-side) and after the post-amble
signal (RRecv-side). The data files from the experiments—
completed over two days by three volunteers—were re-
trieved from the devices for analysis. The average (median)
bit rate was then calculated for each pulse width, device,
and sensor. The transmission error rate was measured using
the Levenshtein (edit) distance between the transmitted and
received bit-strings. This metric, also used in [36], [13], [25],
[27], [29]], counts the insertions, deletions and substitutions
for reverting the received bit-string to the transmitted one.
Bit deletions/omissions were the primary source of trans-
mission errors. This is due to Android’s lack of real-time
measurement delivery guarantees, which became increas-
ingly pronounced at higher sampling frequencies.

4.4.2 Results

The experimental results are presented in Figure [5| For each
sensor, very low transmission error rates were attained on at
least one evaluation device. The best-case rates are shown in
Table 2] The AC sensor was able to achieve near-zero error
rate using a pulse width of 75ms (Pixel 4A and Poco F1),
corresponding to a ~10bps bit-rate. Both devices produced
zero error using a 150ms width with a bit-rate at 5.1bps. The
Moto G5 AC sensor, however, produced significant error
(~12 edit distance), even at long widths (e.g. 300ms). MF
was the next best performing sensor, achieving error-free
transmission for the Poco F1 (100ms, 9.62bps). However, the
Pixel 4A required a longer width to achieve the same results
(175ms, 5.08bps). The Pixel 4A’s GR sensor achieved near
error-free transmission (0.215 average edit distance) with a
7.28bps bit rate using a 150ms width. The Poco F1 did not
achieve this until a 350ms pulse width (2.81bps). In the best
case, the RV sensor on the Pixel 4A achieved the lowest error
rate of a 0.636 edit distance at 15ms (6.70bps). The LA sensor
fared significantly worse, error-free transmission at 2.89bps
was still achieved with the Pixel 4A.
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Figure 5: Average channel error rates and bit rates for each device and sensor.

Table 2: Best case error rates (average of 100 iterations).

Sensor | Pulse (ms) | Error (Edit) | Bit Rate (bps) | Device
AC 150 0 5.10 Poco F1 + Pixel 4A
GR 150 0 7.37 Pixel 4A
GY 150 0.215 7.28 Poco F1
LA 350 0 2.89 Poco F1
MF 100 0 9.62 Poco F1
RV 150 0.636 6.70 Pixel 4A

(a) Original.

(b) Clean. (c) Noisy.

Figure 6: Example image transmissions. (Device: Xiaomi Poco
F1; clean channel: MF at 150ms; noisy: GR at 250ms.)

Interestingly, the channel performed most effectively on
the highest cost device (Pixel 4A). Conversely, the oldest,
lowest cost handset (Moto G5) exhibited high error and had
only two exploitable sensors. Error-free channels were not
observed on this device. This leads to the conjecture that

handsets manufactured with higher quality component, are
particularly susceptible to low error, high bit-rate covert
channel transmissions. Beyond random bit-strings, we also
investigated transferring images and numeric values. This
better represents a realistic scenario where a disguised legit-
imate app leaks sensitive data to a receiver. Accordingly, we
experimented with transferring photographs using a three-
stage process: @D encoding the desired image using a one-
bit colour palette; @ transmitting the encoded bit-string;
and @ exporting the bit-string in a suitable image format,
e.g. PNG. Stages @ and 3 utilised a Python script using
NumPy, SciPy, and the Python Image Library (PIL). Exam-
ple image transfers are shown in Figure [6} We were also
successful in transmitting GPS coordinates by encoding and
segmenting decimal values as 4-bit strings. Communicating
natural language is more difficult, e.g. leaking SMS records
and instant messages. This requires a character encoding
scheme that retains reasonable throughput. Given the low
bit rate—<10bps for near error-free transfers—transmitting
individual characters take ~1000ms using UTF-8, which
limits its feasibility to short strings.

5 USING MULTIPLEXING FOR COARSE-GRAINED
APPLICATION FINGERPRINTING

The last section showed how an application’s observed sen-
sor sampling rate can be modulated by a second application.
During the course of this work, a second attack vector was
discovered that would enable a malicious application to
learn information about a sensor-enabled victim app.

We identified that applications were likely to access
certain sensors at particular sampling rates. For example, ac-
celerometers are used ubiquitously as a stabilisation mecha-
nism in games for aiming weapons, directing first-person
viewpoints, and detecting screen orientation changes [4].
Based on this, we developed a two-part study to evalu-
ate the extent to which a malicious application can detect
sampling periods used by sensor-enabled victim apps. This
consisted of, firstly, detecting Android Sensor SDK sampling
period constants under different sensors and devices. The
Android Sensors SDK provides developers with pre-defined



sampling periods in order to minimise battery consumption
for several use cases [9]. These correspond to: gaming con-
trollers (SENSOR_DELAY_GAME, 20ms); Ul interactions, e.g.
gesture recognition (SENSOR_DELAY_UI, 60ms); and detect-
ing screen orientation (SENSOR_DELAY_NORMAL, 200ms).
The fourth, SENSOR_DELAY_FASTEST, polls at the maxi-
mum supported frequency. In the second part of the study,
we evaluated the extent to which sensor-based interactions
can be detected using the top 250 Android applications [10].

5.1

The threat model assumes a malicious app, M, that wishes
to detect the use of sensor-enabled games, Ul interactions,

Attack Design

or to directly identify a victim app, V. The goal is for M to s

perform this without requiring additional permissions that
may reveal its intentions upon installation. The high-level
attack approach follows three steps:

1) Malicious Set-up: M registers listeners for one or more

sensors using their lowest supported sampling fre- ,

quency simultaneously.

Victim Execution: Unwittingly, V' registers another lis-

tener at another frequency for the same sensor, whether

that is a pre-defined period, e.g. SENSOR_DELAY_GAME,

or a custom frequency. Due to multiplexing, one of M’s

signals is modulated to the higher frequency registered

by V. V may use the received measurements for its

intended purpose before de-registering the listener.

3) Malicious Execution: Concurrently, M detects V’s sam-
pling period and the sensor used, and logs this infor-
mation to file.

2)

This process is illustrated in Figure [/} with an optional
fourth state for recording the interaction. (Note: @ and @
are interchangeable. If @ is performed first, then the faster
frequency used by V will already be returned to M when it
requests values at an extremely slow frequency.)

>

- 8 ?K\\\\
Luw . 2. Victim registers
oL 2 . higher freq. for
o .S .
S3 gaming, Ul, etc.
§ S 'R 1. Malicious observer
I3 . _—
D registers listener at a very 3.s\élr::stl<$ S::S 4.vicc):zsme:'r\:$r;i(t;i%':s
low observation freq.
Time
Observation Freq. Victim Freq.
Figure 7: Application fingerprinting overview.
5.2 Implementation

The two apps from §4| were modified for inferring the victim
sampling frequencies from a malicious observation app.
Unlike @ however, it cannot be assumed that a particular
sensor will be used by a victim app a priori. This raises the
question: how can M detect multiplexed sampling period
changes of an arbitrary sensor used by V? To address this,
we instrumented M to register and receive measurements
from all six continuous sensors concurrently (Listing|T). This
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is valid behaviour under the Android framework. Note that
the inferred periods of each sensor must be maintained
independently.

In our test-bed, we implemented V' to register a random
sensor at at one of the aforementioned pre-defined sampling
constants from the Android Sensor SDK. This was triggered
by user input. The time that V' activated the sensor and
the sampling period were stored for later analysis. Upon
detection, M stored the detected sensor, inferred sampling
period, and the associated timestamp.

final int[] sensors = {
Sensor.TYPE_ACCELEROMETER,
Sensor.TYPE_GRAVITY,
Sensor.TYPE_GYROSCOPE,
Sensor.TYPE_LINEAR_ACCELERATION,
Sensor.TYPE_MAGNETIC_FIELD,
Sensor.TYPE_ROTATION_VECTOR

for (int s : sensors) {

mSensorManager.registerListener (this,
mSensorManager.getDefaultSensor (s
OBSERVATION_SAMPLING_PERIOD) ;

) 4

Listing 1: Java snippet for registering multiple sensors.

5.3 Evaluation

This section evaluates the accuracy and latency of our
proposed fingerprinting method.

5.3.1 Methodology

Initial trials were conducted where M was set to run per-
sistently in the background. This created signals for all six
target sensors in parallel using their maximum supported
frequencies. Next, V' was opened for 25 trials per sensor,
device, and sampling period. Like our covert channel, many
of the actual inferred frequencies did not strictly reflect those
specified in the Android SDK [7]. For two devices (Poco F1
and Pixel 4A), the observed periods still broadly reflected
those specified Android SDK, albeit within a +10% error
band. Despite this, the observed rates were still individually
distinguishable from a long-period carrier signal in most
cases.

It also became apparent that M could not always dis-
criminate between the signals transmitted by V on cer-
tain devices. That is, M could not distinguish between
SensorManager sampling period constants used by V
when multiplexed into M'’s carrier signal. For instance,
the SENSOR_DELAY_NORMAL period on the Xiaomi F1’s
AC and GY sensors is the maximum supported period.
Consequently, these periods used by V' cannot be distin-
guished from M'’s carrier frequency. Moreover, the Moto
Gb’s single-frequency reporting caused issues once more:
the GR, LA, and RV sensors could not be distinguished from
the maximum period. As a consequence, the sensors for this
device were disregarded from further study. In total, 20/24
(83.3%) cases could be successfully detected on the Xiaomi
Poco F1 and Google Pixel 4A. Only 6/20 (30%) of cases
were detectable with the Motorola Moto G5. A breakdown
of distinguishable cases is shown in Tables



Table 3: Actual observed sampling periods (ms) for each
SensorManager constant (Xiaomi Poco F1).

Sensor \ Fastest Game Ul Normal Max.
AC 2.484 19.83  66.67 198.6 198.6
GR 4.961 19.89 7941 198.7 198.6
GY 4.968 19.87  66.67 198.6 198.6
LA 4.961 19.89 7948 198.6 198.6
MF 10.0 20.00 66.67 200.0 1000
RV 4.166 16.64  55.59 166.6 833.3

Legend — Green: distinguishable using the max. period
as the reference period; Red: indistinguishable.

Table 4: Actual observed sampling periods (ms) for each
SensorManager constant (Google Pixel 4A).

Sensor \ Fastest Game Ul Normal Max.
AC 2.346 18.77  65.70 197.1 976.2
GR 4.693 18.77  65.70 197.1 197.1
GY 2.346 18.77  65.70 197.1 976.2
LA | 14.08x 18.77  65.70 197.1 197.1
MF 9.956 19.58  66.67 195.9 979.5
RV 4.693 18.77  65.70 197.1 197.1

x: Erroneously returned the SENSOR_DELAY_GAME pe-
riod when SENSOR_DELAY_FASTEST was used.

5.3.2 Identifying Android Sampling Constants

Following the initial results, we conducted further exper-
iments of 100 additional trials per sensor, per sampling
period, and per device. This produced 4,600 interactions in
total between V and M. In total, M was able to correctly
detect V’s chosen sensor and sampling period in all ob-
served cases. The average detection latencies for each sensor,
device, and constant are given in Figure [8| On average, a
given sensor and sampling constant was detected by M
in <500ms. Notably, the detection latency was reduced as
V’s chosen sampling period was lower (faster). This is a
natural result of our sampling period inferencing method,
which uses sequential sensor events. When V' requests
measurements at a higher frequency, then measurements are
multiplexed and inferred by M at a faster rate.

In the best cases, the detection latency was reduced to
<80ms when the victim used the sensor’s fastest sampling
rate. In a small number of cases, detection latency reached
under half (40ms), e.g. the Pixel 4A’s AC and RV sensors.
At the opposite end, V’s sampling period was inferred
in ~400ms where SENSOR_DELAY_NORMAL was used. The
SENSOR_DELAY_UI constant could be detected in <250ms
for all devices and sensors, and <150ms for the Pixel 4A
and Moto G5. Lastly, SENSOR_DELAY_GAME was detected
in <100ms, and <60ms for the Pixel 4A and Moto G5 on av-
erage. In general, the detection latency is device- and sensor-
dependent. The detection latency was largely consistent for
the Pixel 4A. In contrast to the covert channel, the Moto
G5 performed relatively well for the remaining sensors. The
Poco F1 performed with reduced consistency; in particular,
the GR and GY sensors required more time to detect V's
sampling period. Yet, in all cases, this could be achieved in
under half a second on our test devices.
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Table 5: Actual observed sampling periods (ms) for each
SensorManager constant (Motorola Moto G5).

Sensor \ Fastest Game Ul Normal Max.
AC 9.934 1998 59.68 198.6 198.6
GR | 5.026% 9.893  9.941 9.890 9.915
GY 4.944 19.87  59.59 198.6 198.6
LA | 4.958% 9.893  9.863 9.879 9.901
RV | 4.9500 9.906  10.03 9.926 9.918

«: Failed to return SENSOR_DELAY_ FASTEST when
multiplexed into the maximum period.

<: GY was modulated when RV was activated. (Note:
RV is a virtual sensor that uses GY as input.)
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Figure 8: Average fingerprinting detection latency for each
SensorManager constant, sensor, and device.

5.3.3 Evaluating Real-World Applications

The previous section showed how particular sampling con-
stants used by a victim application can be identified by
a malicious observer. To extend these results, we investi-
gated the top 250 most popular Android applications (as
of February 2022, according to AndroidRank [10]). In this
study, the malicious application, M, was launched that
registered listeners for all supported device sensors at the
slowest possible frequency. Next, each application from the
top 250 was launched. We proceeded beyond main menus,
login dialogs, and other intermediate interfaces to reach
the main activity where sensors were utilised (if any). If
no sensors were used, then the application was discarded
from further consideration. In cases where sensors were
used, the interaction was logged to file by M, which was
subsequently retrieved for off-line analysis.

In total, our malicious observer detected 57/250 apps
(22.8%) where sensors were used. The majority of these
were games (38; 66.7%), followed by food and drink (3;
5.2%), maps and navigation (3), photography (3), music and
audio (2; 3.5%), travel and local (2), art and design (1; 1.7%),
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Figure 9: Category breakdown of detected applications.

finance (1), health and fitness (1), productivity (1), shopping
(1), and social (1). This is illustrated in Figure E} Compre-
hensive results are given in Appendix [B]in Table 9} Of the
gaming applications, the most common sub-categories were
action (18), racing (7), adventure (2), arcade (2), casual (2),
trivia (2), sports (2), board (1), puzzle (1), and simulation (1).
Following our analysis, we found that the vast majority
of apps used the AC sensor (53/57; 92.9%), primarily at
the SENSOR_DELAY_GAME frequency (33/53; 62.3%). This
is not surprising: accelerometers are supported by “most”
Android devices for implementing tilting, shaking, rotation
and swinging-based interactions, particularly in games [4].
What was surprising was the large number of sensors and
non-standard sampling rates used by sophisticated apps,
e.g. Pokémon Go—an augmented reality (AR) game by
Niantic, Inc. This particular application used six different
sensors—AC, GR, MF, LA, and RV—with a non-standard
10ms sampling period for the AC sensor. Indeed, this ap-
plication used a large and unique combination of sensors
and sampling rates. Interestingly, we found unique sensor-
sampling combinations were used by 13/57 (22.8%) of de-
tected apps. This information may enable a malicious actor
to precisely fingerprint individual applications. Compara-
tively, the remaining applications used conflicting param-
eters (44/57; 77.2%). That is, the sensor(s) and sampling
period(s) were used by at least one other application. While
individual identification is challenging here, an attacker
may still be able to deduce the victim’s high-level nature.
For instance, we observed that all but one game (37/38;
97.4%) used the AC sensor at the SENSOR_DELAY_GAME
frequency or greater. This increased to 100% of apps within
some sub-categories (racing and simulation). In addition, we
recognised that apps which relied on real-world navigation,
e.g. location and heading, typically utilised both the AC and
MF sensors at a high frequency (Gojek, Google Fit, Google
Maps, Grab, Pokémon Go, Uber, Waze, and Yandex Go).

6 SECURITY EVALUATION

To counter security issues from mobile sensors (see §2),
Android 9 introduced updates for visibly indicating when
high-frequency, long-polling sensors were in use. In this
section, these changes are examined and how they are
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unsatisfactory towards addressing our attacks. We discuss
UI-, API-, and system-level countermeasures, and offer rec-
ommendations.

6.1 Android 9 Changes

From Android 9 (API level 28), applications cannot use
background services to access sensors in continuous re-
porting mode. If this is attempted, then sensor events are
not returned to the requesting application. Instead, apps
must use foreground services that are visible to the user
using a taskbar notification. This is to raise the user’s
awareness of on-going background processing. The no-
tification is removed only when the service is stopped.
Therefore, Android application manifest files must contain
the FOREGROUND_SERVICE permission in order to access
sensor services. Unfortunately, this leads to the first issue:
FOREGROUND_SERVICE is a ‘normal” permission. That is,
according to the Android documentation, the associated
“data and actions present very little risk to the user’s privacy” [5]].
Android OS automatically grants normal permissions to
requesting applications without user input. This compares
with ‘dangerous’ permissions—e.g. accessing SMS mes-
sages, call logs, and location data—that requires user con-
firmation through a dialog prompt [3]. Put otherwise, a
malicious application can access sensor services to mount
our attacks without requiring explicit user approval.

Secondly, foreground service notifications are heavily
customisable (Figure [10). The notification heading, text
body, and icon can all be changed with minimal restrictions
by a malicious developer. It is conceivable that an attacker
could manipulate these properties in order to masquerade
as a seemingly legitimate application. A potential Ul coun-
termeasure is to require applications to display the full set of
active registered sensor listeners in their foreground service
notification. This would indicate any unusual sensor usage
that strays beyond the application’s expected remit. Yet,
using the technical names of sensors is likely to prompt
user confusion. Referring to the class of sensors in use, e.g.
‘motion’ or ‘position’, may be more appropriate. However, a
usability investigation for indicating potentially dangerous
sensors to users is warranted.

6.2 Recommendations

From the design of the Sensors SDK, a robust countermea-
sure is to remove the ability for application developers to
control the sampling rate through the registerListener
method of the Sensors SDK. Instead, the appropriate sam-
pling rate could be inferred and returned to the application
at an operating system level.

Recommendation 1: Consider removing the ability
to directly set sensor sampling periods.

By adopting this measure, malicious apps are unable
to establish carrier signals at a desired frequency,
thereby preventing both presented attacks.

The root cause of both attacks is the design choice of us-
ing the fastest sampling rate when multiple apps request the
same sensor at different frequencies. The ultimate solution
is to enforce that the requested sampling period is the one
that is received by an application. This is the case used by
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Apple iOS devices, which we were not able to successfully
exploit in the same way. However, it requires changes to
how the Android framework multiplexes sensor events to
applications and services.

Recommendation 2: Enforce requested sampling
periods on a per-app basis.

This prevents both attacks by stopping malicious
apps from exploiting software multiplexing using
higher frequency signals registered by other apps.

6.3 Limitations

The presented methods work optimally where malicious
apps leverage unused shared sensors. The attacks cannot
be mounted where a third application is already using a
sensor at the highest frequency. This prevents the creation of
appropriate frequency bands by the malicious application.
In these cases, it makes sense for attackers to target rarely
used sensors, such as gravity and linear acceleration sensors
where available. It is possible for malicious apps to detect
cases where a sensor(s) are already being used at its fastest
rate. This can be achieved by registering multiple sensors,
i.e. in Listing |1} and comparing the inferred rate with the
highest supported frequency from the SensorManager
class. It is also worth noting that our channel does not have
the same throughput as lower-level channels, such as those
using L3 cache activity (500 kbps [29] and 751 bps [36]),
memory bus controllers (333 bps [44]), and DRAM channels
(411 kbps [43]). However, our approach imposes very few
assumptions, is CPU/SoC-agnostic, and uses pre-existing
interfaces made available to application developers.

7 CONCLUSION

In this paper, we presented two software-controlled side-
channel methods that arise from insecure design choices in
mobile sensor stacks. Specifically, we show how software-
based multiplexing can result in the creation of reliable
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FSK-based covert channels and the ability to fingerprint
sensor-enabled applications. Neither approach imposes spe-
cial requirements—for example, a rooted handset or kernel-
mode access—beyond the standard Sensor SDK made avail-
able to application developers.

In §4} a spectral covert channel was developed for trans-
mitting arbitrary bit-strings between same-device applica-
tions in a way that bypassed IPC security mechanisms. This
was achieved using a carrier frequency established by a
receiver app, which was modulated by a transmitted app
that requested a higher sensor sampling frequency. It was
shown how many physical and virtual continuous sensors
could be used for this purpose, including accelerometers,
gyroscopes, and magnetic field sensors, with low error rates.
Indeed, the transmission of low-resolution yet legible single-
bit images was possible at up to 20 bps.

In §5] a variant of this technique was developed for fin-
gerprinting sensor-enabled applications at a coarse-grained
level. This involved a malicious app that generated multiple,
simultaneous sensor signals using their lowest supported
frequency. Victim apps which used the same sensor(s) at a
higher frequency thus triggered modulations in this signal.
It was shown how this could be used for detecting par-
ticular interactions (e.g. Ul interactions, screen orientation
changes, and gaming activity) with low latency (30-400ms).
Moreover, an analysis of the top 250 Android applications
showed the activity of 57 (22.8%) were detected using our
approach. It was also shown how some highly downloaded
applications exhibited unique fingerprints. This was due to
the use of particular sensor and sampling frequency combi-
nations, which could be passively detected by a malicious
application.

For both approaches, all evaluation devices from differ-
ent OEMs were vulnerable, potentially affecting millions of
devices worldwide. In §6] we suggested two recommenda-
tions: @ removing the ability for developers to set precise
sensor sampling periods; and @ enforcing the requested
sampling periods by removing the multiplexing function-
ality. Unfortunately, both solutions require design changes
to the Android sensor stack.
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Table 9: Detected apps, category, triggered sensor(s) and sampling period(s).

Application ‘ Category ‘ Detected Sensors and Sampling Periods
AliExpress Shopping AC (SENSOR_DELAY_UI)
Among Us Game (Action) AC (SENSOR_DELAY_GAME)
Ashphalt 8 Game (Racing) AC (SENSOR_DELAY_GAME)

Banana Kong

B612 Photo/Video Editor
Brain Out

Brain Test

Beauty Plus
CamScanner

Canva

Call of Duty Mobile
Coin Master

Crossy Road

CSR Racing 2

Dr. Driving

eFootball PES 2021
Extreme Car Driving
Gaana Music App
Garena Free Fire

Gojek

Google Fit

Google Maps

Grab

Granny

Helix Jump

Hungry Shark Evolution
Idle Minor Tycoon

iFood Delivery de Comida
Last Day on Earth: Survival
Ludo King

Mobile Legends

Modern Combat 5
Mortal Kombat

My Talking Tom

Need for Speed: No Limits
PK XD

Pokémon Go

PUBG Mobile

Real Racing 3

Sberbank Online
Shadow Fight 2

Shadow Fight 3

Smule

Sniper 3D

Special Forces Group 2
Stand Off 2

Subway Surfers

Tango

Top Eleven Soccer Manager
Traffic Rider

Trivia Crack

Uber

Uber Eats

War Robots Multiplayer
Waze

Yandex Go

YouCam Makeup

Game (Action)
Photography
Game (Puzzle)
Game (Trivia)
Photography
Productivity
Art & Design
Game (Action)
Game (Casual)
Game (Action)
Game (Racing)
Game (Racing)
Game (Sports)
Game (Racing)
Music & Audio
Game (Action)
Travel & Local

Health & Fitness

Travel & Local
Food & Drink
Game (Arcade)
Game (Action)
Game (Action)

Game (Simulation)

Food & Drink
Game (Action)
Game (Board)
Game (Action)
Game (Action)
Game (Action)
Game (Casual)
Game (Racing)

Game (Adventure)
Game (Adventure)

Game (Action)
Game (Racing)
Finance
Game (Action)
Game (Action)
Music & Audio
Game (Action)
Game (Action)
Game (Action)
Game (Arcade)
Social
Game (Sports)
Game (Racing)
Game (Trivia)

Maps & Navigation

Food & Drink
Game (Action)

Maps & Navigation
Maps & Navigation

Photography

AC (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_UT)
AC, GR, GY, MF, RV (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)
RV (SENSOR_DELAY_UI)
AC (SENSOR_DELAY_UI)
AC, GY, MF (SENSOR_DELAY_UTI)
AC (SENSOR_DELAY_GAME), GY (SENSOR_DELAY_NORMAL)
AC (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)
AC, GY, MF (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_UTI)
AC (SENSOR_DELAY_GAME)

AC (10ms), MF (SENSOR_DELAY_GAME)
AC (10ms), MF (SENSOR_DELAY_GAME)
AC (10ms), GR, LA, MF (SENSOR_DELAY_GAME)
AC (10ms), MF (SENSOR_DELAY_GAME)
AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_NORMAL_UT)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (15ms)

GY (15ms)

AC, GY, MF (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (10ms), GR, GY, MF, LA, RV (SENSOR_DELAY_GAME)
AC, GY (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (23ms)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_UI)

AC (SENSOR_DELAY_GAME)

AC, GY (SENSOR_DELAY GAME), MF (SENSOR_DELAY NORMAL)
AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

RV (SENSOR_DELAY_NORMAL)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_GAME)

AC (SENSOR_DELAY_UI)

AC (10ms), MF (SENSOR_DELAY_GAME)
RV (SENSOR_DELAY_NORMAL)

AC (SENSOR_DELAY_GAME)

AC, GR, LA (SENSOR_DELAY_GAME), MF (SENSOR_DELAY_UI)
AC, MF (SENSOR_DELAY_UT)

AC (SENSOR_DELAY_UT)

Green rows: Unique sensor/sampling combinations; Yellow: Conflicting parameters with another app.
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