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Abstract

In this thesis, I investigate to what extent self-issued voice commands can

threaten Voice-Controllable Devices (VCDs) in real-world scenarios. First, I

formalise the threat model for self-activation attacks: I identify six phases in

it, which I outline in the so-called VOCODES Kill Chain. To verify the feasi-

bility of self-issuing voice commands in real environments and to assess the

impact on end users, I test the attack on the Amazon Echo Dot, a commercial

smart speaker. In doing so, I found three vulnerabilities, which have been ac-

knowledged and (partially) fixed by Amazon. By exploiting these vulnerabili-

ties, I was able to confirm that an adversary can reliably self-issue commands

to the Echo device, severely impacting the user’s safety, security, and privacy.

In the second part of this dissertation, I review current voice spoofing

countermeasures, finding that they discard all artificially generated voice com-

mands, assuming that they are malicious — however, disabled people often

use synthetic voices to interact with their VCDs. Therefore, I present a taxon-

omy of tolerance levels of artificial voice commands, to allow users to select

the desired security/usability balance for their VCD. Level 1 of this taxonomy

prescribes that self-issued commands should be discarded, while other syn-

thesised commands can be executed. To implement this level, I propose a

new solution based on a Twin Neural Network, which outperforms the cur-

rent state-of-the-art anomaly detection techniques. I conclude my disserta-

tion by showing that self-activation is an underestimated issue that can be

mitigated by-design, and by showing possible future directions for research.
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Chapter 1

Introduction

Today, we have the possibility to tackle most of our daily tasks with the help

of technology, spanning from electronic calendars to house-cleaning robots.

An increasing number of people is getting used to the feeling of being sur-

rounded by technology, and more specifically, by the Internet of Things (IoT).

At home, we can control our appliances using our voice only, via software

called Voice Personal Assistant (VPA) [75] and the device in which it is em-

bedded, usually called a smart speaker [21], or more generically, a Voice-

Controllable Device (VCD). This device runs the VPA and has a microphone

to capture user queries, along with a loudspeaker to emit related responses.

With it, we can turn the heating on, prepare a coffee, automatically turn on

the microwave at lunchtime, and even set up our virtual assistant to read us

the news and remind us of our appointments for the day as we enter the

kitchen, without even saying a word [75]. As we are going to work, our car

is connected to the Internet: our personal assistant can follow us there, read-

ing the messages we receive while driving, connecting to our smartphone to

interact hands-free [138], or even recognising if we are about to fall asleep

while driving on the highway because our newborn had been crying all night.

In 2021, more than 258 million smart homes were counted worldwide, and

this number continues to grow, indicating that an increasing number of peo-

ple want to experience the new frontier of IoT commodities, fascinated by
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1. INTRODUCTION

the possibility of a future where everything can be controlled using the voice

channel only [145]. Smart commodities such as light bulbs, baby monitors,

security cameras, TVs, ovens, and dishwashers are already available in physi-

cal and online stores, and they can all be controlled by issuing a simple voice

command to one of the aforementioned smart speakers, such as Amazon

Echo [14] and Google Nest [65]. For example, “Alexa, make me a coffee” or

“Hey Google, turn on Roomba to clean the floor” are all valid commands that

will turn on a specific smart appliance to do exactly what it is told to do.

The set of features offered by these smart speakers can also be extended

through third party applications [21]: some of them, for example the Paypal

skill, allow us to carry out financial transactions and seem to be among the

most critical, as our Personal Identifiable Information (PII) is processed [11]

along with our financial information. Even applications that process health

information can be considered among the most critical ones, for example, the

Vocera skill, which allows “communication between patients and their care

team members while they are in the hospital” [156]. Unfortunately, to date,

smart speakers have very little or no means of authenticating the user who is

interacting with them, making the processed sensitive information available

to anyone who can issue commands to the device [55]. While it is true that

these sensitive features can be protected with a PIN number, it is also true

that this PIN must be spoken aloud by the user when prompted to, making it

lose its secrecy if someone is within earshot of the command [133].

1.1 Current Issues

The aforementioned lack of authentication and authorisation protocols lays

the base for a multitude of security issues that have arisen in recent years.

In fact, several attacks that undermine the safety, security, and privacy of

smart speaker users have already been discovered, and most of these exploit

that same voice channel that is the peculiarity of these devices, and that fas-
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cinates so many users with its unlimited possibilities. Some of the attacks

are designed to hinder command recognition [106], by performing a Denial

of Service (DoS) attack on the targeted voice-controllable device. Most at-

tacks, however, aim to inject commands unknowingly to the legitimate user,

to allow the adversary to perform unauthorised operations on the victim de-

vice. To date, security researchers have found several methods to do this:

some attacks work by injecting inaudible commands via an external ultra-

sonic speaker [175, 120]; other attacks hide voice commands inside an audio

file, such as a song [171, 35], which is used as a carrier for the adversarial per-

turbations; sometimes, commands are transmitted to the voice-controllable

device using an unusual vector (i.e., the command is not transmitted directly

over-the-air), for example using light [147] or a solid carrier, such as a table,

by using a Piezoelectric Transducer (PZT) to drive ultrasonic waves through

the solid surface [168].

There is also a class of attacks in which adversaries make use of audible

commands to activate voice-controllable devices, and they do so from the

victim device itself [82, 48, 6], exploiting the so-called command self-issue or

self-activation vulnerability. This attack can be launched against all devices

capable of accepting voice commands and playing audio files simultaneously.

It simply consists of making the device play an audio file containing a mali-

cious voice command: the microphone embedded in the voice-controllable

device will capture the command and the device will execute it as valid, as

shown in Figure 1.1. One of the peculiarities of the voice command self-issue

is that of eliminating the need of placing rogue equipment in proximity of

the target device for the attack to succeed, a constraint that all the aforemen-

tioned attacks share. Indeed, to carry out the Denial of Service attack, the

adversary must play the Adversarial Music from a rogue speaker near the tar-

get; to inject inaudible, ultrasonic commands, the adversary needs to place

an ultrasonic speaker near the target device; to use light as a vector for the

voice command, the adversary may actually be quite far from the target de-
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vice, but they need to have a line of sight and they need nearly 400$ worth

of equipment available to carry out the attack [148]; to use a solid carrier,

the adversary must first place the PZT transducer on the surface they want to

use for the attack [168]. Hence, it should be clear that the main advantage of

self-issued voice commands is that the adversary does not need any physical

equipment in proximity of the target device.

"Alexa, what time is it?"

1. Echo plays
an audio file
containing a

voice command

"It's 7.10 pm."

2. Soundwaves
travel over-the-air

3. The voice
command is
captured and
executed

Figure 1.1: Command Self-Issue on an Echo Device

1.2 Research Overview

This thesis investigates whether the voice command self-issue is actually a

threat to users and voice-controllable devices, that is, whether it is a feasible

attack in real-life scenarios, and what impact it has on users’ safety, security

and privacy. The analysis of the self-issue attack was performed by pene-

tration testing a common commercial smart speaker, the Amazon Echo Dot.

After validating the attack, six different lab experiments were performed to

understand the overall feasibility of the attack. Additionally, with the help of

three voluntary households who took part in a field study, and 18 Amazon

Echo users who responded to a survey, we were able to confirm that self-
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activation is a real threat to users and VCDs in home environments, and its

limitations are mostly theoretical.

This thesis also investigates which defensive measures can be applied to

counter the attack in real-life scenarios, taking into account different cate-

gories of users and their usability and security requirements. To do so, we

first analysed the existing security measures already implemented on com-

mercial voice-controllable devices, and we developed a solution against self-

activation by fine-tuning a Twin Neural Network. We trained our solution on

a newly created dataset consisting of 35 samples and their augmentations,

and found that it has 97% accuracy in correctly classifying samples into be-

nign/malicious categories, and outperforms state-of-the-art anomaly detec-

tion techniques.

1.2.1 Research Goals

Through this research, we sought to contribute to the achievement of a set of

Research Goals (RGs) related to self-issue attacks, namely:

• RG1: Feasibility of the self-issue attack. Investigate whether it is possi-

ble to exploit the self-issue vulnerability in real scenarios (Section 4.5.2)

and to evaluate its limitations (Section 5.4).

• RG2: Impact of the attack. Understand whether being able to self-issue

commands can lead to critical scenarios that are harmful to the user’s

safety, security, and privacy (Section 5.3).

• RG3: Analysis of existing countermeasures. Understand which coun-

termeasures can users or device manufacturers apply to defend against

this attack (Chapter 7).

• RG4: Feasibility of reliable self-activation detection. Assess whether

we can develop a solution that reliably detects self-activations and that

can outperform existing solutions (Section 7.5.2).
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• RG5: Easily trainable countermeasure. Understand if said counter-

measure against self-activation can be trained with a limited number

of training samples (Section 7.5.1).

• RG6: Deployability of the countermeasure. Investigate if said counter-

measure can be deployed with minimal invasiveness and investment

by both the user and the provider, e.g., running along the cloud speech

recognition service, or on the same VCD (Section 7.6).

• RG7: Performance of the countermeasure. Understand if this coun-

termeasure can provide a low number of false positives, especially com-

pared to state-of-art anomaly detection techniques (Section 7.5.3).

In the following section, we will describe the scientific approach we employed

to verify these research goals.

1.2.2 Research Methodology

Starting from the above research goals, we followed the standard scientific

method composed of questioning, researching, hypothesising, experiment-

ing, collecting data, and drawing conclusions.

• Questioning: We started by formulating Research Questions (RQs):

1. Is the self-issue vulnerability a real threat to users and VCDs in the

real world, or is it just a theoretical attack?

2. To what extent does it allow an attacker to control, in a real sce-

nario, an Echo device without leveraging any external speaker?

3. What impact does it have?

4. Do existing countermeasures suffice to thwart self-activation?

5. Is there a margin for improvement in countermeasures?

• Research: We conducted a literature review to assess which attacks al-

ready leveraged self-activation, and how recent were these works. For
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example, for RQ1, Sections 2.5.3 and 4.8.1 review the literature with re-

spect to voice spoofing and self-activation attacks.

• Hypothesis: For each RQ, we formulated some hypotheses to be ver-

ified. For instance, for RQ1, we hypothesised the following: “If an at-

tacker gets to play audio on an Amazon Echo Dot device, they are able to

self-issue any valid command to the device”.

• Experiment: We designed and conducted different types of experiments

to test the hypotheses. In the hypothesis mentioned previously for RQ1,

we attempted to self-issue commands to an Amazon Echo device after

getting the possibility to stream audio files on it.

• Data: We collected and analysed data from the previous experiments.

As an example, for RQ1, we collected and analysed the success rate of

the self-issue attacks under various conditions and payloads.

• Conclusion: Based on the data collected during the experiments, sur-

veys, field studies and other observations, we accepted or rejected the

hypotheses. For example, for RQ1, the experiments demonstrated that

the Echo device is susceptible to self-issue attacks, and that some en-

vironmental conditions are more favourable than others for the attack,

hence, we accepted the hypothesis.

In the end, through the application of the scientific method, we have ef-

fectively addressed all research questions in a manner that is both repro-

ducible and verifiable, ultimately enabling us to achieve all research goals.

1.3 Contributions
This thesis presents the following contributions:

• Present a kill chain that generalises self-issue attacks to VCDs, which

we call the VOice-COntrollable DEvice Self-Issue (VOCODES) Kill Chain
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(Chapter 3). In particular, we build this kill chain by making some key

modifications to the Lockheed-Martin Kill Chain [77], and we show that

it is able to describe all the required steps to perform self-issue attacks.

• Formalise a threat model for such attacks (Chapter 3), which we call the

VOCODES Threat Model. In particular, we use epistemic modal logic to

formalise knowledge and possible actions for all actors involved in the

attack, i.e., the user and the adversary.

• Describe three vulnerabilities we have found on Amazon Echo devices:

(i) the voice command self-issue, which enables attackers to control the

device using its own speaker, (ii) the Full Volume Vulnerability (FVV),

which allows attackers to self-issue commands without any reduction

of the device volume, and (iii) the Break Tag Chain Vulnerability, which

allows attackers to violate the Amazon’s Speech Synthesis Markup Lan-

guage (SSML) policy (Chapter 4).

• Present and evaluate Alexa versus Alexa, an attack that exploits the com-

mand self-issue vulnerability against Amazon Echo and can chain the

two other found vulnerabilities to enable the attacker to get complete

and persistent control over an Amazon Echo device (Chapter 4).

• Evaluate AvA’s feasibility and impact by analysing the results of a field

study among three households, and of a survey administered to a study

group composed of 18 Amazon Echo users, to demonstrate that the at-

tack is feasible and that limitations remain theoretical (Chapter 5).

• Analyse security features available on most commercial VCDs available

worldwide, namely, personal computers, smartphones, Amazon Echo,

Google Nest and Apple HomePod. We demonstrate that countermea-

sures to voice spoofing attacks cannot be applied pervasively to all de-

vices. Consequently, we also present a taxonomy of the different secu-

rity levels that should be selectable by users of the device (Chapter 6).
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• Describe a countermeasure against voice command self-issue attacks,

based on a Twin Neural Network architecture. This approach can pro-

tect all voice-controllable devices, without the need for external sen-

sors. We evaluate and compare the proposed countermeasure against

a baseline consisting of several anomaly detection techniques, and we

show that our countermeasure outperforms all of them. We also mea-

sure the performance of our countermeasure on different environments

and hardware (Chapter 7).

• Present a new dataset consisting of 70 pairs of captured/played audio

files. We recorded it by placing a microphone array on top of a smart

speaker, using the former to record voice commands and, simultane-

ously, the latter to play audio. As no other dataset currently features

both the played and the recorded audio of a voice-controllable device

while a legitimate user (or an audio file played by the same device) is

issuing a command, this dataset is crucial to assess the performance of

our solution against self-issued commands and will be useful to evalu-

ate the performance of future countermeasures against the same attack

or against spoofed commands in general. For this reason, and to allow

the reproducibility of our experiments, the dataset and the source code

of our countermeasure against self-issued voice commands are avail-

able for download (Chapter 7).

1.4 Thesis Organisation
The remainder of this thesis is organised as follows:

In Chapter 2, we focus on the technologies considered for this thesis, the

general classes of attacks already affecting voice-controllable devices, and re-

lated privacy issues.

In Chapter 3, we illustrate the various phases of real cyber-attacks using

different attack models, with a particular focus on kill chains. We show that a
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typical self-activation attack has some key differences from other attacks, and

then model a bespoke kill chain, which we call the VOCODES Kill Chain. This

allows us to generalise the procedure for performing self-issue attacks and to

formalise a threat model for these attacks.

In Chapter 4, we introduce three vulnerabilities we found on Amazon

Echo devices by applying the VOCODES Kill Chain. We describe the Alexa

versus Alexa (AvA) attack, which exploits the self-activation of the device and

can be chained to the other discovered vulnerabilities to enable the attacker

to achieve full and persistent control of the target Echo device.

In Chapter 5, we evaluate the feasibility, impact, and limitations of the

AvA attack in the real world with the help of three households and 18 Ama-

zon Echo users, who took part in a survey. We show that AvA is practical, has

strong implications for the end-users’ safety and privacy, and that the limita-

tions of the attack are mostly theoretical.

In Chapter 6, we present an analysis of common security features and

weaknesses of commercial VCDs. We demonstrate that more granular control

is needed when protecting such devices: currently, most commercial devices

do not have any protection against spoofed commands in place, however,

their introduction needs to be accompanied by the ability to customise the

level of protection offered, depending on the user’s needs. Hence, we present

a taxonomy of possible security levels to be applied to such devices to ensure

a balance between usability and security.

In Chapter 7, we present our countermeasure against self-issued voice

commands, implementing one of the levels of the presented taxonomy. We

show that our countermeasure correctly classifies samples in the malicious

and benign categories 97% of the times on average, outperforming our anomaly

detection baseline.

Finally, in Chapter 8, we revise the challenges that have been faced through-

out the PhD and the most relevant findings. We then make concluding re-

marks and talk about possible future developments of this research.
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1.5 Publications
This thesis revisits and expands on contents discussed in the following:

• Esposito S., Sgandurra D., Bella G., Alexa versus Alexa: Controlling Smart

Speakers by Self-Issuing Voice Commands. In Proceedings of the 2022

ACM on Asia Conference on Computer and Communications Security

(ASIA CCS ’22). 2022.

• Esposito S., Sgandurra D., Bella G., Protecting Voice-Controllable De-

vices Against Self-Issued Voice Commands. Accepted to the 8th IEEE

European Symposium on Security and Privacy (Euro S&P ’23). 2023.
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Background

In this chapter, we start with the fundamentals of information security, which

will be useful to understand key concepts (e.g., the CIA triad, what is a vul-

nerability, or an exploit) throughout the whole work. After, we introduce Ma-

chine Learning and then we delve into Deep Neural Networks and build a

bottom-up approach from there, to reach Voice Controllable Devices: hence,

we describe how Deep Neural Networks are designed and how they work,

and we use this knowledge to illustrate Natural Language Processing prob-

lems and solutions, which in turn are used to introduce Voice Controllable

Devices, whose protection is the core topic of this thesis. This will allow the

reader to fully comprehend how these devices work, so that the explanation

of attacks and countermeasures shown in this thesis is fully comprehensible

from a technological standpoint.

2.1 Information Security Fundamentals
We start by defining one the most fundamental concept in information se-

curity, that is, the CIA Triad. It is common knowledge that security of data is

obtained through the achievement of three properties [126]:

• Confidentiality: prescribes that access to data must be given only to

entities that are authorised to read them. To prove that they are entitled
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to read such data, these entities usually need to prove their identity first,

through a process called authentication.1 An example of authentication

system is the login form, where the user must type their username and

password to access confidential data. The system on which the entity

is authenticating knows which entities are authorised to read specific

data. Hence, not all authenticated entity could be able to read some

data, because they also need to be authorised for it.

• Integrity: prescribes that data must be protected against improper mod-

ifications. This can happen with accidental corruption or with mali-

cious alterations performed by malicious entities. Integrity also pre-

scribes that data must not be improperly cancelled, and while data main-

tain their integrity, any entity that has issued such data must not be able

to claim the opposite (i.e., that the entity has not issued those data, or

that data contain different information). Such last property is some-

times defined separately from Integrity, in another different property

called Non-Repudiation. For example, calculating the hash of a file can

help understanding if such file has been altered.

• Availability: prescribes that data should always be accessed reliably. In

other words, exceptional circumstances should not hinder access to and

use of data — for example, several companies implement the so-called

disaster recovery procedures that, in case of calamities such as earth-

quakes, inundations, fires, etc., can be activated to timely restore access

to data. For example, keeping backups in a different facility than the

data center’s is a common disaster recovery practice against fire hazard.

Similarly, business continuity procedures are implemented by compa-

nies to keep core functions (such as access to data and business criti-

1Authorisation can happen without authentication as well, although today they are increas-
ingly being tied together: for example, an employee who is accessing a secured area within a
facility by entering a numeric passcode is confirming they are authorised to access that area, but
as they give no information on their identity, they are not being authenticated. A similar thing
happened in the past with prepaid public phone cards — the user was authorised to make a call
if there was credit within the card, but there was no authentication system in place.
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cal operations) alive during disservices. For example, having a backup

power generator can help in case of blackout, and redundant network

nodes can help in case of failure of a single node.

These three properties, as the reader may have noted, are called the CIA

Triad because of their initials. To ensure security of information, these prop-

erties must be guaranteed for both data at rest and in transit. Data at rest are

data that are stored in memory (e.g., an hard disk, on the cloud, on an USB

stick), while data in transit are data that are being moved from one place to

another (e.g., data that is being sent through the Internet) [78].

As the CIA Triad is the fundamental pillar of information security, it fol-

lows that if one of the properties is negated within a certain system — either

a piece of hardware, a software, or any other component — there is a secu-

rity problem, known as a vulnerability. Particular attention is due to the word

system, as when the same security problem is discussed theoretically, not in

relation to any known system, we talk about a weakness instead [149]. For

example, a weakness would be Cross-Site Scripting (XSS) in general, while a

vulnerability would be the possibility to exploit XSS within a specific version

of a certain JavaScript library.

Not all vulnerabilities have the same impact, as it depends on what the

adversary is allowed to do during and after the exploitation. The Common

Vulnerability Scoring System (CVSS) is currently considered the state-of-the-

art to measure the impact of existing vulnerabilities [61]. CVSS v3.1 takes into

account eight variables to output a severity score in the 0-10 range. Vulner-

abilities scored with 0 are considered to have no impact on the CIA Triad,

and hence no impact on the security of the component, while vulnerabilities

scored with 10 have critical impact on all three components. Factors taken in

consideration for the score are:

• Attack Vector: whether the adversary is allowed to (i) exploit the vul-

nerability remotely, or (ii) on the same network, or (iii) they need logical
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access, or (iv) they need physical access to the device running the vul-

nerable component;

• Attack Complexity: whether the adversary has to carefully prepare for

the attack, or the attack can be performed at will;

• Privileges Required: whether the adversary needs to have certain priv-

ileges to perform the attack (e.g., root access, user access), or not;

• User Interaction: whether the user needs to (often unwittingly) per-

form some actions to make the attack work;

• Scope: whether exploiting the vulnerability allows the adversary to im-

pact other components, instead of just the vulnerable one;

• Confidentiality: whether the adversary can violate the confidentiality

of (i) all, (ii) some, or (iii) no data via the vulnerable component;

• Integrity: whether the adversary can violate the integrity of (i) all, (ii)

some, or (iii) no data via the vulnerable component;

• Availability: whether the adversary can violate the availability of (i) all,

(ii) some, or (iii) no data via the vulnerable component.

Adversaries can leverage vulnerabilities to violate the CIA Triad through

scripts, programs or other resources called exploits [60].2 This means that

an exploit in the cybernetic domain can have different forms, depending on

the attacked system: it can be a piece of code, an archive, a webpage, or even

media, such as an image or an audio file. In fact, in Section 3.3 we will analyse

an audio weaponization process, which prescribes the adversary to craft an

audio file to exploit the self-activation vulnerability on VCDs.

2It is a common practice to use the word exploit as a verb as well. Hence, we can also say
that an adversary exploits vulnerabilities through the already mentioned scripts, programs or
resources.
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2.2 Introduction to Machine Learning

Before delving into Deep Learning, which will be a core topic throughout the

whole thesis, we introduce fundamental concepts of machine learning that

will help understanding more complex theory regarding Deep Learning.

The most common definition of a machine learning algorithm is given by

Mitchell [119] who states that “a computer program is said to learn from expe-

rience E with respect to some class of tasks T and performance measure P, if its

performance at tasks T, as measured by P, improves with experience E”. Hence,

a machine learning algorithm is made of three main components: T, P and E.

The first step is usually understanding T, that is, the class of tasks we want to

solve with machine learning. A few examples are [62]:

• Classification tasks: the algorithm is asked to assign a specific category

to a certain input, among a list of predetermined categories;

• Regression tasks: the algorithm is asked to find a curve that approxi-

mates the given inputs, to predict its value for unseen inputs.

• Anomaly detection tasks: the algorithm is asked to detect atypical items

within a certain list given as input.

These are only a handful of possible applications for machine learning

and, therefore, deep learning. We will discuss other tasks within Sections 2.3

and 2.4. Once the task is identified, we need to understand how it will gain

experience E — this usually happens by training the algorithm on a large set

of data, called a dataset. There are four main ways to gain experience [62]:

• Supervised learning: we use a dataset made of different samples, each

with their own features. Each sample is annotated, that is, there is indi-

cation of what is the correct prediction for it (e.g., the category it belongs

to, or a numerical value). Such annotation is called a label.
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• Unsupervised learning: we still use a dataset made of different features,

but it comes with no annotations. In this case, we usually want the al-

gorithm to learn the underlying probability distribution, or simply put,

relevant connections between the samples. This is very useful in clus-

tering tasks, in which the number of possible categories for the samples

is not known in advance.

• Semi-supervised learning: we use a dataset that is annotated only in

part, while the rest is not. The two parts can be used in conjunction, or

the labeled part can be used to label the unlabeled part, to have a larger

labeled dataset to use [180].

• Reinforcement learning: we make the algorithm interact with an envi-

ronment in a trial-and-error process to gain experience. Good interac-

tions (success in the task) are rewarded with positive feedbacks, while

unwanted interactions (failure in the task) are punished with negative

feedback. In this case, there is usually no dataset involved [62].

Finally, we want to specify a performance measure P for our algorithm.

We usually distinguish between the training performance, which is measured

on the training part of the dataset, and the validation performance, which is

measured on the validation part of the dataset. It is important to keep these

parts split, to avoid information on validation samples leaking into the algo-

rithm’s experience. In fact, as we ultimately want to measure our algorithm’s

performance on unseen samples (hence, we are mostly interested in measur-

ing validation performance), if they were part of the training process, they

would not be unseen, as the algorithm would already had the chance to at-

tempt its prediction on them, and would have received feedback for it (e.g.,

in supervised learning). Popular performance metrics are [62]:

• Accuracy: defined as the part of correctly predicted samples over the
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total number of samples.

A =
Correct Predictions

Total Samples

• Error Rate: the opposite of accuracy. In other words, it is the part of

incorrectly predicted samples over the total number of samples.

ER = 1−A

• Balanced Accuracy: reflects the real performance of algorithms when

dealing with unbalanced datasets. For example, let’s consider an anomaly

detection task, and let’s assume we have a dataset consisting of 9 mali-

cious samples and 1 benign sample. If our algorithm always predicts

that a sample is malicious, without even analysing it, such algorithm

would score an impressive 0.9 accuracy! Instead, balanced accuracy

considers predictions for malicious samples (True Positive Rate, TPR)

and predictions for benign ones (True Negative Rate, TNR) separately,

and returns their average. The same algorithm that scored a whopping

0.9 accuracy scores a mediocre 0.5 balanced accuracy in that same sce-

nario, making us realise that it is not efficient for anomaly detection.

BA =
TPR+ TNR

2

TPR =
True Positives

True Positives+ False Negatives

TNR =
True Negatives

True Negatives+ False Positives

• F1 Score: defined as the harmonic mean between Precision (P, true pos-

itives over all positive predictions) and Recall (R, i.e., TPR). Similarly to

balanced accuracy, it is a better metric than accuracy when dealing with

imbalanced datasets, especially if the cost of hitting false positives is dif-
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ferent from the one of hitting false negatives. F1 score can also be used

with multi-class classification [143].

P =
True Positives

True Positives+ False Positives

F1 =
2 · P ·R
P +R

Not all performance metrics are suitable for scoring all tasks and algo-

rithms, hence, the ultimate choice is the analyst’s, who can also use multiple

metrics at once to better understand how the algorithm is behaving.

Although we earlier said that what we ultimately want to measure is the

validation performance of our algorithm, this does not mean that the train-

ing performance is useless. In fact, the latter allows us to understand if the al-

gorithm is actually learning something about the training dataset, and, when

compared to the validation performance, it allows us to understand how well

the algorithm is generalising the task. Therefore, generally speaking, if the

training performance is too low, we say that the algorithm is underfitting the

dataset, that is, it is not able to generalise the problem well enough to actually

learn something relevant. Conversely, if the training performance is sensibly

higher than the validation performance, we say that the algorithm is overfit-

ting the dataset, that is, it is giving too much importance to specific informa-

tion found within the training dataset, which however does not generalise the

problem well enough [62].

While machine learning is a complex field with much more theory behind,

we believe the information discussed until now is already enough to under-

stand key concepts of the next section, where we will start taking a closer look

to one of the core topics of this thesis, that is, deep learning.
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2.3 Deep Neural Networks

Deep Neural Networks (DNNs) form the basic building blocks of Deep Learn-

ing, which is a class of techniques and methods employed in machine learn-

ing. A DNN is an artificial neural network that consists of a minimum of four

layers of units, also referred to as neurons. The first layer is known as the

input layer, while the subsequent ones are referred to as hidden layers. The

final layer is the output layer. In a typical feed-forward network, every hidden

unit obtains one or more elements from the previous layer, combines them,

applies a function, and transmits the data to the next layer [73].

Figure 2.1 displays a simple deep feed-forward network. Nodes labeled

with x belong to the input layer, those labeled with h are part of the hidden

layers, while y represents the only node in the output layer. Because every

node of each layer connects to all nodes in the subsequent layer, this network

is also known as a fully-connected network.

Figure 2.1: Simple Deep Feed-Forward Network

Deep Learning allows for the resolution of complex problems that are dif-

ficult to tackle using traditional programming methods or even classic ma-
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chine learning. This is due to either the problem’s complexity or the difficulty

in determining the features required to build a solution capable of solving it.

Some typical examples of Deep Learning applications include [102]:

• Object identification: recognising whether an image contains a par-

ticular object or identifying and enumerating the objects represented

within it. This is a challenging problem because digital images are ar-

rays of pixel values, and numerous variables can influence the object’s

representation (perspective, lighting, saturation, shape, details, etc.).

As such, identifying objects using traditional programming would be a

daunting task.

• Speech-to-text transcription: generating written text that corresponds

to the transcription of an audio file containing a specific utterance. Even

in this case, traditional programming faces significant difficulties, as

human voices differ significantly from each other and have many char-

acteristics that can influence the final waveform (timbre, pitch, speed,

etc.), without taking into account background noise, sound reflections,

and other factors.

• Topic classification: selecting the correct category amongst a given set,

for the paragraph or article under consideration. For humans, this task

necessitates an understanding of the text, whereas for a computer pro-

gram, it requires identifying the correct keywords, determining how sen-

tences are related, and so on.

Deep Neural Networks are usually employed to accomplish the above tasks,

with remarkable results. Researchers in Vision Science, the study of visual

perception, train Deep Neural Networks to recognise objects by teaching them

internal representations of such objects. Neural networks can use pixel val-

ues to identify and assemble edges, which are then used to identify motifs,

parts, and objects until the whole picture is constructed [101]. This hierarchi-
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cal process enables the neural network to learn how to distinguish between

similar items’ properties and correctly classify new, unseen samples.

The learning process usually occurs using the previously discussed super-

vised learning :3 human data analysts prepare a dataset that contains many

samples that can be used to train the network. For instance, if we are creating

a network that aims to recognise whether an input picture depicts a cat or a

dog, the training dataset might include 1,000 photos of cats and 1,000 photos

of dogs, for a total of 2,000 samples. A separate CSV file generally contains the

labels for each photo, indicating the solution to the problem. For example,

the label 0 would denote that the picture shows a cat, while 1 would indicate

the presence of a dog. The dataset is then partitioned into training and testing

parts as previously discussed, usually in an 80:20 ratio.

Intuitively, the training dataset is then used to train the network. The DNN

attempts to classify each sample in the dataset, and after each attempt, it ver-

ifies whether its prediction was correct. If not, a function called backpropa-

gation allows the error to propagate backward within the network (from the

output layer to the first hidden layer) to modify biases and weights of the en-

tire model, making it less likely for the error to occur again. This process is

repeated for all samples in the training dataset, completing a training epoch.

However, the network can be trained for multiple epochs for better accuracy.

After the training (or after each training epoch), the network can be validated

against the testing dataset. Because the DNN has never seen these samples,

it allows us to assess the network’s performance on new, unseen, samples.

This implies that the network must not have access to the correct labels of

the testing dataset, and the backpropagation algorithm must not be triggered

after each testing sample. Otherwise, the verification could yield misleading

values due to the details of the testing dataset leaking into the network [62].

Among the most common types of neural networks, we find Convolu-

tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

3Not all DNNs are trained with supervised learning ; for example, AutoEncoders are typically
trained in an unsupervised manner.
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2.3.1 Convolutional Neural Networks

Convolutional Networks, also known as Convolutional Neural Networks, are

deep feed-forward networks that take an array (or a set of arrays) as input,

called a feature map, and output another array representing the position of

a certain feature [101]. For example, if we feed the network an image (i.e., a

2D array), the first layer of a working network should output a feature map

that highlights the position of the edges within the image. Subsequent lay-

ers should highlight motifs, and so on until the last layer, which should have

identified all the important features of the represented object. In CNNs, the

aforementioned steps are usually achieved through convolution and pooling

operations within the network, which are connected by a set of weights [102].

Therefore, it takes more than one layer to identify edges from a color image

provided as input.

Figure 2.2 illustrates a simple example of a CNN, in which each convolu-

tional layer comprises of the convolution and pooling operations mentioned

earlier, along with an additional step called the detector [62]. The convolution

operation is typically represented by the following formula:

s(t) =

∫
x(a)w(t− a) da

Here, x is the input matrix and w is a filter matrix referred to as a ker-

nel [62]. The convolution calculates the integral of the product between the

input and the flipped kernel. The output of the convolution is then fed to

an activation function, such as the Rectified Linear Unit (ReLU) or Softmax,

which forms the detector step. Finally, the detector’s output undergoes pool-

ing, which partitions the input into rectangular regions and generates a new

n ∗m feature map. The values in the new feature map depend on the pooling

function employed. For instance, the Max Pool function selects the highest

value in each rectangular region to populate the corresponding value in the

new feature map, whereas other pooling functions utilise the average of the
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values or their norm. This process aids the network in retaining consistency

despite small input value translations [62].

Figure 2.2: Simple Convolutional Network

We can observe another example in Figure 2.3, where (a) represents a po-

tential input that is divided into 2x2 areas. From such input, the output of

the max pool function is represented in (b), while the output of the average

pool function is depicted in (c). After all the convolutional layers, the output

is usually passed through two fully connected layers, and the final layer is the

output layer, which is used for classification purposes.

Figure 2.3: Examples of Pooling Operations: (a) Input Matrix After the Ap-
plication of a 2x2 Filter, (b) Max Pooling Output, (c) Average Pooling Output

2.3.2 Recurrent Neural Networks

While CNNs excel at working with data that has a clear grid-like structure,

such as arrays and matrices, they are not the best choice for dealing with one-

dimensional sequential data. In this case, Recurrent Neural Networks (RNNs)

are usually preferred [62]. The general idea behind RNNs is to have shared
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parameters across different parts of the model, rather than separate layers

connected with certain weights as in CNNs. Instead of a set of layers, each

specialised in extracting a certain feature (edge, motif, etc.), RNNs have a set

of nodes that share information and can retain knowledge of different parts

of the analysed input. This is particularly useful when working with language,

as there can be multiple formulations of the same sentence. For example, to

humans, “Yesterday, I played a tabletop game” and “I played a tabletop game

yesterday” have the same meaning, whereas it may not be as obvious for a

neural network. The discussed information sharing among the whole model

helps RNNs to comprehend this [62]. An example of an RNN that takes input

and produces an output at each time step is shown in Figure 2.4.

Figure 2.4: A Simple Recurrent Neural Network

In the picture, we can see the input x, the hidden unit h, the weight matrix

W , and the output y. It is worth noting that this is not a deep RNN because

it only has one hidden layer. This network takes an xt input and produces an

output yt at any given time t. The hidden unit h at any given time t also re-

ceives its previous output as input, which is parametrised by W . Because this

network can give as many outputs as the inputs it receives, it is also called a

many-to-many network, in which the input layer has the same dimension as

the output layer [38]. Other types of RNNs include many-to-many networks

with an input layer that has a different size than the output layer, many-to-

one networks with many inputs but only one output, one-to-many networks

consisting of one input but many outputs, and one-to-one networks, which

have a single input and a single output [38].
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2.4 Natural Language Processing

Natural Language Processing (NLP) is a field that enables computers to un-

derstand and utilise human languages, such as English, through writing or

speaking [62]. It merges various fields such as computer science, artificial in-

telligence, and linguistics, requiring interested scientists to be proficient or

skilled in these related areas [124].

NLP is closely related to the Voice Personal Assistants mentioned in Chap-

ter 1. To interact with the user via the voice channel, the device must (i) cap-

ture the user’s voice command, (ii) convert it into text, (iii) comprehend the

user’s request, (iv) execute the command, (v) generate a text response to the

command, (vi) convert that response into artificial speech, and finally (vii)

output it to the user via the device’s speakers. Although these steps are nat-

ural for humans when conversing with each other, they involve numerous

complex technologies and algorithms when performed by computers. While

NLP has several other applications, the following tasks are the most relevant

for this thesis and can be grouped into four categories: Speech Recognition,

Language Understanding, Language Generation, and Speech Synthesis [43].

In Section 2.5.3, we will discuss Speech Synthesis, while we will provide infor-

mation on the other three tasks below.

2.4.1 Speech Recognition

In the previous sections, we mentioned Speech-To-Text (STT) transcription

as one of the most common applications of Deep Learning. Also known as

Automatic Speech Recognition (ASR), the formal goal of this task is to create

“a function f∗
ASR that computes the most probable linguistic sequence y given

the acoustic sequence χ:” [62]

f∗
ASR(χ) = arg max

y
P ∗(y |X = χ)
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In this function, χ = x(1), x(2), ..., x(T ) is an acoustic input sequence, each

audio frame x(t) typically being 20ms long, and y = y1, y2, ..., yN is the set

of output words, i.e., the STT transcription, and P ∗ is the true conditional

distribution from χ to y [62].

Although researchers started approaching ASR with technologies like

Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs) to-

wards the end of the last millennium, it was verified in 2012 that, given the

advances in both hardware components and machine learning algorithms,

DNNs were more suitable than GMMs to perform this kind of task, and could

be used in conjunction with HMMs or other technologies to outperform ex-

isting solutions at that time [73]. Recently, the End-to-End (E2E) modeling

has revolutionised the ASR field once again, outperforming the current state-

of-the-art. There are three main advantages of using E2E approaches over

hybrid DNN ones [105]:

• They make use of a single objective function instead of multiple ones,

which has the advantage of being able to find a global optimum.

• Their output is a direct list of characters or words, while other ap-

proaches require further steps before being able to read a valid ASR

transcription.

• Because only one network is used for the task, the solution is overall

more compact, enhancing its deployability.

There are several E2E techniques that are currently being used for ASR, but

the Recurrent Neural Network Transducer (RNN-T) [66] is the most popular

in the industry due to its natural streaming capability [105].

Figure 2.5 shows the design of RNN-Ts, illustrating their three main com-

ponents for ASR, which are the encoder, predictor, and joiner [109, 81]:

• Predictor: takes the previous output yu−1 as input (which is null for the

first iteration) and generates a feature gu.
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Predictor

Encoder

Joiner Linear Softmax Output

xt

yu-1

ft

gu
zt,u ht,u Pkt,u yu

Figure 2.5: A Typical Recurrent Neural Network Transducer (Adapted
from [81])

• Encoder: the most critical component in all E2E ASR models. It con-

verts the audio input xt into a feature representation ft [105]. While

Long Short-Term Memories (LSTMs) were initially used as encoders in

RNN-Ts for ASR, Transformers are now preferred due to their attention

mechanism [105], which enables them to outperform LSTMs [174].

• Joiner: a feed-forward network that combines the encoder’s and pre-

dictor’s outputs. Its output zt,u typically undergoes linear and Softmax

functions to generate a probability distribution P k
t,u over all possible la-

bels k (e.g., letters, phonemes, words, or the null value).

Once a label is selected, the predictor will use it as input for the next cycle,

where the next audio time frame is fed to the encoder. This process repeats

until the entire audio is analysed, i.e., no more time frames xt need to be fed

to the encoder.

2.4.2 Language Understanding

After receiving a text utterance, a personal assistant still needs to understand

the user’s intended action or request. While old-style text-based computer

games like Zork4 included the possibility of giving text commands to a pro-

gram since the 1970s, these programs lacked the ability to understand com-

mands that were not directly hard-coded.

4https://store.steampowered.com/app/570580/Zork_Anthology/
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Modern Natural Language Understanding (NLU) technologies, some-

times called Spoken Language Understanding (SLU), attempt to semantically

interpret the given text input, usually by executing three steps [173]:

• Dialogue Domain Identification: understanding the general topic of

the user’s question.

• User Intent Extraction: determining the specific action or information

the user wants to obtain.

• Slot Tagging: matching keywords in the user utterance to specific slots

within the selected intent.

This system is called Domain-Intent-Slot and is usually trained with a

large annotated dataset. For skills and actions, whose set of actions is lim-

ited compared to all possible utterances a Virtual Personal Assistant (VPA)

can receive as input, the application designer trains a smaller model with all

intents related to their application. In this case, the domain is the skill itself,

while slots can be seen as parameters of a specific intent [40]. For example, in

“Alexa, tell me how to complete the computer game Zork”, the domain would

be computer games or video games, the intent would be how to complete or

completion, and there would be a single slot with the value Zork.

Alternatives to the manual annotation of training datasets for Domain-

Intent-Slot solutions are still being developed. For example, Zeng et al. [173]

propose a solution to automatically detect intents and slots in a domain-

independent environment. They perform three steps:

• Intent-Role Labeling: classifying each sub-word of an input utterance

into an approximate label, using BERT [46].

• Concept Mining: refining each label to make it more precise, by means

of mention embeddings (e.g., Word2vec [117]) and clustering.
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• Intent-Role Pattern Mining: applying the Apriori algorithm [164] to ob-

tain the most frequent patterns for the extracted intent-role, and deter-

mining which intent has the highest probability of being correct.

Another work by Kim et al. [90] leverages enriched word embeddings and

a bidirectional LSTM to improve state-of-the-art intent detection.

2.4.3 Language Generation

Language generation can be seen as the inverse of language understanding,

where the former maps abstract concepts or data to written text, while the

latter maps text to its meaning [142]. Before the advent of the Neural Network

revolution in the 21st century, Natural Language Generation techniques re-

lied on canned text, template filling, or more complex language generators

consisting of a discourse planner and surface realizer [142]. Today’s natu-

ral language generation techniques have evolved and can be classified into

various categories, each with its own sub-problems and state-of-the-art solu-

tions, often revolving around deep neural networks [50]:

• Text Abbreviation: this category involves summarising a long text into

a shorter one by extracting its key concepts. The three sub-problems

within this field include text summarisation, question generation, and

distractor generation.

• Text Expansion: this category involves expanding a short text to make

it longer. The two sub-problems within this field include short text ex-

pansion and topic-to-essay generation.

• Image-to-Text Generation: this category involves extracting informa-

tion from a video or image in the form of text. The three sub-problems

within this field include image captioning, video captioning, and visual

storytelling.
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• Text Rewriting and Reasoning: this category involves extracting the

main concepts from a sentence and applying them to generate new

short sentences or questions. The two sub-problems within this field

include text style transfer and dialogue generation.

Dialogue generation is a crucial sub-problem that concerns Voice Per-

sonal Assistants (VPAs) as they need to constantly answer user queries based

on data found online. While skills and actions still rely on template filling,

VPAs can leverage state-of-the-art dialogue generation techniques when no

skill is involved in the conversation. For example, the ChatGPT Virtual As-

sistant, built around Generative Pre-Trained Transformers (GPTs), is one of

the current state-of-the-art solutions for language generation and text classi-

fication [136]. Other state-of-the-art solutions include Recurrent Neural Net-

works, Knowledge Graphs, Generative Adversarial Networks, and more [50].

2.5 Voice-Controllable Devices
In Chapter 1, we already discussed how the Internet of Things has drastically

changed our lives over the last decade. Our homes are now filled with inter-

connected devices, some of which we can simply control with our voice. We

start this section by illustrating how many kinds of VCDs are there. After, we

discuss that, while these devices may improve quality of life for some users,

there are also concerning issues related to their security and to their user’s

privacy. Hence, we provide a brief summary of such problems.

2.5.1 Diversity of Personal Assistants and VCDs

VPAs are not the only existing assistants, as mentioned earlier. Past research

classifies personal assistants in five clusters, or archetypes [92]:

• Adaptive Voice (Vision) Assistants: they assist the user through the

voice channel and, if possible, through visual cues or screens.
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• Chatbot Assistants: they assist the user through a text channel.

• Embodied Virtual Assistants: they display a virtual character on a

screen, and provide a human-like interaction to their user, mostly for

educational purposes such as e-learning.

• Passive Pervasive Assistants: they do not interact with the user, but

proactively perform operations depending on information they gather

from the environment.

• Natural Conversation Assistants: they resemble human-to-human in-

teractions through speech. They can have different goals, such as acting

as a call center agent, or just pure conversation.

We can easily map the Voice Personal Assistants we talked about until now

to the first category of this taxonomy. However, we still need to identify which

kind of devices can be controlled through these VPAs, that is, which kinds of

VCDs are there. Kumar et al. [96] define a list of fourteen smart home devices

that can be found within a user’s network: computers, network nodes, mobile

devices, wearables, game consoles, home automation, storages, surveillance

systems, work appliances, home voice assistants (which we usually refer to

as smart speakers in this thesis), vehicles, TVs or media devices, home appli-

ances and other generic IoT devices.

While reading through this list, the reader will have probably noted that

we already introduced many of these devices. All of these devices can be

voice-controllable, although some devices will need to be paired to a VCD

running a VPA to work, as they do not directly embed the VPA. For example,

while a computer running Windows will have direct access to Cortana and is

therefore directly voice-controllable, a smart vacuum cleaner will have to be

paired to a smart speaker to be voice-controllable. In other words, the user

will need to issue the command to the smart speaker to turn on the vacuum

cleaner, and will not be able to talk directly to the latter. It follows that all
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these devices have different capabilities, and the user will be in charge of giv-

ing the right command to the right device (e.g., “Hey Google, tell the Roomba

vacuum cleaner to make me a coffee” will not be a valid command).

Similarly, given the vast amount of kinds of voice-controllable devices,

analysing the whole attack surface for all said categories is outside the pur-

pose of this thesis, as we want to investigate their vulnerability to self-issued

commands specifically, and we will focus on the security assessment of their

voice channel in particular. For this reason, we will only analyse the main se-

curity features offered by the majority of VCDs in Section 6.2 and, apart from

that, we will focus on the security of the voice channel only.

2.5.2 Privacy Concerns

Privacy has been one of the primary concerns for users of smart speakers ever

since their release, primarily due to the fact that their microphones are al-

ways active. In addition, sometimes VPAs misclassify noise or certain words

as wake-words, leading to the recording of potentially private conversations

that the user did not intend to disclose [15]. According to a study by Abdi

et al. [1], 17 volunteers who owned a smart speaker had different percep-

tions about the data processing, storage, sharing, and learning performed by

voice-controllable devices. They were also unaware of how to protect them-

selves from existing attacks and were not aware of the existence of malicious

skills. It is important to note that VPA applications do not need to be mali-

cious to cause privacy issues. Alhadlaq et al. [7] analysed over 11,000 skills

and found that 75% of them did not have a privacy policy, so their users did

not know what kind of data was being processed or how it was used. Further-

more, among the skills with a privacy policy, 11% had an invalid policy that

redirected users to non-relevant pages or returned an error page.

Other researchers were able to perform a voice fingerprinting attack,

which is the inference of a voice command issued by a user by solely eaves-

dropping on the encrypted traffic sent and received by the VPA device [87].
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To do this, they used Wireshark to capture network traffic and then converted

PCAP network capture files into CSV network trace files, which were used to

train their model. The researchers argue that this attack can successfully infer

33.8% of the captured voice commands and propose a countermeasure using

a padding method called BuFLO. However, this mitigation would introduce a

high communication overhead.

The work by Mhaidli et al. [114] suggests that users view microphones as

one of the most intrusive and privacy-violating sensors. To address this issue,

they propose a way to dynamically turn on and off the voice-controllable de-

vice’s microphone by using interpersonal communication cues, such as the

user’s gaze: the device’s microphone turns on only if the user is directly look-

ing at the device. This method received positive feedback from users who

tested it, although there were some usability issues due to the fact that it was

hard for users to determine whether the microphone had turned on or not.

2.5.3 Security Issues

As consumer-grade VPAs are relatively new, research has begun to explore

new angles for exploiting such devices. For example, adversarial noise com-

mands are voice commands generated through Adversarial Machine Learn-

ing, in such a way that an ASR system misclassifies their content. Although

the human ear can hear a sentence s (or even no sentence at all [175]), the ASR

system classifies it as another sentence s’, chosen by the attacker. Such adver-

sarial attacks can have different goals, such as hindering command recog-

nition [106] or bypassing security measures [33, 94]. Other attacks against

smart speakers deceive the user into thinking they are talking with the VPA

or a legitimate application when they are actually talking with an attacker-

controlled application or device [95, 120, 177]. However, most of these works

[120, 35, 106] use external speakers to issue commands to a VPA, reducing

the overall likelihood of the attack. Another category of attacks against voice-

controllable devices leverages misclassification, where the VPA wrongly tran-
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scribes the user command, leading the user to perform actions they did not

intend to do [23, 95]. In this section, we discuss the most relevant classes of

attacks found in the literature within the last decade.

Skill Squatting and Misclassification

In their research, Kumar et al. [95] identify three categories of errors made

by VPAs when interpreting voice commands: (i) homophones, which are two

words pronounced the same way but with different spellings; (ii) compound

words, which can be split into their components (e.g., “outdoors” and “out

doors”); and (iii) phonetic confusion, which is the misclassification of one

phoneme with a similar one, resulting in the transcription of a different word.

When this misclassification occurs during the transcription of a skill name,

the VPA may open a skill that the user did not intend to activate. Adversaries

can exploit this vulnerability by publishing malicious skills with names that

are similar to popular skills. This attack is known as Skill Squatting. While

this attack is often associated with Alexa’s context (i.e., skills), it is also valid on

other VPAs, such as Google’s actions. However, Lentzsch et al. [104] found that

Skill Squatting attacks are not being used systematically in the wild and noted

that multiple skills can share the same invocation name, which can cause the

VPA to activate the wrong skill even if the name is correctly transcribed. In

another study, Bispham et al. [23] explore nonsense attacks on Google Assis-

tant, demonstrating that it is possible to trigger actions using words that are

nonsensical to humans but are interpreted as valid commands by the VPA.

They also provide a proof-of-concept for the so-called missense attacks on

Amazon Alexa, which consist in triggering skill intents with voice commands

unrelated to the intents themselves.

Voice Masquerading Attacks

Zhang et al. [177] propose the concept of a Voice Masquerading Attack (VMA),

in which a malicious application impersonates the VPA to deceive the user
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and exfiltrate personal data. Once the user runs the malicious application (or

the adversary finds a way to run it on the target device, for example, if they

are in physical proximity of an unattended device), the adversary can capture

all commands given to the application and give arbitrary replies while the

user believes they are interacting with the VPA. This can lead to both safety

and privacy violations, as the adversary can tamper with replies to actions

like turning on the heating or locking the front door, making it seem as if the

actions have been taken even if they have not. Additionally, the adversary can

ask for more details and trick the user into disclosing personally identifiable

information. During the VMA, the adversary may also pretend to invoke a

skill, impersonating it and faking its termination when appropriate.

The Lyexa attack [120] is the first example of a successful implementation

of a VMA. The attack leverages a rogue device featuring a microphone and an

ultrasonic speaker that the attacker places near the target device. The rogue

device jams legitimate voice commands and records them, modifies them to

be performed with an evil skill, and sends them to the target device via ultra-

sound. For example, an “Alexa, what time is it?” command can be modified to

“Alexa, what time is it? Use Evil skill”, and the command will be redirected to

the malicious application controlled by the attacker. As ultrasounds are un-

hearable for humans, this allows the attacker to intercept, edit, and send to

the target VPA all legitimate commands while also tampering with the reply.

Voice Spoofing Attacks

Voice spoofing attacks can be categorised into four different types: imperson-

ation, replay, voice conversion, and speech synthesis [162, 32, 167]. Although

the term voice spoofing attack usually refers to attacks that target Automatic

Speaker Verification solutions in literature, some of these attacks also target

the underlying Automatic Speech Recognition system. Therefore, in this sec-

tion, we discuss some examples of each of these types of attacks. We also

show that adversarial noise attacks can be included in the list of voice spoof-
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ing attacks as they can target both Automatic Speaker Verification (ASV) and

ASR systems: this was also done by Khan et al. [88], who list adversarial noise

attacks under the “indirect” category in their attack taxonomy.

Impersonation Attacks. Impersonation attacks feature an adversary who

attempts to mimic the legitimate user’s voice to bypass an Automatic Speaker

Verification system without any technological aid. It is also known as human

mimicking. It is still unclear how effective impersonation attacks are against

ASV systems, as studies have only been performed with a handful of speakers

and results appear inconsistent across various ASV systems and feature repre-

sentations [162]. Intuitively, voice impersonation attacks are more successful

when the impersonator’s voice is similar to the target user’s voice. However,

even professional impersonators are not consistently able to deceive current

ASV systems [71, 112].

Replay Attacks. In replay attacks, attackers record the legitimate user while

they issue a voice command and then use it to bypass the Automatic Speaker

Verification system. Attackers can also use a pre-recorded speech sample,

featuring the legitimate user uttering a voice command, collected by some-

one else [162]. Hence, replay attacks are relatively easy to perform as the ad-

versary does not need any technical expertise to carry out the required steps.

Recently, a replay attack involved the adversary surreptitiously recording the

legitimate user’s voice by using a recording device that is identical to the one

embedded in the target device. They then use a mouth simulator5 to replay

the voice command and perform the attack, bypassing state-of-the-art ASV

solutions [169].

Voice Conversion Attacks. Voice conversion systems manipulate an audio

file containing an utterance spoken by a certain user u’, with the intention of

tricking an Automatic Speaker Verification system to classify the utterance as

5Mouth simulators are pieces of hardware that attempt to closely replicate human voice and
must meet certain standard requirements to be classified as such.
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coming from the legitimate user u [162]. The so-called Parallel Voice Con-

version requires the adversary to have voice samples of both u and u’ to use

as a baseline (e.g., for training purposes). Additionally, these voice samples

must have the same content — in the case of spoofed voice commands, they

would have to feature the same utterances. In the case of Non-Parallel Voice

Conversion, the adversary still needs to have samples from both users, but ut-

terances do not need to be aligned [84, 85]. Cross-language voice conversion

is also possible: Zhou et al. [179] leverage Phonetic PosteriorGrams and av-

erage modelling to perform voice conversion between English and Mandarin

speakers. Recent work in the field is also exploring many-to-many and even

any-to-many voice conversion, as demonstrated by Guo et al. [68].

Speech Synthesis Attacks. Speech synthesis attacks use Text-To-Speech

(TTS) systems to convert written sentences into natural-sounding artificial

speech [162]. While generic TTS solutions cannot bypass ASV systems, they

can still issue commands to most commercial voice-controllable devices.

Consequently, the term speech synthesis sometimes refers to the synthesis of

speech with the goal of impersonating a particular user, whereas TTS synthe-

sis refers to speech created for non-adversarial purposes.

Advanced methods for speech synthesis include Generative Adversarial

Networks, like SEGAN [129], and probabilistic models like WaveNet, which

is a deep neural network designed to generate raw audio waveforms [154].

WaveNet has the unique ability to generate natural-sounding speech as well

as other types of waveforms, such as music. Recent research in speech syn-

thesis has produced VALL-E, a language model that uses conditional lan-

guage modeling to generate customised speech with just three seconds of

training on the target voice [157]. This technique, known as “zero-shot” learn-

ing, is achieved by training VALL-E on over 60,000 hours of English speech.

Adversarial Noise Attacks. Adversarial noise attacks often rely on machine

learning to develop customised solutions against Automatic Speaker Verifi-
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cation, Automatic Speech Recognition, Liveness Detection, or other counter-

measures. Abdullah et al. [2] conducted an analysis of attacks and defenses

on automatic speech and speaker recognition and provided a taxonomy of

threat models on voice processing systems. The authors also tested the trans-

ferability property for adversarial noise commands, demonstrating that it is

still challenging to craft adversarial noise samples that are transferable.

In a white-box attack against Mozilla’s DeepSpeech ASR implementation,

Carlini and Wagner [29] developed targeted audio adversarial noise examples

that can alter any waveform into another that is almost identical to the origi-

nal and gets classified by DeepSpeech as any other text chosen by the adver-

sary. However, this attack is not feasible over-the-air.

Recently, Yu et al. [170] developed a solution that applies semantic per-

turbations to any audio file containing a spoken sentence. This technique

ensures that the sentence appears unaltered to the human ear, but the VPA

converts it to a completely different utterance. The attack is undetectable

to the human ear, works over-the-air, and was tested against Amazon Echo,

confirming its dangerousness.

Devil’s Whisper [35] embeds hidden commands into songs, similarly to

CommanderSong [171] from which it stems. This approach targets black-box

systems using a transferability-based approach and two models to generate

adversarial noise samples for most of the commercial ASR systems.

DolphinAttack [175] modulates voice commands on ultrasonic carriers

with a frequency greater than 20 kHz, achieving complete inaudibility of the

malicious voice command. However, this technique requires an ultrasonic

speaker to be performed. The already discussed Lyexa [120] also leverages

voice commands modulated on ultrasonic carriers.

An adversarial attack that does not leverage audio files is discussed in the

work by Sugawara et al. [147]. This technique aims amplitude-modulated

light towards an exposed microphone aperture in a VPA device and is able

to inject arbitrary commands even when more than 100 meters away from
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the target device. Similarly, Yan et al. [168] make use of a piezoelectric trans-

ducer to guide ultrasonic waves through a solid transmission media to inject

inaudible commands.

2.5.4 Discussion on Security Issues

Although not all the attacks discussed in Section 2.5.3 are strictly related with

the rest of the thesis, and comparison of our work with these will be done in

the next chapters when appropriate, with this section we want to show that

some form of initial access is always required to perform attacks on the voice

channel. This is not to be considered a problem, as in fact, even in the “clas-

sical” domain of system security exploitation, obtaining exploits that do not

require any precondition is quite uncommon. Table 2.1 presents the initial

foothold required by all the attacks discussed in Section 2.5.3. For simplic-

ity, they are categorised as done in Section 2.5.3 within the table as well. As

can be seen, most attacks necessitate a speaker, whether it is an ultrasound

one or not, near the target device. This is because the malicious audio must

be reproduced in proximity to the target device to ensure that it hears and

executes the command. Social engineering is required for some attacks, pri-

marily because they necessitate user interaction, such as unwittingly opening

a malicious skill or interacting with a malicious skill instead of the VPA. A few

attacks require direct input over-the-line, which may be impractical in some

circumstances. Some attacks require setting up specific equipment near the

device or having a line of sight. Finally, for some attacks, particularly those

in the Voice Spoofing category, the required initial foothold is not explicitly

stated in the papers because they target human listeners or Speaker Verifica-

tion systems over-the-line rather than VCDs. However, it can be reasonably

assumed that the malicious audio files would need to be played in the vicinity

of the victim device for these attacks to work, necessitating the use of a rogue

speaker near the target, or a way to feed the malicious audio file over-the-line

needs to be found.
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While this shows that all mentioned attacks on Voice-Controllable devices

require an initial foothold to work, this does not undermine their overall im-

pact, which remains critical to the user’s safety, security, and privacy.

Table 2.1: Discussed Attacks to VCDs and Required Initial Footholds

Paper Category Required Foothold
Bispham et al. [23] Squatting/VMA Speaker near victim device
Kumar et al. [95] Squatting/VMA Social Engineering
Mitev et al. [120] Squatting/VMA Ultrasound speaker near victim device
Zhang et al. [177] Squatting/VMA Social Engineering
Guo et al. [68] Spoofing (Conversion) Not discussed
Hautamäki et al. [71] Spoofing (Impersonation) Not discussed
Kaneko and Kameoka [84] Spoofing (Conversion) Not discussed
Kaneko et al. [85] Spoofing (Conversion) Not discussed
Pascual et al. [129] Spoofing (TTS) Not discussed
van den Oord et al. [154] Spoofing (TTS) Not discussed
Wang et al. [157] Spoofing (TTS) Not discussed
Yoon et al. [169] Spoofing (Replay) Mouth simulator and microphone near victim device
Zhou et al. [179] Spoofing (Conversion) Not discussed
Carlini and Wagner [29] Adversarial Direct input over-the-line to the victim device
Chen et al. [33] Adversarial Speaker near victim device
Chen et al. [35] Adversarial Speaker near victim device
Kreuk et al. [94] Adversarial Not discussed
Li et al. [106] Adversarial Speaker near victim device
Sugawara et al. [147] Adversarial Equipment, line of sight on the victim device
Yan et al. [168] Adversarial PZT Transducer near victim device
Yu et al. [170] Adversarial Speaker near victim device
Yuan et al. [171] Adversarial Speaker near victim device
Zhang et al. [175] Adversarial Ultrasound speaker near victim device

2.6 Amazon Echo and Alexa
As in Chapter 4 we discuss an attack to self-issue commands to Amazon

Echo Dot specifically, it seems useful to give some more details regarding said

voice-controllable device and its VPA, Alexa. Although it is possible to install

Alexa on smartphones, computers and tablets if the Amazon Alexa applica-

tion is available on the OS that is running on the device, Amazon has released

lots of devices running Alexa natively, which come in different designs and

can be split in two categories: home devices and portable devices. Among

the home devices we find:

• Amazon Echo: the main Amazon Alexa voice-controllable device. Until

the third generation it was cylinder-shaped, but the fourth one, which is

the latest, has the shape of a spherical cap, with 13 cm of height and 14
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cm diameter. It has a 76,2 mm woofer and two 20 mm tweeters. The ver-

sion that comes with an embedded clock is called Amazon Echo Plus.6

• Amazon Echo Dot: a cheaper VCD with lower overall sound quality. Un-

til the third generation it was cylinder-shaped, but fourth and fifth gen-

eration Echo devices are in the shape of a spherical cap. They are all

approximately 9 cm tall with a diameter of 10 cm. The fifth generation

Echo Dot embeds a 44 mm loudspeaker.7

• Amazon Echo Studio: a more expensive VCD with very high quality

sound, embedding a 25 mm tweeter, a 133 mm woofer and three 51mm

midrange loudspeakers.8

• Amazon Echo Show: a VCD that also embeds a touchscreen. Differently

from the others, this Echo device can allow interaction with the user via

text or by touching the screen. It has a few more functionalities, as it can

be used to perform videocalls, or as a digital photo frame, and there are

a few widgets that always keep some information on screen. Versions of

Echo Show are named after their screen size: 5”, 8”, 10” and 15”. They all

embed different loudspeakers and microphone arrays.9

• Amazon Echo Pop: a small device designed for small spaces. It has the

shape of a semi-sphere with approximately 9 cm diameter. It embeds a

49.5 mm loudspeaker.10

Amazon does not always explicitly list how many microphones are there

in the microphone array embedded in each home device. However, it is fair

to assume that more expensive devices have better or more microphones

within the array: for example, it has been reported that Echo embeds a seven-

microphone array, while Echo Dot only has a four-microphone array.11 An-

6https://www.amazon.com/Echo-bundle-Made-Amazon-Mount/dp/B08N6D9DYR
7https://www.amazon.com/dp/B09B8V1LZ3
8https://www.amazon.com/Echo-Studio/dp/B07G9Y3ZMC
9https://www.amazon.com/smart-display-Alexa-Remote-included/dp/B0BFZVFG6N/

10https://www.amazon.com/dp/B09ZXJDSL5/
11https://www.digitaltrends.com/home/amazon-echo-vs-dot/
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other example is the Echo Show: the cheaper 5” version only has a four-

microphone array, while the more expensive 15” version embeds a eight-

microphone array.12 Among the portable devices, we currently find only two

devices, as others are now out of production:

• Amazon Echo Buds: voice-controllable earbuds that feature the Alexa

VPA and embed two microphones per bud.13

• Amazon Echo Auto: a device that allows hand-free interaction with the

Alexa VPA while driving. The second generation of these devices is the

latest and embeds a five-microphone array.14

As we can see, there are many hardware differences between all the avail-

able Echo devices. Instead, regarding software implementations, unfortu-

nately Amazon did not release any detail about the stack underlying the Alexa

Voice Service, hence we do not have any detail regarding the Alexa ASR ei-

ther. This is because Alexa Voice Service runs on the cloud, hence, we have

no means to analyse it.

On the usability side, however, by simply using the device we can tell that

Amazon has implemented several software features: for example, all Amazon

Echo devices implement some sort of sonification, which is a non-verbal sig-

nal that is able to convey certain information to a human listener, who can

learn what it means [44, 160]. Therefore, when a timer goes off, the device

emits the sound a; when it is time to remind the user a previously mentioned

item, the device emits the sound b; when a new notification is ready to be

read, the device emits the sound c; when the Echo device is receiving a call, it

emits the sound d. This allows the user to avoid confusion if they receive all

these sound notifications one after another, because they are all designed to

convey different messages.

12See Footnote 9.
13https://www.amazon.com/All-new-Echo-Buds-2023-Release-True-Wireless-

Earbuds/dp/B09JVG3TWX
14https://www.amazon.com/Echo-Auto-Adjustable-Vent-Mount/dp/B0BFCJF66B
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2.6.1 Considerations for Self-Activation Attacks

As we observed, Echo devices come in a multitude of shapes, with varying

speaker and microphone architectures. Even without considering tablets,

laptops and smartphones, each with their own custom speakers and micro-

phones, we can already witness several combinations of hardware and device

shapes that will affect how the sound is emitted and received from the device

itself. This hinders self-activation attacks from an adversary’s perspective, as

there is no fixed and general condition in which the attack can take place. All

home Echo devices are designed to be placed in a fixed spot within a room,

without the need of moving the device anymore. However, if the user has a

battery to make their Echo device portable,15 this introduces another obsta-

cle for the self-activation attack.

In Chapter 4 we will perform a self-issue attack on a 3rd Generation Echo

Dot device, but for the above reasons, payloads created to work against that

device will not necessarily work against another device of the Echo family, as

the sound will be emitted and captured in a different way.

2.7 Further Key Concepts

There are other key concepts that the reader should know to fully understand

this thesis. However, we will explain such key concepts, when needed, within

the “Related Work” sections that each of the next chapters embed. This is be-

cause such sections illustrate similar works and past literature that is strongly

related to what is presented within the chapter, so that the reader can in-

stantly compare our contributions with the existing literature, without hav-

ing to go back to this chapter to check relevant information. Key concepts

that will be explained in the following “Related Work” sections are:

• Attack Models, such as Kill chains and OODA loops (Chapter 3);

15https://www.amazon.com/All-New-Made-Amazon-Battery-generation/dp/B09RV39989
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• Threat Models and relevant frameworks (Chapter 3);

• Countermeasures to Voice Spoofing Attacks, such as Liveness Detection

and Automatic Speaker Verification (Chapter 7).

2.8 Summary
In this chapter, we explored the fundamentals of information security. Af-

ter, we investigated the basics of Machine Learning, and then delved into

Deep Learning and its applications. We also provided an overview of Nat-

ural Language Processing and how its various sub-topics are interwoven to

create voice-controllable devices, which have become ubiquitous in modern

smart homes. Given their widespread adoption, it is crucial to protect these

devices from security threats and privacy breaches. As we have seen, numer-

ous attacks and privacy concerns have surfaced in recent years, revealing a

growing number of attack vectors and techniques. These challenges under-

score the need for robust security measures and ongoing research to ensure

the safe and secure use of voice-controllable devices in our daily lives.
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Chapter 3

The VOCODES Framework for
Attacking VCDs

In this chapter, we introduce a formalisation of attacks on voice-controllable

devices, focusing specifically on attacks leveraging the voice command self-

issue. To this end, we propose a tailored kill chain that lists the necessary

steps to perform self-activations, and we define a threat model to illustrate

the typical conditions under which attackers will operate when engaging

in these types of offensive activities. Together, these two tools make the

VOCODES (VOice COntrollable DEvice Self-issue) Framework.

3.1 Introduction

Defining and assessing environmental conditions before performing experi-

ments is vital to allow their reproducibility, and attacks on the cyber-physical

domain make no exception. Hence, the VOCODES Framework that we intro-

duce in this chapter and that was followed throughout the whole research will

allow future researchers and security analysts working on voice command

self-issue to perform other experiments (or reproduce ours) within the same

environment and conditions. This also allows researchers to compare results

and draw conclusions based on the performed comparison.
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The VOCODES Framework enables all of this by showing (i) which steps

an attacker has to perform to successfully execute a self-activation attack, by

means of our tailored kill chain, and (ii) how they should do so, by means of

the threat model defined in the following pages. We show that the VOCODES

Framework builds upon existing literature in a tailored way, by excluding con-

cepts that are not relevant in the self-activation context, modifying those ele-

ments that still make sense in such a context but that may need further cus-

tomisation, and including new ideas that are applicable exclusively in this

context. For example, in the creation of the VOCODES Kill Chain, we did not

include any step that requires the execution of source code, which is a com-

mon step in other kill chains, then we revisited the meaning of other basic

steps, such as the classical reconnaissance, and finally, we introduced new

techniques such as the audio weaponization.

Going forward, in Section 3.2 we illustrate other attack models, with par-

ticular focus on kill chains, and we discuss threat models; in Section 3.3 we

explain our tailored kill chain: finally, in Section 3.4 we formalise our threat

model for self-activation attacks.

3.2 Related Work

In this section, we illustrate different attack models, starting from kill chains,

useful to quickly pinpoint the current stage of an ongoing attack, and then

delving into other models. We then discuss threat models, which allow us to

formalise the conditions in which an attack takes place.

3.2.1 Attack Kill Chains

“Kill Chains” refer to the steps an attacker needs to take to carry out a suc-

cessful attack. This concept is essential for security researchers and analysts

to predict and react to potential attacks. Kill chains allow researchers to vi-

sualise an attacker’s possible actions, enabling them to understand the tech-
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niques used during an attack. Offensive security researchers can also use kill

chains to pinpoint where they are in the attack process, identify possible next

steps, and evaluate previous attempts [77]. In this section, we will examine

several essential kill chains discussed in the literature to understand the un-

derlying concepts of these valuable tools.

Lockheed Martin’s Cyber Kill Chain®

While the concept of kill chains was not new in the military context [152] and

in general in the cyber-physical domain [159], Lockheed Martin’s Cyber Kill

Chain® (CKC) [77], or Intrusion Kill Chain, is the first work in literature to for-

malise steps for a successful intrusion within a certain secured and trusted

digital boundary. Authors describe kill chains as a “systematic process to tar-

get and engage an adversary to create desired effects” [77], and they are rep-

resented as a “chain” because a single failure in one of the steps will cause a

failure in the entire process. The Intrusion Kill Chain has seven steps:

1. Reconnaissance: research and selection of targets to attack.

2. Weaponization: creation of a deliverable that can be used to perform

the intrusion, such as a file containing malware.

3. Delivery: actual delivery of the weapon within the security boundary to

be breached.

4. Exploitation: activation of the weapon and execution of its code, be it

a Microsoft Word file with a malicious macro on it, or a SQL Injection

within a website.

5. Installation: creation of a backdoor that enables the adversary to main-

tain persistent control of the target.

6. Command and Control: connection of the target to an attacker-

controlled channel, to enable the adversary to remotely control one or

more targets at once.
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7. Action on Objectives: achievement of general mission goals: collection,

exfiltration, and deletion of data, for example.

After detailing the seven steps, the authors explain how this information

can aid security analysts in quickly identifying the current stage of a live at-

tack, as well as efficiently categorising the different phases of security inci-

dents or red-teaming activities during post-event analyses.

Derived Kill Chains

While the Intrusion Kill Chain certainly sets a milestone in literature for

both offensive and defensive security activities, the research community later

identified two subtle issues within its structure [89].

The first problem is that kill chains in the digital domain are not exactly

chains, for two reasons: (i) the adversary may fail one or more steps listed

within the CKC, such as Installation or Command and Control, and be able

to complete their mission nonetheless; (ii) during a real attack, the adver-

sary might want to execute steps in a different order, or might need to “go

back” and execute a previous step within the chain again — in other words,

the CKC and other linear models do not allow for cyclicality of actions and do

not show that some attacks, such as those performed by Advanced Persistent

Threats (APTs), theoretically do not end if the threat (e.g., a malware) is not

detected and removed.

The second problem with the Intrusion Kill Chain is that it has no depth,

that is, it does not reflect the fact that some systems are not directly exposed

to the adversary. This means that, if the attacker wants to target them, they

need to breach another security boundary and execute a successful pivoting

activity from there, before being able to breach the target.

Modified Kill Chain The Modified Kill Chain (MKC) [89] tries to address

both problems at once: authors start with an explanation of the two problems

and a selection of linear and circular models derived from the CKC that fail
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to address them. Afterward, they present their solution as a model with two

layers: an external one (External Threat Layer) and an internal one (Internal

Threat Layer).

• External Threat Layer: consists of the seven steps found in the Intru-

sion Kill Chain, plus an Exit step that however is not explained within

the paper.

• Internal Threat Layer: very similar to the previous one, consists of five

steps: Internal Reconnaissance, Weaponization, Delivery, Exploitation,

and Installation — all already known steps in this new internal context.

Note that this model also allows for cyclicality, although a somehow lim-

ited one: while Command & Control can lead to Reconnaissance, and (inter-

nal) Installation can lead to Internal Reconnaissance, creating some cycles, it

is not clear why they could not lead to other steps as well.

Expanded Kill Chain Continuing from the second issue discussed in Sec-

tion 3.2.1, the Expanded Kill Chain (EKC) [110] proposes a solution by treating

the Intrusion Kill Chain as a process for gaining access to a secure perimeter

that does not yet contain the target system. The adversary must perform ad-

ditional actions before interacting with and breaching the system. Therefore,

the Expanded Kill Chain divides the attack into three distinct parts: Legacy

Kill Chain, Internal Kill Chain, and Target Manipulation Kill Chain

• Legacy Kill Chain: consists of the seven steps found within the Intru-

sion Kill Chain, in the same order. Because the adversary is trying to

get access to the external perimeter, the Exploitation step is known as

External Exploitation in the EKC.

• Internal Kill Chain: once the adversary gets access to the perimeter,

they usually have to look for their target. Hence, the Internal Kill Chain

consists of five steps: Internal Reconnaissance, Internal Exploitation,

69



3. THE VOCODES FRAMEWORK FOR ATTACKING VCDS

Enterprise Privilege Escalation, Lateral Movement, and Target Manipu-

lation. While the first two steps are (again) clearly already known steps

within a different context, Enterprise Privilege Escalation and Lateral

Movement allow the adversary to perform horizontal and vertical move-

ment within the network, to look for their target. Once found, the adver-

sary can proceed with the Target Manipulation, that is, they can proceed

with the final kill chain.

• Target Manipulation Kill Chain: at this point, the adversary only needs

to gain access to the target system and complete the mission. The five

steps of this final kill chain are: Target Reconnaissance, Target Exploita-

tion, Weaponization, Installation, and Execution, with this last step be-

ing the one in which the adversary activates the malicious payload(s) to

thwart system availability, steal or destroy data, etc.

While this work explains very well the differences between the actions that

the adversary has to perform within the different environments, it does not

address the problem of the cyclicality of actions.

The Unified Kill Chain

The Unified Kill Chain (UKC) [132] tries to combine the points of strength of

the most used kill chains while also maintaining a practical and qualitative

approach. The author describes the process for its creation, starting from a

literature review of the most important kill chains and then going through a

refinement process of the identified steps with the aid of different case stud-

ies. The output of this activity is a detailed kill chain consisting of 18 steps,

divided into three different cycles: In, Through, and Out.

• The In Cycle: describes the activities that the adversary has to per-

form in order to enter a certain security boundary. Steps in this phase

include Reconnaissance, Weaponization, Delivery, Social Engineering,

Exploitation, Persistence, Defense Evasion, and Command & Control.
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While most of these are already known, Social Engineering separates

the human contribution to the attack from the actual exploitation, while

Defense Evasion gives further granularity on what is needed to gain ac-

cess to the organisational perimeter.

• The Through Cycle: the adversary is now in the targeted network, but

they do not have yet all the required privileges to access the target as-

sets and complete the mission. This phase includes Pivoting, Discovery,

Privilege Escalation, Execution, Credential Access, and Lateral Move-

ment. While Privilege Escalation, Lateral Movement, and Execution are

already known from the EKC, Pivoting and Discovery further detail how

the adversary should explore and communicate with the other devices

within the internal network.

• The Out Cycle: the adversary has now access to the target system and

gains the privileges to execute the final tasks and complete the mission.

Actions in this phase include Access, Collection, Exfiltration, Impact,

and Objectives, giving granular detail over which actions on assets and

data the adversary might want to perform.

By describing the different contexts in which the attack takes place as “cy-

cles”, this kill chain elegantly solves both problems discussed in Section 3.2.1.

Furthermore, the authors acknowledge that the adversary does not necessar-

ily need to perform all the actions to succeed — they do not even need to

follow the order in which they are presented, and one or more failures do not

necessarily imply a mission failure. With its high level of detail and practi-

cal design, the Unified Kill Chain is currently considered the state-of-the-art

regarding kill chains.

MITRE ATT&CK®

It is also worth mentioning the MITRE ATT&CK® (ATT) matrix [150], although

it is not considered a kill chain, but more of a knowledge base. This matrix
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lists all known adversary tactics and techniques observed in real-world at-

tacks, divided into 14 different categories: Reconnaissance, Resource Devel-

opment, Initial Access, Execution, Persistence, Privilege Escalation, Defense

Evasion, Credential Access, Discovery, Lateral Movement, Collection, Com-

mand and Control, Exfiltration and Impact. While these should all be famil-

iar names for the reader by now, ATT&CK® goes the extra mile by present-

ing all known techniques to perform each step. For example, Initial Access

might be performed via Phishing, the use of Valid Accounts, or because of a

Trusted Relationship. The added value in this is that, for all of these tech-

niques, ATT&CK® also provides all known sub-techniques and tools that can

be used for the purpose, making it a valuable reference for both red and blue

teaming activities.

3.2.2 Other Attack Models

In this section, we discuss other attack models and we compare them with

kill chains, to highlight why the latter were chosen to illustrate self-activation

attacks in this work.

OODA Loops

Similarly to kill chains, OODA Loops were firstly introduced in the military

context [27], but nowadays they have multiple fields of application, including

information security [26, 172]. OODA Loops help in defining hypotheses and

tests to make (or, generally speaking, actions to perform next) by gathering

and analysing all information available from multiple contexts. OODA Loops

comprise four steps [27]:

1. Observation. The analyst gathers information from multiple sources,

for example by interacting with the environment (e.g., scanning a sub-

net), looking at information publicly available (e.g., performing Open

Source Intelligence), or simply watching as events unfold (e.g., stum-

bling upon a website that exposes error information).
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2. Orientation. The analyst assesses all information they have, taking into

account the old information, the newly acquired one (perhaps thanks to

the Observation process), previous analyses and experience, and even

their cultural background.

3. Decision. The analyst decides which action will be performed next.

This decision is strongly influenced by the two previous processes, and

in turn will influence the next Observation process.

4. Action. The analyst performs the selected action and acquires new in-

formation from it. This process is strongly influenced by all three previ-

ous processes, and in turn will influence the next Observation process.

From the description above, it should be clear why OODA Loops have ap-

plications in a vast number of fields: these are concepts that are implicitly

learnt and executed by all humans from the birth, hence, we are very familiar

with the whole process and we are easily able to adapt it to fit several contexts.

Therefore, we can also use OODA Loops to describe ongoing cyber attacks:

to do so, Bautista [18] mapped all steps of the Lockheed Martin kill chain to

the OODA Loop, coming to the following conclusions: (i) the Observation

step can be mapped to both Reconnaissance and Action on Objectives, the

former because the adversary is gathering information to attack their target,

and the latter because after the whole chain, they can look for further exploits

or targets to attack; (ii) both the Orientation and Decision steps are mapped

to Weaponization, as the adversary has to analyse all the obtained informa-

tion to decide how to attack the target; (iii) the Action step is mapped to De-

livery, Exploitation, Installation and Command & Control, as these represent

what the adversary does to specifically attack the target.

While OODA Loops are very practical for describing the decisional pro-

cesses of the adversary and their consequences, we can see how any mod-

ification to the loop, for example adding a step, would radically change its

structure and would not make it an OODA Loop anymore. Additionally, most

73



3. THE VOCODES FRAMEWORK FOR ATTACKING VCDS

of the adversarial actions are mapped under the Act step of the loop, so it be-

comes increasingly harder for an analyst to pinpoint all the actions mapped

under the Act step to a certain goal of the adversary, which is what we want to

do in this work.

MITRE CAPEC

Common Attack Pattern Enumeration and Classification (CAPEC) [121] con-

tains details, for each known weakness, on how it can be found and exploited.

The main difference between CAPEC and ATT&CK is that the former is fo-

cused on the exploitation process on application security, while the latter de-

scribes the whole adversarial lifecycle, from initial recon to the final impact.

A CAPEC entry contains all information to exploit a certain weakness,

sometimes even more than one at once. For example, CAPEC-631 contains

details on how to exploit XSS weaknesses, and it is tied to both CWE-79 (XSS

itself) and CWE-20 (Improper Input Validation). The description on how to

exploit the vulnerability generally contains three steps: Explore, Experiment,

Exploit. In the Explore phase, the adversary tries to find entry-points to ex-

ploit the vulnerability, such as user-controlled inputs. In the Experiment

phase, the adversary tries different payloads to check whether the entry-

points are sinks that allow exploitation. Finally, in the Exploitation phase,

the adversary manages to exploit the vulnerability and is allowed to perform

actions on the target. Each of these phases can comprise multiple steps.

From the above description, we can see how CAPEC could help in defin-

ing the steps that the adversary would have to perform to exploit the self-

activation vulnerability. However, kill chains remain a more powerful tool to

do so. The reason behind this is twofold. First, CAPEC is able to give a good

insight on the process of exploiting of a vulnerability, but it does not give the

chance to describe other steps of the attack, for example, how can an adver-

sary chain this vulnerability to another to gain persistence, or how to actually

1https://capec.mitre.org/data/definitions/63.html
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deliver payloads to the victim, or the techniques to use for weaponization.

Although we could describe these processes in such a way to make them fit

the Explore, the Experiment or the Exploitation phase, this is not regulated by

CAPEC in any way and leaves most of these processes unformalised and their

discussion subjective to who is filing the CAPEC entry. Second, the CAPEC

entry is thought as a linear process to exploit a weakness: hence, it does not

allow for cyclicality and it has no depth, which is something we discussed as

a limitation of the original Lockheed Martin Kill Chain.

Howard’s Model

In 1998, Howard and Longstaff [74] presented a taxonomy for computer se-

curity incidents. In their taxonomy, they distinguish between:

1. Security events, which are actions towards a target. Note that they are

not necessarily malicious;

2. Security attacks, which are defined as a sort of chain. They start with a

tool that is used to exploit a vulnerability, which in turn executes a se-

curity event (i.e., item 1 in this list) that leads to an unauthorized result.

Hence, if there is an unauthorized result, then an attack took place;

3. Security incidents, which are security attacks (i.e., item 2 in this list)

performed by an attacker to reach a certain objective.

Security attacks resemble what we have seen in kill chains, OODA loops

and CAPEC, that is, a list of steps against a target to exploit a vulnerability and

achieve objectives. In this sense, Howard’s Model is not that different from a

kill chain — furthermore, it also allows for ciclicality. In fact, a single itera-

tion of the aforementioned “chain” of components is not enough to perform

a complete attack.

For example, the adversary might want to scan (action) all machines on a

certain subnet (target) to check for known vulnerabilities to exploit. In this
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case, they perform a security event, and not directly an attack. Afterwards,

they go back to the start of the chain, and they use Metasploit (tool) to exploit

(action) the buffer overflow (vulnerability) that the scanner had found on an

exposed service running on a machine in the subnet (target) to get a reverse

shell (unauthorized result). In this case, the adversary performed a security

attack or an incident, depending on whether the adversary has reached their

overall objective. However, if the adversary wants to perform more malicious

actions (e.g., getting persistence on the breached machine, performing lateral

movement), they have to restart the chain again.

This means that the Howard’s Model is not a tool to describe the differ-

ent phases of an ongoing attack, but rather a tool to describe all the pos-

sible actions the adversary could do to perform an attack, in a fine-grained

way. Hence, in the Howard’s Model, the analyst does not care whether the ad-

versary is performing Exploitation, Installation, Command & Control, Lateral

Movement, or else — they only care about splitting the incident in a sequence

of actions towards targets, and then analysing the context (tool, vulnerability,

unauthorized result) to determine whether the adversary has performed an

attack or not. However, this makes us lose the general vision of the attack, as

for every action we do not know at which stage of the attack we are, as a real

attack is potentially made of tens or hundreds of actions.

While we can certainly model every single action of our adversary in the

self-activation context using this model, we will show in the next sections how

epistemic modal logic [20] is a more powerful tool for this purpose, as it also

allows us to model the bits of knowledge that the adversary and all the other

actors involved in the attack have before, during, and after a successful attack.

Attack Graphs and Trees

Other models that allow us to define all actions that an adversary could per-

form during an attack are the attack graph [41] and the attack tree [139]. Lal-

lie et al. [99] performed an extensive review of attack graphs and trees, finding
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that they share enough similarities to be grouped under a single category, that

is, the graph-based methods for attack modeling. Other categories in their

taxonomy include use-case methods, which model attacks based on practical

use cases, and temporal methods, which list steps of the attack to be per-

formed one after another — in fact, kill chains fall in this category.

Both attack trees and graphs take into account the preconditions for the

attack to happen, albeit in different ways, and with different levels of detail.

In attack trees, the attack is described with a bottom-up approach, and an

example is in Figure 3.1. At the top of the tree, we have the goal of the at-

tack, in this case, getting admin privileges. As we descend the tree, we read

what the adversary must do to achieve the goal in the parent level. For exam-

ple, the adversary is able to get the admin’s password if they either (i) get a

password file, (ii) successfully perform brute-forcing, (iii) get to snoop on the

admin while they are typing the password, (iv) get to install a keylogger on the

admin’s machine, or (v) bribe the admin to give them the password.

Get physical
access to
machine

Get admin
privileges

Get admin
shell

Enter data
center Bribe operator

Break in Unattended
guest

Top 10M
passwords
dictionary

Get password
file

Get reverse
shellGet password

Bruteforce Snoop admin
while typing it

Install
keylogger Bribe admin

Custom
dictionary

Scan machine
to find

vulnerabilities

Install
malware

HID attackPhishingFind a 0-day
vulnerability

Exploit known
vulnerabilityPhishing HID attack

Figure 3.1: Example of Attack Tree (Adapted and Expanded from [139])

While in attack trees preconditions and actions are combined together to

achieve the top goal, in attack graphs these are listed separately as two dif-

ferent types of nodes. Let’s consider a vulnerable blog platform with three

roles: admin, writer and user. The admin has access to the general control

panel and is the highest role available, the writer can publish posts in the blog

and can access a writer-only control panel, while the user can just search for

posts and comment them. In Figure 3.2 we see a possible attack graph to al-
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low a user to become admin, where preconditions are rectangle-shaped and

exploits are ellipse-shaped. To begin with, the user can only comment blog

posts or type queries. As the search form is vulnerable to SQL Injection, the

adversary can just append a query that makes them become an administra-

tor; another possible way is to exploit an XSS on the blog comments section,

so that when a writer sees the adversary’s comment, the XSS payload would

activate and give the writer’s session key to the adversary, who can now login

as writer and access the writer control panel. The adversary can then exploit

a logic vulnerability to access the general control panel, as its webpage only

checks if the entity that is trying to access the page is not a normal user, but it

is not checking whether it is an admin or a writer.

Access to
/search page User Comment on

/blog

SQLi on
/search page

XSS with /blog
commentsAdmin

WriterAccess to
/cpanel?r=2

Logic flaw on
/cpanel?r=1

Figure 3.2: Example of Attack Graph

Even if both attack trees and graphs are powerful tools to understand pre-

conditions for the different phases of an attack and all the possible actions, we

will use epistemic modal logic for this purpose, as previously said, because it

also allows us to better define the attacker’s knowledge in a fine-grained way

throughout the whole attack and with a sleek notation.

3.2.3 Threat Models

In literature, the threat model has been defined as “a process that can be used

to analyze potential attacks or threats” [163, 153] and it has been widely used

78



CHAPTER 3

to describe the conditions in which an attack takes place, or to prove proper-

ties of security protocols. We hereby make an exemplificative, non-exhaustive

list of common threat models.

The Dolev-Yao model is perhaps one of the most popular models in the lit-

erature, designed to assess the security of cryptographic protocols that make

use of public key encryption. In this model, the adversary has the ability

(i) to intercept all messages between two parties that want to communicate

in a secure manner, (ii) to modify these messages, and (iii) to use them in

any conversation with said two parties, resulting in the powerful capability to

completely control the communication channel [49]. In the General Attacker

model, this concept is taken to the extreme, and every actor involved in the

conversation is considered to be a Dolev-Yao attacker. This is interesting be-

cause every actor at this point can choose, at every step of a protocol, if they

want to follow it or not, introducing two new concepts: (i) retaliation, that

is, the capability of an actor to retaliate if someone else violates the protocol,

hence introducing potential risks when deciding to pursue malicious actions,

and (ii) anticipation, that is, leveraging another actor’s misconduct to achieve

personal goals [16].

Biggio and Roli [22] describe threat models in the machine learning en-

vironment by introducing first the attacker’s goal. Then, they introduce the

adversary’s knowledge and their capabilities, that is, the actions they can per-

form. Finally, they use these data to express an optimal strategy for the adver-

sary in the form of an objective function. It can be noted that, although this

work explicitly uses the adversary’s knowledge and capabilities as parame-

ters to formulate the objective function, the other aforementioned works also

make use of these concepts, albeit in a less visible way. Additionally, Biggio

and Roli [22] also describe how such parameters change, depending on the

considered scenario — for example, in the white-box scenario, the adversary

knows all details of the target system (e.g., learning algorithms, hyperparam-

eters, etc.), while in the black-box scenario, they know none of them.
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In this thesis, we will model the adversary’s knowledge and capabilities

for the self-activation environment against VCDs by using epistemic modal

logic [20], and we will assume a black-box scenario, in which the adversary

knows nothing about the target system and the victim user.

3.3 The VOCODES Kill Chain

While several kill chains have been discussed to comprehensively describe all

the necessary steps for an attack, they may not always be the most suitable

for certain attack scenarios.

In the case of voice command self-issue attacks, we find that the Intrusion

Kill Chain is sufficient to describe the attack steps in Chapter 4, as every step

of the attack can be associated with a step in the Intrusion Kill Chain. How-

ever, other kill chains may not make sense or be necessary in this context.

Therefore, we introduce the VOCODES Kill Chain, which tailors the Intrusion

Kill Chain to the specific environment of voice-controllable devices.

The VOCODES Kill Chain outlines the steps necessary to carry out self-

activations on voice-controllable devices and incorporates modifications to

the Intrusion Kill Chain to make it more relevant in this context. Although the

changes made to the Intrusion Kill Chain are not essential, they aid in better

formalising the requirements and objectives of each step in self-issue attacks

on voice-controllable devices. By using the VOCODES Kill Chain, security

analysts can better understand and predict the actions of attackers targeting

voice-controllable devices through self-issue attacks.

3.3.1 Steps

The VOCODES Kill Chain comprises six steps: Reconnaissance, Audio

Weaponization, Initial Foothold, Exploitation, Persistence, and Actions on

Objectives. Figure 3.3 illustrates a graphical representation of these steps and

the possible cycles between them. The related steps of other kill chains for

80



CHAPTER 3

each step of the VOCODES Kill Chain are listed on the right. While some of the

steps of the VOCODES Kill Chain retain the same names as in the Intrusion

Kill Chain, it is crucial to discuss their meaning in this new context. Notably,

(i) the term “Weaponization” has been updated to “Audio Weaponization”, (ii)

Installation, Delivery, and Command & Control have been excluded, while

(iii) Initial Foothold and Persistence have been included. In the subsequent

sections, we will elucidate the rationale behind these modifications.

Reconnaissance

Audio Weaponization

Initial Foothold

Social Engineering

Delivery

Command & ControlExploitation

Persistence
Installation

Privilege Escalation

Action on Objectives

Defence Evasion

Information Gathering

Weaponization

Exfiltration

Impact

Figure 3.3: The VOCODES Kill Chain
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Step 1. Reconnaissance

The reconnaissance (recon, for brevity) step starts by identifying and select-

ing targets for the attack. In the case of commercial voice-controllable de-

vices, the adversary can obtain them by simply buying them online. However,

this is not necessarily true for other devices running open-source Voice Per-

sonal Assistants. In fact, while some open-source VPAs such as MyCroft have

their own commercial smart speaker [123], others such as Leon [67] do not.

This means that while assessing the presence of the self-issue or other related

vulnerabilities is relatively easy on commercial devices, as they share config-

uration and hardware, the adversary will have a harder time understanding

if they can self-issue commands to an open-source VPA running on custom

user-owned hardware. Hence, the attacker has to take this into consideration

while listing the devices and the VPAs they want to attack.

The reconnaissance step does not terminate when the adversary has se-

lected all target devices but continues with the identification of the related

wake-words and possible actions the device can perform. For example, if the

adversary wants to attack a device running the Alexa VPA, they have to know

that possible wake-words include not only “Alexa”, but also “Amazon”, “Com-

puter”, and “Echo”. Likewise, the command context is also important. For

example, if the adversary wants to attack the BMW Intelligent Personal As-

sistant [25], they need to know not only that “Alexa” is most likely not a valid

wake-word2 but also that “turn on the microwave oven” does not make much

sense within a car (as of today, at least!).

From the above discussion, it is easy to see why recon in this environment

is substantially different from the general strategy that consists of looking for

machines on a subnet, scanning ports to check running services, obtaining

operating system fingerprints, etc., because the component that we want to

attack, that is, the input voice channel, is already known. Once the attacker

2Cunningly, BMW IPA allows the user to choose a custom wake-word, so “Alexa” could poten-
tially be a valid wake-word.
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knows how to activate such an input channel and what the set of valid com-

mands is, they can proceed to the next step.

Step 2. Audio Weaponization

In the context of voice command self-issue, weaponization does not involve

writing code to directly exploit a vulnerability found in the previous step. In-

stead, the adversary’s goal is to generate a malicious audio file containing an

arbitrary voice command crafted for the specific context. This step involves

crafting the audio file to include the wake-word followed by the command.

However, simply generating an audio file with the desired contents may

not reliably trigger the self-issue vulnerability. As Chapter 4 will show, the

voice profile used to generate the commands plays an important role in ex-

ploiting the self-issue vulnerability. Some voice profiles generate commands

that are more easily recognised by certain Voice Personal Assistants.

Therefore, it is worth investigating the acoustic voice properties that char-

acterise human voices and how an adversary can manipulate them to create

audio files that are easily recognised by the target VPA. According to Dasgupta

[42], the human voice has four main attributes: pitch, loudness (or sound

pressure), timbre, and tone. Although speech rate is not among these main

attributes, it is still useful for our purposes, as the time gaps between words

can be used as a feature for detecting human emotions. Thus, we summarise

the five acoustic voice properties that an adversary should manipulate to gen-

erate voice command audio files:

• Pitch: the perceived frequency of vibrations emitted by a sound, mea-

sured in Hz.

• Loudness: strongly related to sound pressure, measured in dB.

• Timbre: the perceived quality of a sound, based on the type of sound

production. It has no measurement unit, but a digital representation

can be found by analysing the shape of a soundwave and its spectrum.
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• Tone: the variation of pitch in language, used to distinguish or empha-

sise words. It has no measurement unit.

• Speech rate: the speed at which a sentence is pronounced, measured in

words per second or as the average time gap between words, in seconds.

While an adversary could manually record their own voice commands

and test their effectiveness on the target VPA, this approach is not scalable

or easily automated. To generate malicious audio files, attackers can instead

utilise various text-to-speech (TTS) services available online and adjust the

five acoustic voice properties discussed earlier by modifying the parameters

and variables exposed by the TTS service. For instance, Azure TTS [116] offers

customisable settings such as:

• Voice Profile: a preconfigured voice that reads out the intended text.

• Pitch: the frequency of the voice used to read the text. It can be adjusted

by the user and corresponds to the pitch property mentioned earlier.

• Style: the manner in which the text is spoken, with options like cheerful,

sad, and friendly. It determines the tone of the voice.

• Speed: the playback speed of the text. The default speed is 1 but it can

be increased or decreased by the user, corresponding to the speech rate

property discussed earlier.

Using these TTS services to generate malicious audio files, attackers can

experiment with different voice profiles and settings to craft voice commands

that are more easily recognised by specific VPAs. While some TTS services

only allow customisation of a limited set of voice properties, Azure TTS offers

additional flexibility through the use of Speech Synthesis Markup Language

(SSML) tags. By using SSML, users can customise the five acoustic voice prop-

erties in more detail:
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• The pitch attribute of the prosody SSML tag allows for even more pre-

cise customisation of the pitch property, giving the user the option to

choose between absolute values (in Hz), values relative to the current

setting (specified as a variation in Hz or as a percentage), or constant

values from a preset list.

• The volume attribute of the prosody SSML tag allows for customisation

of the loudness property, by setting an absolute value (with 0 being the

quietest and 100 the loudest), a relative value, or a constant value.

• The styledegree attribute of the mstts:express-as SSML tag allows

for the intensity of the chosen tone property to be adjusted fur-

ther. For instance, an utterance within the tag <mstts:express-as

style=‘terrified’ styledegree=‘3’> will sound more scared than

one within an element with style=‘terrified’ and styledegree=‘1’.

• The rate attribute of the prosody SSML tag allows for customisation of

the speech rate property, which can be set to a relative value (with 0.5

indicating half the normal speed and 2 indicating double the normal

speed), or a constant value.

It is worth noting that some TTS services, such as Amazon Polly, allow

customisation of the timbre property as well. Amazon Polly achieves this by

using the <amazon:effect vocal-tract-length> SSML tag for the standard

TTS format.

Once an attacker has crafted several payloads with customised voice

properties, they must test them to ensure they trigger the self-activation of

the target VPA. If the payloads are not successful, the attacker must adjust the

parameters until a successful combination is found.

Step 3. Initial Foothold

Initial Foothold is the step in which the attacker gains the necessary privileges

to play an audio file containing a voice command payload on a target voice-
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controllable device, thereby delivering it to trigger the self-issue. As previ-

ously mentioned, the self-activation vulnerability can only be exploited on

devices that can play audio files and accept voice commands concurrently.

Chapter 2 explained that the Initial Foothold is a crucial requirement for all

attacks on Voice-Controllable Devices, such as using a rogue speaker near the

target device or a PZT transducer within the room. We identified two meth-

ods by which an attacker can achieve the Initial Foothold in the self-issue

scenario: social engineering and temporary access.

In the case of social engineering, the attacker must trick the user into ex-

ecuting a malicious application that provides the attacker with the ability to

play weaponized audio files. If the target VPA runs on a personal computer,

social engineering tactics may include sending phishing emails, links to scam

websites, or shipping malicious USB devices, with the expectation that the

user will execute the malicious application or insert the USB device. How-

ever, if the user can only interact with the device via the voice interface, as

with smart speakers, the social engineering strategy requires making the user

run a malicious VPA application. There are two primary methods to do so:

• Convincing the user to run the malicious application: this approach

might work with inexperienced users who may run the application for

any reason, such as applications claiming to offer “free money”, “music”,

or “feedback”.

• Performing a Squatting Attack: in this method, the attacker exploits

the fact that ASR systems often misclassify one phoneme with a similar

one, resulting in the transcription of a different word. The attacker de-

ploys an application to intercept the misclassification of the application

name by the VPA, which opens the malicious application instead of the

intended one, such as PayPal/PayPaul [95].

In the case of temporary access, the attacker can use the device for a lim-

ited time, either with the user’s permission or when the device is unattended.
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The attacker can then surreptitiously execute the malicious application. This

is reminiscent of privilege escalation techniques in which temporary, unau-

thorised, or non-privileged access is utilised to gain higher privileges on the

target. Moreover, if the attacker has temporary physical access to the target

device, connecting a device they hold may be sufficient to play audio files

without the need to execute an application on it. For instance, it is feasible to

connect any Bluetooth device to a smart speaker and play any audio file.

Once the target device executes the malicious application or connects to

the attacker’s device, it is de facto connected to an audio C&C server that the

attacker can use to issue voice commands to the target. It should be noted

that this operation generally does not require any user privileges on the target

device, as playing audio files is usually permitted. Furthermore, identifying

that the connection to the audio streaming service or the attacker’s device is

malicious would be challenging for antivirus software or any other protection

mechanism. This is because these actions are innocuous in nature, and the

malicious component in the communication is the voice command within

the played audio files, which is challenging to fingerprint due to the variety of

TTS services available on the internet and the possible customisation of the

weaponized audio files seen in the previous step.

Step 4. Exploitation

In the context of VPA self-issue, the exploitation process does not differ much

from its classical interpretation. During this step, the audio payload sent via

the C&C server is executed on the target device, exploiting the self-issue vul-

nerability. Once the payload is executed, any command contained within the

audio files played by the voice-controllable device is captured by its micro-

phone and executed successfully. As a result, the adversary gains the ability

to issue any permissible voice command to the device through the remote or

local audio streaming service.

However, if the target device gets disconnected from the malicious
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streaming server for any reason, the attacker would no longer be able to is-

sue any more commands to the device, thus ending or pausing the attack. To

avoid this, the attacker may try to establish persistent access to the device.

Step 5. Persistence

Similarly to the Exploitation phase, the Persistence step also shares some sim-

ilarities with its classical interpretation, depending on the target device that

the attacker wants to establish permanent access on. For instance, on a Win-

dows device, the malicious application already running on the target device

can use the Windows Service Control (sc.exe) to create a service containing

the malicious application, which would run every time the machine is booted

up. On Linux systems, a similar strategy involves using systemctl.

However, even if the traditional malware cannot be executed, and the at-

tacker is only capable of self-issuing voice commands, they can still achieve

persistence on the victim device. For example, on Android systems, the at-

tacker can use the Voice Access feature to perform any permissible operation,

such as opening applications, tapping buttons on the screen, typing in search

bars, visiting websites, etc. The attacker can then download and execute any

rootkit available for the device to gain persistent root access to it.

While this is not possible with smart speakers, as their applications run on

the cloud instead of the device, the attacker can protect the malicious audio

streaming by running a silent application on top of it, or by running an appli-

cation that performs a Voice Masquerading Attack to avoid detection by the

user. For instance, if an Echo device is playing a malicious radio station and

a skill is subsequently opened, if the user says “Alexa, stop”, this command

would only close the skill, but not the malicious radio station, enabling the

attacker to retain control of the device.
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Step 6. Actions on Objectives

Once the attacker gains the ability to issue any permissible voice command

to the device and has possibly established permanent access to it, they can

perform a range of malicious operations on the device itself, such as buying

items, tampering with calendars and local files, sending emails, setting up or

dismissing alarms, and more. If the target is a smart speaker, the attacker can

also potentially control other connected smart appliances, allowing them to

manipulate heating systems, unlock smart locks, turn off lights, and perform

actions that could put the user’s physical safety at risk.

In the context of VCD attacks, attackers typically have one or more of these

three objectives: (i) violating the user’s privacy by obtaining sensitive infor-

mation like passwords, PINs, or Personally Identifiable Information; (ii) ex-

ecuting malicious actions for financial gains, such as purchasing premium

features from applications owned by the attacker or transferring funds to the

attacker’s account via PayPal; (iii) undermining the user’s physical safety, such

as by opening their smart locks, turning on heating during a hot day, or turn-

ing off lights during the night.

3.3.2 Discussion

Unlike the Lockheed-Martin Kill Chain, our VOCODES Kill Chain does allow

for cyclicality of actions. In fact, the attacker may need to repeat one or more

steps from 3 to 6 in response to events that occurred during the attack. For

instance, if the attacker failed to establish persistent access or skipped the

persistence step for any reason, and the device gets disconnected from the

C&C server, the attacker may need to restart the attack from step 3. This is

also the case when the attacker wants to target multiple devices of the same

family — they will need to repeat steps 3 to 6 for each device.

The reader may have observed that not all steps of other kill chains are

connected to a step of the VOCODES Kill Chain. This is because they do not
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fit into the structured process that the attacker must follow to execute a self-

issue attack against a voice-controllable device. These steps include:

• Pivoting [UKC]: even if the attacker can control smart appliances by

self-issuing voice commands to a smart speaker, they cannot attack

them or exploit their vulnerabilities. Moreover, the adversary does not

have control over the tunneled traffic via such smart appliances or other

connected devices. Hence, this differs significantly from a classic pivot-

ing scenario.

• Discovery [UKC, ATT]: although the attacker can self-issue commands

that prompt the user to disclose any smart appliances they have, such as

setting up an application that intercepts all legitimate voice commands,

this is a very limited internal reconnaissance tool that is closer to social

engineering than discovery.

• Lateral Movement [UKC, ATT, EKC]: while the adversary can issue com-

mands to smart appliances connected to the target device, this is not

considered proper lateral movement since the adversary does not gain

a shell or any access to them.

• Collection [UKC, ATT]: the adversary does not have to collect informa-

tion before exfiltration since the attacker should always be listening to

or recording the legitimate user’s utterances, so any sensitive informa-

tion is captured the moment it is spoken by the user.

• Exit [MKC]: the authors of the paper [89] where this step is presented

unfortunately did not elaborate on its meaning. We can assume that it

implies that the adversary may want to stop the attack at some point,

either because they achieved their mission goal or to avoid detection.

However, this is not necessarily true: there are numerous attacks, es-

pecially those including C&C and zombie devices, where the attacker’s

goal is to gain control of as many devices as possible, and being de-
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tected is part of the game. In other words, the attack never ends. In the

VPA self-issue context, we have a similar scenario: assuming that the

attacker is gaining control of voice-controllable devices remotely, they

ideally do not want to terminate the attack since they would stop gath-

ering sensitive information and give up control of all breached devices.

While an adversary could proceed with this step at any time during the

attack, it is not ideal or necessary for the VOCODES Kill Chain.

Furthermore, to simplify the model, we have excluded several steps from

other kill chains that were redundant with existing terminology.

• Execution [UKC, ATT]: code execution can occur during the initial

foothold or persistence phases, but we do not consider the exploitation

of the self-issue vulnerability as code execution, as it involves executing

an attacker-controlled voice command rather than source code.

• Credential Access [UKC, ATT]: the adversary can obtain any passwords

or PINs entered by the legitimate user during the action on objectives

phase, but this is covered by the exfiltration step.

• Resource Development [ATT]: the adversary requires two resources for

the attack: the malicious application and weaponized audio files. While

developing the former is not explicitly mentioned in the VOCODES Kill

Chain, because the adversary could use an existing solution to cast a

radio station or use Bluetooth streaming to issue voice commands, the

latter is already included in the audio weaponization step, making this

step redundant.

• Manipulation [EKC]: manipulation includes further reconnaissance,

weaponization, exploitation, installation, and execution on the main

target. In the Expanded Kill Chain, this step was relevant because the

adversary had performed these actions on other scopes (i.e. external,

internal) and it was time to execute them on the target. However, this is
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redundant in the VOCODES Kill Chain, as there are no multiple scopes

and the adversary is already executing all these actions on the target.

In summary, we excluded these steps for simplicity and clarity in VOCODES.

3.4 The VOCODES Threat Model
The VOCODES Kill Chain provides a clear guide on what actions an attacker

should take — and in which order — to attack and gain control of a voice-

controllable device. Therefore, we will now introduce more formal details on

how the adversary must perform the required actions and who the actors are

during the attack. This will involve defining a threat model for self-issued

commands on voice-controllable devices. As it is common practice to de-

sign and describe threat models by formalising the attacker’s knowledge and

capabilities in the given scenario, we will use epistemic modal logic [45] to

achieve this, while modelling actors and their interactions with the environ-

ment and devices. Our syntax will be very similar to the one used by Bella

et al. [20], with the addition of explanations for the different statements as we

introduce them.

It is important to note that we only need to model knowledge and capa-

bilities of all actors involved: this is to better understand the attack and be

able to formally describe any condition of all actors at any given time during

the attack. As epistemic modal logic gives us exactly the ability to do so, we

do not need to perform any more threat modelling activities, such as threat

identification. The reason behind this is that the threat we are facing is al-

ready known, that is, the self-activation attack. Hence, we do not need to

implement and use threat identification frameworks such as STRIDE [115] or

other tools such as the already discussed Attack Trees [139], which could po-

tentially help in understanding the capabilities of an attacker, but could not

help as much in understanding or defining their knowledge. Later steps of

classical risk analysis activities, such as cyber risk quantification (i.e., evalu-
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ating impact and feasibility of the attack) and risk management (i.e., identi-

fying if the impact of the attack can be mitigated, avoided, delegated, or must

be accepted — in our case, we chose to mitigate it because it was not possi-

ble to avoid or delegate it, and accepting it is the worst possible scenario) are

discussed respectively in Chapters 5 and 7.

3.4.1 Modelling Actors and Devices

In our scenario, we only consider human actors, whom we identify as a. Ac-

tor Alice is the victim user and does not pose any threat to the VCD, however,

we will see that some of her actions can influence the outcome of the attack.

She is the owner of a VCD, which is the target of every attack. Although in

Chapter 4 we discuss a practical attack targeting Alexa on Amazon Echo Dot

devices, the claims made in this section are general and apply to any voice-

controllable device. Hence, we use p to identify a generic Voice Personal As-

sistant that runs on the voice-controllable device owned by Alice:

p ::= Alexa | Cortana |Google | Siri | ... .

The three dots at the end indicate that our list is not complete, as only the

most famous commercial VPA software has been listed for brevity. The other

actor is Eve, the adversary. Eve is the only actor who poses a threat to Alice,

as she tries to attack and gain control of her voice-controllable device. Eve

can be either physically near such a device or she can try to attack it from a

distance:

a ::= Alice | Eve.

conn ::= local | remote.

3.4.2 Modelling Actors’ Knowledge

In our threat model, if an actor a has knowledge of a piece of information i,

then i must be the truth. In other words, once a acquires any information,

they cannot be mistaken about it. The concept of knowledge is opposed to

the concept of belief, which allows a to be mistaken (i.e., allows i to not be
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true) [28, 17, 76, 58], however, it is not indispensable in the current version

of our threat model. Hence, when we want to formalise that a knows i, we

write [[a]]i. This allows us to model knowledge of our actors, starting from Al-

ice, who knows sensitive information that Eve would be interested in stealing.

Some of this information allows Alice to use sensitive functions of her Voice

Personal Assistant p, such as banking or health applications — in this case,

the secret would be a PIN or a password. In other cases, the information is

sensitive in nature, as happens with Personally Identifiable Information (PII):

sk ::= PIN | password | PII | ... .

S ::= {sk, k = 0 ∨ k ∈ N}

[[Alice]]s ∀s ∈ S.

Hence, Alice knows all the information included in the set S. If k is 0, this

means that the set of secrets is empty, as Alice could, in fact, have no secrets

to share with her voice-controllable device, either because she does not use

functionalities that require her to do so, or because she is not willing to share

them with her VPA, for any reason. As S is the set of Alice’s secrets, it follows

that Eve does not know them initially:

¬ [[Eve]]s ∀s ∈ S.

Eve, however, does know what VPA she will have to attack, as she chooses

beforehand the device or the set of devices she wants to target. Hence, she

can start the setup of the attack with the information [[Eve]]p. In fact, Eve

might not even know who Alice is, in the case of conn == remote. Depending

on the chosen attack vector, Eve might even target multiple victim users.

Concerning the Automatic Speech Recognition software underlying every

voice-controllable device, and thus every Voice Personal Assistant software,

we assume that neither Alice nor Eve have any detail about the ASR’s machine

learning model. To formalise this, we use the definition by Biggio and Roli

[22], who characterise the attacker’s knowledge of machine learning models

in terms of a space Θ made of four elements: the training data D, the fea-

ture set X , the learning algorithm f , and the (hyper)parameters w. Assuming
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that these elements refer to the ASR algorithm used by p, in our notation we

formalise the described black-box scenario as:

¬ [[Alice, Eve]]D,X , f, w.

Table 3.1 summarises the above statements on actors’ knowledge.

Table 3.1: Actors’ Knowledge within our Threat Model

Rule Description

[[Alice]]s ∀s ∈ S. Alice knows all her secrets.

¬ [[Eve]]s ∀s ∈ S. Eve does not know any of Alice’s secrets.

[[Eve]]p Eve knows which VPA to attack.

¬ [[Alice, Eve]] D,X , f, w.
Neither Alice nor Eve know the ASR model’s
details.

3.4.3 Modelling Actors’ Capabilities

In our threat model, each actor has unique actions they can perform to al-

ter the environment and the state of the VPA p. Intuitively, Eve’s actions are

performed with the intent of attacking p, while Alice’s actions are supposedly

harmless, as they are executed during normal interactions with the environ-

ment and the device. We formalise that an actor a can execute an action f in

the following notation:

[a]f(arg1, arg2, ..., argn).

In this notation, argn is an argument3 of the action f , and n ∈ {0 ∪ N}.

Note the single square brackets, which indicate who is executing the action,

as opposed to the double square brackets already introduced in the previous

section, which indicate who knows some information.

Modelling Alice

Alice can interact with her device p as much as she wants to. She can do so

by issuing a voice command cmd to her device. Once Alice has issued the
3Hence, we execute actions as if they were functions in pseudocode. In this chapter, we will

use the terms action and function interchangeably.

95



3. THE VOCODES FRAMEWORK FOR ATTACKING VCDS

command, p receives it and executes it. It follows that p gains knowledge of

said command as well:

∀p, cmd ∈ C. [Alice]giveCommand(p, cmd) =⇒ [[p]]cmd.

In this statement, C is the set of all commands ever given by Alice. De-

pending on the functionality requested by Alice with her command, the de-

vice could ask for a secret s, such as a password or a PIN. In fact, to protect

sensitive information, some VPAs require the user to preemptively set up a

security code to authenticate the user whenever access to such information

is subsequently requested. Alternatively, the device could ask for PII, for ex-

ample, it might ask to confirm the shipping address for the order that was just

placed. We formalise Alice sharing a secret s (and subsequently p knowing it)

as follows:

∀p, s. [Alice]shareSecret(p, s) =⇒ [[p]]s.

Note that the implication symbol =⇒ does not necessarily mean that p

has just learnt about s — it only means that p knows it. In fact, when sharing

a password, p needs to already know the password to check if it matches the

one that was just pronounced by Alice; however, in other scenarios, p might

learn something new (a new shipping address, for example).

Alice can also run applications on her voice-controllable device. These

applications can be run in the form of executables that run on the device it-

self (as it happens on Windows and Android systems), or in the form of cloud

services, where p only takes the input command from the user and then reads

the reply aloud (as it happens with Alexa’s skills or Google’s actions). We for-

malise as APPSp the set of all available applications for p. Moreover, p knows

the application that Alice runs on it, as formalised within the following:

∀p, app. [Alice]run(p, app,method) ∧method == voice =⇒ [[p]]app.

Note that the run function implies [[p]]app only if app was run by using

a voice command (as indicated by the third argument, method, in the func-

tion). There are other ways to open applications, such as double clicking an

executable, clicking a hyperlink, etc., and p might know app in these cases as
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well under certain circumstances, but we do not formalise them because they

are not useful for our purposes.

Alice is not always around the device running p. Hence, at times she will

not be at home, or she will be far from the device. We consider Alice to be

away if the device running p is at least at 7m of distance from her. Further

details on why we chose 7m as a threshold are given in Chapter 5. It follows

that, if Alice is away, she cannot hear anything that is being output by p at the

same moment. This can happen, for example, if Alice asked p to remind her

of something on a certain date, but she is not at home when the reminder is

triggered. If we denote with [p]say(output) any voice output from p, we get:

∀p, output. [Alice]away(p) =⇒ ¬[[Alice]][p]say(output).

Vice versa, from the previous statement, we also get that if Alice is not

away — i.e., she is in close proximity of the device — she can logically hear

any output from p. Hence, we get the following statement:

∀p, output. ¬[Alice]away(p) =⇒ [[Alice]][p]say(output).

Although other actions on the device might be undertaken by Alice (e.g.,

increasing or lowering the volume, shutting down the device, listening to mu-

sic, etc.), we emphasise that the purpose of this section is not to explain for-

mally all possible actions that can be performed by involved actors, but only

those that are necessary to describe the self-issue attack in a precise fashion.

Table 3.2 summarises Alice’s capabilities discussed above.

Modelling Eve

Eve cannot interact freely with p. As said in the previous section, if conn ==

remote, Eve might not even know who Alice is, and where p is placed.

Nonetheless, if conn == local, Eve does know Alice and p’s location and can

act accordingly. In any case, all actions that will be defined for Eve will apply

to both situations. Eve starts planning the attack by choosing p, and generat-

ing different voice commands to self-issue:

∀p, cmd. [Eve]genCmd(p, cmd) =⇒ [[Eve]]cmd.wav.
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Table 3.2: Alice’s Capabilities within our Threat Model

Rule Description

∀p, cmd ∈ C. [Alice]giveCommand(p, cmd) =⇒
[[p]]cmd.

Alice can give commands to the
VPA, implying that the VPA will
know them.

∀p, s. [Alice]shareSecret(p, s) =⇒ [[p]]s.

Alice can share her secrets with the
VPA for verification or setting pur-
poses, implying that the VPA will
know them.

∀p, app. [Alice]run(p, app,method) ∧ method ==
voice =⇒ [[p]]app.

Alice can run any application for
VPAs with her voice, implying that
the VPA will know the running
app.

∀p, output. [Alice]away(p) =⇒
¬[[Alice]][p]say(output).

Alice can move away from the de-
vice, implying that she will not
hear anything said by the VPA.

∀p, output. ¬[Alice]away(p) =⇒
[[Alice]][p]say(output).

If Alice is not away from the de-
vice, she will hear any sound out-
put by the VPA.

After the execution of the genCmd action, Eve has at least one .wav file

containing the desired voice command. Knowing p is crucial for this step be-

cause every voice command is made of two elements: the wake-word and the

command. The wake-word is a phrase that activates the VPA, such as “Hey

Google”. It can also be a word such as “Alexa”. Once the VPA captures the

wake-word, it starts recording the command, which will be sent to the ASR

for analysis. Hence, knowing p means knowing the related wake-word — a

command without a valid wake-word will not be detected by the VPA, hence,

it will not be executed. It is true that some VPAs, such as Alexa, allow the user

to change the wake-word, making them choose between a small set of words,

such as “Echo” or “Computer”. However, because the given set is very small, it

is feasible for Eve to generate commands for all valid wake-words of p, even if

she does not know which one was actually selected by Alice. On the contrary,

Eve cannot generate commands for all values of p, because the set of the valid

values for p (that is, the set of the existing VPAs) is indefinitely large.

Even if Eve generated such .wav files containing voice commands, she still

cannot make p self-issue them. If conn == local, Eve will have to find a local
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vector to self-issue commands to p. If conn == remote, the easiest option

for Eve to self-issue commands to p is to develop malware that exploits the

self-issue vulnerability and make Alice run it via social engineering. In other

words, Eve needs to deploy a malicious application on p’s application store, if

it has one, or to make it available by other means. If we call mal that applica-

tion, and recall that APPSp is the set of the existing applications for p, then

we formalise the deployment of mal as:

∀p,mal. [Eve]deployApp(p,mal) =⇒ mal ∈ APPSp.

A real instance of how Eve can make Alice run the application, and of how

Eve can establish a local connection with p is discussed in Chapter 4. In gen-

eral, malware may be delivered by other means, e.g., on Windows systems,

malware is usually not an application for Cortana but for Windows itself, and

on Android systems, malware is not necessarily a Google VPA application but

software that runs directly on the operating system.

Finally, Eve sets up a Command & Control server to give commands to all

devices that run the malicious application if conn == remote, or connected

to the attacker by other means (Bluetooth, for example) if conn == local.

In Chapter 4 we will show a real implementation of both scenarios against

Amazon Echo Dot devices. Hence, if D is the set of the devices connected to

the attacker (with any conn value), and pd | d ∈ D is a device that runs p:

∀d, conn, cmd.wav. [Eve]c2Server(d, conn)

=⇒ [Eve]giveCommand(pd, cmd.wav).

3.4.4 Attack Success

We assume Eve’s attack to be successful if she permanently gains the privilege

to execute any command on p, which was an ability unique to Alice. In other

words, the attack is successful if:

∀p, cmd.wav. [Eve]giveCommand(p, cmd.wav)
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Eve could then perform any malicious operation on p, for example, she

could buy items on Amazon on behalf of Alice, or turn on any smart appli-

ance in Alice’s home, potentially undermining her physical safety if heating,

microwave ovens, smart locks, etc. are maliciously operated. Note that in the

temporary access scenario described in the VOCODES Kill Chain, the above

statement is not true (hence, the attack is not successful yet) because the

permission given to Eve to use the device is not permanent. Table 3.3 sum-

marises the aforementioned Eve’s capabilities and her goal.

Table 3.3: Eve’s Capabilities within our Threat Model

Rule Description

∀p, cmd. [Eve]genCmd(p, cmd) =⇒
[Eve]cmd.wav.

Eve can generate audio files con-
taining malicious voice commands
for the VPA, implying she has an
audio file with malicious audio con-
tent.

∀p,mal. [Eve]deployApp(p,mal) =⇒ mal ∈
APPSp.

Eve can deploy malicious applica-
tions for the VPA.

∀d, conn, cmd.wav. [Eve]c2Server(d, conn) =⇒
[Eve]giveCommand(pd, cmd.wav).

Eve has a C2 server that she can
use to remotely control one or more
devices running a VPA.

∀p, cmd.wav. [Eve]giveCommand(p, cmd.wav).

The attack is successful if Eve
manages to permanently obtain
the privilege to issue commands to
the target VPA.

3.5 Summary
We discussed kill chains for cyber attacks and derived a new kill chain that

is tailored to the voice command self-issue scenario — the VOCODES Kill

Chain. We discussed its six steps, detailing how they differ from their most

classical counterparts. We also briefly mentioned other steps of relevant kill

chains and explained why they do not find a place within the VOCODES Kill

Chain. Finally, we formalised the attack scenario within the VOCODES Threat

Model using epistemic modal logic, defining the knowledge and capabilities

of the actors involved: the legitimate user, Alice, and the adversary, Eve.
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The Alexa versus Alexa Attack

In this chapter, we explore in-depth the voice command self-issue attack.

We first introduce Alexa versus Alexa (AvA), an attack that leverages self-

activation alongside two additional vulnerabilities we found on Amazon Echo

Dot devices by applying the VOCODES Kill Chain. Then we compare AVA with

other instances of the self-issue attack in Windows and Android systems, and

with other similar work. Contents of this chapter have already been partially

discussed in the following paper:

• Esposito S., Sgandurra D., Bella G. Alexa versus Alexa: Controlling Smart

Speakers by Self-Issuing Voice Commands. In Proceedings of the 2022

ACM on Asia Conference on Computer and Communications Security

(ASIA CCS ’22). 2022.

4.1 Introduction
Our attack, “ALEXA VERSUS ALEXA” (AVA), is the first to exploit the self-

issue vulnerability on Echo devices, allowing an attacker to issue arbitrary

commands and to control such devices for a prolonged amount of time.

Within the previous sections, we have already seen that attacks against Voice-

Controllable Devices need an Initial Foothold, that is, they usually require an

external speaker or other equipment in proximity of the target device. With

101



4. THE ALEXA VERSUS ALEXA ATTACK

this attack, we remove the necessity of having rogue equipment near the tar-

get device, increasing the overall likelihood of the attack. AVA still needs an

Initial Foothold, albeit a stealthier one. In fact, the attack starts when the Echo

device begins streaming an audio file that contains voice commands, and this

can be done, for example, by opening a malicious skill1 that makes the Echo

device tune in a radio station that streams such malicious audio files: in this

case, getting the user to run the malicious skill would be a possible Initial

Foothold for the AVA attack.

We show that, with AVA, the attacker can exploit the self-issue vulnera-

bility on the Echo device to make it perform any permissible action, such as

controlling smart appliances in the victim’s household (e.g., lights and door

locks), calling any phone number or starting other skills. We also illustrate

how the adversary can leverage AVA to open another malicious skill, which is

able to gather user commands and spoof other skills’ behaviour, hence per-

forming a Voice Masquerading Attack [177]. This allows the attacker to exe-

cute further Actions on the Objective, such as personal data theft. Further-

more, we demonstrate that the adversary is able to keep the malicious skill

running for a prolonged amount of time, independently from user interac-

tion, establishing Persistence on the Echo device.

We now begin to look at the AVA attack through the VOCODES Kill Chain,

starting from Section 4.2 onwards. Recall the epistemic modal logic notation

introduced in Section 3.4, as we will use it to formalise the actions and the

achievements of the adversary throughout the attack.

4.2 Reconnaissance

In the Reconnaissance step, we tried to get as much information as possible

on the voice personal assistant we wanted to attack, that is, Amazon Alexa.

1Henceforth, we will always refer to applications for VPA as skills, which is the name used in
the Amazon Alexa’s context. For the sake of brevity, we sometimes say that the skills “run on the
Echo device”, however, skills actually run on their cloud hosting.
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Hence, we get:

p ::= Alexa.

First of all, we assessed the devices on which Alexa runs, to obtain a tar-

get voice-controllable device, and found that such voice assistant is embed-

ded on lots of different devices such as smart TVs and headphones. However,

Alexa also has a dedicated smart speaker that is largely deployed worldwide:

Amazon Echo Dot. When we began working on this study, 3rd Generation

Echo Dot devices were already available for purchase, while 4th Generation

ones were released only slightly after. Hence, we targeted 3rd Generation

Echo Dot devices for our tests, and we write the following:

pd ::= EchoDot3.

Continuing, we assessed the possible wake-words for our device, discover-

ing that the user is able to select between four of them: Alexa, Amazon, Com-

puter, and Echo. They can be discovered from the Amazon Alexa Companion

App, by entering the Echo device’s settings and selecting “wake-word”. As the

set of wake-words is shared between all Echo devices, the adversary can get

them from the control panel of their device, and then use them to generate

valid commands for any other Echo device. However, these wake-words may

change depending on the device’s language and its geographical position.

We then assessed the possible commands that can be issued to the smart

speaker, discovering there are three main categories of commands:

• Commands that use internal functionalities of Alexa or of the Echo de-

vice. Examples: “Alexa, what time is it?”, “Alexa, set a 10 minutes timer”,

“Alexa, add tomatoes to my shopping list”.

• Commands that control smart appliances within the household. Exam-

ples: “Alexa, lights on in the living room”, “Alexa, make me a coffee”.

• Commands that make use of third-party applications (skills) or services.

Examples: “Alexa, check my balance on Capital One”, “Alexa, play rock

music from Spotify”, “Alexa, search who Ada Lovelace was on Wikipedia”.
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We then tried to look for specifications or details on the implementation

of the ASR system adopted by Alexa, however, we were not able to find them,

as Amazon has not disclosed them as of today. This is coherent with the

VOCODES Threat Model, and we get the following:

¬ [[Eve]]D,X , f, w.

Being the attackers, in this chapter we will always assume to play the role

of Eve. Finally, we assessed the conditions in which the device can oper-

ate. The Echo device can be placed anywhere inside the house, however, as

soundwaves emitted by Echo are reflected differently if there are obstacles

nearby, we consider the three scenarios depicted in Figure 4.1:

• Open Scenario: there are no obstacles near Echo, as it happens on a

conference table;

• Wall Scenario: Echo is placed near a wall, and the distance from the

wall is approximately 1.5cm to 4cm, while the closest obstacle is farther

than 8cm;

• Small Scenario: Echo is placed on a surface with other objects on it (the

wall can count as an object), and the distance from at least 2 obstacles

must be 1.5cm to 8cm.

Figure 4.1: Soundwave Reflection in the Different Scenarios
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4.3 Audio Weaponization

As discussed in Section 2.5.3, we have five category of voice spoofing attacks:

impersonation, replay, voice conversion, speech synthesis and adversarial

noise. We can observe that, among these, impersonation and replay attacks

are performed using real voices, while voice conversion and speech synthe-

sis consist in artificially generating an audio sample with a certain voice. We

then have adversarial perturbations that do not fall in either of the previous

two categories. Hence, we identify three possible ways to generate voice com-

mands that can be self-issued:

1. Text-To-Speech (TTS) Commands: generated via any TTS solution.

2. Adversarial Noise Commands: generated via solutions that output ad-

versarial noise samples working against Alexa over-the-air.

3. Real-Voice Commands: recorded by the attacker with their own voice

or with someone else’s.

In the list above we do not explicitly mention voice conversion solutions

and impersonators because they are meant to attack the speaker recognition

system and not the ASR system as the self-activation attack tries to do — we

did not test them, however, their payloads should theoretically work as self-

issued commands. In this case, voice conversion solutions would fall in the

TTS category, while impersonators would fall in the Real-Voice category.

With regards to the first payload type, henceforth we refer to Google TTS

to generate malicious audio commands and evaluate AVA. When not explic-

itly specified, it is assumed that we are using a voice command generated

with pitch set to 0.00 and speed set to 1.00, with no SSML tags that can affect

the TTS pronunciation and timbre. As already discussed in Section 3.3, the

choice for the TTS service to use is arbitrary and the attacker can choose any

other TTS solution. We decided to use Google TTS because of the quantity
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of available presets for WaveNet voices (i.e., 10), which was higher than other

platforms at the time of the experiments. To generate our pool of samples to

use, we built a script that saved the utterances generated via Google TTS in

.wav format.

For what concerns the second payload type, we performed extensive tests

with state-of-the-art tools for the generation of adversarial noise commands

that work over-the-air: some adversarial noise commands were successfully

self-issued, however, the success rate was rather low, hence an attacker can-

not reliably use them for a real attack. Nonetheless, we report our findings as

our results could serve as a baseline for future work.

Finally, regarding the third payload type, we argue that the adversary

would rather not use their own voice for the attack, and recording other peo-

ple while issuing commands (hence, performing replay attacks) can be very

impractical. Hence, the third payload type is not ideal for AVA and we will not

discuss success rates for it.

After generating the malicious audio files, the adversary will have at least

one file for each command they would like to self-issue. This translates to the

following:

∀cmd. [Eve]genCmd(Alexa, cmd) =⇒ [[Eve]]cmd.wav.

4.4 Initial Foothold
After generating the weaponised audio files, we need to explore the potential

methods of playing them on an Echo device. Hence, we looked at the avail-

able documentation online for Amazon Alexa, for the Alexa Skill Kit, and for

Echo Dot, while also empirically experimenting with the device to find ways

to play audio files. Our research revealed three approaches, or vectors, for

playing audio on an Echo device:

• Vector 1 - Radio Station: the Echo device tunes into a radio station. This

can be done by means of Music and Radio skills;
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• Vector 2 - Bluetooth Audio Streaming: another device, e.g. a PC or

a smartphone, connects to Echo via Bluetooth and streams audio on

Echo’s speaker;

• Vector 3 - SSML audio Tag: a skill that contains an audio Speech Syn-

thesis Markup Language (SSML) [12] tag is opened, and the audio file

specified by such SSML tag is played by Echo.

Nevertheless, not all vectors are compatible with AVA. In fact, we have dis-

covered that to self-issue a command to Echo, the vector must meet a con-

dition we refer to as the non-exclusivity of the audio channel. This condition

states that if the Echo device is currently streaming an audio file and simul-

taneously receives a voice command, the audio streaming should continue

uninterrupted. Therefore, we will now assess all three vectors to determine

their suitability for AVA.

4.4.1 Vector 1: Radio Station

To make the Echo device tune in to a malicious radio station, the user must

open a malicious skill first. This can be done in different ways: the attacker

could trick the user into calling such malicious skill with a social engineering

attack, or the same skill could be squatting another one, by means of homo-

phones, compound words, or phonetic confusion [95]. An example of skill

squatting is shown in Figure 4.2, in which the user wants to open the skill

“World Time” but the voice personal assistant misinterprets the utterance

and opens the malicious “Word Time” skill instead. Another way to trick the

user into opening the malicious skill is giving it an invocation name that is

already used by another skill [104], so that the malicious skill might be called

instead of the legitimate one.

Once Echo is tuned into the radio station, it streams the voice commands

that the adversary had previously generated. As soon as the Echo device cap-

tures the wake-word, the audio played by the radio station is turned down,
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Figure 4.2: An Example of Voice Squatting Attack

but it is not interrupted: hence, this allows the device to hear the whole length

of the self-issued voice command, satisfying the non-exclusivity condition

and making this a valid attack vector for AVA. If the adversary establishes a

connection with Echo using this vector we have that:

conn ::= remote.

[Eve]c2Server(EchoDot3, remote).

In fact, an advantage of this vector is that attackers can use the radio sta-

tion as a C&C server to issue commands to multiple remote Echo devices at

once. Radio stations can be deployed on the Alexa Skill Store by using the

so-called Music and Radio skills.

Publishing a Malicious Skill

Anyone can deploy skills on the store, and skills do not need any special per-

mission to run on the device or to play audio. Note that skills do not need

to be installed, e.g. like apps on smartphones. There are documented cases

of policy-violating skills successfully passing the validation [36]. Once a skill

passes the certification process, further modifications to its code can be de-
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ployed to the live skill without having to re-certify it again [146, 36], because

the code resides on a server external to Alexa Voice Service (AVS). Hence, an

attacker can certify a harmless skill and add malicious capabilities afterward.

Assuming that the attacker publishes a skill called MyRadio, we have:

[Eve]deployApp(Alexa, MyRadio) =⇒ MyRadio ∈ AppsAlexa.

4.4.2 Vector 2: Bluetooth Audio Streaming

If the adversary is in the proximity of the Echo device they want to attack,

they can use another device, such as a smartphone or a computer, to connect

via Bluetooth to the target Echo and make it act as a speaker for the adver-

sary’s device. This allows the attacker to play the audio files containing the

malicious voice commands from the Echo’s speaker. This operation does not

require any PIN (hence, no brute-force or other similar attacks are required),

and the whole pairing process requires approximately 25 seconds. Addition-

ally, once paired, the Bluetooth device can connect and disconnect from Echo

without any need to perform the pairing process again. Therefore, the actual

attack may happen several days after the pairing (assuming the attacker uses

the same paired Bluetooth device).

When the wake-word is captured while streaming audio from this vector,

the volume of the streamed audio is turned down just like with Music and

Radio skills — hence the non-exclusivity condition is met. More precisely:

conn ::= local.

[Eve]c2Server(EchoDot3, local).

Using this attack vector, the adversary does not need to host the voice

commands online or to have a publicly reachable malicious radio station, be-

cause they can store the voice commands on the Bluetooth device. Another

advantage of this approach is that the attacker can leverage the Full Volume

Vulnerability described in Section 4.5 to increase the success rate of the self-

issued commands. However, the adversary can only attack one Echo device

at a time, and they need to be physically near the target for the Bluetooth
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connection to work properly.

4.4.3 Vector 3: SSML audio Tag

As explained in Section 3.3, developers can use SSML within their skills to

control how Alexa speaks. In particular, the audio SSML tag allows the skill

developer to insert an .mp3 file, as they might want to use their own voice

instead of Alexa’s, or to play a short song at some point. However, if Echo

hears a wake-word while reproducing an audio tag, such audio is paused in-

stead of being turned down. This would interrupt the self-issue of any voice

command: hence, the non-exclusivity condition is not met and audio tags

cannot be used as attack vectors. It must be said that, at times, there can be

a short delay between the wake-word being said and its recognition by the

Echo device: this could allow a very short command, such as “Echo, hi” to be

successfully self-issued with an audio tag. However, impactful commands are

usually quite long and it is not always possible to shrink them to fit the very

short self-issue window offered by the audio tag. Due to this, we consider

only Radio skills and Bluetooth streaming as valid attack vectors.

4.4.4 Summary of Attack Vectors

Table 4.1 shows the valid attack vectors we found and their peculiarities. In

particular, the Radio Station works remotely and can be used to control mul-

tiple devices at once, which allows the attacker to reach more targets than

the Bluetooth vector. However, the adversary is not able to use the FVV and

they need Social Engineering to make the user start the radio station. Addi-

tionally, if the user closes the radio station, the adversary would have to go

over the whole process again to reconnect to the target Echo. By contrast, the

Bluetooth vector works locally and with one device at a time, but it will not

encounter all the other limitations. In particular, once the Bluetooth pairing

between the target Echo and the adversary’s device takes place, even if the lat-

ter is disconnected, they can always reconnect in a second moment without
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repeating the pairing process.

Table 4.1: Valid Attack Vectors

Atk Vector Remote Multiple FVV Worldwide SE Not Needed Can Restart
Radio Station ✓ ✓ ✗ ✗ ✗ ✗
Bluetooth ✗ ✗ ✓ ✓ ✓ ✓

Remote: Works remotely — Multiple: Can control multiple Echo devices at once — FVV:
Can be used with the Full Volume Vulnerability — Worldwide: Attack Vector is available
anywhere in the world — SE Not Needed: Adversary does not need Social Engineering
to start the attack — Can Restart: If the connection to the attack vector terminates, the
adversary can reconnect without going through the initial steps.

4.5 Exploitation
After the attacker obtains the Initial Foothold, regardless of the used attack

vector, they can finally proceed to self-issue voice commands to the attacked

device. In fact, recall that, as a general rule:

∀d, conn, cmd.wav. [Eve]c2Server(d, conn)

=⇒ [Eve]giveCommand(pd, cmd.wav).

Figure 4.3 shows the attack flow until this point: the adversary undergoes

audio weaponization by generating the commands they want to self-issue

and by storing them on the vectors they will use for the attack (steps 0.x), then

they obtain the remote or local foothold (steps 1.x), after which a command

can be self-issued (step 2) and correctly interpreted by AVS (step 3). If an ex-

ternal skill is requested by the command, AVS communicates with the related

server (steps 4 and 5, indicated by a dotted line because this is an optional

action), then it sends back the reply to Echo (step 6). As a result, the attacker

can perform any action on the VPA (e.g. make phone calls, set alarms), on

any skill (e.g., buy items), or they can control other smart appliances in the

household (e.g., lights and door locks) (step 7).

Because the adversary can now self-issue any permissible command to
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Figure 4.3: AvA’s Flow: Audio Weaponization to Exploitation

the VPA, we get the following statement:

∀cmd.wav. [Eve]giveCommand(Alexa, cmd.wav).

This is exactly the condition described in Section 3.4 for the attack’s suc-

cess. The self-issue vulnerability was confirmed by Amazon during the re-

sponsible disclosure process and we were subsequently able to confirm that

it affects 4th Generation Echo devices as well. Other details on the vulnera-

bility, including its Common Vulnerability Scoring System (CVSS) score, are

presented in Table 4.2.

Table 4.2: Details for the Self-Issue Vulnerability

Vulnerability #1 CVE-2022-25809
Improper Neutralization of audio output from 3rd and 4th Generation Amazon Echo Dot
devices allows arbitrary voice command execution on these devices via a malicious skill (in
the case of remote attackers) or by pairing a malicious Bluetooth device (in the case of
physically proximate attackers).
CVSS Score: 9.8 (Critical) CVSS 3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

We now describe the setup for our experiments and evaluate the results,

to assess the practicality of the attack.
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4.5.1 Setup of the Experiments

Figure 4.4 shows the placement of the 3rd Generation Echo Dot during our

experiments for the Open, Wall, and Small scenarios. We streamed all pay-

loads over Echo using two standard laptops running Windows 10 Pro 64-bit

and Ubuntu 20.04, connecting them to Echo via Bluetooth (SBC codec).

Figure 4.4: Placement of the Echo Device in the Open (left), Wall (center),
and Small (right) Scenarios.

4.5.2 Evaluation

We evaluated AVA against a 3rd Generation Echo Dot. Because Music and Ra-

dio skills were available only in the US at the time of our tests, we focused

on the Bluetooth attack vector to evaluate an attack scenario that is feasible

anywhere. As stated before, we also verified that the self-issue vulnerability

can be successfully exploited on 4th Generation Echo Dot devices as well, al-

though the success rates would differ from the ones reported in this chapter,

given this evaluation was performed on a 3rd Generation device. More gen-

erally, the attack is theoretically feasible against all devices (hence, all VPAs)

that are vulnerable to the self-activation vulnerability, although the adversary

would have to start the attack process all over again (i.e., from the Reconnais-

sance step) and gather information, craft malicious audio samples, and find

a way to play an audio file on the specific voice-controllable device they want

to attack. It also follows that the success rates shown in the upcoming tables

may vary when performing the attack on a different device.
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TTS Payload Performance

In the first test, we generated 70 audio payloads using Google TTS and mea-

sured their effectiveness when self-issued to Echo. The samples include

7 commands, each generated with 10 different Google TTS voice profiles,

namely from “en-US-Wavenet-A” to “en-US-Wavenet-J”. In all the tests, the

volume of the Echo Dot was set to 5 (out of 10) and the language was set to

“English (United States)”. All commands were played in a room with 20dB

background noise.

Table 4.3: Self-Issued TTS Commands Reliability at Volume 5

TTS Voice Command
Google TTS Voice Profile and Scenario

en-US-Wavenet-A en-US-Wavenet-E en-US-Wavenet-I
Open Wall Small Open Wall Small Open Wall Small

Wake-word 10 10 10 10 10 10 8 8 10
“Hello” 10 10 10 10 10 10 2 6 9

“What time is it?” 10 10 10 10 6 6 4 7 10
“Turn off the light” 4 8 9 6 8 10 2 6 10
“Open Mask Attack” 0 4 6 0 1 0 0 6 2

“Call mom” 2 8 8 0 4 6 1 6 8
“Call 1234567890” 0 0 0 0 0 0 0 0 0

Table 4.3 reports the results of the best-performing voice profiles. The ta-

ble indicates the reliability of certain commands, which were selected taking

into account the classification of the valid commands given in Section 4.2: (i)

commands that use internal functionalities of Alexa or Echo, (ii) commands

that control smart appliances, and (iii) commands that make use of third-

party applications. More specifically, we tested four commands that are part

of the first category, that is, “Hello”, “What time is it”, “Call mom”, and “Call

1234567890”. It can be noted that these commands have very diverse impact,

as the first two have no impact on the user, the third could have some im-

pact on the involved victims, while the last can severely undermine the user

privacy; another command, “Turn off the light”, is part of the second cate-

gory, and it is there to demonstrate that smart appliances can be operated

using self-issued commands; finally, another command, “Open Mask Attack”,

is part of the third category and proves the adversary can activate third-party

applications with self-activations.
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In the table, the reliability of selected commands is indicated with a score

ranging from 0 to 10 according to the success rate of the command. For ex-

ample, a command with a 23% success rate would score 3, while a command

with a 97% success rate would score 10. Commands that never succeeded

score 0. It can be observed that commands generated with the voice pro-

file A perform better than the others in almost every scenario and that the

“small” scenario is generally the one with higher command reliability, due to

the reflection of the soundwaves caused by multiple nearby obstacles. We

also find that only profiles “en-US-Wavenet-A” and “en-US-Wavenet-I” can

reliably open Mask Attack,2 while none of them can successfully dial a phone

number.3 We verified that this is due to the volume being turned down after

the wake-word recognition, which does not enable Alexa to properly recog-

nise longer commands. Nonetheless, because the wake-word recognition

happens with a short delay, voice profiles that speak fast are able to pro-

nounce more words before the volume turns down, hence they can issue

longer commands more reliably than other profiles. As explained during the

evaluation of the attack vectors, even in this case not all commands can be

shortened enough to fit this window, such as “Call 1234567890”.

To reduce variance in the results of the tests with longer commands (i.e.,

“Turn off the light”, “Open Mask Attack”, “Call mom” and “Call 1234567890”),

which seemed to yield more “random” results due to the inconsistency of the

wake-word recognition described above, we performed 20 tests using those,

and only 10 tests with the other commands, which had more consistent re-

sults. We report the results in the score form and not in percentage form for

better visualisation of the results, given also that the precision loss is negligi-

ble for the results of longer commands (±1 successful samples), and the exact

number of succeeding samples is shown for all the other commands.

For each self-issue attempt, we distinguish between four cases:

2More details on this skill will be given in Section 4.6.
3Note that “1234567890” is a placeholder: a real phone number was used in the tests.

115



4. THE ALEXA VERSUS ALEXA ATTACK

1. The wake-word is not recognised. The sample did not trigger Echo’s

wake-word recognition, so the command could not be self-issued.

2. The wake-word was recognised but the command was not. The sam-

ple could trigger Echo’s wake-word recognition, but could not self-issue

the command nonetheless.

3. The wake-word was recognised and a command different than the

self-issued one was executed. The sample could self-issue a command,

although Alexa made some errors in the transcription of the command,

resulting in a slightly different command being executed.

4. The wake-word was recognised and the self-issued command was ex-

ecuted. The sample worked successfully, self-issuing the command.

In all of our results tables, a command was considered to be successfully

self-issued only if it was correctly interpreted in all its length (i.e., case 4 in the

list above).

Effectiveness Over Time

We observed that commands generated with certain voice profiles (e.g., “en-

US-Wavenet-I”) lose effectiveness over time: in fact, if they are used too many

times in a short time span, the Echo device stops recognising them. We be-

lieve this is a defense against replay attacks. Because of this, during our tests,

AVA slightly edited the voice pitch after each attempt to be able to re-issue

commands. More precisely, instead of using pitch 0.00 for all the samples, its

value varied from -2.00 to 2.00. In addition to this, we verified that the com-

mands regain their effectiveness if the device has been moved or after a few

minutes of inactivity: this last solution could also be adopted by an attacker

as they would not need to issue a high-rate of commands. Additionally, the

adversary can cycle through the commands they have generated, instead of

re-using the same sample every time.
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Effectiveness of Self-Triggering with Different Volume Levels

We tested TTS commands while no skill was running in the background, for

different volume levels, and in different scenarios — results are shown in Ta-

ble 4.4, where the score is computed on 10 tries for each sample. We observe

that the success rate of the commands is not proportional to their volume

(a higher volume does not mean a higher success rate). During the tests, we

noted a degradation in the efficacy of the attack if the volume falls under 3.

In these cases, we observed that the further volume reduction caused by the

wake-word recognition, or by a skill running on the Echo device, rendered the

audio completely inaudible, hence, it was not possible to reliably self-issue

long commands anymore for most voice profiles.

Effectiveness in Presence of Another Audio Stream

We tested a scenario where the legitimate user tries to start another audio

stream while the Echo device is connected to an attack vector, for example

by saying “Alexa, play Despacito on Spotify”, or by connecting a device via

Bluetooth. Table 4.5 illustrates all possible situations: we observed there are

three outcomes, namely, the attack vector is disconnected permanently (stop:

�), the attack vector is temporarily disconnected and is reconnected after the

user has finished listening to their own music (pause: Ñ), or the attack vector

keeps the connection, and the user is not allowed to play their music (play:

Ù). The favourable scenarios for AVA are those marked with the “play” and

“pause” symbols, because the attack vector is not disconnected, while those

marked with the “stop” symbol are not favourable as they disconnect Echo

from the attack vector.

Full Volume Vulnerability

During our tests using the Bluetooth attack vector, we noted that sometimes

the self-issued commands were played at full volume even after the wake-
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Table 4.4: Effectiveness of Self-Triggering (“Echo, what time is it?”) When
No Skill is Running in the Background

Voice Profile Volume Level and Scenario

Name Gen.
6+ 5 4 3 2∗ 1∗

O W S O W S O W S O W S O W S O W S
A ♂ 10 10 10 10 10 10 10 10 10 9 10 10 2 10 10 1 10 10
B ♂ 0 0 6 0 6 6 0 10 6 0 10 6 0 0 0 0 0 0
C ♀ 0 4 4 2 4 6 0 6 6 0 8 6 2 0 6 1 0 5
D ♂ 0 2 6 1 2 8 2 8 10 0 4 10 0 0 10 0 0 10
E ♀ 0 2 6 10 6 6 10 9 10 8 10 10 10 0 10 10 0 0
F ♀ 0 2 10 0 2 10 0 10 10 0 10 10 0 0 10 0 9 10
G ♀ 0 2 2 2 2 10 0 2 10 2 10 10 0 2 6 1 0 10
H ♀ 0 0 1 2 4 6 10 2 10 0 2 10 0 10 10 0 0 10
I ♂ 4 5 10 4 7 10 0 10 10 0 10 10 0 10 10 0 10 10
J ♂ 0 6 6 0 4 6 0 2 10 0 0 10 0 0 10 0 0 10

Name: The full name of the voice profile is “en-US-Wavenet-X”, where X is the letter shown
in the column. *When the volume is set at 1 or 2, the further volume turn down caused by
Echo recognising the wake-word makes the played audio inaudible. Some commands succeed
nonetheless due to the fact that the words “what time” manage to be played before the volume
is muted, allowing the command to be interpreted correctly.

Table 4.5: Behaviour of Echo When the Adversary is Already Streaming Com-
mands and the User Asks Echo to Play Music

Pre-conditions User attempts to...
Atk Vector VMA on?† “Play Music” Connect BT

Radio ✗ � Ñ
Radio ✓ Ù Ñ

Bluetooth ✗ Ù* �
Bluetooth ✓ Ù �

∗In this case, both audio tracks are played at once. However, if the attacker stops their track
and plays it again, they gain priority over the radio station, which gets muted. †For more
information on our instance of VMA, see Section 4.6.

word recognition. Upon further inspection, we managed to reproduce this

behaviour by self-issuing the command “Echo, turn off”. In fact, subse-

quently, the affected Echo device did not turn down the volume anymore for

the whole duration of the audio stream, allowing the attacker to self-issue

commands at the current volume in their entirety. We call this the Full Vol-

ume Vulnerability (FVV).

We believe this is due to the fact that, when Echo is being used as a Blue-

tooth speaker and the “turn off” command is received, the audio stream

should be stopped (as it happens with Music and Radio skills), but it does

not. Hence, when another command is received, Echo does not turn down
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the volume because it assumes the reproduction has already ended. Further

details on this vulnerability are given in Table 4.6.

Table 4.6: Details for the Full Volume Vulnerability

Vulnerability #2 No CVE
Improper Resource Shutdown of Audio Output Channel from 3rd and 4th Generation Ama-
zon Echo Dot devices disables the standard volume turn down of the audio currently in
reproduction via Bluetooth after the wake-word recognition, enhancing the reliability of self-
issued commands.
CVSS Score: 6.5 (Medium) CVSS 3.1 Vector: AV:A/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:N

FVV has a great impact on the success rate of the self-issued commands:

in Table 4.7 we re-evaluate the reliability of the commands that performed

poorly in Table 4.3, this time issuing them after exploiting the FVV and do-

ing 20 tests per sample. Comparing these results with those in Table 4.3, we

observe that performance for some commands has been dramatically en-

hanced, for example, the number dial with profile A in the open and small

space scenario. Figure 4.5 shows a direct comparison between success rates

exhibited with and without the FVV, and we can see that performance of com-

mands issued with FVV is always equal to or higher than the normal ones. Re-

call that the attacker can choose the samples to use during the attack, hence

they can select the best ones and loop them during the AVA attack.

Table 4.7: Enhancement of TTS Commands Exploiting FVV

TTS Voice Command
Google TTS Voice Profile and Scenario

en-US-Wavenet-A en-US-Wavenet-E en-US-Wavenet-I
Open Wall Small Open Wall Small Open Wall Small

“Open Mask Attack” 8 4 10 0 6 4 6 6 10
“Call mom” 10 8 9 0 4 6 8 8 9

“Call 1234567890” 6 4 10 0 2 2 0 1 0

Adversarial Noise Payload Performance

We generated adversarial noise samples using Devil’s Whisper Docker-

Hub [34] and we tried to self-issue them using different parameters to mea-

sure the best-performing combination. In particular, we verified that the

two key parameters to improve the success rate of the hidden commands are
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Figure 4.5: Comparison Between Normal Self-Issue and Enhanced Self-Issue
With FVV (en-US-Wavenet-A)

mini noise value and aspire noise value, which alter the Signal-To-Noise

ratio for the adversarial noise samples. We noted that, when using the default

value of 5,000 for both variables, the Echo device could not be activated when

the samples were self-issued, and only a small number (3%) succeeded in ac-

tivating it when played in its close proximity. Increasing the noise value to

5,500, we observed a dramatic improvement in the activation rate when the

samples were not self-issued: in fact, 83.5% of the samples were successful.

We noted that the first self-activation of the Echo device happened at noise

7,500, and the first complete self-issue (both wake-word and command) of an

adversarial noise input was at noise 8,000. We also verified that, by increas-

ing the noise values past 11,500, the success rate of the samples decreased

noticeably, due to clipping or excessive distortion of the audio.

In the tests, AVA was able to successfully self-activate the Echo device with

adversarial noise samples in the small space scenario. The whole command

could be recognised by exploiting the FVV or, alternatively, AVA exploited the

adversarial noise samples to refresh the Mask Attack skill timer in a stealthy

fashion. In fact, as we will explain in Section 4.6, only the wake-word needs

to be recognised to achieve this goal. Table 4.8 reports the percentage of the

adversarial mini samples that triggered at least one self-activation of the Echo
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device or one self-execution of the command “Echo, turn off the light”, over

100 commands per each noise value. It can be observed that the adversar-

ial noise samples generated on top of the songs labeled Song 1 and Song 3

are the most effective in self-issuing complete commands. When these tracks

are played again to check their reliability, we find that they replicate this be-

haviour 15% of the times on average.

Table 4.8: Evaluation of Adversarial Noise Samples in the Small Space Sce-
nario with Varying Noise and Background Songs

Track
Noise Value and Behaviour

8000 9000 10000 11000
Ac Ex Ac Ex Ac Ex Ac Ex

Song 1 3% 1% 16% 2% 15% 2% 13% 1%
Song 2 14% 0% 13% 0% 12% 0% 2% 0%
Song 3 0% 0% 0% 0% 3% 1% 8% 1%
Song 4 0% 0% 0% 0% 0% 0% 0% 0%
Song 5 1% 0% 1% 0% 0% 0% 0% 0%

Ac: % of mini samples that triggered self-activation of the Echo device
Ex: % of mini samples that were successfully self-executed

4.6 Persistence
We found another vulnerability on Amazon Echo, that is, the SSML break tag

chain. When read by Alexa, SSML break tags add a pause of customisable

length in her speech. For example, let’s consider this string: Hello <break

time=‘5s’/> there. When pronouncing this, Alexa will add a 5 seconds

pause after the word “Hello”. Amazon’s policy regarding SSML break tags

states that “break tag silence cannot exceed 10 seconds, including scenarios

with consecutive break tags. SSML with more than 10 seconds of silence isn’t

rendered to the user” [12]. However, when chaining multiple SSML break tags

of 10 seconds each, the total amount of silence is incorrectly calculated by the

Amazon Skills Kit, and it is possible to exceed the 10 seconds limit. In fact, we

found that the only limit for this chain of break tags is the maximum length

allowed for the outputSpeech property of a skill response, set by Amazon to
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8000 characters [13], that is, more than 400 break tags, which add up to over

one hour of silence.

This is very interesting if we consider the standard execution flow of

skills:4 when they are started, Alexa reads some text and then it waits for a re-

ply from the user to continue the interaction. The user has 8 seconds to reply,

otherwise, the skill is closed. However, if the user (or a self-issued command)

interrupts Alexa while she is speaking by saying the wake-word and issuing

a command, the VPA will try to execute this command in the skill’s context.

This means that, if the initial text (and any other text) read by Alexa when

the skill is launched contains those 400 break tags, the skill will keep running

silently on the device for more than one hour, giving plenty of time to issue

commands: any received command will refresh the timeout timer (i.e., it will

make the skill output 400 more break tags) and will grant the skill owner, that

is the attacker, the ability to capture every command given by the user and

to decide the related replies. This is akin to Man-in-the-Middle attacks, and

when affecting smart speakers they are known in the literature as Voice Mas-

querading Attacks (VMA) [177]. Details for the break tag chain vulnerability

are given in Table 4.9.

Table 4.9: Details for the Break Tag Chain Vulnerability

Vulnerability #3 No CVE
Expected Behavior Violation in Amazon Alexa Skills Kit allows attackers to violate Alexa’s
SSML policy and create skills that remain silent for approximately one hour, by making the
skill output a specially crafted sequence of SSML break tags.
CVSS Score: 6.5 (Medium) CVSS 3.1 Vector: AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:L

We implemented our VMA strategy described above on a skill that we

called “Mask Attack”, and we verified that it enables the adversary to:

• Get a further layer of intrusion on the device, because instead of be-

ing solely able to issue commands thanks to the self-issue vulnerabil-

ity, the adversary can now listen to commands given by the legitimate

4Some special skills, like Music and Radio skills, do not follow this flow.
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user and can tamper with the replies. This also allows the adversary

to capture personal data that could be sent along with the voice com-

mands, for example, the victim’s home address. In fact, recall that

∀p, cmd ∈ C. [Alice]giveCommand(p, cmd) =⇒ [[p]]cmd, but in this

case, Eve is listening to the commands instead of p. Hence, we get that:

∀cmd ∈ C. [Alice]giveCommand(Eve, cmd) =⇒ [[Eve]]cmd.

• Set up very realistic social engineering scenarios, as the Mask Attack

skill runs silently on the device, and the legitimate user will unknow-

ingly interact with it, thinking they are talking with Alexa or with a cer-

tain skill. In fact, even commands that open other skills would be inter-

cepted by Mast Attack instead. Additionally, as some sensitive actions

require the user to say a PIN as a security measure, the adversary might

attempt to steal it from the user by introducing a PIN request within

a reply. Hence, this also means that a successful VMA attack can al-

low the adversary to know the secrets of the victim. In fact, recall that

∀p, s. [Alice]shareSecret(p, s) =⇒ [[p]]s, but because Eve is listening

instead of p, we get that:

∀s ∈ S. [Alice]shareSecret(Eve, s) =⇒ [[Eve]]s

• Get protection on the self-issue layer, because any “Alexa, stop” com-

mand coming from the legitimate user would only terminate Mask At-

tack, but would not disconnect the Echo device from the attack vector,

letting the attacker keep their foothold. In this way, the adversary gets

Persistence for the self-issue.

Furthermore, it is not necessary that the user issues a command every

hour to keep Mask Attack open: through AVA, the adversary can self-issue

the “Echo, go on” command, which activates an Intent (that is, a sort of func-

tion within the skill) that just outputs another hour of break tags. We call this

Intent the ContinueIntent. Additionally, we observed that the mere activation

of the device with the wake-word is sufficient to refresh the skill timeout, as

123



4. THE ALEXA VERSUS ALEXA ATTACK

the last executed Intent is triggered again. Hence, the Mask Attack skill can

potentially keep running persistently on the device. The attacker can choose

to close the skill by self-issuing the “Echo, quit” command: they might want

to do so because any other command self-issued while the Mask Attack skill

is open would be intercepted by the skill and not executed by the device. For

example, if the adversary wanted to turn off all the lights within the victim’s

household, they cannot do it while Mask Attack is open, as the skill does not

have access to the smart appliances.

In Figure 4.6 we summarise the main attack flow for AVA. In particular,

after the exploitation phase, the adversary can switch from the active state,

i.e. of self-issuing commands, to the passive state, in which Mask Attack is

open. Table 4.10 gives some examples of actions that can be performed by

the adversary in the active and passive states.

Table 4.10: Examples of Malicious Actions to Perform in the Active and
Passive States

Active State Passive State
(Give Commands) (Intercept Commands / VMA)
Control smart appliances Capture commands
Tamper with linked calendars Ask for personal data
Reply/delete emails* Ask for passwords/PINs
Call any phone number* Tamper with replies
Buy items on Amazon Infer user habits

*This feature of Alexa is available only in certain countries.

4.6.1 Retrieving Utterances and Realistic Replies

To pretend to be Alexa and remain unnoticed by the user, the Mask Attack

skill performing the Voice Masquerading Attack (VMA) needs to retrieve a re-

alistic response for any user command. To do so, we adopt a solution that is

similar to the one adopted in Lyexa [120]. However, because AVA uses only

the victim device, AVA does not need to timely inject the “use Mask Attack”

command to every user query, because the user is already talking with that
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Figure 4.6: Process Flow Diagram for AvA

skill. Our VMA solution consists of two components that communicate via

custom APIs: (i) the Mask Attack skill; and (ii) “The Oracle”, an external script
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that runs on another server controlled by the attacker. When the user, un-

knowingly, says a command to Mask Attack, the malicious skill has to retrieve

the user utterance first, because AVS does not expose it directly. To this end,

we train a custom Slot with some alphanumerical dummy values, so that any

sentence can fit the Slot, and then we introduce a new custom Intent within

the skill, whose only sample utterance is the Slot itself. We call this intent In-

terceptIntent. Since the only other Intent, ContinueIntent (described earlier

in Section 4.6) only activates itself with the “Echo, go on” command, almost

every other utterance5 will activate InterceptIntent. This allows Mask Attack

to retrieve the content of its Slot, that is, the utterance. Note that InterceptIn-

tent activates even when the user tries to call another skill (e.g. “Echo, ask Big

Sky what’s the weather like in Paris”).

The Mask Attack skill then needs to retrieve a realistic response for the

user query. To this end, the Mask Attack skill sends the user utterance to the

Oracle, which leverages the AVS Client package [10] to asynchronously query

AVS and obtain the real reply. To communicate with AVS, the Oracle trans-

forms the plaintext utterance into an audio file using Google TTS.6 The Or-

acle then receives the reply to the query from AVS, within one or more .mp3

audio files. The Oracle transforms the reply in text using Google Speech-To-

Text (STT) and sends it back to Mask Attack. Mask Attack now has a realistic

reply for the user’s query and reads it to the user. The whole process takes

approximately 5 seconds.

To give a more natural user experience to the victim user, with the ultimate

goal of avoiding detection, the adversary could also hardcode popular func-

tions of Alexa (or hardcode standard replies) within the Mask Attack skill’s

source code. For example, they could insert a function for answering a com-

mon question such as “Alexa, what is the time?”, and another one for “Add

[item] to my shopping list”. In this way, the Oracle is not contacted to get a

5Some utterances are reserved and they always trigger standard actions. For example, “close”,
“stop”, “exit”, and “quit” always close the active skill.

6Any other online Text-to-Speech service would work, as long as it can output LINEAR16 [64]
encoded audio files, which is the format accepted by AVS.
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realistic reply (as the adversary already knows what are the possible replies

and can hardcode them), and the user instantly gets their response, just as

they were interacting with the real Alexa.

Implementation of Mask Attack

Mask Attack is written in Node.js and is hosted on Amazon Lambda. It uses

the ask-sdk-core and axios packages. We also used a CustomUserAgent

called cookbookprogressive-responsev1.

Implementation of the Oracle

The Oracle is written in Python 3 and leverages the Google Cloud speech and

texttospeech packages, along with AlexaClient. The Oracle also connects

to a set of APIs we coded in PHP to communicate with a MySQL database,

where we store received user utterances and their replies.

4.7 Responsible Disclosure

We dutifully contacted Amazon via their Vulnerability Research Program, re-

porting the existence of all three vulnerabilities we have found, that is, the

self-issue, the Full Volume, and the SSML break tag chain vulnerabilities.

Our report was submitted on January 21st, 2021, and the Amazon VRP Team

quickly reacted to it, asking for more details. On February 18th, 2021, our re-

search team engaged in a call with the Amazon VRP Team to discuss details

of the attack, its impact, and possible mitigation strategies. Our report was

rated with Medium severity by the Amazon VRP team. Between December

2021 and January 2022, Amazon deployed some fixes for the remote self-issue

vulnerability via Music & Radio skills and for the break tag chain, which are

no longer possible in the manner demonstrated by our research. Disclosure

of the vulnerabilities happened on February 17th, 2022, after the deadline that

was agreed upon with Amazon. The self-issue vulnerability got a CVE entry
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(CVE-2022-25809) and was rated with a 9.8 CVSS score by the NIST [57].

4.8 Related Work

First, we discuss self-issue attacks on other platforms, then we compare AVA

with another known instance of Voice Masquerading attack and highlight the

main differences between all these attacks.

4.8.1 Self-Issue Attacks

Jang et al. [82] leverage accessibility (a11y) tools made available on most OSes

to identify two attacks that make use of voice commands self-issue. The first

one works on Windows systems and exploits Windows Speech Recognition,

which can be started by any process. By self-issuing some specific com-

mands, any malware can escalate from low privileges to administrator and

can control the system via the voice channel. The second attack works on

Android smartphones, and allows an attacker to bypass the Voice Authentica-

tion mechanism by recording and then replaying the authentication phrase,

which is usually “OK Google”. Diao et al. [48] develop malware (VoicEm-

ployer) that runs on Android and is able to self-issue voice commands using

Google Voice Search when the user is not listening. Their attack (GVS-Attack)

does not require any permission. Alepis and Patsakis [6] use Google Firebase

as a C&C server and leverage sensors that require no permissions to infer if

a smartphone is left unattended. If it is the case, the C&C is contacted and

the device issues TTS commands to itself and to nearby devices, if possible.

Differently from these works, AVA is the first attack that uses self-activation

against smart speakers to gain prolonged control over a dedicated VPA de-

vice, and the first work to evaluate self-issued adversarial noise commands

(see Section 4.5.2).
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4.8.2 Voice Masquerading Attacks

The first work to successfully implement a working VMA was Lyexa [120]. Al-

though the implementation of the VMA in Lyexa is similar to the one in AvA,

there are some key differences: (i) AVA does not make use of rogue speakers;

(ii) AVA can use different attack vectors; (iii) AVA achieves persistence of the

malicious skill on the device in a different way; (iv) Lyexa uses ultrasonic, in-

audible voice commands; (v) AVA does not need to dynamically append “use

Mask Attack” to user commands because the Mask Attack skill is started be-

forehand by the attacker. Table 4.11 summarises the comparison among all

discussed attacks and AVA.

Table 4.11: Comparison Between AvA and Other Attacks with Similar Strat-
egy or Goal

Attack Details Does not rely on... Features
Paper Target Leverages Soc. Eng. 2nd Speaker Proximity C&C HVC Deceive Persist

Adv. Music [106] � - ✓ ✗ ✓ - - - -
Monkey [6] ð SI ✗ ✓ ✓ ✓ ✗ - ✓

YVAIM [48] ð SI ✗ ✓ ✓ ✗ ✗ - ✓

A11y [82] ð, q SI ✗ ✓ ✓ ✗ ✗ - ✓

Lyexa [120] � VMA ✓ ✗ ✗ ✗ ✓ ✓ ✓

AvA (Local) � SI, VMA ✓ ✓ ✗ ✗ ✓ ✓ ✓

AvA (Radio) � SI, SS, VMA ✗ ✓ ✓ ✓ ✓ ✓ ✓

ð: Android mobile phones. — q: Windows computers. — �: Smart speakers. — SI:
Self-issue. — SS: Skill Squatting. — Soc. Eng.: Social Engineering, in this case, ✓ is
assigned if the user does not have to inadvertently open malware (in form of applications,
executables, or skills), ✗ otherwise. — Proximity: ✓ is assigned if the attack does not
require the adversary (or a device controlled by them) to be near the target, ✗ otherwise. —
C&C: ability, for the attacker, to issue arbitrary commands to multiple compromised devices
at once, ✗ otherwise. — HVC: the ability to use adversarial noise inputs or inaudible ones as
payload during the attack. — Deceive: the ability to interact with the user without being
detected. We mark smartphone and computer attacks with “-” as they rely on malware that
could hide the malicious behaviour. — Persist: the attack keeps running unless uncommon
circumstances occur.

4.9 Summary

In this chapter, we introduced AVA, an attack that plays audio tracks contain-

ing voice commands over an Echo device, which executes them as if issued

by the legitimate user. We evaluated the performance of many self-issued

commands, generated with different Google TTS voice profiles, and we pre-
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sented the Full Volume Vulnerability (FVV) to enhance the reliability of self-

issued commands. We observed that, when exploiting the FVV, an attacker

can self-issue any command to an Echo device with a 99% success rate in

the small scenario, that is, when there are multiple obstacles close to Echo.

In all other scenarios, we observed an above-50% success rate on average.

We reported the vulnerabilities we found to Amazon, who rated them with

Medium severity. AVA does not require rogue speakers to be in proximity of

the target device, a constraint that many other attacks share, and does not

have heavy computational requirements, as TTS samples can be easily gen-

erated and stored for later use. Additionally, the exploitation flow is rather

simple, as it is sufficient to connect Echo to one of the attack vectors. Dur-

ing the tests, we were able to successfully perform a set of malicious actions

that an attacker could issue by leveraging AVA, showing it has an impact on

the physical safety and on privacy of the victim user. In fact, the self-issue

vulnerability we discovered was later rated with Critical severity by the NIST.
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An Assessment of AvA in the Real
World

In this chapter, we assess the feasibility, impact, and limitations of AVA in real

scenarios. We do so by analysing the results of a field study on three differ-

ent voluntary households (Section 5.2), and of a survey submitted to a study

group of 18 Amazon Echo users (Section 5.4.1). Additionally, we detail a set

of attacks that can be performed on the victim’s Echo device via AVA, and we

show their impact on the user’s physical safety and privacy (Section 5.3).

Contents of this chapter have already been partially discussed in the fol-

lowing paper:

• Esposito S., Sgandurra D., Bella G. Alexa versus Alexa: Controlling Smart

Speakers by Self-Issuing Voice Commands. In Proceedings of the 2022

ACM on Asia Conference on Computer and Communications Security

(ASIA CCS ’22). 2022.

5.1 Introduction
In the last chapter, we evaluated the AvA attack and showed that the adver-

sary can perform actions that can be very detrimental to the user’s security,

safety, and privacy. However, another important factor to assess is whether
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the attack is feasible in the real world, or if it is only a theoretical attack that is

unlikely to take place in real environments. In particular, as the VMA involves

a malicious application interacting with victim users in an attempt to deceive

them and make them believe they are talking with the VPA, we want to anal-

yse how real people interact with such a malicious skill and if it is possible

that they actually get deceived by it.

Hence, we first performed a field study with the participation of three vol-

untary households to assess the overall feasibility of AvA in real environments.

In this field study, the users had to interact with a device under the AvA attack,

both with and without an ongoing VMA. There were two users per household:

in the first one, a user was in the 46-50 age gap, while the other was in the 71-

75 one; in the second household, a user was in the 26-30 gap, while the other

was in the 31-35 one; finally, in the third household a user was in the 18-20

gap, while the other was in the 26-30 one. All the users were from Italy.

We also performed an impact assessment of AvA, by actually performing

malicious operations on a real device by self-issuing voice commands to it.

Furthermore, we performed a limitation assessment using the results of a

survey that was administered to 18 Amazon Echo users. In this survey, they

answered questions that enabled us to understand what are the typical condi-

tions in which an adversary would operate and to compare them with the op-

timal conditions for the AvA attack. Data collected from the aforementioned

field study was useful for this purpose as well. Of the people that answered

the survey, 2 were in the 18-20 age gap, 3 were in the 21-25 one, 9 were in

the 26-30 one, 1 in the 31-35 one, 2 in the 46-50 one and 1 in the 71-75 one.

Table 5.1 summarises the age demographics for both the field study and the

survey. Of these users, 14 were from Italy, 2 from the UK, 1 from Norway and

1 from the Netherlands.

With these three assessments, we show that the AvA attack is feasible in

all its declinations (i.e., the active and passive states) and that its limitations

are mostly theoretical. At the end of this chapter we also briefly discuss the
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mediatic impact that AvA had worldwide.

Table 5.1: Age Demographics for the User Study and the Survey

Age Gap Field Study Users Survey Users
18-20 1 2
21-25 0 3
26-30 2 9
31-35 1 1
46-50 1 2
71-75 1 1

5.2 Feasibility Assessment
To assess the feasibility of AVA in real scenarios, we performed a field study

with three different households. All participants in the three households pos-

sessed an Amazon Echo device at various levels of expertise. For practical and

ethical reasons, during these experiments, we asked the participants to use

our own device, and we placed this device in the same position and with the

same orientation as the participants’ device. All the users in the three house-

holds were informed about the replacement of the device and they were told

we would perform some usability tests by observing their interactions with

our device. Before the tests, we did not specify to the users the exact goals of

the tests to not introduce bias. For the ethics of this study, see Section 5.6.

Stealth Initial Foothold via Bluetooth The goal of this test is to check

whether is it possible, for an attacker who temporarily has access to the

household, to connect to Echo via Bluetooth without being detected, obtain-

ing an Initial Foothold. In a real scenario, this could be a professional who

has to repair something in the house or someone who was invited over by

the legitimate user. In all three households, we were able to connect to Echo

without anyone realising it: this can be trivially done if no one is in the room

for a very short time frame. We set the volume of the Echo device to 1 (“Echo,
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volume 1”), then we turned on the Bluetooth (“Echo, turn on Bluetooth”) and

connected to it. We interrupted all Alexa’s status messages by pressing the

action button repeatedly. The whole process lasted 25 seconds on average.

Command Self-Issue Perception The goal of this test is to understand if

people in the household are always able to hear the TTS commands, or if

there are some conditions, such as their position in the house and the de-

vice’s volume, that allow the attacker to self-issue commands even when the

user is at home and awake. We set the device to the volume used by the dif-

ferent households (respectively 3, 5, and 6) and we told the users to go to

different parts of the house. We then self-issued a command to the Echo de-

vice, let Echo play the normal response, and then asked the users if they did

hear something. Regardless of the volume, all users in the same room and

in adjacent rooms did hear both the command and the reply correctly. Only

in the household with volume 3, in an adjacent room with the door closed,

the user said they thought it was someone talking outside of the window, and

they could not infer what was said. Finally, no user in any household was able

to hear either the command or the reply, if they were in a non-adjacent room,

although a user in the household with volume 6 reported they thought Alexa

had said something.

User Behaviour After Bluetooth Connection When the adversary recon-

nects to an Echo device they have already paired their device with, they will

skip the pairing process. However, the connection of the device makes Echo

output a “successful connection” audio message that the user can hear —

hence, the goal of this test is to assess what would the users do when hear-

ing the message. We connected our device to Echo surreptitiously when the

users were near the device. When asked separately if they could tell what

happened, half of them could infer that we had connected a device to Echo

via Bluetooth. However, they did not perceive it as a malicious action. Only

one user tried to understand what happened by asking a series of questions to
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Alexa, for example “what happened?” and “are you connected to something?”,

however, the device did not reveal any ongoing Bluetooth connection.

Command Self-Issue fromOutside The goal of this test is to check whether

it is possible to issue commands from outside the houses after a device has

been paired with Echo. We disconnected our paired device from Echo and we

tried to reconnect once outside. We successfully managed to reconnect our

device in all three cases, also succeeding in self-issuing voice commands. In

two cases, the distance from the device was 8m, with two walls between us

and the device. In another household, the distance was 3m, with only one

wall separating us from the device.

Interaction with the Mask Attack Skill The goal of this test is to assess the

behaviour of people interacting with the Mask Attack skill. In particular, we

wanted to understand whether they were able to infer that an attack was in

place. We told the users we wanted to observe their interactions with the

Echo device, and that they had total control over it — they could change the

volume, mute the microphone, issue any command, etc. They were then pre-

sented with the device with the Mask Attack skill already opened, unknow-

ingly to them. We did not use the “Echo, go on” command to refresh the time-

out timer during this test. All users noticed that Echo was slower in replying

to the commands. When issuing commands with very long replies, the Ora-

cle could not reply within the allocated five seconds, hence Mask Attack sent

back the reply to the last issued command. However, when they issued the

command again, they could hear the correct reply since the Oracle had the

time to retrieve the answer, convert it to text, and store it in the database. All

of them reported that they attributed this behaviour to a bug. One of the users

noted the blue light blinking upon receiving an incorrect reply, due to an er-

roneous transcription of a date by the Speech-To-Text service. The user then

restarted the device, reporting that they often get weird replies from Alexa (a

feeling shared by the other participants as well), however, they thought it was
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safer to restart the device because of the blinking light. All the other users

participating in the study did not notice the blinking light or perceived it as

normal. Additionally, all the other users kept interacting with the device until

we stopped the experiment.

5.2.1 Feasibility Assessment Results

Table 5.2 summarises the results of the field study. As we can see, it is possible

to quickly and stealthily set up a Bluetooth connection with Echo, and we also

verified that it was possible to issue commands from outside the household

in all cases. This confirms the dangerousness of the Bluetooth attack vector.

As expected, the study confirms the limitation of the audible payloads, hence,

the adversary needs to carefully plan when to self-issue commands to avoid

alerting the users. Nonetheless, all other tests show that AVA is feasible in real

scenarios, as it can successfully start and keep running, and most of the users

did not perceive anomalies as malicious.

Table 5.2: Field Study Results

Test Observation Item Result

Stealth BT
Time Needed 25s on average
Users Aware 0% of users

SI Perception

Same Room 100% of users could hear
3.5m and Wall 100% of users could hear
3.5m, Wall and Door 66% of users could hear
Non-Adj. Room (7m+) 0% of users could hear

BT Connect
Perceived as Malicious 0% of users
Inferred What Happened 50% of users
Took Some Actions 16% of users

Outdoor Self-Issue
Successful Pairing 100% of households
Successful SI 100% of households

Mask Attack

Noticed Slow Behaviour 100% of users
Noticed Wrong Replies 100% of users
Noticed Blinking Light Ring 16% of users
Perceived as Malicious 16% of users
Switched Off the Device 16% of users
Intercepted Commands 100% (41/41)
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5.3 Impact Assessment

We now detail the types of malicious actions that AVA allows an attacker to

perform, and we assess their success rate (RG2).

Control Other Smart Appliances AVA allows an attacker to control other

smart appliances that are connected to Echo. This action can undermine the

physical safety of the user, for example, when turning off the lights during

the evening or at night time, turning on a smart microwave oven, setting the

heating at a very high temperature, or even unlocking the smart lock for the

front door. We were able to turn off the lights in our house 93% of the times

using the FVV. In these scenarios, sometimes Echo might repeat the name

of the device the attacker wants to turn off as a form of double-check. In

these cases, the adversary only has to always append a “yes” approximately

six seconds after the request to be sure that the command will be successful.

Call Any Phone Number of Attacker’s Choice The attacker can make the

victim Echo device call a phone number controlled by them, effectively eaves-

dropping on what is being said in the proximity of the Echo device. While it is

true that the user could see that the light on top of the device turns green (or

on the bottom of the device in 4th Generation devices), it may take a while

for the user to notice it, depending on the position of the device. Addition-

ally, inexperienced users might not know what the green light means, hence

ignoring it. In fact, among users who answered the survey discussed in the

next section, only 27% knew that the green light is related to ongoing calls.

During the test, we exploited AVA to call two phone numbers owned by us, by

placing the device in different locations, and we succeeded 73% of the times

when using the FVV. In the remaining 27%, some numbers were incorrectly

interpreted by the Echo device.
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Buy Items With the Victim’s Amazon Account Although the user would

be notified of the purchase via email, and be able to cancel the malicious or-

der, this would be detrimental to the victim’s user experience on Amazon, and

they could lose trust in the company. The attacker can also delete items that

the user had previously put in the shopping cart. We were able to perform

both actions using the command self-issue, and we achieved a 100% success

rate when using the FVV. Echo did not correctly understand what product we

wanted to buy once (20%), however, another article was placed in the shop-

ping cart nonetheless, and we were able to buy it.

Tamper with the User’s Linked Calendar If the user had previously linked

their online calendar, the attacker can exploit AVA to add, move or delete

events from the user’s calendar. We were able to perform all these actions,

via self-issue, on a Google Calendar linked to Alexa. With FVV, we succeeded

88% of the times.

ImpersonateOther Skills and the VPA The attacker can exploit AVA to start

any skill of their choice, including Mask Attack to perform our instance of

the VMA. The impact of VMA attacks is already thoroughly discussed in other

works [177, 120], and they can seriously undermine the victim user’s privacy.

In fact, they could lead the user to disclose their passwords or security PINs,

personal data (e.g., home address, name, and surname), or even sensitive

data, such as health status, religious belief, and sexual preferences. During

our tests with Echo users, no one noticed that the Mask Attack skill was run-

ning, although all users could understand that Echo was experiencing some

problems due to the delay in the replies. In the tests, only one user noticed

the blinking light and thought it was safer to shut down the Echo device. All

the other users kept interacting normally with Echo.

Retrieve User Utterances As Mask Attack stores all intercepted commands

in a database, this would allow the adversary to extract private information,
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gather information on used skills, and infer user habits, e.g., to calculate when

it is safer to self-issue commands. During the field study, we were able to

retrieve all utterances made by the users — as explained in Section 5.2.

5.3.1 Impact Assessment Results

Table 5.3 summarises our findings: green indicates an optimal success rate

(we set the threshold at ≥80%) and yellow indicates a medium success rate.

Note that, as explained in Section 5.6, during all the tests we have only used

accounts belonging to us.

Table 5.3: Impact Assessment Results

Threat Success Rate Confirm?† Notes
Control Smart Dev. 14/15 *(93.3%) Sometimes Tested with lights only
Call Phone Number 11/15 *(73.3%) Yes 14 digits including prefix
Buy Items 5/5 *(100%) Yes 80% (4/5) items recognised
Tamper Calendar 8/9 *(88.8%) Sometimes Did not ask when moving event
VMA - - - See Table 5.2
Retrieve Utterances 41/41 (100%) - See Table 5.2

* Indicates that the success rate was achieved using the FVV. — † indicates if the command requires
the attacker to self-issue a “Yes” after a few seconds to answer the confirmation request.

With these tests, we demonstrated that AVA is very impactful as it can be

used to give arbitrary commands of any type and length, with optimal results

— in particular, an attacker can control smart lights with a 93% success rate,

successfully buy unwanted items on Amazon 100% of the times, and tamper

with a linked calendar with 88% success rate. Complex commands that have

to be recognised correctly in their entirety to succeed, such as calling a phone

number, have an almost optimal success rate, in this case, 73%. Addition-

ally, results shown in Table 5.2 demonstrate the attacker can successfully set

up a Voice Masquerading Attack, via our Mask Attack skill, without being de-

tected and all issued utterances can be retrieved and stored in the attacker’s

database, namely 41 in our case.
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5.4 Limitations Assessment
In this section, we first discuss the limitations of AVA, and then we report

the results of a survey submitted to a study group of 18 Amazon Echo users,

to evaluate the limitations’ effectiveness (Section 5.4.1). In fact, while AVA

can issue arbitrary commands for a prolonged time on Echo, some events

can terminate the attack. We list and compare them with the results of the

already discussed field study (Section 5.2) and of a user survey (Section 5.4.1),

showing that the likelihood for them to take place is minimal (RG1).

The Echo Device is Unplugged from Power Radio stations, and in general

played audio tracks, are not automatically played again when the Echo device

is restarted, and this would disconnect Echo from the attack vector. However,

only 27% of the users of the survey ever restarted their Echo device, and only

6% do it systematically.

The User Says “Alexa, Stop” The command “Alexa, stop” would close the

radio station, disconnecting Echo from the attack vector. However, if the

Mask Attack skill is running, such a command would close the skill instead, so

the user would have to say the command two times in a row to terminate the

radio station and the AVA attack. This does not apply when using the Blue-

tooth attack vector, as this command does not stop the stream. Realistically,

the user does not say this command without a specific reason: during our

experiments, no users tried to issue this command.

Headphones Connected to Echo AVA would not succeed if headphones

are connected to Echo, because the malicious commands would be played

through them instead. In our study group, no user tried to connect them.

Echo’s Microphone is Turned Off Echo Dot includes a button to turn off its

microphone. If pressed, payloads cannot exploit the self-issue vulnerability
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because the microphone would not capture anything. Nearly 89% of the users

never turn off Echo’s microphone, or they do it rarely. The remaining 11%

claimed to do it sometimes.

Payloads are Audible Although adversarial noise commands can be used

with AVA, they are not very reliable when self-issued (recall the evaluation

in Section 4.5.2). To deploy a real attack, the adversary has to use TTS com-

mands, which can be heard by nearby users up to 4.5 metres on average, as

shown in Section 5.2. Because the attacker does not know if the legitimate

user is nearby, they might want to issue arbitrary commands during the night,

or after they gained insight into user habits with the aid of Mask Attack.

Volume Buttons While the Mask Attack skill is on, the only way for the user

to change the volume is by using the physical buttons on the Echo device, be-

cause the skill is intercepting voice commands: this could make the user sus-

picious. However, this would not affect 27% of the users in our study group,

who claimed to use manual commands to change the Echo’s volume.

Echo’s Light Ring TurnsGreenDuring aCall When the attacker makes Echo

call a phone number they control to eavesdrop on the user, the user could see

the light ring become green. Depending on the position of the device, this

could take some time. Additionally, the survey reports that only 27% of the

users know what the green light means.

Echo’s Light Ring Blinks when Reading While Alexa is talking, Echo’s light

ring slowly blinks. When the Mask Attack skill is open, the light ring keeps on

blinking as Alexa is reading the break tags issued by the skill. Similarly to what

has been said for the green light, depending on the position of the device, the

users might not notice it. In fact, during our field study, only one user noticed

the blinking light.
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Inaccuracy of Reply Retrieval Some skills use pre-recorded audio tracks,

such as the voice of a journalist. Mask Attack will read these tracks with Alexa’s

voice. Additionally, by default, skills cannot access specific data on the user

account, e.g. shopping lists, unless the user grants them the appropriate per-

missions via the Alexa companion app. For such commands, Mask Attack will

send a feasible reply anyway, however, it will not be the correct reply.

Delay Before the Reply The infrastructure behind Mask Attack needs some

time to convert the user utterance into audio and, vice-versa, the reply into

text. All users noted this delay, however, none of them perceived it as mali-

cious. Recall that the adversary can hardcode replies to the most common

queries made to Alexa so that the delay is added only when the correct re-

sponse is not known in advance and the Oracle must be contacted.

5.4.1 Evaluation of the Limitations

We wanted to evaluate how realistically the limitations discussed in Sec-

tion 5.4 would reduce the effectiveness of AVA. To this end, we created a

detailed survey composed of twelve questions, clustered into three cate-

gories: Usage Information, Scenario Recognition, and Limitations Assess-

ment. Firstly, Usage Information is related to how the users interact with their

devices. This information was used to determine the overall confidence of the

user with the device and to understand the quality of their answers. Secondly,

Scenario Recognition questions are needed to collect information on the dif-

ferent placements and volumes of real Echo devices, to understand the distri-

bution of the different scenarios. Finally, Limitations Assessment questions

allow us to estimate the likelihood of the limitations actually taking place in

real scenarios. To avoid bias, questions were presented to the users with no

categorisation and with uniform IDs (Q1, Q2, Q3...). Table 5.4 lists all ques-

tions answered by the study group.

As already stated before, we submitted the survey to a study group of 18
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Table 5.4: Survey for the Study Group

ID Question

Usage Information
U1 From 1 to 10, how would you score your skill in

interacting with Amazon Echo and Alexa?
U2 How often do you use your Echo device (e.g., once

a day)?
U3 What do you usually use your Echo device for? If

you want, you can answer with some of the most
common commands you use.

Scenario Recognition
S1 Can you send a photo that shows the placement

of your Echo device? Please make sure that the
photo does not show people or personal data. If
this is not possible, can you estimate the distance
(in cm) of your Echo device from the nearby walls
and obstacles?

S2 What is the average volume of your Echo device?
If you do not know, the current volume will be fine
(ask “Alexa, what is the current volume?”).

Limitations Assessment
L1 Have you ever unplugged your Echo device from

the power source? Why?
L2 Have you ever connected headphones to your Echo

device? How often do you do so?
L3 How do you usually change Alexa’s volume?
L4 How often do you turn off Echo’s microphone?
L5 Do you know what the green light ring around Echo

means? If you do not know and want to learn what
it means, please search on the Internet AFTER
answering this question.

L6 Have you ever used Echo as a Bluetooth speaker
(i.e. connecting another device via Bluetooth to
play music or other audio files)?

L7 Do you follow any security best practices (e.g., you
turn off Echo’s microphone after 9pm)?

Echo owners, with different levels of ability in using their Echo devices. Some

users owned more than one device, and they were asked to answer the sur-

vey choosing one of their devices randomly. Table 5.5 summarises the re-

sults of the survey, where we have used the green colour to indicate results

that are favourable for AVA, red for unfavourable scenarios, and orange for
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mostly neutral results. As we can see from the table, the average volume of

the devices is set at 4.7, which is ideal for AVA’s success rate, given that AVA

commands at volumes 4 and 5 perform well as shown in Section 4.5.2. Addi-

tionally, most of the users place their Echo device in the Small Space scenario,

which allows AVA to achieve the best performance.

Only 27% of users ever rebooted their device voluntarily, mostly to move

the device to another room, or for cleaning purposes. Only 11% of the users

ever switched off their Echo due to a malfunctioning or to perform a hard re-

boot, and only 6% turned off the device because they did not recognise the

color of the light ring. This is favourable for AVA because restarting the de-

vice is a way to disconnect Echo from an attack vector, taking away the Initial

Foothold from the attacker. No one ever connected headphones to Echo —

their connection would not allow the self-issued commands to be captured

by Echo’s microphone. However, because 0% of users ever used them, we can

assume this behaviour is very unusual among Echo users, and this limitation

remains theoretical.

Only 27% of participants knew that the green light indicates an ongoing

call, hence the remaining 73% would not realise that there is an ongoing

rogue call. Only 11% of users claimed to mute Echo’s microphone some-

times — all the other participants reported they do it rarely, very rarely, or

never. Hence, the Echo device will keep listening to self-issued commands in

most cases. Finally, only 6% of users claimed to systematically follow security

procedures, such as turning off Echo’s microphone during the night — this

means that most devices would be vulnerable during nighttime or when the

user is away. Hence, the results of this survey clearly show that most of the

limitations do not impact the feasibility and success rate of AVA.

5.4.2 Limitations Assessment Results

Table 5.6 summarises the evaluation of the limitations, based on the results of

both the survey and the field study. We can see that all limitations that might
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Table 5.5: Survey Results

Test Result

Device Placement
Open Scenario 16.67%
Wall Scenario 27.78%
Small Scenario 55.55%

Average Volume 4.7
Users who voluntarily ever switched off Echo 27%
Users who systematically switch off Echo 6%
Users who ever connected headphones 0%
Users who change volume via manual commands* 27%

Users who turn off Echo’s microphone
Never 66.67%
Rarely / Very Rarely 22.22%
Sometimes 11.11%

Users who use Echo as a Bluetooth speaker 44.44%
Users who know the meaning of the green light ring 27%
Users who follow security procedures 6%

* Including those who stated to use both voice and manual commands.

stop the attack have a very low likelihood, hence they are not a real threat

for AVA. Among events that might alert users, results show that it is not very

likely that users realise that a phone call is taking place, so an adversary would

probably be able to eavesdrop on the users. However, the fact that users can

hear the self-issued payloads is confirmed to be the main limitation of the at-

tack, hence the adversary needs to carefully choose when to send commands

to Echo. All other events in the table are mostly ignored by Echo users, and

only expert ones would be possibly alerted by their presence. Hence, we ar-

gue that most limitations for the AVA attack remain theoretical.

Table 5.6: Evaluation of the Limitations

Limitation Likelihood Impact

Echo’s microphone is muted Low (11%) • • • •
Echo is unplugged from power Low (6%) • • • •
User says “Alexa, stop” Low (0%) • • • •
Headphones are connected to Echo Low (0%) • • • •
User hears payload (same room) High (100%) • • •
User hears payload (adj. room) Medium (66%) • • •
User notices ongoing call (green light) Medium (27%) • • •
User hears payload (non-adj. room) Low (0%) • • •
User notices inaccuracies in replies High (100%) • •
User cannot change volume by voice Medium (73%) • •
User realises light ring is blinking Low (16%) • •
User notices delay before the reply High (100%) •

• • • •: It might stop the attack. — • • •: It may alert any user. — • •: It is ignored by most
users, but can still alert an expert user — •: It is ignored by all users.

145



5. AN ASSESSMENT OF AVA IN THE REAL WORLD

5.5 Perceived Impact by the Population

During the two months following the responsible disclosure, AVA received a

lot of attention from worldwide media. Notably, in the UK, AVA was featured

by popular news websites such as The Register1 and by the BBC’s podcast

Digital Planet.2 The work received media coverage from important Ameri-

can websites as well, such as Ars Technica,3 and from other news websites

in different languages through the world. The attack was mostly perceived

as very impactful by the readers and viewers of the published contents, and

a demonstrative video showing how an attacker can use AVA to exploit the

three vulnerabilities we found was viewed more than 20,000 times.4

5.6 Ethics of the Tests

Regarding the field study, we requested all users in the three households per-

mission to place our Echo device in a specific room, and to collect usage data

useful for the experiment, such as the given commands or the actions they

performed during the different tests, and to use these data in an anonymised

form only for the purpose of this research work. After the tests were per-

formed, we explained to the users the tests we did and informed them of the

results: all the users were again asked to either confirm or withdraw their

permission to use the results in a scientific study. At no point were any of

the user’s private data accessed by third parties or by us. In addition, all user

utterances saved on the Mask Attack database and on the Amazon Cloud (in-

cluding recordings of the commands that are stored on the Amazon Cloud

by default) were deleted after summarising in an anonymised format the re-

sults of the tests. Note that all the tests performed on Echo only involved

1https://www.theregister.com/2022/03/03/amazon_alexa_speaker_vuln/
2https://www.bbc.co.uk/programmes/w3ct31y5
3https://arstechnica.com/information-technology/2022/03/attackers-can-force-

amazon-echos-to-hack-themselves-with-self-issued-commands/
4https://www.youtube.com/watch?v=t-203SV_Eg8
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accounts, emails, and phone numbers owned by us, and no user nor third-

party data were accessed during the experiments. Regarding the user sur-

vey, all the questionnaires were administered online, and users were asked

for their explicit consent to use the collected information for research work.

Participation in the survey was voluntary, and users were informed they could

withdraw their consent at any time. Finally, the permission forms of the field

study and of the survey were extensively analysed through an internal formal

assessment, as mandated by our institutional policy, and these activities did

not identify any danger or ethical concern.

5.7 Limitations of the Field Study and Survey
The field study was performed in June 2021, during the coronavirus pan-

demic, hence, finding people that were complete strangers and that wanted

to help in a scientific study was a very challenging task. Therefore, we asked

people we already knew, who already owned an Amazon Echo device, if they

could have helped us in the study. While they did not know any detail of the

experiments we were going to perform, there was some sort of implicit bias

in their behaviour, as they already knew the researcher that was going to per-

form the study in their households. This leads to the following questions tied

to the generalisability of our results:

1. Would the users leave a complete stranger in a room with their Echo

device for 25 seconds (i.e., enough to make the adversary perform the

Bluetooth connection)?

2. Is the answer to the previous question affected by the cultural back-

ground (e.g., nationality) of the users, or by their age?

Unfortunately, there is no way to answer these questions without making

another field study with a larger number of households, such as ten, twenty,

or more. Even then, the tests must be performed manually by a researcher
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that has to be physically in the household: hence, this quickly becomes very

time-consuming and a lot of financial resources are needed, if the research

needs to take into account the behaviour of people with very different cul-

tures, such as households from different countries and continents.

Furthermore, to not introduce bias during the tests in which the users had

to say whether they had heard the self-issued commands at 3.5m or 7m, we

had to exploit the moments in which they were not in the room with us, or

we had to make them move to another room with an excuse. However, the

users in the household might not want to leave the room while there is a com-

plete stranger in it, even if they are a researcher, creating additional problems

in the field study process. Hence, for future research, we hypothesise that

having a team made of different researchers around the world, who perform

tests with people they know, would be the best way to perform this study at

a bigger scale. To check with more precision if users are willing to leave a

complete stranger in the room with their Echo device for 25 seconds, another

group could be created, in which only this experiment is performed, so that

the other results are not affected.

While in the survey there is a bit more diversity, both in nationalities and

age gaps, it would still be useful to perform the survey again with a larger user

group, such as one hundred users or more, to confirm the generalisability of

the results we obtained. This improvement should be easier than the one on

field studies, as the surveys can be administered online.

5.8 Related Work

We now explore other works that analyse the feasibility of attacks in the cyber-

physical domain. Some of these works leverage user studies, surveys, or prac-

tical experiments to support their results and assess limitations.

Nair et al. [125] investigate the feasibility of an attack that violates the pri-

vacy of users in the metaverse with a user study featuring 30 participants. In
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this study, users had to interact with a Virtual Reality game while a hidden

malicious feature in the game extracted 25 private data attributes from the

users’ interaction, without any permission available on the device it was run-

ning on. These data attributes allow the adversary to infer the demograph-

ics of the user playing, including sensible information such as health status

(e.g., color blindness, eyesight, disabilities). Phan et al. [130] evaluate their

so-called “Universal Adversarial Perturbation” on neural networks for image

classification. To do so, they assess the adversarial samples’ stealthiness,

their efficiency compared to samples generated with other techniques, and

the generalisation of their approach. Interestingly, differently from us, they

did not perform a user study to double-check their claims regarding stealth-

iness, although an image that compares genuine images and adversarial im-

ages generated using their method is available within the paper to support

the claim that the perturbation is indeed unnoticeable.

Beavers et al. [19] assess the feasibility of simple attacks to real pacemak-

ers. In this case, recruiting real users for the study was unfeasible because of

the strong ethical implications and the risks involved. Hence, only pacemak-

ers of deceased patients were used for the study, after deleting all confidential

data within the devices. The authors do not disclose the technical details of

their tests, however, they report to have tested radio frequency attacks pri-

marily, such as replay attacks and signal jamming. Finally, Alotaibi et al. [8]

investigate whether AI can be used in conjunction with thermal cameras to

analyse residual heat traces on keyboards or ATMs to infer user PINs. They

perform two user studies: the first is performed to assess the overall impact

on the attack of (i) the age of the heat trace, (ii) the user’s typing method, and

(iii) their password length, while the second is performed to check whether

the material of which the keyboard is made has an influence or not on the

heat trace and on the attack itself. Their user study featured 21 users and was

able to highlight both strengths and limitations of their attack.
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5.9 Summary
In this chapter, we discussed the feasibility, impact, and limitations of AVA

when deployed in real-world scenarios, with the aid of three voluntary house-

holds who took part in a field study, and of 18 Echo users who answered a

survey. We discovered that AVA is feasible in the real world, that the adver-

sary can reliably execute critical commands that can undermine the victims’

safety and privacy, and that most limitations for AVA remain theoretical.
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A Taxonomy of Measures
Against Voice Spoofing Attacks

In this chapter, we look at security features of commercial voice-controllable

devices. Subsequently, we show that current countermeasures against voice

spoofing attacks (hence, against self-issue attacks as well) do not match the

necessities of the users, and to address this we present a taxonomy of possible

security settings to be applied to voice-controllable devices. Contents of this

chapter have already been partially discussed in the following paper:

• Esposito S., Sgandurra D., Bella G., Protecting Voice-Controllable De-

vices Against Self-Issued Voice Commands. Accepted to the 8th IEEE

European Symposium on Security and Privacy. 2023.

6.1 Introduction
Identifying proper countermeasures against an attack is a vital step in the

offensive security process. Within the previous chapters, we have seen how

self-activation is a pervasive problem that is present on smart speakers and

on other platforms as well, e.g., Windows and Android. Liveness detec-

tion, that is, understanding whether the command given to a device comes

from a real user or from a speaker, is currently the state-of-the-art solu-
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tion against voice spoofing attacks [113, 24, 176], and command self-issue

falls within this category of attacks. However, in this chapter, we show that

liveness detection-based countermeasures cannot be applied blindly to all

voice-controllable devices in all real-world scenarios. The main reason is that

users with severe speech impairments may rely on Augmentative and Alter-

native Communication (AAC), and specifically on Speech Generating Devices

(SGDs), to communicate with other people and to operate their smart de-

vices [134, 83, 155, 39, 137]. SGDs emit artificially generated voices, hence

enabling liveness detection pervasively would hamper these people’s interac-

tion with their voice-controllable devices. At the same time, the few existing

countermeasures specifically developed against self-issues (e.g., the solution

proposed by Pogue and Hilmes [131]) do not adequately protect all devices.1

For example, the AvA attack has a 9.8 CVSS score and is classified as Criti-

cal, however, its exploitation via Bluetooth has not been properly addressed

yet [127]. Therefore, the threat posed by self-issue attacks to users and VCDs

is usually high.

Countermeasures against voice spoofing commands can be set up to work

against self-issued commands, however, we will show that implementing

them pervasively would not benefit all users. To demonstrate this, we first

provide a security analysis of existing VCDs, showing how authentication in

voice channels is their main weakness. We then present a security-usability

taxonomy that manufacturers can implement to allow users to choose the

desired level of security for their device, based on their necessities.

6.2 Security Features and Weaknesses in VCDs

We analysed the security features of most commercial VCDs available world-

wide. In the following, we report our findings on their basic security and pri-

vacy features and weaknesses.

1https://www.ava-attack.org/
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6.2.1 Features

Our analysis shows that most devices provide basic authentication, encryp-

tion, and automatic updates, which we summarise in the following.

• Backend Authentication: the user is usually required to log in to the

service provider’s server to access the features of the VPA via, e.g., an

Amazon, Google, or Apple account to complete the device setup. This

authentication process usually requires a strong password, and the user

can also enable two-factor authentication.

• In-Transit Data Encryption: data from the device to the companion

app or to the provider’s servers (and vice-versa) is usually encrypted

with TLS.234

• Automatic Updates: the vast majority of commercial smart speakers

checks for updates on a regular basis and installs them automatically.

By contrast, this is not common for other voice-controllable devices,

such as personal computers and smartphones, as the user usually has

to manually install updates: this is because they might require a reboot

of the device, and flexibility on when to install them is given to the user

to avoid disruptions.

6.2.2 Weaknesses

Our analysis also shows that most VCDs share some security and privacy

problems, which are reported in the following.

• Weak Voice Authentication and Authorisation: although authentica-

tion is usually strong on the backend, as discussed above, the same ro-

bustness is not guaranteed on the voice channel, which is the main in-

put vector for VCDs. While most devices can be trained to recognise the
2https://privacy.commonsense.org/privacy-report/Microsoft-Cortana
3https://d1.awsstatic.com/whitepapers/White%20Paper-Alexa%20Confidentiality%

20and%20Data%20Handling%20Overview%20Dec%202019.pdf
4https://support.google.com/product-documentation/answer/9293126
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different users in a multi-user environment, the device owner cannot

assign different permissions to each of them. Hence, the device will ac-

cept any command from any user, including payments [55]. Although

there is the possibility to set up PIN numbers in some devices to protect

such critical functionalities, the PIN must be pronounced out loud, po-

tentially disclosing it to anyone in physical proximity of the interaction.

• Always Listening: although the majority of the devices features a light

or a message on-screen that notifies the user that the wake-word has

been recognised and a command is being recorded, the device is always

waiting for such a wake-word, so it is always listening. Hence, it may

activate at the wrong time and record private conversations [54, 161].

• Bluetooth Connection with no PIN: smart speakers can act as Blue-

tooth speakers for other devices. The pairing process, however, does

not require any credential (e.g., PIN number) and can be initialised with

a voice command. Because of the weak voice authentication discussed

above, an attacker in the proximity of the device can connect via Blue-

tooth to smart speakers that have this functionality, allowing the adver-

sary to exploit the self-issue vulnerability [56].

6.2.3 Addressing the Voice Channel Insecurity

The main takeaway point of our security analysis of commercial VCDs is the

poor protection of the voice channel. We want to emphasise that the voice

channel is the main input vector for these devices: therefore, poor protec-

tion of this channel may actually jeopardise the overall security of VCDs as an

adversary can execute self-issued voice commands by improperly using the

(unauthenticated) voice channel. To address the current insecurity of voice

channels, we start with the understanding that blocking self-issued com-

mands is a necessary security requirement in all scenarios and for all users,

as self-issued commands are inherently malicious. Concerning the rest of the
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synthesised voice commands, such as real-voice recorded commands or TTS

commands, we reckon that some categories of users may need to block only

some types of synthesised voices instead. For instance, they might want to

whitelist only one synthetic voice if they trust it to be unique to their SGD,

or they might want to allow all artificial voices in scenarios where a variety

of such voices interact legitimately with the voice-controllable device. For

this reason, we next present a taxonomy of usability and security settings for

blocking or allowing synthetic voices (including self-issued commands) that

takes into account different categories of users and realistic scenarios, by out-

lining the pros and cons of each of these settings.

6.2.4 Synthesised Voices for Issuing Commands to VPAs

Recent work in the field shows that disabled individuals actually benefit from

being able to issue commands to their VCD using artificial voices. Kane et al.

[83] present a study of users affected by Amyotrophic Lateral Sclerosis who

can send text messages to their contacts by making Siri and Echo recognise

their synthesised voices. Similarly, Pradhan et al. [134] analyse online re-

views for Amazon Echo that show that disabled individuals experienced an

improvement in their quality of life, e.g., thanks to the use of synthesised

voice to issue commands to Echo. Velasco-Álvarez et al. [155] developed

a Brain-Computer Interface which allows disabled individuals to command

Google Assistant through synthesised speech. Corso [39] evaluates the im-

provements in the quality of life of SGD users when options to control smart

speakers are added to the SGD they already use, while the development of a

tailored solution is discussed by Ryu et al. [137].

6.3 Classifying Security vs. Usability

We present a taxonomy of security settings that progressively reduces the

classes of synthetic voice commands that are allowed to issue valid voice
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commands. In this taxonomy, we rank the levels from the most usable (and

least secure) to the most secure (and least usable).

• Level 0 — Accept all synthesised commands: the minimum level of se-

curity available, where any command is executed. This tolerance level

should never be selected unless there are critical usability problems that

prevent the user to interact with the voice-controllable device.

• Level 1 — Accept synthesised commands, but detect and discard self-

issued commands: a good compromise between usability and security.

While synthesised commands may be useful for some users, self-issued

commands are malicious in nature and can be blocked without further

analysis. This setting should be enabled on devices that receive legiti-

mate commands from a variety of synthetic voices, or if their user does

not want to (or cannot) undergo the training procedure to make the de-

vice learn their synthetic voice, which is explained in Level 2.

• Level 2 — Accept synthesised commands from known synthetic

voices. Detect and discard all other synthesised commands includ-

ing self-issue: the best compromise between usability and security in

this taxonomy. People who use synthetic voices to communicate could

undergo a brief training session with the voice-controllable device, so it

can learn to recognise their synthetic voices.5 All received commands

are sent to a generic solution against voice spoofing attacks for analysis:

if the command is classified as synthesised, the device checks if it knows

the voice issuing the command. If it does, the command is executed as

coming from a trusted synthesised voice. This grants protection against

non-targeted attacks,6 while allowing a good user experience.

5Theoretically speaking, a user who has recordings of their own voice before the illness (i.e.
before they became speech impaired) could also use deepfake technologies to create a clone of
their voice to issue commands. However, we were not able to confirm if someone was already
able to do this or not.

6If the voice profile used by the SGD is publicly available, such as Google TTS, an adversary
could use it to record voice commands that will be then issued to the device, bypassing the secu-
rity Level 2 as the voice would be recognised as trusted.
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• Level 3 — Discard all synthesised commands: the maximum level of

security available, where all detected synthesised commands are dis-

carded, independently from their origin. This tolerance level is ex-

tremely good for those users who do not need synthetic voices to be

recognised, as it protects against most of the attacks we know that make

use of the voice channel. However, people who communicate via SGDs

will be negatively affected by this setting, as they will not be able to in-

teract with their device as they did before.

Table 6.1: Security-Usability Taxonomy Summary

Setting Self-Issue Synth Commands Security Usability
Level 0 ✓ ✓ • • • • •
Level 1 ○ ✓ • • • • • •
Level 2 ○ ! • • • • • •
Level 3 ○ ○ • • • • •

Self-Issue: ✓ if self-issued voice commands are allowed in the current setting, ○ if they are
blocked. — Synth Commands: ✓ if synthesised voice commands are allowed in the current
setting, ○ if they are blocked. ! indicates that not all synthesised commands are blocked, i.e.
some artificial voices are allowed to issue commands.

Table 6.1 summarises the pros and cons of the four levels in our taxonomy,

in terms of their usability and security. Currently, most commercial voice-

controllable devices only implement Level 0 [56, 82, 48, 6, 171, 35, 120]. Some

of these devices implement countermeasures against replay attacks and self-

activation, i.e., theoretically at Level 1 — however, they are not currently ca-

pable of preventing exploitation from self-issued commands [56]. Most of the

research is currently focused on Level 3, namely research on liveness detec-

tion and ASV, which will be better discussed in Section 7.9. Instead, currently,

no existing solution fully implements Level 1 and Level 2.

6.4 Implementation Considerations
To create the taxonomy we presented in the previous section, we first assessed

the categories of commands that were relevant for our study, that is, self-
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issued commands and synthesised commands generated with any solution.

Note that all of these theoretically fall in the voice spoofing attack category,

however, we have already mentioned that not all synthesised commands are

malicious in nature, while self-issued commands always are. From this, we

get the intuition that self-issued commands must be blocked, while synthe-

sised commands might be blocked, depending on the circumstances.

Therefore, when it comes to the implementation of the taxonomy, it is

easy to understand that Level 0, the least secure one, should allow all com-

mands to be executed. After that, the next step in increasing the device se-

curity is blocking the only kind of commands that we surely know we must

block, that is, self-issued commands. Hence, we get that in Level 1 we block

self-activations, but not other synthesised commands. Then, the next step

in increasing the device security could be either (i) blocking all synthesised

commands, not allowing SGD users to interact with the VCD, or (ii) blocking

only synthesised commands that come from unknown voices — as the lat-

ter reduces the overall security of the device when compared to the former,

because the already mentioned targeted attacks become possible, we choose

it as Level 2. Hence, the former becomes Level 3, in which all synthesised

commands are blocked and users are protected from all synthetic voices.

6.5 Assessing Security vs. Usability at Present

We believe that a proper balance between usability and security needs to be

found for voice-controllable devices, as countermeasures discussed in the lit-

erature against voice spoofing attacks cannot be applied pervasively with-

out taking into account the necessities of all users. As already discussed,

while countermeasures, such as liveness detection, are currently the state-

of-the-art against this kind of attack, they can disrupt the user experience for

users interacting with voice-controllable devices by means of SGDs. At the

same time, VPA devices should always be protected against self-issue attacks,
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which are a class of synthetic voice commands specifically performed by bad

actors to perform voice spoofing attacks. For these reasons, in the next chap-

ter, we present, implement, and evaluate a Level 1 countermeasure, i.e., a

countermeasure against self-issue attacks that at the same time accepts syn-

thesised commands.

6.6 Related Work

In this section, we examine other relevant taxonomies on countermeasures

against voice spoofing attacks and on other related fields.

Khan et al. [88] thoroughly analyse voice spoofing attacks and their coun-

termeasures. Their taxonomy for the latter includes two categories: conven-

tional and deep learned. The conventional category includes methods that

employ handcrafted features such as Mel Frequency Cepstral Coefficients

and prescribes the analysis of front-end features (e.g. spectrum analysis) or

backend classification, which can also involve deep learning. Instead, in the

deep learned category find place all solutions that learn to recognise key fea-

tures from audio files, in an attempt to extract the most relevant ones for the

task. Our solution against self-activation, that will be presented in the next

chapter, falls in this category. This taxonomy also includes the already men-

tioned End-to-End models which are proving themselves to be more effective

than classic deep learning in several fields.

Hewitt and Cunningham [72] create a taxonomy for voice assistant soft-

ware and hardware. While their analysis of voice assistant software is limited

to the most used commercial ones, their analysis of hardware, i.e. Voice User

Interfaces and especially edge devices — sensors and appliances essentially

— is thorough and precise.

Karim et al. [86] thoroughly classifies all attacks and known countermea-

sures to Internet of Vehicles (IoV) attacks. Interestingly, in their taxonomy

of possible attacks we find “attacks on voice controllable systems” within the
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“Attacks on In-Vehicle Systems” category, as we have previously seen in Sec-

tion 3.3.1 that car manufacturers as BMW developed and embedded their

own voice personal assistant within their cars. Hence, they outline possible

defensive measures to be applied to thwart these attacks, although at a lower

level of detail than the previously cited work, as attacks on the voice personal

assistants embedded within cars are just one of the many attacks on the IoV.

6.7 Summary
In this chapter, we assessed the basic security and usability features of voice-

controllable devices, confirming that their main weakness is the lack of au-

thentication and authorisation on the voice channel. After, we analysed the

security requirements for users of such devices, and we introduced a taxon-

omy for synthesised voice command tolerance. Finally, we showed that ex-

isting countermeasures against voice spoofing attacks cannot be pervasively

applied as they would cut out users who require a synthesised voice to com-

municate, such as people with severe speech impairments, and that Level 1

and 2 of our taxonomy can be implemented to allow them to use their device

while being protected from self-activations. Unfortunately, as of today, there

are no reliable implementations of Level 1 and 2 countermeasures.
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An Intelligent Measure Against
Self-Activation

In this chapter, we introduce our solution to protect voice-controllable de-

vices from self-issued voice commands, implementing the already men-

tioned security Level 1. We also describe current voice spoofing countermea-

sures, which can be used to implement security Level 3 (RG3). Contents of

this chapter have already been partially discussed in the following paper:

• Esposito S., Sgandurra D., Bella G., Protecting Voice-Controllable De-

vices Against Self-Issued Voice Commands. Accepted to the 8th IEEE

European Symposium on Security and Privacy. 2023.

7.1 Introduction
We now discuss the implementation of security Level 1 by introducing a novel

anti-self-activation solution to detect whether commands are self-issued or

not. The reference scenario considers a device playing an audio file and, at

the same time, capturing a command. As the device can access both audio

files, it can compare and check them for similarities. The core novel idea un-

derlying our solution is that, if the captured audio has substantial differences

from the played one, then a real user’s voice is partially overlapping what is
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being played — hence, the command comes from a live user and can be ex-

ecuted. Vice versa, if the two files are very similar, it is likely that the voice

command was pre-embedded within the played audio file — hence, the com-

mand needs to be discarded as self-issued.

As the main research challenge revolves around similarity checks, we fine-

tune a Twin Network [47, 178, 122, 111] structure to detect differences in au-

dio. Twin Networks have several applications in different security scenarios:

for instance, Dey et al. [47] present SigNet, a framework to verify whether a

signature is genuine or not. The work uses a Twin Convolutional Neural Net-

work and outperforms the state-of-the-art. Another application of Twin Con-

volutional Networks is facial similarity, namely, detecting whether two photos

feature the same person or not [69]. From a user safety perspective, Drogh-

ini et al. [53] apply Twin Neural Networks to human fall detection, which is

considered a hard problem as there are not many samples and datasets fea-

turing people falling to train detection solutions. To this end, their proposed

approach uses few-shot learning and achieves an 80% F1 score.

In our solution to the self-activation problem, we extract the Mel-

Spectrogram from every captured and played audio file, and we exploit a Twin

Network architecture to classify the audio. Our solution correctly classifies

97% of voice commands after being trained on a dataset we created with 35

pairs of captured/played audio files and their augmentations. With our so-

lution, we aim to make a substantial step towards a good balance between

usability and security in voice-controllable devices.

7.2 Refining the Threat Model

Our solution implements the Level 1 security of our taxonomy, and, as such, is

designed to protect voice-controllable devices against self-issued commands.

Hence, the VOCODES Threat Model discussed in Chapter 3.4 still applies.

However, a few more details are due to clarify the reference scenario.
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Applications for smart devices (such as a malicious Music & Radio skill or

Mask Attack) run on the cloud, and VPAs only send queries and read replies

aloud. However, Windows and Android malware run on the attacked device:

in this case, depending on the privileges available to the malicious applica-

tions, they may be able to disable protections in place on the attacked ma-

chine, including our solution, before self-issuing any command. Nonethe-

less, in our threat model, we do not consider the attacker to have the ability

to disable security mechanisms on the target. Furthermore, as security Level

1 of our taxonomy allows external synthesised voices to issue commands to

the device for usability purposes, we only consider self-issue attacks as mali-

cious, while all other voice spoofing attacks are out-of-scope.

7.3 Proposed Solution

The main idea underlying our solution to address the self-activation prob-

lem is to consider both the input and output audio channels when the voice-

controllable device is receiving a command. Our solution compares the audio

file that is being played (the played audio file, henceforth) with the audio file

obtained while recording the command coming, supposedly, from the user

(the recorded audio file, henceforth). If a user effectively issues a command,

the recorded audio file will contain both (i) what is being played by the smart

speaker and (ii) the user command. Therefore, the recorded audio file will be

sufficiently different from the played one. Conversely, if the played audio file

contains a command that triggers a self-activation, the recorded audio file will

not be different from the played audio file as the audio captured by the smart

speaker’s microphone is exactly the one of the played audio file.

Figure 7.1 gives a visual representation of both scenarios: in the benign

case, the recorded audio is different from the played audio, as the voice of the

user overlaps the backing track (top-right figure); by contrast, in the malicious

case, the played audio and the recorded one match as the evil command is
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embedded in the original audio (bottom-left and bottom-right figures).

Figure 7.1: Benign and Malicious Samples Compared

7.3.1 Introducing Twin Networks

Unfortunately, a direct comparison between the soundwaves of the played

and the recorded audio files cannot be performed to detect self-issues attacks,

because distortions, reflections, background noise, and other artifacts that

significantly alter the recorded audio from the played one. Hence, we needed

more precise means to compute this difference. This is why we chose to use

neural networks. In particular, we note that Twin Neural Networks (TNNs)

are better suited to detect audio differences by learning relevant discriminat-

ing features, and therefore can generalise well our problem. Hence, we de-

cided to use TNNs in our proposed solution as: (i) TNNs are well-suited for

problems of outlier detection [47, 178, 122, 111], (ii) TNNs can work well with

small datasets, (iii) TNNs are natively designed to compare pairs of similar

inputs, (iv) other euristic approaches shown in different patents do not seem

to work [3, 131, 100].

The choice of TNNs is particularly important in this context to provide

precise predictions (RG7) with only a small dataset for training (RG5) as there

are currently no datasets available that feature self-issued commands, or

datasets featuring both played and recorded audio samples. For this reason,

we also created and released a dataset for training a TNN, which will be in-

troduced in Section 7.4. Additionally, we will see that our solution performs

better than other simpler machine learning models running in the same con-
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ditions, such as One-Class SVM, as they are not able to generalise the problem

on their own (i.e., without a neural network helping in extracting features).

The structure of our Twin Neural Network is shown in Figure 7.2. As we

can see from the figure, the network consists of a single Convolutional Neu-

ral Network (CNN). Note that during training, its weights and biases are up-

dated after both the played and the recorded samples have been fed into it.

The vectors output by the CNN are then compared by means of the pairwise

distance using the 2-norm. In the training phase, this value is used to com-

pute the Contrastive Loss, which will be the criterion for the network’s train-

ing. Instead, in the validation phase, if the pairwise distance exceeds a certain

threshold, the current sample is classified as benign, meaning the differences

between the recorded and played audios are large enough, so it is likely that

the command was not embedded in the played audio but was pronounced by

a legitimate user. The final value of the threshold was selected by exploring

different values, and by analysing the resulting confusion matrix for different

training instances of our solution. In the end, we selected 0.4 as it achieves

the best performance overall (see Section 7.5 for performance details).

Played 
Audio

Rec 
Audio

CNN

CNN

PDist

CLoss

650x128

650x128 20x1

20x1

1x1

Classifier
Validation

Training

1x1

Figure 7.2: Structure of the Twin Network

Figure 7.3 details how we fine-tuned our CNN for the self-issue detection

problem. In particular, the network takes a single Mel-Spectrogram as input,

with dimensions 650x128 (83,200 pixels), which goes through a convolutional

layer with the ReLU activation function. A 1px zero-padding is applied to the

input image, to address the border effect [80]. After convolution, a MaxPool

layer extracts relevant information within each 2x2 area. It then performs
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Batch Normalization [79] and Dropout [144] to regularise features. This pro-

cess is repeated five times, reducing progressively the number of used chan-

nels and the number of features per channel by means of convolution and

pooling. After the fifth dropout, only 456 features are left. These features are

then fed to three consecutive dense layers, and a final vector of 20 features

is output by the network. Table 7.1 summarises the implementation of the

network and its layers.

Input Layer Conv2D + ReLU MaxPool2D + Batch
Normalization Dropout Dense Layer

Figure 7.3: Visual Representation of the CNN in Our Twin Network

Table 7.1: Convolutional Network Structure

Layer Output Size Channels Notes
Input 650x128 1 -
Conv2D + ReLU 646x124 60 Kernel 7x7, Padding 1
MaxPool + BatchNorm 323x62 60 Size 2x2, Stride 2
Dropout 323x62 60 p=0.25
Conv2D + ReLU 319x58 48 Kernel 7x7, Padding 1
MaxPool + BatchNorm 159x29 48 Size 2x2, Stride 2
Dropout 159x29 48 p=0.25
Conv2D + ReLU 157x27 36 Kernel 5x5, Padding 1
MaxPool + BatchNorm 78x13 36 Size 2x2, Stride 2
Dropout 78x13 36 p=0.25
Conv2D + ReLU 76x11 24 Kernel 5x5, Padding 1
MaxPool + BatchNorm 38x5 24 Size 2x2, Stride 2
Dropout 38x5 24 p=0.25
Conv2D + ReLU 38x5 12 Kernel 3x3, Padding 1
MaxPool + BatchNorm 19x2 12 Size 2x2, Stride 2
Dropout 19x2 12 p=0.25, 19x2x12 = 456 features
Dense + ReLU 300 - -
Dense + ReLU 100 - -
Dense + ReLU 20 - Output Layer
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7.4 Realistic Commands Dataset Creation
In this section, we describe the equipment we leveraged to create the voice-

commands dataset (Section 7.4.1) that we use to train and evaluate our solu-

tion. This was necessary, as we are not aware of any open-source dataset that

features both the played and the recorded audio files. Hence, we describe

the process for its recording and the different categories of samples within it,

and also the data augmentation techniques we implemented to enhance the

training process (Section 7.4.2).

7.4.1 Equipment

We used a Seeed Respeaker 4-Mic Microphone Array v1.1 [141], connected to

a Raspberry Pi 4 Model B,1 to record the audio dataset. The device was placed

on a table with other objects nearby to simulate a real-world environment

where the VCD is placed near other appliances. The played audio files are

various extracts of songs, podcasts, and audiobooks. To generate the recorded

samples, we placed the Raspberry with the Respeaker microphone array on

top of a 3rd Generation Echo device, while Echo streamed the played audio

files and the Respeaker array was recording. A script coordinated the played

audio files and their recording. To train the neural network we used a virtual

machine on Google Colab, with a Tesla P100-PCIE-16GB GPU, an Intel Xeon

CPU @ 2.20GHz, and 26 GB RAM. Figure 7.4 shows the placement of these

devices during the recording of the dataset.

7.4.2 Building the Dataset

First, we identify the possible categories of audio files that can be legitimately

played by the user with their smart speaker (benign samples), and then the

categories of rogue audio files containing voice commands that can be issued

by the attacker (malicious samples).

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
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Figure 7.4: Placement of Echo Dot and Respeaker 4-Mic Microphone Array
During the Recording of The Dataset

Benign Category

Using the classification in Chapter 4.3 as a starting point for possible kinds of

audio files that the user could be listening to while issuing a command, the

benign category includes:

• Text-To-Speech Samples: artificially generated speeches that do not

contain malicious commands. For example, the user could be listening

to an audiobook read by an artificial voice.

• Real Voice Samples: real people speaking. For instance, the user could

be listening to a podcast or to a radio show.

• Music Samples: any audio containing music. For example, the user

could be listening to a song, or they could be listening to the radio.

• White Noise Samples: artificially-generated noise with a certain fre-

quency. These can be sleeping or relaxing sounds to facilitate relaxing,

studying, or having a baby sleep.
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This list is not meant to be exhaustive, as more audio types or combina-

tions of these audio types are not part of our dataset (e.g., rain or bus noise

instead of simple white noise, TTS voice with music in background, real voice

with music in background, a cappella music).

Malicious Category

This category, coherently with the classification in Chapter 4.3, includes:

• Text-To-Speech Samples: synthesised speeches that, contrary to the

ones in the benign category, contain malicious commands. The at-

tacker could have included them, for example, within the audiobook

that is being read. We generated all of our samples using Google TTS,

with varying Wavenet profiles. There was only one restriction on which

commands could be generated, that is, they had to be in the classic

wakeword + command form.

• Real Voice Samples: real people speaking, and pronouncing malicious

commands. The attacker would record them within a podcast, or sud-

denly issue them during a live show. We had a real user recording these

samples, who read the command from a prebuilt list. Even in this case,

the only restriction for the selection of commands to be added to the list

was that they had to be in the classic wakeword + command form.

• Adversarial Noise Audio Samples: audio files containing adversarial

noise commands. These could be virtually included in every media, al-

though they are usually hidden in music [35, 171]. We generated our

samples using the Devil’s Whisper Dockerhub.2 Because we did not re-

train the solution on other commands and we did not introduce other

songs, we were restricted to use the songs and the commands already

present in the Dockerhub.

2https://hub.docker.com/repository/docker/neeze/devilwhisper
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Audio Generation and Recording Process

We generated 10 audio samples for each category, with varying sample rates,

using the Waveform Audio File (WAV) format. The played audio dataset is

composed of 70 samples, with an average length of 6 seconds. As our goal

is to check whether our solution is able to correctly classify commands with

a limited number of samples (recall RG5 introduced in Section 1.2.1), 70 is a

very low number of samples when compared to other datasets, such as the

ASVSpoof 2019 Logical Access and Physical Access datasets, which are made

of 50,224 and 83,700 samples, respectively.3

To create the recorded audio dataset, we reproduced the played audio files

using the setup described in Section 7.4.1. The audio files of the malicious

samples already contain the malicious command. To simulate real benign

commands being issued to the smart speaker, a real user was involved in pro-

nouncing commands to record benign samples. To this end, a script records

all the samples and prompts a real user to give a command when the played

audio starts. Since one recorded audio file is generated for each played audio

file, the recorded audio dataset is composed of 70 samples as well.

The whole process of generating a played-recorded audio file pair requires

four steps:

1. Download: we downloaded audio files for played samples among pod-

casts, songs, and shows, to introduce diversity among the samples.

2. Split: we split these files in short samples, as audio files captured by

real voice-controllable devices when a command is issued are only a

few seconds long.

3. Select: we built the played dataset by identifying suitable candidates

among these samples. For example, we discarded samples with too

much silence or samples that are similar to previously selected ones.

3https://datashare.ed.ac.uk/bitstream/handle/10283/3336/asvspoof2019_

evaluation_plan.pdf
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4. Record: we generated a list of different and valid commands for a real

user to read while recording the voice command on top of the played

audio file. A script then aligned the recorded audio with the played one:

this required a left-shift of ∼90ms (mostly hardware dependant). The

part of the audio that was left-shifted to the end of the file was trimmed.

The recordings were made with the real user staying at a 60 cm distance

from the device, in a room with 20 dB of background noise and the volume of

Echo Dot set to 5.

Dataset Augmentation

All the samples in our dataset undergo a data augmentation process to allow

better training results for our Twin Network. In fact, this process generates

other samples from the existing ones and expands the dataset in an efficient

way. We implemented five techniques:

• Speed Up: increasing the playback rate of the audio sample by 20%,

while keeping the same pitch.

• Speed Down: decreasing the playback rate of the audio sample by 20%,

while keeping the same pitch.

• Pitch Up: shifting up the pitch of the sample by 2 semitones.

• Pitch Down: shifting down the pitch of the sample by 2 semitones.

• Frequency Masking: deleting all information within two random fre-

quency ranges. Because the chosen frequency range is random, every

sample will likely have different frequencies missing. Unlike the other

data augmentation techniques, which are performed on the raw audio

file, this technique can be applied to Mel-Spectrograms, by applying

horizontal white bars to mask the chosen frequencies. We applied two

masks with dimensions of 650x6 pixels for each sample.
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By adding up the original samples to the augmented ones, the dataset in-

cluded a total of 420 samples. Note that a pair made of a played audio file

and a recorded audio file only counts as one sample, despite them being two

separate files. We never use our samples all at once: this is because the aug-

mented samples are only used during training, and not for the validation pro-

cess. Hence, the augmented samples belonging to audio files selected for val-

idation are discarded for that specific instance.

Table 7.2 summarises the different datasets we used for each of the tests

we have performed. To train our Twin Network, we make a homogeneous

split selecting half of the samples and their augmentation for training. In this

way, we use 20 benign samples and 15 malicious ones: with their augmenta-

tions, we get to 120 benign samples and 90 malicious samples, adding up to

210 training samples. We use the remainder for validation purposes, exclud-

ing the augmented samples, that is, we have 20 benign samples and 15 mali-

cious ones in our validation dataset. These are identified with DNN (training)

and DNN (testing) in Table 7.2.

As we are not aware of any other solutions to directly compare our work

with, for benchmarking purposes, we used state-of-the-art Anomaly Detec-

tion (AD) techniques to address the same problem. Because AD algorithms

are typically trained on benign samples only, we had to rearrange the sample

distribution within the datasets, to make a realistic yet balanced comparison

with our solution. In the AD1 dataset, we try to keep the same samples as the

DNN dataset, however, because the malicious samples are excluded from the

training, the result is that AD1 (training) contains 57% of the samples when

compared to DNN (training), that is, it only contains the 120 benign samples.

In the AD2 dataset, we try to keep the DNN dataset’s total number of training

samples, regardless of the balance. Again, because the training dataset does

not contain malicious samples, this leads to the AD2 testing dataset having

less benign samples: in fact, it is rather imbalanced, as 6 samples out of 7 are

malicious. Recall that the AD datasets only contain the recorded audio sam-
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ples, as anomaly detection solutions have no means to compare them with

the played samples.

Table 7.2: Dataset Structure

Dataset Benign Malicious Total Type
Original Dataset 40 30 70 Ù ○
Augmented Dataset 40+200 30+150 420 Ù ○
DNN (training) 20+100 15+75 210 Ù ○
DNN (testing) 20 15 35 Ù ○
AD1 (training) 20+100 0 120 ○
AD1 (testing) 20 15 35 ○
AD2 (training) 35+175 0 210 ○
AD2 (testing) 5 30 35 ○

Ù: includes played audio files. — ○: includes recorded audio files. — The number after the
+ sign indicates the number of augmented samples.

Figure 7.5: Dataset Generation Flow

Mel-Spectrograms Extraction

After performing the data augmentation, we extracted Mel-Spectrograms for

each sample. In fact, even if it is possible to feed a raw audio file into a neural

network, several works show that feeding Mel-Spectrograms yields better re-

sults for different tasks that involve time series [37, 30]. As Mel-Spectrograms

focus on the human-hearable sounds, they give less relevance to infrasounds

and ultrasounds by allocating them fewer pixels compared to the human-

hearable frequency ranges. This allows the comparison of audio files with dif-

ferent frequency ranges, as long as human-hearable frequencies are present

in both. All spectrograms were then resized to 650x128 pixels: this dimension

was chosen as it was close to the average size of all spectrograms. Finally,

we organised the audio files and the spectrograms in different directories,

depending on their category and benign/malicious classification, and ulti-
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mately labelled the whole dataset. The entire process used to create a sample

is summarised in Figure 7.5.

7.5 Evaluation
In this section, we describe how we train the Twin Network (Section 7.5.1), we

evaluate its performance during validation (Section 7.5.2), and we compare it

with state-of-the-art anomaly detection (Section 7.5.3).

7.5.1 Training

The training is performed by letting both the played and recorded samples go

through the network, one after another. The Contrastive Loss is used as the

criterion for the training, and is calculated as [70]:

CLoss = (1− Y )
1

2
(Dw)

2 + Y
1

2
{max(0,m−Dw)}2 (7.1)

In this formula, Y is the correct label for the sample, Dw is the pairwise

distance (using the 2-norm) between the two predicted vectors output by the

Twin Network, and m is the margin, which was set to 1. The pairwise distance

of two vectors v0 and v1 of the same dimension using the p-norm is [135]:

PDistp =

(
n∑

i=1

|xi|p
) 1

p

(7.2)

In this formula, n is the dimension of such vectors, xi is the arithmetic dif-

ference between the i-th element of v0 and v1, and p is the norm. After these

values are calculated, backpropagation allows the network’s weights and bi-

ases to be updated. We train the network for 100 epochs using the Adam opti-

mizer [91] and α = 5·10−5 as the learning rate. For this task, we used the DNN

training dataset, which contains 120 benign samples (20 + 100 augmented)

and 90 malicious ones (15 + 75 augmented), for a total of 210 samples to be

used for training purposes.
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In the next section, we report the average performance of our models.

7.5.2 Validation

After each training epoch, we run a validation round against the DNN testing

dataset to measure the network’s performance. This dataset contains 20 be-

nign samples and 15 malicious ones, for a total of 35 samples. During the val-

idation phase, the pairwise distance between the two feature vectors output

by the Twin Network — one for the played audio and one for the recorded one

— is compared with the threshold (0.4 in our case, as explained in Section 7.3)

and all samples are classified accordingly. We observed that the network usu-

ally reaches its best performance between the first 10-50 epochs, after which

there is a small degradation of the accuracy — this may mean that the number

of training epochs is too high compared to the number of samples available,

and the Twin Network slightly overfits the training dataset.

The neural network achieves similar results in most training instances. Ta-

ble 7.3 presents the confusion matrix for the best results of ten different in-

stances of training: in five instances, the network manages to correctly clas-

sify all samples, except for one false negative (instances 1, 5, 6, 8, and 9). In

three instances, there is one false positive instead (instances 2, 7, and 10). Fi-

nally, instance 3 is the least reliable, with 2 misclassifications, while instance

4 is the best as it correctly classifies all the samples.

Hence, our solution is capable of reliably detecting when a command is

being self-issued (RG4) and it has been trained with only 35 original samples

and their augmentation (RG5).

7.5.3 Comparison with Anomaly Detection

We compare our results with state-of-the-art techniques for anomaly detec-

tion as a baseline, as currently there are no other works against self-issue to

compare our solution with. We performed four tests:
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Table 7.3: Confusion Matrices for 10 Training Instances

# TP TN FP FN Acc. BA F1
1 14 20 0 1 0.97 0.97 0.97
2 15 19 1 0 0.97 0.98 0.97
3 14 19 1 1 0.94 0.94 0.93
4 15 20 0 0 1.00 1.00 1.00
5 14 20 0 1 0.97 0.97 0.97
6 14 20 0 1 0.97 0.97 0.97
7 15 19 1 0 0.97 0.98 0.97
8 14 20 0 1 0.97 0.97 0.97
9 14 20 0 1 0.97 0.97 0.97
10 15 19 1 0 0.97 0.98 0.97

Avg 14.4 19.6 0.4 0.6 0.97 0.97 0.97

#: ID of the instance — TP: True Positives — TN: True Negatives — FP: False Positives
— FN: False Negatives — Acc.: Accuracy — BA: Balanced Accuracy — F1: F1 Score —
Avg: Average values

• Test 1 — Anomaly Detection Baseline: we trained two state-of-the-art

anomaly detection techniques, namely, One-Class Support Vector Ma-

chine (OCSVM) [140] and Isolation Forest (iForest) [107] on the 83,200

features. Training and testing were performed using the AD1 dataset

first, and then the AD2 dataset in a separate training instance. Recall

that these datasets only include benign recorded audio samples.

• Test 2 — Anomaly Detection with Resnet-18: we used a pre-trained

Resnet-18 to extract relevant features from the benign recorded audio

files. OCSVM and iForest were then trained on the features extracted by

the said neural network, which are only 512. The AD1 and AD2 datasets

were used separately in this scenario as well.

• Test 3 — Anomaly Detection with Resnet-152: it works similarly to Test

2, this time with a pre-trained Resnet-152. This network outputs 2048

features. AD1 and AD2 were used in separate training instances.

• Test 4 — Anomaly Detection with our Convolutional Network: it works

similarly to both Tests 2 and 3, this time with the anomaly detection

models trained with the 20 features extracted by our Convolutional Net-

work. While such a network was trained using the DNN dataset, the

anomaly detection models were trained and tested with AD1 and AD2
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separately, so that results are comparable with other tests.

Table 7.4 shows the results of the tests and compares the different solu-

tions. As we can see, Test 1 gives rather poor results, as the anomaly detection

models cannot figure out relevant features from 83,200 pixels per sample. As

shown by the TPR and TNR values, the OCSVM always predicts that a sample

is malicious, while the iForest always predicts that it is benign. This results in

a balanced accuracy of 50% for both solutions.

The anomaly detection models start to correctly classify our samples only

when a neural network is introduced to extract relevant features. In detail,

OCSVM slightly improves its performance during Test 2, while iForest keeps

classifying all samples as benign, except for one in the AD2 testing dataset,

which is correctly classified as malicious. Isolation Forest’s performance does

not increase in Test 3. However, OCSVM is capable to achieve 80% balanced

accuracy and a 0.75 F1 score, substantially improving its performance. These

are improved also for the AD1 testing dataset when compared to those ob-

tained in Test 2.

Test 4 shows that our network outperforms the generic Resnet in feature

extraction for this specific task: in fact, with only 20 features, both anomaly

detection techniques manage to substantially improve their performance

with all testing datasets. In particular, we note that, in this case, Isolation

Forests get really close in performance to our solution, but our solution is still

more reliable in the average case (RG7), as we see from its balanced accuracy.

7.6 Real Use-Case Experiments
We now assess the performance of our solution when operating in different,

realistic, conditions than the ones in which the dataset was recorded. To this

end, we deployed an instance of our solution on a Raspberry Pi 4 Model B with

a Seeed Respeaker 4-Mic Microphone Array v1.2. This is a newer version of

the microphone that was used to record the dataset to introduce subtle differ-
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Table 7.4: Evaluation of Our Solution Against the Anomaly Detection Baseline

Solution Dataset TPR TNR P R Acc. BA F1
Test 1 - OCSVM AD1, AD2 1.00 0.00 0.43 1.00 0.43 0.50 0.60
Test 1 - iForest AD1, AD2 0.00 1.00 - 0.00 0.57 0.50 -
Test 2 - OCSVM AD1 0.33 0.80 0.56 0.33 0.60 0.57 0.42
Test 2 - iForest AD1 0.00 1.00 - 0.00 0.57 0.50 -
Test 2 - OCSVM AD2 0.27 1.00 1.00 0.27 0.37 0.63 0.42
Test 2 - iForest AD2 0.03 1.00 1.00 0.03 0.17 0.52 0.06
Test 3 - OCSVM AD1 0.73 0.45 0.50 0.73 0.57 0.59 0.59
Test 3 - iForest AD1 0.00 1.00 - 0.00 0.57 0.50 -
Test 3 - OCSVM AD2 0.60 1.00 1.00 0.60 0.66 0.80 0.75
Test 3 - iForest AD2 0.00 1.00 - 0.00 0.14 0.50 -
Test 4 - OCSVM DNN + AD1 1.00 0.20 0.48 1.00 0.54 0.60 0.65
Test 4 - iForest DNN + AD1 1.00 0.80 0.79 1.00 0.86 0.90 0.88
Test 4 - OCSVM DNN + AD2 1.00 0.60 0.94 1.00 0.94 0.80 0.97
Test 4 - iForest DNN + AD2 1.00 0.80 0.97 1.00 0.97 0.90 0.98
Our Solution (Avg) DNN 0.96 0.98 0.97 0.96 0.97 0.97 0.97
Our Solution (Best) DNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TPR: True Positive Rate — TNR: True Negative Rate — P: Precision — R: Recall —
Acc.: Accuracy — BA: Balanced Accuracy — F1: F1 Score. — P and F1 could not be
calculated for solutions that predict that every sample is benign, as it would require a division
by zero.

ences between these recordings and the ones in the original dataset.4 In this

scenario, four real users5 provided commands to our solution through this

device, by setting up different environmental and recording scenarios that

differ from the ones in which the dataset was recorded. Finally, we assessed

our solution’s resilience under various settings.

We identified five variables that describe the conditions of the recordings:

1. Background noise: the intensity (in dB) of the background noise in the

room while issuing the command.

2. Voice: the voice of the user that issues the benign command, or of the

adversary when recording real-voice commands to be self-issued.

3. Position of the user giving a command: the physical location of the

user within the room while issuing a command. We only take into ac-

count users who are standing still while talking, and they must be inside

4Devices of the same family may be built with different components within certain tolerance
limits. However, note that if the device manufacturer decides to change the microphone array
with another that is substantially different, our solution can be retrained by the device manufac-
turer to preserve optimal performance.

5The user who recorded the dataset and three additional users.
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the room where the device is placed. This only applies to benign com-

mands as there is no user near the device during the exploitation of the

voice command self-issue.

4. Volume of the device: the current volume of the device while the com-

mand is being issued.

5. Position of the device: the physical location in which the device was

placed when recording the command (e.g., on a table in a certain room).

To avoid using samples that the neural network already knew, we repeated

the process of generating new samples, that is, we identified songs and pod-

casts to be played for benign samples while users were issuing commands,

and we generated further malicious samples in which a voice command is

embedded. In the end, we performed the following tests:

• Test 1 — Variation of background noise: we increased the background

noise in the room from 20 dB (as when the dataset was recorded) to 40

dB. Commands were issued by the original user (the one who recorded

the dataset). This test applies to both benign and malicious samples.

• Test 2 — New users issuing commands: to generate benign samples,

we instructed three new users to stand in the same position that was

used to record the original dataset and to issue a command while an au-

dio file was being played. To generate malicious samples, we asked the

same three users to send us some audio files featuring them issuing a

command, so we could use them to generate a command self-issue. An

advantage of this approach is that we can test our solution with audio

files recorded from different devices, as every user would record them

with different hardware (e.g., a smartphone). However, this test cannot

be executed with malicious TTS samples as it would not involve differ-

ent real users.
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• Test 3 — Different position of the user: the original user was asked to

issue a command when standing in a different position than the one

used to record the dataset. This time they were standing at a 15 cm of

distance from the device. This test applies to benign samples only.

• Test 4 — Different volume of the device: we changed the playback vol-

ume of the device to 3 or 7. Commands were issued by the original user.

This test applies to both benign and malicious samples.

• Test 5 — Different position of the device: the device was moved into

another room while keeping all the other original conditions (i.e., 20 dB

background noise, original user issuing a command while standing at

60 cm from the device, playback volume 5). For malicious samples, we

reproduced the malicious audio file with the device in the new room.

Hence, this test applies to benign and malicious samples.

• Test 6 — Combinations of the above tests: the device was moved into

another room, having a 40 dB background noise, and three different

users were asked to issue commands during an audio playback at vol-

ume 3 while standing at 2.5 m from the device. We also reproduced

malicious audio files in these new conditions. Hence, this test applies

to both benign and malicious samples.

• Test 7 — Commands with synthesised voices from external speak-

ers: we performed this set of tests to assess our solution’s performance

against synthesised voice commands issued by external speakers. In

a real scenario, this represents a legitimate user trying to issue a com-

mand to a voice-controllable device via their SGD. The audio files con-

taining voice commands were played from a speaker that was at a 50 cm

of distance from the recording device during the first half of the tests,

and that was at a 90 cm of distance for the second half of the tests. There

was 40 dB of background noise in the room and the playback volume of

the device was set at 3. Recall that, as our solution implements the Level
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1 security of our taxonomy, malicious external synthesised commands

are out-of-scope. Hence, this test applies to benign samples only.

Figure 7.6: Visual Representation of the Test Scenarios
Images are not in scale. The number in the bottom-left corner indicates the background
noise in the room. The circle indicates the device used to reproduce the played audio files

and to create the recorded audio files. The number within the circle is the playback volume.
The rectangle is a surface (a desk, a small cupboard) that has different objects on it,

including the device. The icons of the male/female users only indicate that there is a change
of user and they do not necessarily represent the actual genders of the people involved in

that experiment. For simplicity, this image features only one setting for each test, even if the
test has multiple scenarios (e.g., Test 4 is actually performed with 2 different volumes).

Figure 7.6 provides a visual representation of the conditions described

above for the different scenarios. For these tests, we used an instance of our

solution that correctly classified all of the samples in the testing dataset. How-

ever, as our model was never tested under these new conditions, a drop in the

success rate was expected. For each test, we had 10 benign samples (4 featur-

ing music, 3 podcasts, and 3 white noise) and 10 malicious ones (5 featuring

TTS voice commands and 5 real-voice commands). As in Test 2 we cannot

use malicious TTS voice commands, we only have 15 samples for that test.

Additionally, as in Tests 3 and 7 there are no malicious samples, we only have

10 samples.

Table 7.5 summarises the obtained results. We can see that our solution

still correctly classifies 90% of the benign samples on average: this indicates

that, independently from the identity of the user speaking, our solution is

able to reliably classify benign commands in all the tested environments. This

also means that the user does not need to do an enrolment procedure if they

want to activate this countermeasure, that is, they do not need to issue some

commands to show the model the conditions in which it will operate.

Regarding the malicious samples, we can see that the feature that mostly

affects a correct classification is the volume change: when all conditions were
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Table 7.5: Real Use-Case Tests Results

Test Ben. Mal. TPR TNR P R Acc. BA F1
0 - Test Dataset ✓ ✓ 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1 - Noise + ✓ ✓ 0.70 0.90 0.88 0.70 0.80 0.80 0.78
2 - User Change ✓ ! 0.60 0.90 0.75 0.60 0.80 0.75 0.67
3 - User Pos. ✓ ✗ - 0.90 - - 0.90 - -
4.1 - Volume - ✓ ✓ 0.40 0.90 0.80 0.40 0.65 0.65 0.53
4.2 - Volume + ✓ ✓ 0.40 0.90 0.80 0.40 0.65 0.65 0.53
5 - Device Pos. ✓ ✓ 0.70 0.90 0.88 0.70 0.80 0.80 0.78
6 - Combination ✓ ✓ 0.60 0.90 0.86 0.60 0.75 0.75 0.71
7 - Synth Voice ✓ ✗ - 0.90 - - 0.90 - -

Ben.: Test applicable to benign samples. — Mal.: Test applicable to malicious samples. —
! in Test 2 means that the change of user is only feasible when using real-voice commands for
the self-issue. — As there are no malicious samples for Tests 3 and 7, TPR, P, R, BA, and
F1 are not calculated.

unaltered and the playback volume changed (Tests 4.1 and 4.2), our solution

correctly classified only 40% of the malicious samples. However, we see that

60% of the malicious samples are correctly classified in Test 6. This is most

likely because, even if the playback volume was set as 3, the users were also

issuing commands from a farther distance than the one used to record the

dataset — our intuition is that this allows the playback/user voice volume

ratio to be closer to the one of the testing dataset. Hence, we hypothesise that

with more extreme changes to the environmental conditions (e.g., user way

too far or close to the VCD, volume of the VCD way too high or low, very high

background noise such as 80 dB or more), a further drop in success rates is to

be expected.

7.6.1 Performance Analysis

To evaluate the feasibility of running our solution on different scenarios, we

analysed its performance while running on three different devices:

• Smart Speaker (Raspberry Pi 4 Model B): this evaluates the implemen-

tation of our solution on a real smart speaker, as the performance of

these devices is comparable to the Raspberry Pi’s one. In fact, 3rd gener-

ation Echo Dot devices run a Mediatek MT8516BAA processor, a slightly
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less performant processor than the Broadcom BCM2711 processor em-

bedded on Raspberry Pi 4 Model B. Conversely, 4th generation Echo Dot

devices run a Mediatek MT8512BAAV with an AZ1 neural edge proces-

sor, which is slightly better than the Raspberry’s processor, especially

when it comes to machine learning tasks. Hence, Raspberry offers a fair

average of these devices’ performance when running our solution. Our

Raspberry runs Raspbian as OS and has 4 GB RAM available.

• Laptop (ASUS X580VD): this evaluates the performance of our solution

when running on a laptop. Our device runs an Intel Core i7-7700HQ, 16

GB RAM, and Windows 10 Home 64-bit as the operating system.

• Cloud Server (Google Colab): this evaluates the performance of our so-

lution when running on the cloud. We used a virtual machine on Google

Colab, with an Intel Xeon processor, 26 GB RAM available, and the Linux

Kernel 5.10.133.

Overhead Measurement

To ensure a fair comparison, we ran our solution using the devices’ CPUs.

Only on Google Colab, we ran a test using CPU and another using GPU, to

check the magnitude of the improvement. Table 7.6 shows the average time

taken by each device to execute the core functions of our solution.

Table 7.6: Overhead Measurement on Different Devices

Task Rasp Laptop Cloud CPU Cloud GPU
Network Initialisation 0.04s 0.01s 0.05s 2.08s
Sample Preprocessing 0.56s 0.07s 0.15s 0.10s
Category Prediction 3.40s 3.52s 0.46s* 0.15s*

*: The first prediction on both Cloud CPU and GPU takes longer: on CPU it takes 0.60s on
average while on GPU it takes 1.18s on average.

The network initialisation function is executed una tantum, for example

when the device is booting up. We see that, in the worst-case scenario, it

only takes slightly more than two seconds, a negligible time during the device
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startup. Conversely, preprocessing of the audio files must be executed every

time a command is given to the device. We can see that, in the worst-case

scenario, our solution takes half a second to do so, which is acceptable as this

process happens unknowingly to the user: in fact, this operation is done after

the user has issued a command (in the benign scenario, as there would be no

user in the malicious one), and at this point, the user is just waiting for the

device to execute it. Hence, what is perceived by the user is the time elapsed

from their query to the answer of the device, which is the preprocessing time

plus the prediction time.6

Regarding the measurement of the prediction time, the Raspberry Pi and

the laptop take more than three seconds to output whether the command

is benign or not. This time, added to the time taken for the preprocessing,

makes almost four seconds of overhead before the user can hear their reply.

On the cloud, the preprocessing is slightly slower than the one performed by

the laptop, but predictions are sensibly faster: even when adding the prepro-

cessing time, our solution has less than one second of total overhead (0.61s

when using CPU and 0.25s with a GPU).

Memory Usage

We calculate the primary and secondary memory usage of our solution by

analysing the used RAM during a prediction and the total space on secondary

memory taken by our Python 3.10 installation on the aforementioned Win-

dows laptop, after installing all requirements for our solution to run. Disk

space used to store the trained model and the source code of our solution

is negligible (less than 2 MB). We find that our solution takes up to 400 MB

of RAM to perform all operations. Additionally, it uses 1.26 GB of secondary

memory. While these requirements are easily satisfied by modern laptops,

smartphones, and cloud servers, it is not the case for smart speakers: 3rd

Generation Echo Dot devices are supported by only 2Gb RAM (approximately

6Plus the time taken by the VPA to retrieve the answer to the query, which is not evaluated
here as it is not part of our solution and it constitutes a constant overhead from the device.
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256 MB) and 8Gb Flash Memory (approximately 1 GB) [118]. Even if 4th Gen-

eration Echo Dot devices have more RAM, the secondary memory require-

ment is not satisfied [52]. Google Home Mini runs similar hardware [9].

Analysis of the Results

Overhead measurement results indicate that user devices could run our solu-

tion and deliver a prediction in approximately four seconds. Although this

adds significant overhead to the received replies, it is not uncommon for

smart speakers and voice-controllable devices in general to have some delay

between a command and its reply, and users tend to perceive this behaviour

as normal [56]. However, memory usage results clearly indicate that smart

speakers cannot run our solution yet, due to lack of RAM, secondary mem-

ory, or both [118, 52, 9]. Note that to build and test our solution we used

standard Python and its neural network libraries, i.e., not natively built to run

on small devices, hence the primary and secondary memory usage can be

improved further. Nonetheless, as the speech recognition already happens

on the cloud, overhead measurements reported in Table 7.6 show that it is

feasible, and recommended, to implement our solution in the cloud as well,

alongside the speech recognition service: in this way, the voice-controllable

device sends both the played and the recorded audio to the cloud server for

analysis (instead of just the recorded one, as it happens now for speech recog-

nition), and the command is executed only if classified as benign by our solu-

tion. This approach has the advantage of being deployable to existing devices

with only a software update (RG6) and runs with minimal overhead (0.25s to

0.60s, depending on the used cloud solution). Similarly to speech recogni-

tion, an instance of our solution in the cloud would serve several VCDs.
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7.7 Discussion
In this section, we assess the limitations, possible misuse, and ethics and pri-

vacy considerations for our solution.

7.7.1 Limitations

Our solution is a countermeasure against command self-issue attacks (Level

1 in our taxonomy), hence it does not address other voice spoofing attacks, as

done by solutions based on liveness detection [113, 24, 59, 176, 166, 158] or

Automatic Speaker Verification [98, 151, 103, 31] (Level 3).

We also do not consider adversarial attacks against deep learning, which

could bypass our solution by carefully crafting adversarial noise commands

to be self-issued. In fact, past research [93] has shown that creating adver-

sarial noise samples against deep-learning based classification of audio files

based on spectrograms can be done with two techniques: the Fast Gradient

Sign Method (FGSM) [63] and the Basic Iterative Method [97]. The work by

Koerich et al. [93] analyses adversarial perturbations generated with these

techniques, and discover that the unnoticeable perturbations on the spec-

trograms are indeed noticeable to the human ear when the spectrograms are

converted to sound. However, this is not a problem in our context, as we

are already aware that perceptible audio files are the main limitation of self-

activation attacks, hence the adversary wants to attack the target device when

the victim is not around. Although these techniques are relatively simple to

execute, the adversarial samples they generate were not designed to work

over-the-air, hence, the played audio would accurately reflect them, but more

perturbations would be added to the recorded audio if the adversary tries to

use such adversarial noise samples in a real scenario, which could make the

samples harmless. Hence, even if an adversary can theoretically execute an

adversarial attack against our solution using BIM and FGSM, they would need

to be modified to bypass our solution in a real-world scenario.
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7.7.2 Possible Misuses

Self-issued commands are inherently malicious (and their detection is desir-

able), hence, no relevant misuses of our solution can be anticipated at this

stage. A purely theoretical misuse scenario may see an adversary place a

rogue device physically near the target voice-controllable device. The rogue

device would capture the audio in the room through a microphone, and at

the same time, it would stream it on the target device, e.g. via Bluetooth.

Hence, any legitimate command given to the target device would be instantly

played by the same device, making our solution detect it as malicious. This is

clearly an edge-case scenario — however, as stated before, to allow the best

usability-security compromise, the user should always be able to disable or

enable security measures. Intuitively, misuse of our solution would only in-

crease its false positive rate.

7.7.3 Ethics and Privacy Considerations

We analysed potential risks stemming from the involvement of people in our

tests via the risk assessment form provided by our institution. As a result, no

risks were identified for our participants. We also provided each participant

with an information sheet explaining the purpose of the study, their rights

(e.g., withdrawing their consent), and how their data would have been used,

along with a consent form to explicitly confirm they understood everything

and to express their will to participate. The information sheet also informed

them about the nature of the tests, as well as how files were recorded, used,

and deleted. All users explicitly granted their permission to record the audio

commands. It is worth noting that we did not retain the audio files containing

the voices of the users involved in these tests.

As far as regards privacy considerations during the design of the solution,

we designed it to be able to only process, but not store nor share with unau-

thorised third parties, only data that is already used by the voice controllable
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device or by the speech recognition cloud. When our solution is implemented

on the cloud as suggested in Section 7.6.1, the cloud providers do not receive

more information than they already do without our solution: in fact, the au-

dio file currently being played on a voice-controllable device is always cap-

tured in the background when the user issues a command. As no other data is

processed by our solution, it does not introduce any additional privacy risks.

Note that the data flow of the device is controlled by its manufacturer, hence,

outside of the proposed solution’s control.

7.8 Data Availability

The source code of our solution and the dataset we used to

perform the training and validation tasks can be found at:

https://github.com/Vereos/Protecting-Against-Self-Issue. Datasets are

stored with Git LFS, so they cannot be downloaded via the Github website.

To download them, install Git LFS and then git clone the repository using

your command line interface. The voice that is featured within the samples

is the candidate’s voice.

7.9 Related Work

We now illustrate some countermeasures that can be applied to voice-

controllable devices to mitigate the self-activation threat regardless of the

used payload.

7.9.1 Self-Generated Wake-Word Suppression

Similar to the process of web input sanitisation, VCDs should ignore com-

mands coming from their own speakers. This could be done by implement-

ing a wake-word detection system for the audio output by the VCD: if a wake-

word is detected within the played audio, it is not considered valid and no
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command is executed [3, 100]. This approach has several limitations: as it

is not possible to apply hardware modifications to already sold devices, such

mitigation should be implemented via software. While a software update that

introduces this feature might be possible on some voice-controllable devices,

smart speakers have very limited resources [51, 52] and the additional recog-

niser could exceed them [3, 100]. Additionally, even if something similar to

the playback device [100] is implemented on the cloud to not burden the

voice-controllable device, this would mean that the totality of streamed au-

dio files would transit from the cloud (i.e., not just while the user is issuing

a voice command), including those that are reproduced via Bluetooth. This

could have some privacy implications related to what the user is listening to

and to their willingness to share it with the VPA service provider.

Alternatively, directional audio signals might be analysed, to check

whether the wake-word comes from single or multiple directions, the latter

indicating that the wake-word is being self-issued [131]. It is possible that

Echo Dot already implements a similar technology, as an array consisting of

four microphones can be found within the device [51], however, we have not

been able to confirm this.

7.9.2 Liveness Detection

Countermeasures in this area detect whether the given command has been

uttered by a real user or has been artificially created, e.g., a spoofed com-

mand coming from a nearby speaker. Meng et al. [113] propose ArrayID, a

lightweight passive liveness detection solution that leverages the array fin-

gerprint, which is based upon the design of circular microphone arrays al-

ready embedded on smart speakers, achieving good results even with envi-

ronmental changes or with user movement. Blue et al. [24] found that sound-

waves generated by electronic speakers differ from those generated by or-

ganic speakers, as the former have more energy in the sub-bass region (20-

60 Hz), and use spectrum analysis to classify commands as invalid if too

189



7. AN INTELLIGENT MEASURE AGAINST SELF-ACTIVATION

much energy is detected in that region. Similarly, Void [4] is a lightweight

solution that uses only 97 features to analyse spectrum power in voice com-

mands to determine whether they are spoofed or not. Feng et al. [59] present

VAuth, a system that provides continuous speaker authentication by means

of a wearable device that features an accelerometer and an embedded VPA.

When the user says a command, VAuth tries to authenticate the user via a

previously-trained SVM. VoiceGesture [176] is a liveness detection system

that leverages articulatory gesture detection, that is, detection of the ar-

ticulatory movements that human beings perform when producing speech

sound, for example, lip closure and jaw angle, and classifies a command to be

valid if extracted features from the doppler shifts can match the pronounced

phonemes. CaField [166] achieves a 99% success rate in detecting spoofed

audios by training a Gaussian Mixture Model to recognise fieldprints, con-

structed using the acoustic biometrics embedded in sound fields. It is also

possible to make a distinction between the airflow generated by a real user

from the one generated by an electronic speaker if an airflow sensor is em-

bedded within a device [158].

Recently, the work by Ahmed et al. [5] showed how some Liveness De-

tection techniques, such as Void [4], can be bypassed if the malicious actor

speaks through a tube, raising concerning questions on whether other solu-

tions might be vulnerable to similar simple attacks.

7.9.3 Automatic Speaker Verification

Works in this field detect if the given command comes from the user they have

learned to recognise. ASVspoof [128, 165] is a competition to detect spoofed

audios, where researchers can submit ASV solutions to be evaluated on a fixed

dataset. One of the best solutions in ASVspoof 2019 was ASSERT [98], which

leverages Squeeze and Excitation Networks and Residual Networks, while the

best solution in the 2021 edition was developed by Tomilov et al. [151] and

makes use of Residual Networks as well, in combination with a 9-layer Light
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CNN (LCNN9) and RawNet2. Other recent work leverages Gaussian Mixture

Models trained on genuine speech to output log-probabilities fed to a 1-D

Convolutional Network, or a Twin Network, to detect whether the given com-

mand is spoofed or not, with good results [103]. Chaiwongyen et al. [31] de-

veloped a solution that is also able to reliably detect replay attacks to the same

ASV system by feeding Gammatone cepstral coefficientss (GTCCs) to a model

based on Residual Networks.

7.10 Summary
In this chapter, we proposed a countermeasure against self-issued voice com-

mands to voice-controllable devices, to balance the security and usability re-

quirements. In the tests, our solution correctly classifies commands 97% of

the times on average, that is, it reliably predicts if the given commands are

self-issued or if they come from a real user. We compared our results with

state-of-the-art anomaly detection techniques and we showed that our so-

lution outperforms them. Additionally, we deployed and measured the per-

formance of our solution on three different classes of devices, showing that

the overhead is negligible. Finally, we performed a test with four real users

interacting with a device running our solution, showing that it is resilient to

environmental changes such as the identity of the user issuing a command or

the room in which the device is placed.
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Conclusion

This thesis has shown that self-activation poses a significant threat to users

and voice-controllable devices, addressing RQ1 presented in Section 1.2.2,

and that deep learning can be used to mitigate this risk. The PhD study began

by formalising self-activation attacks, which are attacks where an adversary

generates, sends, and executes self-issued commands, gaining persistence

on the target device. The VOCODES Framework was developed, consisting

of a tailored kill chain covering the entire self-activation procedure, and of

a threat model that modelled the capabilities and knowledge of both the at-

tacker and victim.

Next, the PhD study introduced the Alexa versus Alexa attack, which ex-

ploits a self-issue vulnerability found in 3rd and 4th generation Echo Dot de-

vices to give them abritrary commands. This answers RQ2. Using AvA and

exploiting two other vulnerabilities, the adversary can gain complete control

of the target device, allowing them to (self-)issue arbitrary commands, eaves-

drop on the user, tamper with replies, and more. Therefore, the impact of the

attack is critical, and this addresses RQ3. The study also evaluated AvA in the

real world with the help of 18 Echo users who completed a survey and three

households who took part in a field study. While limitations exist for the AvA

attack, they are mostly theoretical.

Finally, the PhD study analysed existing countermeasures against self-
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activation attacks and found that the literature lacks specific protections

against this type of attack. The few countermeasures that exist are either not

yet implemented or not effective enough, hence answering RQ4. To address

this gap and RQ5, the PhD study proposes a specific countermeasure against

self-issued commands and a security taxonomy that enables users to select

the desired level of security for their VCD. This solution allows disabled indi-

viduals who use synthesised voices to continue operating their VCDs, while

providing a higher level of security against self-activation attacks. The study

evaluated the proposed countermeasure against state-of-the-art anomaly de-

tection techniques and found that it outperformed them, achieving 97% ac-

curacy on average in classifying commands into benign and malicious.

In the next sections, we discuss about the key steps, the technical difficul-

ties and the implications of the contributions made and of the technologies

we decided to use.

8.1 Discussion

Our research on self-activation began in 2020, with the aim of investigating

the feasibility of self-issued voice commands to Amazon Echo devices. As the

self-activation attack leverages the victim device to play an audio file contain-

ing a voice command, which will be executed by the device itself, this attack

allowed us to eliminate the need for an unauthorised speaker in proximity to

the target device — a constraint shared by most attacks against smart speak-

ers — and we were able to broaden the scope of potential attacks. To verify

that such attacks were possible, we undertook two key steps: (i) finding an

initial foothold to play the audio files and (ii) assessing the optimal way to

generate voice commands to be self-issued.

In particular, for (i) we found it necessary to investigate multiple poten-

tial methods for playing audio files on the Amazon Echo device to determine

which ones could be used for the self-activation attack. This process involved
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a significant amount of effort, including searching for ways to play audio files

and implementing them. One of the most challenging aspects was develop-

ing a Music & Radio skill, as this type of skill was not available in the countries

where we conducted our research (i.e., the UK and Italy) and required mul-

tiple workarounds to set up. Ultimately, we discovered that not all methods

for playing audio files were suitable for self-issuing commands. For instance,

we found that playing audio files using an SSML audio tag would cause the

device to stop audio playback when it heard the wake-word, which would

interrupt the command self-issue. However, we confirmed that this issue did

not occur with other methods for playing audio files, and were, therefore, able

to establish the feasibility of self-activation on Amazon Echo.

Point (ii) also required a significant amount of effort, as we conducted

several experiments to understand how an attacker could consistently carry

out the self-activation attack. We found that the position of the Echo device

within a room had a significant impact on how voice commands were self-

issued due to soundwave reflections. To account for this, we identified three

general scenarios: Open (with no obstacles near the Echo device resulting

in fewer soundwave reflections), Wall (with only one obstacle near the Echo

device), and Small (with multiple obstacles around the Echo device). We as-

sessed the performance of ten different Wavenet voice profiles in each sce-

nario to determine optimal conditions for the attack. We also evaluated the

performance of the attack in specific conditions, such as when the device was

set to a very high or very low volume, when the user was already listening to

music, when the adversary kept using the same voice command, and while

exploiting other vulnerabilities we had discovered, such as the Full Volume

Vulnerability. These experiments were critical to the success of the attack and

played a significant role in the media coverage that our work received world-

wide. The self-activation attack raises serious concerns about the safety, se-

curity, and privacy of users: NIST rated the resulting AvA attack as “Critical”,

giving it a 9.8 CVSS score out of 10. This was a significant upgrade from the
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initial “Medium” severity that Amazon had assigned when we first reported

the vulnerabilities, which had an average CVSS score of 5.5.

As we looked for ways to mitigate AvA, we discovered that there were exist-

ing countermeasures, including patents, against self-activation [3, 131, 100].

However, we observed that devices were still susceptible to self-issue attacks.

We hypothesised that either these mitigations had not been implemented yet

or were not as effective as advertised. Our brainstorming led us to the idea

that similar recorded and played audio files could mean that a command was

being self-issued, but the implementation of this idea was challenging. We

attempted to use different technologies, for example, audio fingerprinting,

which turned out to be ineffective, sometimes after weeks of study. After de-

ciding to use Twin Networks, we did not find any suitable dataset consisting

of played and recorded voice commands. Therefore, we set up our recording

device with Seeed Respeaker and Raspberry Pi to create one. Finding the cor-

rect structure and hyperparameters for our network was challenging: when

we achieved 100% accuracy on the validation dataset for the first time, al-

though we knew we were on the right track, the performance of our network

was still strongly influenced by the random initial values of weights and bi-

ases — additionally, a “bad” training epoch could easily undermine the 20-

30 subsequent ones, potentially leading to “unlucky” scenarios in which the

network could not be trained effectively. Fine-tuning the hyperparameters to

obtain a stable training that did not overfit the dataset was a long and metic-

ulous process. However, it was a crucial step in the network design, as it led

us to a training process that, under our observations, always produced a net-

work that has at least 94% accuracy in the benign/malicious classification of

audio samples, has 97% accuracy on average and is able to hit 100% accuracy.
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8.2 Implications of Contributions
Summarising the contributions described in Section 1.3, this thesis achieved

the goal of:

(i) formally modelling,

(ii) practically implementing,

(iii) efficiently mitigating

self-activation attacks, which were mostly overlooked.

In regards to (i), the VOCODES Framework consisting of the kill chain

and threat model provides a formal procedure and standard scenario for self-

activation attacks. Other researchers can use the framework to compare their

work with ours. For example, they can repeat the steps of the VOCODES Kill

Chain on another smart speaker and compare their results with AvA, or they

can use the scenarios described in the VOCODES Threat Model as a starting

point for their own research on self-activation attacks.

Regarding (ii), our experiments demonstrated that self-issue attacks can-

not be overlooked as they pose a critical threat to the security, safety, and pri-

vacy of legitimate users. Data collected from our experiments can serve as a

baseline to assess the security of other devices against self-activation attacks,

such as Google Nest, Apple Homepod, and Macbook Air. Additionally, re-

peating the user study and survey in the future can help understand whether

user behavior toward this technology has changed. For example, more users

may choose to mute their smart speakers’ microphones during the night in

the future. Through our work, we also raised awareness of self-activation at-

tacks among users through media coverage, an informative website,1 and a

demonstrative video that has garnered over 21,000 views as of April 2023.2 Fi-

nally, our efforts had a tangible impact on the security of the Echo device as

Amazon deployed fixes to mitigate our attack.
1https://www.ava-attack.org/#media
2https://www.youtube.com/watch?v=t-203SV_Eg8
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In relation to (iii), we conducted a thorough review of existing literature

on mitigating voice-spoofing attacks and discovered that while liveness de-

tection and ASV are effective against self-activation, no research addresses

the needs of disabled users who require an artificial voice to communicate.

This is a crucial opportunity to address and resolve this issue, especially as

countermeasures against voice-spoofing attacks are not yet widely imple-

mented on commercial devices, providing device manufacturers with ample

time to effectively plan for the introduction of security measures that bal-

ance security and usability requirements, without hindering the ability of dis-

abled individuals to interact with their voice-controlled devices. Our solu-

tion against self-activation serves as the initial milestone toward more secure

voice-controlled devices while retaining their usability. The source code and

performance data of our solution can be used as a baseline for future research

endeavors aimed at defending against self-issued commands. Furthermore,

the dataset we released is a critical milestone as other researchers can train

or test their solutions against self-issued commands, even if they were devel-

oped to resolve general voice-spoofing command problems.

The methodological implications of our research are closely tied to the

limitations of the methods and technologies we used. In regards to the

VOCODES Kill Chain, we initially recognised the limitations of the Lockheed-

Martin Kill Chain [77], including its lack of depth and cyclicality. We then

analysed other kill chains, including the detailed Unified Kill Chain [132],

which is currently considered the state-of-the-art in addressing these limita-

tions. It may seem counterintuitive that we chose to build our VOCODES Kill

Chain on the same Lockheed-Martin Kill Chain that other works attempted to

improve. However, we emphasise that the six steps outlined in the VOCODES

Kill Chain were sufficient to describe in detail the various phases of a self-

activation attack, to the point where additional declinations and sub-steps

may be redundant. Additionally, the VOCODES Kill Chain does not suffer

from the depth problem, as self-activation targets are typically not layered,

198



CHAPTER 8

so the external/internal attack distinction is unnecessary. We also addressed

the cyclicality issue within the Lockheed-Martin Kill Chain by clearly outlin-

ing the links from one phase to another, including previous ones. That being

said, the VOCODES Kill Chain may not be the most suitable option for at-

tacks that include self-issued commands but have a broader infrastructure

scope (which may only happen to include a voice-controllable device). For

these scenarios, a more fine-grained kill chain could be useful to analyse the

attack, such as linking the Unified Kill Chain to the VOCODES Kill Chain or

developing a new kill chain.

Regarding AvA, our research identified two main limitations in the meth-

ods and technologies used. Firstly, the development of Music & Radio skills

was only possible within the US, which limits the generalisability of their

use to other regions. Addressing this limitation would require the manufac-

turer (Amazon) to provide a way to access this functionality outside of the

US. Secondly, there was a lack of automated processes to perform the au-

dio weaponization task. However, this limitation can be easily addressed by

implementing a tool that creates many weaponized audio files with varying

combinations of voice characteristics. It is worth noting that while our work

focused on the Echo device, other voice-controllable devices such as com-

puters or smart speakers may have different methods for playing audio files.

Regarding our solution against self-activation, we utilised twin networks,

which are the state-of-the-art for comparing inputs with deep learning. Be-

cause no public dataset featuring both played and recorded audio files ex-

isted, we had to build a recording device with the Seeed Respeaker array while

using an Echo device to play audio. To improve the dataset, an optimal way

would be to use a smart speaker that communicates with a computer to cap-

ture both the played and recorded audio in real-time. This approach would

provide samples coming from the actual hardware of the real device. Laptops

are also voice-controllable devices and can be used to extend the dataset, but

separate datasets may be necessary for each class of voice-controllable de-
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vice, given the differences in shape and design.

8.3 Future Work
Building upon the methodological implications discussed earlier, this section

suggests areas that could be explored in future research.

For AvA, we propose exploring the reliability of self-issued adversarial

commands that are semantically meaningful, such as the adversarial samples

proposed by Yu et al. [170], as they could significantly increase the stealthi-

ness of the attack. This could open up new attack scenarios where the user

is in close proximity of the device during the self-issued command. Further-

more, other smart speakers and voice-controllable devices might be vulner-

able to self-issue attacks. Investigating such vulnerabilities would aid in gen-

eralising the optimal characteristics of the payload used for self-activation

attacks, which can be used for ethical purposes to develop effective counter-

measures that consider these characteristics.

Furthermore, although our proposed Level 1 countermeasure is reliable,

having a fully-operational Level 2 countermeasure would offer more options

to the user and ensure a better balance between usability and security. How-

ever, a Level 2 countermeasure would still be susceptible to targeted attacks

if the synthesised voice used by the legitimate user is publicly available on-

line. Embedding an audio fingerprint in the authorised artificial speaker that

emits the artificial voice on behalf of the user can help establish whether the

synthesised voice is coming from an authorised speaker or not, but it may

still be vulnerable to replay attacks. To mitigate this, a combination of au-

dio fingerprints and nonces could be used to verify if the command is com-

ing from an authorised speaker and if it is fresh enough. WakeGuard [108],

a solution against voice spoofing attacks that leverages audio watermarks to

identify nearby speakers, could be a good starting point to implement a ro-

bust authentication system for external speakers.
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AAC Augmentative and Alternative Communication

AD Anomaly Detection

APT Advanced Persistent Threat

ASR Automatic Speech Recognition

ASV Automatic Speaker Verification

ATT MITRE ATT&CK®

AvA Alexa versus Alexa

AVS Alexa Voice Service

CKC Cyber Kill Chain®

CNN Convolutional Neural Network

CVSS Common Vulnerability Scoring System

DNN Deep Neural Network

DoS Denial of Service

E2E End-to-End

EKC Expanded Kill Chain

FVV Full Volume Vulnerability
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GMM Gaussian Mixture Model

GPT Generative Pre-Trained Transformer

GTCC Gammatone cepstral coefficients

HMM Hidden Markov Model

IoT Internet of Things

IoV Internet of Vehicles

LCNN9 9-layer Light CNN

LSTM Long Short-Term Memory

MKC Modified Kill Chain

NLP Natural Language Processing

NLU Natural Language Understanding

OCSVM One-Class Support Vector Machine

PII Personal Identifiable Information

PZT Piezoelectric Transducer

RG Research Goal

RNN Recurrent Neural Network

RNN-T Recurrent Neural Network Transducer

RQ Research Question

SGD Speech Generating Device

SLU Spoken Language Understanding

SSML Speech Synthesis Markup Language
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STT Speech-To-Text

TNN Twin Neural Network

TTS Text-To-Speech

UKC Unified Kill Chain

VCD Voice-Controllable Device

VMA Voice Masquerading Attack

VOCODES VOice-COntrollable DEvice Self-Issue

VPA Voice Personal Assistant

WAV Waveform Audio File
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[26] Tero Bodström and Timo Hämäläinen. A novel method for detecting apt attacks

by using ooda loop and black swan theory. In Computational Data and Social

Networks: 7th International Conference, CSoNet 2018, Shanghai, China, Decem-

ber 18–20, 2018, Proceedings 7, pages 498–509. Springer, 2018.

[27] John R Boyd. The essence of winning and losing. Unpublished lecture notes, 12

(23):123–125, 1996.

[28] Michael Burrows, Martin Abadi, and Roger Needham. A Logic of Authentication.

ACM Transactions on Computer Systems (TOCS), 8(1):18–36, 1990.

[29] Nicholas Carlini and David A. Wagner. Audio Adversarial Examples: Targeted

Attacks on Speech-to-Text. In 2018 IEEE Security and Privacy Workshops, SP

Workshops 2018, San Francisco, CA, USA, May 24, 2018, pages 1–7. IEEE Com-

puter Society, 2018. doi: 10.1109/SPW.2018.00009.

[30] Sachin Chachada and C.-C. Jay Kuo. Environmental Sound Recognition: A Sur-

vey. APSIPA Transactions on Signal and Information Processing, 3:e14, 2014. doi:

10.1017/ATSIP.2014.12.

[31] Anuwat Chaiwongyen, Suradej Duangpummet, Jessada Karnjana, Waree Kong-

prawechnon, and Masashi Unoki. Replay Attack Detection in Automatic

Speaker Verification Using Gammatone Cepstral Coefficients and ResNet-Based

Model. Journal of Signal Processing, 26(6):171–175, 2022.

[32] Anuwat Chaiwongyen, Norranat Songsriboonsit, Suradej Duangpummet, Jes-

sada Karnjana, Waree Kongprawechnon, and Masashi Unoki. Contribu-

tion of Timbre and Shimmer Features to Deepfake Speech Detection. In

2022 Asia-Pacific Signal and Information Processing Association Annual Sum-

mit and Conference (APSIPA ASC), pages 97–103, 2022. doi: 10.23919/APSI-

PAASC55919.2022.9980281.

208

https://doi.org/10.1145/3212480.3212505
https://doi.org/10.1145/3212480.3212505
https://discover.bmw.co.uk/help/technology/what-is-ipa
https://doi.org/10.1109/SPW.2018.00009
https://doi.org/10.1017/ATSIP.2014.12
https://doi.org/10.1017/ATSIP.2014.12
https://doi.org/10.23919/APSIPAASC55919.2022.9980281
https://doi.org/10.23919/APSIPAASC55919.2022.9980281


[33] Guangke Chen, Sen Chen, Lingling Fan, Xiaoning Du, Zhe Zhao, Fu Song, and

Yang Liu. Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems.

CoRR, abs/1911.01840, 2019. URL http://arxiv.org/abs/1911.01840.

[34] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai

Chen, and XiaoFeng Wang. Devil’s Whisper Docker Hub. https://hub.docker.

com/repository/docker/neeze/devilwhisper, 2019. Accessed: 2021-01-25.

[35] Yuxuan Chen, Xuejing Yuan, Jiangshan Zhang, Yue Zhao, Shengzhi Zhang, Kai

Chen, and XiaoFeng Wang. Devil’s Whisper: A General Approach for Physical

Adversarial Attacks against Commercial Black-box Speech Recognition Devices.

In 29th USENIX Security Symposium (USENIX Security 20), pages 2667–2684.

USENIX Association, August 2020. ISBN 978-1-939133-17-5. URL https://www.

usenix.org/conference/usenixsecurity20/presentation/chen-yuxuan.

[36] Long Cheng, Christin Wilson, Song Liao, Jeffrey Young, Daniel Dong, and

Hongxin Hu. Dangerous Skills Got Certified: Measuring the Trustworthiness

of Skill Certification in Voice Personal Assistant Platforms. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and Communications Security, CCS

’20, page 1699–1716, New York, NY, USA, 2020. Association for Computing Ma-

chinery. ISBN 9781450370899. doi: 10.1145/3372297.3423339.

[37] Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. A compar-

ison of audio signal preprocessing methods for deep neural networks on music

tagging. In 2018 26th European Signal Processing Conference (EUSIPCO), pages

1870–1874. IEEE, 2018.

[38] Vijay Choubey. Understanding Recurrent Neural Network (RNN) and Long

Short Term Memory(LSTM), Jul 2020. URL https://medium.com/analytics-

vidhya/undestanding-recurrent-neural-network-rnn-and-long-short-

term-memory-lstm-30bc1221e80d.

[39] Christina L Corso. The Impact of Smart Home Technology on Independence for

Individuals Who Use Augmentative and Alternative Communication. Ohio Uni-

versity, 2021.

209

http://arxiv.org/abs/1911.01840
https://hub.docker.com/repository/docker/neeze/devilwhisper
https://hub.docker.com/repository/docker/neeze/devilwhisper
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yuxuan
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-yuxuan
https://doi.org/10.1145/3372297.3423339
https://medium.com/analytics-vidhya/undestanding-recurrent-neural-network-rnn-and-long-short-term-memory-lstm-30bc1221e80d
https://medium.com/analytics-vidhya/undestanding-recurrent-neural-network-rnn-and-long-short-term-memory-lstm-30bc1221e80d
https://medium.com/analytics-vidhya/undestanding-recurrent-neural-network-rnn-and-long-short-term-memory-lstm-30bc1221e80d


BIBLIOGRAPHY

[40] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexandre Caulier,
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