
Enhancing credit card fraud detection: an ensemble machine learning approach

Rehman Khalid, Abdul ; Owoh, Nsikak; Uthmani, Omair; Ashawa, Moses; Osamor, Jude;
Adejoh, John
Published in:
Big Data and Cognitive Computing

DOI:
10.3390/bdcc8010006

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication in ResearchOnline

Citation for published version (Harvard):
Rehman Khalid, A, Owoh, N, Uthmani, O, Ashawa, M, Osamor, J & Adejoh, J 2024, 'Enhancing credit card fraud
detection: an ensemble machine learning approach', Big Data and Cognitive Computing, vol. 8, no. 1.
https://doi.org/10.3390/bdcc8010006

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 12. Jan. 2024

https://doi.org/10.3390/bdcc8010006
https://researchonline.gcu.ac.uk/en/publications/b7d661f0-e11d-4bd4-a0bd-c2ee0c61a304
https://doi.org/10.3390/bdcc8010006

Citation: Khalid, A.R.; Owoh, N.;

Uthmani, O.; Ashawa, M.; Osamor, J.;

Adejoh, J. Enhancing Credit Card

Fraud Detection: An Ensemble

Machine Learning Approach. Big Data

Cogn. Comput. 2024, 8, 6. https://

doi.org/10.3390/bdcc8010006

Academic Editor: Domenico Ursino

Received: 21 November 2023

Revised: 22 December 2023

Accepted: 28 December 2023

Published: 3 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

Enhancing Credit Card Fraud Detection: An Ensemble Machine
Learning Approach
Abdul Rehman Khalid 1, Nsikak Owoh 1,* , Omair Uthmani 1, Moses Ashawa 1 , Jude Osamor 1

and John Adejoh 2

1 Department of Cyber Security and Networks, Glasgow Caledonian University, Glasgow G4 0BA, UK;
akhali301@caledonian.ac.uk (A.R.K.)

2 Department of Software Engineering, African University of Science and Technology, Abuja 900107, Nigeria;
ajohn@staff.aust.edu.ng

* Correspondence: nsikak.owoh@gcu.ac.uk

Abstract: In the era of digital advancements, the escalation of credit card fraud necessitates the
development of robust and efficient fraud detection systems. This paper delves into the application
of machine learning models, specifically focusing on ensemble methods, to enhance credit card
fraud detection. Through an extensive review of existing literature, we identified limitations in
current fraud detection technologies, including issues like data imbalance, concept drift, false posi-
tives/negatives, limited generalisability, and challenges in real-time processing. To address some of
these shortcomings, we propose a novel ensemble model that integrates a Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Random Forest (RF), Bagging, and Boosting classifiers. This
ensemble model tackles the dataset imbalance problem associated with most credit card datasets
by implementing under-sampling and the Synthetic Over-sampling Technique (SMOTE) on some
machine learning algorithms. The evaluation of the model utilises a dataset comprising transaction
records from European credit card holders, providing a realistic scenario for assessment. The method-
ology of the proposed model encompasses data pre-processing, feature engineering, model selection,
and evaluation, with Google Colab computational capabilities facilitating efficient model training and
testing. Comparative analysis between the proposed ensemble model, traditional machine learning
methods, and individual classifiers reveals the superior performance of the ensemble in mitigating
challenges associated with credit card fraud detection. Across accuracy, precision, recall, and F1-score
metrics, the ensemble outperforms existing models. This paper underscores the efficacy of ensemble
methods as a valuable tool in the battle against fraudulent transactions. The findings presented lay
the groundwork for future advancements in the development of more resilient and adaptive fraud
detection systems, which will become crucial as credit card fraud techniques continue to evolve.

Keywords: credit card fraud detection; ensemble model; machine learning; data imbalance;
Synthetic Minority Over-sampling Technique; deep learning

1. Introduction

Fraudulent activities are on the rise within the financial sector, with an escalating trend
observed in credit card fraud. The incidence of credit card fraud is expanding swiftly in
tandem with the increasing daily usage of credit cards [1]. The Federal Trade Commission
(FTC) report underscores the severity of the issue, noting that 2021 marked the most
challenging year in history for identity theft [2]. It is crucial to note that many cases of
identity theft go unreported, suggesting that the actual number may surpass the reported
figures. The FTC report emphasises the need for innovative approaches to safeguard the
financial well-being of both consumers and businesses.

According to the United Kingdom Finance Annual Fraud Report 2022, in 2022, over
£1.2 billion was stolen through authorised and unauthorised criminal activities, equaling a

Big Data Cogn. Comput. 2024, 8, 6. https://doi.org/10.3390/bdcc8010006 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8010006
https://doi.org/10.3390/bdcc8010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0002-4840-9345
https://orcid.org/0000-0002-1016-0791
https://orcid.org/0000-0002-3739-8521
https://doi.org/10.3390/bdcc8010006
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8010006?type=check_update&version=1

Big Data Cogn. Comput. 2024, 8, 6 2 of 27

staggering £2300 lost every minute. Notably, 78% of Authorised Push Payment (APP) fraud
cases originated online, while 18% occurred via telecommunications channels. The banking
and finance sector successfully prevented an additional £1.2 billion of unauthorised fraud,
showcasing effective measures to safeguard funds [3]. One prevalent source of losses is
remote purchase fraud, where fraudsters employ stolen card information for online or
telephone/mail purchases, resulting in £395.7 million in losses.

Meanwhile, in the United States, reported fraud incidents surged, with the Consumer
Sentinel Network recording 2.4 million fraud reports in 2022, as documented by the Federal
Trade Commission’s 2022 report [2]. The total reported losses in the U.S. for 2022 reached
nearly $8.8 billion, exceeding the $6.1 billion reported in 2021. Imposter scams top the list of
reported fraud incidents, followed by online shopping, prizes and sweepstakes, investments,
and business and job opportunities frauds. Individuals reported losses of $2.6 billion to
imposters in 2022, showcasing an increase from $2.4 billion the previous year. A concerning
trend involves the surge in losses attributed to business imposters, reaching $660 million in
2022, up from $196 million in 2020. Furthermore, investment scams accounted for nearly
$3.8 billion in losses in 2022, more than doubling the losses reported for such scams in 2021 [2].

Various approaches, including Statistical, Machine Learning, and Deep Learning meth-
ods, are utilised for credit card fraud detection. Statistical techniques such as Regression,
hypothesis testing, and clustering are applied to identify and analyse anomalies in credit
card transactions. In contrast, machine learning methods leverage algorithms to detect
fraudulent activity in real time by analysing historical data. Deep learning methodologies
utilise neural networks to autonomously identify intricate patterns and features within
complex datasets, resulting in exceptionally accurate detection of fraudulent activities.

A significant issue with credit card fraud detection is data imbalance which stems from
the uneven distribution of fraudulent and non-fraudulent transactions within the dataset.
This imbalance poses a risk of biased model outcomes and suboptimal fraud detection
capabilities. Several studies [4–6] have tackled this concern through the application of
machine learning techniques like data balancing, oversampling, under-sampling, and the
utilisation of the synthetic minority oversampling technique (SMOTE) to manage imbal-
anced credit card fraud data. However, a comprehensive exploration of the effectiveness of
these techniques remains lacking.

Ensemble learning models and techniques play a crucial role in credit card fraud detection.
These approaches involve combining multiple individual models to create a more robust and
accurate fraud detection system. Ensemble methods, such as bagging, boosting, and stacking,
are commonly employed to address challenges like imbalanced datasets and to enhance overall
predictive power [7]. By leveraging the strengths of diverse base models, ensemble techniques
contribute to improved fraud detection performance, reducing the risk of false positives and
false negatives. The adaptability and effectiveness of ensemble learning make it a valuable
strategy in the continuous battle against credit card fraud [8]. Despite their success, there exists
a crucial need to delve into the computational efficiency of these ensemble models.

The demand for computational efficiency in ensemble machine learning models is
paramount due to its implications for real-world applicability and scalability. As these
models become increasingly prevalent in finance, the ability to process large datasets
swiftly and make timely predictions is crucial. Computational efficiency ensures that
ensemble models can handle the complexities of intricate algorithms, intricate feature
engineering, and the integration of diverse base models without compromising speed
or responsiveness [8]. This metric is especially pertinent in scenarios such as credit card
fraud detection, where rapid decision-making is essential for preventing financial losses.
Moreover, efficient computation supports the deployment of ensemble models in resource-
constrained environments, making them accessible to a broader range of applications [9].

This paper seeks to assess the overall performance, including the computational
efficiency of ensemble models implementing data balancing techniques in credit card fraud
detection. By addressing this gap in research, the aim is to contribute to the advancement

Big Data Cogn. Comput. 2024, 8, 6 3 of 27

of effective and computationally efficient strategies for mitigating fraud activities in credit
card transactions. The main contributions of this paper are as follows:

1. To propose an effective credit card fraud detection model that addresses the prevalent
challenge of data imbalance, a major concern arising from the uneven distribution of
fraudulent and non-fraudulent transactions within datasets.

2. To demonstrate the computational efficiency of the proposed ensemble models, ensuring
that the ensemble models can effectively handle complex algorithms, intricate feature
engineering, and the integration of diverse base models without compromising speed.

3. To compare the performance of various machine learning models in identifying credit
card fraud, such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Random Forest (RF), Bagging, and Boosting.

The subsequent sections of the paper are structured as follows: Section 2 reviews existing
works related to credit card fraud detection, encompassing various Machine Learning and
Deep Learning techniques. In Section 3, a comprehensive elucidation of the proposed model
is provided. Section 4 presents experimental results, performance analyses, comparisons, and
in-depth discussions. The paper is concluded in Section 5, which also includes discussions on
future work pertaining to the advancement of fraud detection solutions.

2. Related Work

In this section, we examine the related literature on proposed systems and techniques
for credit card fraud detection. The existing work in this field is categorised into three sec-
tions based on the technique used, i.e., Statistical methods, Machine Learning Algorithms,
and Deep Learning Techniques.

2.1. Statistical Methods

Statistical approaches have been extensively employed in the identification of credit
card fraud. These methods discover suspicious trends by analysing the statistical properties
of transaction data [10]. Statistical models identify outlier transactions using thresholds or
criteria. Popular statistical methods include descriptive statistics, hypothesis testing, and
time series analysis.

Descriptive statistics, hypothesis testing, and time-series analysis detect credit card
fraud. Descriptive statistics, such as mean, standard deviation, and percentiles, can help
uncover abnormal transactions [11]. Hypothesis testing compares genuine and fraudu-
lent transactions using null and alternative hypotheses and statistical tests like t-tests or
chi-square tests [12]. ARIMA (AutoRegressive Integrated Moving Average) models and
STL (Seasonal and Trend Decomposition using Loess) provide transaction data patterns
and trends for fraud detection [13].

2.2. Deep Learning (DL) in Credit Card Fraud Detection

Deep learning teaches multi-layered neural networks hierarchical data representations.
These techniques collect complex patterns and relevant attributes from high-dimensional
data. They revolutionised computer vision, natural language processing, and credit
card fraud detection. Convolutional Neural Networks (CNN), Long Short-Term Memory
(LSTM), Multilayer Feed Forward Neural Networks (MLFF), Artificial Neural Networks
(ANNs), and Recurrent Neural Networks (RNNs) are some of the deep learning algorithms.

Deep learning techniques, such as Convolutional Neural Networks (CNN), Long Short-
Term Memory (LSTM), and Generative Adversarial Networks (GAN), have revolutionised
various fields, including credit card fraud detection. CNNs are adept at classifying images
and extracting features from temporal data, making them suitable for detecting fraud in
transaction sequences. LSTM, as a recurrent neural network, excels at analysing sequential
data and capturing long-term dependencies, allowing it to identify complex fraud patterns
involving multiple transactions effectively. GANs, with their generator and discriminator
networks, can synthesise realistic fraud patterns, enhancing the adaptability and robustness

Big Data Cogn. Comput. 2024, 8, 6 4 of 27

of fraud detection systems. These deep-learning approaches have significantly improved
the accuracy and efficiency of credit card fraud detection [14–17].

2.3. Machine Learning (ML) in Credit Card Fraud Detection

Due to the ability to learn from data, find complex patterns, and predict credit card
theft, machine learning algorithms are important in credit card fraud detection. These
algorithms are supervised and unsupervised learning methods. A few of the algorithms
used for CCFD (Credit Card Fraud Detection) include Logistic Regression (LR), Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Naive Bayes (NB), Decision Trees
(DT), Random Forest (RF), and Tree-Augmented Naive Bayes (TAN).

For credit card fraud detection, SVM, KNN, NB, DT, RF, and TAN are powerful
machine learning models. SVM classifies data points using the best hyperplane [18], KNN
classifies transactions based on their K-Nearest Neighbors [19], NB uses probabilistic
learning to estimate class probabilities [20], DT generates decision trees for feature-based
classification [20], RF combines decision trees to reduce overfitting [21], and TAN enhances
NB with a tree-like dependency structure to capture feature correlations [22]. These models
offer diverse approaches to identifying and preventing fraudulent transactions, contributing
to robust fraud detection systems. Credit card fraud detection algorithms have pros and
downsides. When choosing an algorithm for an application, dataset size, feature space,
processing needs, interpretability, and fraud must be considered.

Several researchers have highlighted the route to improved fraud prevention and de-
tection in this comprehensive analysis of credit card fraud detection with machine learning.
In [23], Prasad Chowdary et al. propose an ensemble technique to improve credit card
fraud detection. The authors focus on optimising model parameters, improving perfor-
mance measures, and integrating deep learning to fix identification errors and reduce false
negatives. Decision Tree (DT), Gradient Boosting Classifier (XGBoost), Logistic Regression
(LR), Random Forest (RF), and Support Vector Machine were used in this paper. The paper
compares these algorithms across multiple evaluation metrics and finds that DT performs
best with a 100% recall value, followed by XGBoost, LR, RF, and SVM with 85%, 74.49%,
75.9%, and 69%, respectively. By combining multiple classifier ensembles and rigorously as-
sessing their performance, this project greatly improves CCFD system efficiency. However,
the evaluation parameters reveal the low performance of the model.

Sahithi et al. [1] developed a credit card fraud detection algorithm in 2022. Their model
used a Weighted Average Ensemble to combine Logistic Regression (LR), Random Forest (RF),
K-Nearest Neighbors (KNN), Adaboost, and Bagging. The paper used the European Credit
Card Company dataset. Their model had 99% accuracy, topping base models like RF Bagging
(98.91%), LR (98.90%), Adaboost (97.91%), KNN (97.81%), and Bagging (95.37%). This paper
shows that their ensemble model can detect credit card theft in this key domain. Nevertheless,
the feature selection process was not provided, which hinders reproducibility.

Also, in 2022, Qaddoura et al. [24] investigated the effectiveness of oversampling meth-
ods: SMOTE, ADASYN, borderline1, borderline2, and SVM oversampling algorithms for
credit card fraud detection. The paper used Random Forest (RF), Logistic Regression (LR),
Naive Bayes (NB), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Deci-
sion Tree. The authors found that oversampling can improve model performance, although
the exact strategy depends on the machine learning algorithm. However, the applicability
of the model in real-life situations can be affected due to the computational overhead.

Tanouz et al. [25] extensively studied machine learning for credit card fraud classifi-
cation. The Decision Trees classifier, Random Forest (RF), Logistic Regression (LR), and
Naive Bayes (NB) were evaluated, with a focus on imbalanced datasets. This investigation
showed that the Random Forest (RF) approach performed well, scoring 96.77%. Logistic
Regression (LR), Naive Bayes (NB), and Decision Trees classifiers had accuracy scores of
95.16, 95.16, and 91.12%, respectively. The detailed investigation shows that Random Forest
is effective at credit card fraud detection, which is vital to financial security. Nonetheless,
the performance of the proposed models is hampered due to the lack of feature selection.

Big Data Cogn. Comput. 2024, 8, 6 5 of 27

The fundamental objective of the study [26] undertaken by Ruttala et al. was to
provide a comparative examination of the Random Forest and AdaBoost algorithms in the
context of credit card fraud detection. The findings of their analysis demonstrated similar
levels of accuracy when comparing the two algorithms. It is worth mentioning that the
Random Forest method demonstrated higher performance in terms of precision, recall, and
F1-score compared to Adaboost. However, the dataset used by the authors is skewed, with
no clear mention of how the issue was addressed.

The primary objective of the research performed by Sadgali et al. [27] was to identify
the most effective approaches for detecting financial fraud. The methodology employed in
their paper involved the utilisation of a wide range of techniques, such as Support Vector
Machine (SVM), Bayesian Belief Networks, Naive Bayes, Genetic Algorithm, Multilayer
Feed Forward Neural Network (MLFF), and Classification and Regression Tree (CART).
Significantly, as a comprehensive and evaluative investigation of previous scholarly stud-
ies, the present paper did not require the use of a particular dataset for analysis. Their
results highlighted the dominant performance of Naive Bayes, which achieved the greatest
accuracy rate of 99.02%. SVM closely followed it with an accuracy rate of 98.8%, and the
genetic algorithm had an accuracy rate of 95%. Despite that, the authors limited their work
to insurance fraud.

The study conducted by Raghavan et al. [28] aimed to detect anomalies or fraudulent
actions using data mining techniques. They utilised three distinct datasets from Australia
(AU), Germany, and the European (EU) to achieve this objective. Their work employed Sup-
port Vector Machine (SVM), K Nearest Neighbor (KNN), and Random Forest algorithms,
in addition to creating two separate ensembles: one integrating KNN, SVM, and Convolu-
tional Neural Network (CNN) and another combining KNN, SVM, and Random Forest.
Their findings highlighted the dominant performance of the Support Vector Machine (SVM)
in terms of accuracy, achieving a notable rate of 68.57%. In comparison, Random Forest
and KNN exhibited accuracy of 64.37% and 60.47%, respectively. The present paper offers
a comprehensive examination that yields useful information regarding the effectiveness of
various algorithms and ensemble tactics within the domain of fraud detection. However,
the performance of the model was low for all the datasets used.

Saputra et al. [29] compare the effectiveness of Decision Tree, Naïve Bayes, Random
Forest, and Neural Network machine learning approaches. SMOTE was used to solve
the problems of imbalanced datasets. This study’s dataset was provided by Kaggle. At
0.093% of records, the dataset included few fraudulent transactions. The examination
using confusion matrices revealed that the Neural Network had the highest accuracy (96%),
followed by Random Forest (95%), Naïve Bayes (95%), and Decision Tree (91%). SMOTE
enhanced the average F1-Score and G-Score performance measures and addressed skewed
data, proving its benefits. However, the dataset used in the paper does not fully represent
all the e-commerce platforms.

A comparative analysis of credit card fraud detection methods was conducted by
Tiwari et al. [30]. The authors examined SVM, ANN, Bayesian Network, K-Nearest Neigh-
bor (KNN), Hidden Markov Model, Fuzzy Logic-Based System, and Decision Trees. Anal-
ysis of the KDD dataset from the standard KDD CUP 99 Intrusion Dataset showed dif-
fering accuracy levels across approaches: SVM—94.65%, ANN—99.71%, Bayesian—97.52%,
K-Nearest Neighbors—97.15%, Hidden Markov Model (HMM)—95.2%, Fuzzy Logic-Based
System—97.93%, and Decision Trees—94.7%. This extensive assessment evaluated numerous
credit card fraud detection methods. However, the dataset did not fully depict financial activities.

Naik et al. [31] evaluated and compared some machine learning algorithms, including
Naïve Bayes, J48, Logistic Regression, and AdaBoost, in the domain of Credit Card Fraud
Detection (CCFD). Their approach utilised an online dataset consisting of 1000 items that
contained both fraudulent and non-fraudulent transactions. The results indicated high
levels of accuracy, with Logistic Regression and AdaBoost having a perfect accuracy rate
of 100%. Naïve Bayes and J48 also displayed noteworthy accuracies of 83% and 69.93%,
respectively. The findings above highlighted the diverse abilities of different algorithms in

Big Data Cogn. Comput. 2024, 8, 6 6 of 27

tackling the complexities associated with credit card fraud detection situations, providing
useful insights for the advancement of resilient fraud detection systems. Nevertheless, the
dataset used by the authors was limited to 1000 credit card transaction records, which is
not typical of the credit card user population.

Karthik et al. [9] introduced a novel model for credit card fraud detection that combines
ensemble learning techniques such as boosting and bagging. The model incorporates the
key characteristics of both techniques to obtain a hybrid model of bagging and boosting
ensemble classifiers. The authors employed Adaboost for feature engineering of the
behavioural feature space. The model’s predictive performance was analysed using the
area under the precision-recall (AUPR) curve, showing marginal improvement in the
range of 58.03–69.97% and 54.66–69.40% on the Brazilian bank dataset and UCSD-FICO
dataset, respectively. Nevertheless, the paper did not provide an in-depth analysis of the
computational complexity or resource requirements of the proposed model.

Similarly, Forough et al. [8] proposed an ensemble model based on the sequential
modelling of data using deep recurrent neural networks and a novel voting mechanism
based on an artificial neural network to detect fraudulent action. The proposed model
uses several recurrent networks as the base classifier, either LSTM or GRU networks,
and aggregates their output using a feed-forward neural network (FFNN) as the voting
mechanism. The ensemble model based on GRU achieves its best results using two base
classifiers on both the European cards dataset and the Brazilian dataset. It outperforms the
solo GRU model in all metrics and the baseline ensemble model in most metrics. However, the
authors did not discuss the limitations of the proposed ensemble model based on the sequential
modelling of data using deep recurrent neural networks and a novel voting mechanism.

Esenogho et al. [32] proposed an efficient approach for credit card fraud detection using
a neural network ensemble classifier and a hybrid data resampling method. The ensemble
classifier was obtained using a long short-term memory (LSTM) neural network as the base
learner in the adaptive boosting (AdaBoost) technique. The hybrid resampling technique
used in this approach is the synthetic minority oversampling technique and modified
nearest neighbour (SMOTE-ENN) method. SMOTE is an oversampling technique that
balances the class distribution by adding synthetic samples to the minority class, while ENN
is an under-sampling method that removes some majority class samples. SMOTE-ENN
performs both oversampling and under-sampling to obtain a balanced dataset. However,
the authors did not explore the impact of different hyperparameter settings or variations in
the neural network architecture on the performance of the proposed method.

Table 1 presents a summary of ensemble machine-learning models used for credit card
fraud detection.

Table 1. Comparison of ML Techniques Used in Credit Card Fraud Detection Research.

Year Authors Ensemble
ML Models Under-Sampling SMOTE Comprehensive

Evaluation

2019 Naik et al. [31] ✓ ✓ × ✓
2019 Jain et al. [30] ✓ ✓ × ✓
2019 Saputra et al. [29] ✓ × ✓ ✓
2019 Raghavan et al. [28] ✓ × ✓ ×
2019 Sadgali et al. [27] ✓ × ✓ ×
2020 Sailusha et al. [26] ✓ × ✓ ×
2021 Forough et al. [8] ✓ × ✓ ×
2021 Tanouz et al. [25] ✓ ✓ × ✓
2022 Qaddoura et al. [24] ✓ ✓ ✓ ✓
2022 Sahithi et al. [1] ✓ × ✓ ×
2022 Karthik et al. [9] ✓ × ✓ ×
2022 Esenogho et al. [32] ✓ ✓ ✓ ×
2023 Prasad et al. [23] ✓ ✓ × ✓
2023 Our Proposed Model ✓ ✓ ✓ ✓

Big Data Cogn. Comput. 2024, 8, 6 7 of 27

3. Methodology

Machine learning detects fraud by leveraging historical data on both fraudulent
and non-fraudulent transactions. ML algorithms excel at identifying abnormalities in
transactions before they escalate into unmanageable issues. Figure 1 illustrates the flow
diagram depicting how machine learning detects credit card fraud.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 7 of 30

Table 1. Comparison of ML Techniques Used in Credit Card Fraud Detection Research.

Year Authors Ensemble$$$$$$ML
Models

Under-Sampling SMOTE Comprehensive Evalu-
ation

2019 Naik et al. [31] ✓ ✓ × ✓
2019 Jain et al. [30] ✓ ✓ × ✓
2019 Saputra et al. [29] ✓ × ✓ ✓
2019 Raghavan et al. [28] ✓ × ✓ ×
2019 Sadgali et al. [27] ✓ × ✓ ×
2020 Sailusha et al. [26] ✓ × ✓ ×
2021 Forough et al. [8] ✓ × ✓ ×
2021 Tanouz et al. [25] ✓ ✓ × ✓
2022 Qaddoura et al. [24] ✓ ✓ ✓ ✓
2022 Sahithi et al. [1] ✓ × ✓ ×
2022 Karthik et al. [9] ✓ × ✓ ×
2022 Esenogho et al. [32] ✓ ✓ ✓ ×
2023 Prasad et al. [23] ✓ ✓ × ✓
2023 Our Proposed Model ✓ ✓ ✓ ✓

3. Methodology
Machine learning detects fraud by leveraging historical data on both fraudulent and

non-fraudulent transactions. ML algorithms excel at identifying abnormalities in transac-
tions before they escalate into unmanageable issues. Figure 1 illustrates the flow diagram
depicting how machine learning detects credit card fraud.

Figure 1. Flow Diagram of Credit Card Fraud Detection using Machine Learning.

As shown in Figure 1, the initial step in the process involves selecting a dataset con-
taining records of both legitimate and fraudulent transactions. Due to the presence of un-
ordered, raw, missing, or duplicate instances in the dataset, system predictions may be
prone to inaccuracies, requiring data pre-processing. To address data imbalance, the sam-
pling of imbalanced datasets is performed. Subsequently, the organised and sampled data
are divided into training and testing samples, where the chosen machine learning models
are trained using the training sample, and both samples are employed to observe the be-
haviour of the trained models. Following the acquisition of results for selected evaluation
parameters such as accuracy, precision, recall, confusion matrix, and AU-ROC values, per-
formance is analysed and compared. The methodology employed in this paper adopts an
experimental design, aiming to create and execute a practical experiment for credit card
fraud detection.

Figure 1. Flow Diagram of Credit Card Fraud Detection using Machine Learning.

As shown in Figure 1, the initial step in the process involves selecting a dataset
containing records of both legitimate and fraudulent transactions. Due to the presence
of unordered, raw, missing, or duplicate instances in the dataset, system predictions may
be prone to inaccuracies, requiring data pre-processing. To address data imbalance, the
sampling of imbalanced datasets is performed. Subsequently, the organised and sampled
data are divided into training and testing samples, where the chosen machine learning
models are trained using the training sample, and both samples are employed to observe
the behaviour of the trained models. Following the acquisition of results for selected
evaluation parameters such as accuracy, precision, recall, confusion matrix, and AU-ROC
values, performance is analysed and compared. The methodology employed in this paper
adopts an experimental design, aiming to create and execute a practical experiment for
credit card fraud detection.

3.1. Dataset

For our model training and testing, the Credit Card Fraud Detection dataset [33]
was utilised. The dataset contained records of transactions conducted by European credit
cardholders over two days. In the dataset, there were 492 instances of fraud out of a
total of 284,807 transactions during the specified time frame. Notably, the dataset exhib-
ited significant skewness, with the positive class (frauds) representing only 0.172% of all
transactions. Each transaction in the dataset was associated with 28 additional features
labelled as V1–V28. Due to confidentiality concerns, these features were transformed using
Principal Component Analysis (PCA). It is important to note that the ‘Time’ and ‘Amount’
features were exceptions to this transformation; PCA did not alter them. The ‘Time’ feature
represents the elapsed time in seconds between each transaction and the first transaction
in the dataset. On the other hand, the ‘Amount’ feature corresponds to the transaction
amount [29].

As previously stated, the dataset utilised in this paper exhibited a pronounced skew-
ness attributable to the few fraud entries. The efficacy of training and testing the model was
significantly compromised when conducted on such imbalanced datasets [34]. To address
this challenge, two methodologies were employed: under-sampling and Synthetic Minority
Over-sampling Technique (SMOTE). In the under-sampling approach, 492 entries were
randomly selected from the 284,315 legitimate entries to achieve a balanced distribution
of 50% for each class (legitimate and fraud). Conversely, the SMOTE technique involved

Big Data Cogn. Comput. 2024, 8, 6 8 of 27

oversampling 492 instances to augment the fraud class to match the volume of legitimate
entries, resulting in an equitable representation of each class.

The ethical dimensions inherent in the dataset of this project encompass issues of data
ownership, consent, and privacy. The ULB Machine Learning Group oversees the dataset in
collaboration with Worldline. This collaborative initiative underscores a collective research
endeavour that seamlessly integrates big data mining and fraud detection [33]. Nonetheless,
this scientific undertaking harbours a discreet decision to transform dataset attributes into
numerical entities through the application of Principal Component Analysis. This pivotal
ethical transition underscores dedication to safeguarding the distinct intricacies of individ-
ual transactions while navigating the forefront of data science. It prompts contemplation
regarding the delicate equilibrium between the pursuit of scientific knowledge and the
ethical obligation associated with harnessing the formidable power inherent in datasets
teeming with financial activities [35].

3.2. The Proposed Model

The proposed model for this paper is displayed in Figure 2. The experimental ap-
proach, contents, and architecture were designed using insights and findings from the
existing literature to ensure that the experiment is relevant and appropriate for investigating
the real-world occurrence of credit card fraud.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 9 of 30

Figure 2. The Proposed Credit Card Fraud Detection Model.

The experimental design of our proposed model was selected to test and assess fraud
detection strategies in a controlled environment. This approach allowed for variable ma-
nipulation and cause-and-effect analysis, which is vital for assessing ensemble credit card
fraud detection solutions. The work used a practical experiment to reconcile theoretical
concepts and real-world applications, providing insights for constructing a strong and
efficient fraud prevention system.

The ensemble machine learning approach used in this paper combines various clas-
sifiers, each chosen for its distinct capabilities. SVM excels in determining appropriate hy-
perplanes for class separation [18], whereas Logistic Regression (LR) models event prob-
ability. Random Forest (RF) builds robust decision trees [21], while K-Nearest Neighbors
(KNN) performs classification based on the majority class among its nearest neighbours
[19]. Bagging uses KNN as its basic classifier to enrich the ensemble further. Boosting uses
RF as its base [36]. An important contribution is the Voting Classifier, which combines the
various predictions from these classifiers. All of these choices were thoughtfully deter-
mined based on their demonstrated performance in earlier research, which was thor-
oughly detailed in the literature study. This extensive ensemble of classifiers is a deliberate
tactic aiming to improve the prediction power of the proposed model.

The ensemble machine learning classifiers were adopted in this paper due to their
superior performance when dealing with datasets containing limited labelled data, as ex-
emplified in this paper. Credit card fraud datasets often exhibit imbalances, where fraud-
ulent transactions constitute a small fraction of the overall data [6]. Ensemble methods
excel in addressing class imbalances, demonstrating robust performance in detecting mi-
nority classes. Moreover, ensemble models contribute to interpretability and transparency
in decision-making, crucial attributes in financial domains where understanding the
model’s rationale is essential. They facilitate the aggregation of diverse weak learners,
thereby enhancing the overall predictive capabilities of the model. Additionally, ensem-
bles prove to be computationally less intensive compared to deep learning architectures,
rendering them more suitable for scenarios with constrained computational resources [4].

The process of developing the suggested ensemble model involved a careful exami-
nation of different base classifiers and weighting schemes. The ensemble combined Sup-
port Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Bagging,
Adaboost, and a voting classifier. The SVM model was thoroughly evaluated across mul-
tiple configurations, which involved testing different regularisation values ranging from
1.0 to 10 and various kernels such as linear, poly, and rbf. Interestingly, the highest level
of efficiency was achieved with the default setup parameters during both the training and

Figure 2. The Proposed Credit Card Fraud Detection Model.

The experimental design of our proposed model was selected to test and assess fraud
detection strategies in a controlled environment. This approach allowed for variable
manipulation and cause-and-effect analysis, which is vital for assessing ensemble credit
card fraud detection solutions. The work used a practical experiment to reconcile theoretical
concepts and real-world applications, providing insights for constructing a strong and
efficient fraud prevention system.

The ensemble machine learning approach used in this paper combines various clas-
sifiers, each chosen for its distinct capabilities. SVM excels in determining appropriate
hyperplanes for class separation [18], whereas Logistic Regression (LR) models event prob-
ability. Random Forest (RF) builds robust decision trees [21], while K-Nearest Neighbors
(KNN) performs classification based on the majority class among its nearest neighbours [19].
Bagging uses KNN as its basic classifier to enrich the ensemble further. Boosting uses RF as
its base [36]. An important contribution is the Voting Classifier, which combines the various
predictions from these classifiers. All of these choices were thoughtfully determined based
on their demonstrated performance in earlier research, which was thoroughly detailed in

Big Data Cogn. Comput. 2024, 8, 6 9 of 27

the literature study. This extensive ensemble of classifiers is a deliberate tactic aiming to
improve the prediction power of the proposed model.

The ensemble machine learning classifiers were adopted in this paper due to their
superior performance when dealing with datasets containing limited labelled data, as exem-
plified in this paper. Credit card fraud datasets often exhibit imbalances, where fraudulent
transactions constitute a small fraction of the overall data [6]. Ensemble methods excel
in addressing class imbalances, demonstrating robust performance in detecting minority
classes. Moreover, ensemble models contribute to interpretability and transparency in
decision-making, crucial attributes in financial domains where understanding the model’s
rationale is essential. They facilitate the aggregation of diverse weak learners, thereby
enhancing the overall predictive capabilities of the model. Additionally, ensembles prove
to be computationally less intensive compared to deep learning architectures, rendering
them more suitable for scenarios with constrained computational resources [4].

The process of developing the suggested ensemble model involved a careful examina-
tion of different base classifiers and weighting schemes. The ensemble combined Support
Vector Machines (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Bagging, Ad-
aboost, and a voting classifier. The SVM model was thoroughly evaluated across multiple
configurations, which involved testing different regularisation values ranging from 1.0
to 10 and various kernels such as linear, poly, and rbf. Interestingly, the highest level of
efficiency was achieved with the default setup parameters during both the training and
testing phases. Similarly, KNN and RF were examined using various values for n-neighbors
(ranging from 2.0 to 10) and n-estimators (ranging from 10 to 100). The analysis showed
that the default parameters produced the best outcomes. Since Bagging and Boosting
are ensemble algorithms, KNN and RF were used as base classifiers with their default
settings. Significantly, these varied arrangements were assessed on a dataset that had a
lower number of samples, resulting in faster training and evaluation processes compared
to the SMOTE dataset.

3.3. Hardware and Platforms

The experimental setup was supported by hardware and cloud resources. The local
computer was outfitted with an Intel(R) Core (TM) i5-2520M CPU running at 2.50 GHz and
12 GB of RAM, ensuring efficient processing and memory for the tasks at hand. The storage
capacity of the local machine was sufficient for hosting the dataset and project files, with an
extra 900 GB of cloud-based storage readily available when needed. The work primarily oc-
curred in a cloud environment equipped with 12.68 GB of RAM and approximately 107.72 GB
of disk space. These cloud-based resources significantly enhanced the computational power
necessary for tasks such as data processing, model creation, and training.

The selection of platforms and tools for our proposed model was guided by considera-
tions such as usability, compatibility with chosen machine-learning techniques, and the
availability of pre-trained models. Notably, the well-established machine learning frame-
work, sci-kit-learn, was employed. In terms of data pre-processing, feature extraction, and
exploratory data analysis, the proposed model leveraged the efficiency of pandas, NumPy,
and Matplotlib. Together, these libraries provided robust capabilities for data manipulation
and analysis, streamlining tasks related to data processing and exploration. For model
creation and training, we utilised Google Colab, a cloud-based platform recognised for its
flexibility and resource efficiency, particularly compared to conventional platforms like
Jupyter Notebook. The cloud-based architecture of Google Colab facilitated convenient
access to computational resources. A comprehensive set of metrics was employed to evalu-
ate machine learning models, encompassing accuracy, precision, recall, F1-score, confusion
metrics, ROC Curve, and AU-ROC Score. Visualisation packages such as Matplotlib and
Seaborn were employed to enhance data understanding and assess model performance.
These libraries aided in constructing graphical representations that provided insights into
data trends, model performance, and the significance of dataset aspects.

Big Data Cogn. Comput. 2024, 8, 6 10 of 27

3.4. Model Design

Figure 3 displays the architecture of the implementation process, encompassing dataset
pre-processing and the division of the dataset into training and testing data. The training
dataset is subsequently input into the chosen models for both the training and testing
phases. Following this, the evaluation and results are conducted on the trained model to
assess its performance.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 11 of 30

Figure 3. The Architecture of the Proposed Credit Card Fraud Detection Model.

Algorithm 1 presents the algorithm of the proposed model. The algorithm follows a
systematic approach, starting with data loading, preprocessing, and sampling. The num-
bers in Figure 3 explains the sequence of each phase in the whole process. It then iterates
over different machine learning model types, trains each model, and evaluates their per-
formance using testing data. Finally, the results, including confusion matrices, are dis-
played for analysis.

Algorithm 1 Credit Card Fraud Detection Using Ensemble Machine Learning Models
Input: Credit_Card_Fraud_Dataset
Output: Trained_Machine_Learning_Models
1. dataset ß Load_CreditCard_Fraud_Dataset()
2. processed_data ß PreprocessedData(dataset)
3. labels ß (processed_data)
4. under_sampled_data ß (labels)
5. smote_data ß (labels)
6.$$$$$$7.$$$$$$8.$$$
$$$9.$$$$$$10.$$$$$$
11.

for model_type in [‘SVM’, ‘RF’, ‘Bagging’, ‘Boosting’, ‘LR’, ‘P_M_1’, ‘P_M_2’]:$$$$$$training_data,
testing_data ß TrainTestSplit(under_sampled_data)$$$$$$if model_type == model:$$$$$$model
ß model_type$$$$$$elif model_type == ‘Proposed_model’$$$$$$models.append(mode_type)

12.$$$$$$13.$$$$$$14.
$$$$$$15.

for model_type, model in models:$$$$$$testing_data_features ß
tresting_data.drop(‘Class’)$$$$$$testing_data_labels ß testing_data[‘Class’]$$$$$$confusion_matrix
ß Evaluate_model(model, testing_data_features, testing_data_labels)

16. endif
17. end for
18. return display_results ß (confusion_matrix, model_type)

3.4.1. Data Pre-Processing
After selecting the dataset, the first step is to pre-process the data to make it suitable

for model training and testing. In this step, the data were processed in the following ways.
• Finding and filling/removing any null values.
• Standardising the ‘Amount’ column to make it easy for analysis.
• Removing the ‘Time’ Column from the dataset as it was not contributing much dur-

ing training and evaluation.

Figure 3. The Architecture of the Proposed Credit Card Fraud Detection Model.

Algorithm 1 presents the algorithm of the proposed model. The algorithm follows a
systematic approach, starting with data loading, preprocessing, and sampling. The numbers
in Figure 3 explains the sequence of each phase in the whole process. It then iterates over dif-
ferent machine learning model types, trains each model, and evaluates their performance us-
ing testing data. Finally, the results, including confusion matrices, are displayed for analysis.

Algorithm 1 Credit Card Fraud Detection Using Ensemble Machine Learning Models

Input: Credit_Card_Fraud_Dataset
Output: Trained_Machine_Learning_Models
1. dataset ß Load_CreditCard_Fraud_Dataset()
2. processed_data ß PreprocessedData(dataset)
3. labels ß (processed_data)
4. under_sampled_data ß (labels)
5. smote_data ß (labels)
6. for model_type in [‘SVM’, ‘RF’, ‘Bagging’, ‘Boosting’, ‘LR’, ‘P_M_1’, ‘P_M_2’]:
7. training_data, testing_data ß TrainTestSplit(under_sampled_data)
8. if model_type == model:
9. model ß model_type
10. elif model_type == ‘Proposed_model’
11. models.append(mode_type)
12. for model_type, model in models:
13. testing_data_features ß tresting_data.drop(‘Class’)
14. testing_data_labels ß testing_data[‘Class’]
15. confusion_matrix ß Evaluate_model(model, testing_data_features, testing_data_labels)
16. endif
17. end for
18. return display_results ß (confusion_matrix, model_type)

3.4.1. Data Pre-Processing

After selecting the dataset, the first step is to pre-process the data to make it suitable
for model training and testing. In this step, the data were processed in the following ways.

Big Data Cogn. Comput. 2024, 8, 6 11 of 27

• Finding and filling/removing any null values.
• Standardising the ‘Amount’ column to make it easy for analysis.
• Removing the ‘Time’ Column from the dataset as it was not contributing much during

training and evaluation.
• Checking and removing duplicate entries in the dataset.

The dataset used in the process was devoid of any missing or null values. It is
important to mention that intentional actions to reduce the influence of outliers were not
included. The conclusion was based on the understanding that the selected machine-
learning model is naturally resistant to outliers. Moreover, incorporating outliers into
the dataset was considered advantageous since it brings the model into closer alignment
with the complexities of real-world situations. This study sought to improve the model’s
capacity to handle the dynamic and different nature of credit card transactions by not using
explicit outlier-handling strategies. This approach made the model more adaptable and
applicable to real-world scenarios.

The reason for standardising the ‘Amount’ column instead of normalising it is that, as
mentioned in the description of the dataset, all features were the result of Principal Component
Analysis (PCA) except ‘Time’ and ‘Amount’, and the ‘Amount’ scale differed significantly
from all other features (V1–V28). Hence, the ‘Amount’ feature was standardised.

The feature engineering component of this credit card fraud detection research was
complicated by the intrinsic limitations imposed by the dataset, which did not provide
information about its features [33]. Therefore, the use of feature selection techniques was not
possible because it would have required clear visibility of feature information. To avoid any
potential confusion caused by algorithmic feature selection, a deliberate choice was made to
abstain from this process. Furthermore, the ‘Time’ column was excluded from consideration
during manual analysis because it did not contribute any meaningful information. It only
reflected a sequential count of entries without any temporal significance. Although the
lack of feature selection techniques may result in longer training and testing durations, this
strategy was considered the best choice to guarantee the retention of all potentially relevant
features without relying on feature-specific knowledge.

3.4.2. Data Sampling

Following pre-processing, the subsequent step in the process involved addressing the
data imbalance issue through data sampling. After pre-processing, the dataset comprised
275,190 legitimate entries and 473 fraud-labelled entries, indicating a significant skewness
for model training. This paper employed two sampling techniques: under-sampling and
SMOTE. The sampling process involved two steps, outlined as follows:

• Separate data entries based on labels (Legit/Fraud in this case)
• Apply the required sampling technique to specific data
• Concatenate all data to have all data in a single dataset

Under-Sampling

In sampling, a random sample was picked from the major class, which were legit
transactions (labelled as 0) in this case. The number of random samples was determined
according to the ratio required concerning the minority class. In this paper, for better model
training, the entries for both classes were made equal by choosing a random sample equal
to minority class entries and concatenating the data from both classes to have one dataset.

SMOTE (Synthetic Minority Over-Sampling Technique)

SMOTE is a statistical method for extending the number of minority class instances in a
balanced manner in a dataset. The component created new instances from existing minority
cases that were provided as input [37]. So, for SMOTE, the fraud class (labelled as 1) was
oversampled, equal to the legit class to have identical entries for each class to train models
optimally. And like under-sampling, both classes were merged to have one dataset.

Big Data Cogn. Comput. 2024, 8, 6 12 of 27

3.4.3. Model Training

After the sampling process, the subsequent step involved splitting the data into
training and testing samples. The training samples were utilised for model training and
result assessment, while the testing samples were employed to evaluate how the model
performs on unseen data. Before the data split, the ‘Class’ column, containing the label of
each entry, was separated. The dataset was then divided into training (80% of the dataset)
and testing samples (20% of the dataset). Following this, the training sample was employed
for model training. Once the models were trained, evaluations were conducted on both the
training and testing samples, with the results discussed in the next section.

After carefully dividing the dataset into training and testing samples, the model
training phase focused on identifying patterns and relationships in the data. The chosen
machine learning algorithms utilised the training samples to undertake a detailed process
of learning and adjusting to the complexities of credit card transaction characteristics.
The model-refining method involved iteratively modifying the intrinsic parameters of
the algorithms to improve predicted accuracy. It is crucial to emphasise that this step
goes beyond simple algorithmic integration; it involves a dynamic interaction between
the algorithms and the subtle details of the dataset. This mutually beneficial interaction
not only enabled the extraction of complicated patterns but also guaranteed the model’s
ability to withstand real-world difficulties. Afterward, the trained models were subjected
to a thorough evaluation of both the training and previously unused testing data, which
provided a reliable assessment of their ability to generalize model outputs. The results
of this phase, explained in the next part, reveal the effectiveness and flexibility of the
developed models in successfully traversing the complex field of credit card fraud detection.

4. Results and Discussion

This section delves into a comprehensive discussion and analysis of the performance
parameters acquired during the evaluation. It includes detailed insights into how each
model performed in the context of credit card fraud detection. Prior to this discussion, the
following details about the performance parameters used in this research are provided.
All parameters were calculated using the True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) values of each model, with the confusion matrix (CM)
encapsulating these values. Figure 4 visually presents a representation of the confusion
matrix utilised for the proposed model, enhancing clarity and understanding.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 13 of 30

3.4.3. Model Training
After the sampling process, the subsequent step involved splitting the data into train-

ing and testing samples. The training samples were utilised for model training and result
assessment, while the testing samples were employed to evaluate how the model per-
forms on unseen data. Before the data split, the ‘Class’ column, containing the label of
each entry, was separated. The dataset was then divided into training (80% of the dataset)
and testing samples (20% of the dataset). Following this, the training sample was em-
ployed for model training. Once the models were trained, evaluations were conducted on
both the training and testing samples, with the results discussed in the next section.

After carefully dividing the dataset into training and testing samples, the model
training phase focused on identifying patterns and relationships in the data. The chosen
machine learning algorithms utilised the training samples to undertake a detailed process
of learning and adjusting to the complexities of credit card transaction characteristics. The
model-refining method involved iteratively modifying the intrinsic parameters of the al-
gorithms to improve predicted accuracy. It is crucial to emphasise that this step goes be-
yond simple algorithmic integration; it involves a dynamic interaction between the algo-
rithms and the subtle details of the dataset. This mutually beneficial interaction not only
enabled the extraction of complicated patterns but also guaranteed the model’s ability to
withstand real-world difficulties. Afterward, the trained models were subjected to a thor-
ough evaluation of both the training and previously unused testing data, which provided
a reliable assessment of their ability to generalize model outputs. The results of this phase,
explained in the next part, reveal the effectiveness and flexibility of the developed models
in successfully traversing the complex field of credit card fraud detection.

4. Results and Discussion
This section delves into a comprehensive discussion and analysis of the performance

parameters acquired during the evaluation. It includes detailed insights into how each
model performed in the context of credit card fraud detection. Prior to this discussion, the
following details about the performance parameters used in this research are provided.
All parameters were calculated using the True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) values of each model, with the confusion matrix
(CM) encapsulating these values. Figure 4 visually presents a representation of the confu-
sion matrix utilised for the proposed model, enhancing clarity and understanding.

Figure 4. Visual Representation of the Confusion Matrix.

Accuracy (ACC) is the ratio of all correct predictions (TP + TN) to the total number
of predictions or entries in the sample (TP + TN + FN + FP) [38]. Equations (1)–(4) show

Figure 4. Visual Representation of the Confusion Matrix.

Accuracy (ACC) is the ratio of all correct predictions (TP + TN) to the total number
of predictions or entries in the sample (TP + TN + FN + FP) [38]. Equations (1)–(4) show
the mathematical representation of how the Accuracy, Precision, Recall, and Fi-score of a
model are calculated.

Accuracy =
TN + TP

TN + FP + TP + FN
(1)

Big Data Cogn. Comput. 2024, 8, 6 13 of 27

Precision is the ratio of TP to all positive predictions (TP + FP) made by a model. In
other words, it is the accuracy of the positive predictions made by the model.

Precision =
TP

TP + FP
(2)

Recall is a metric used to measure the ability of the machine learning model to identify
all relevant instances of the positive class [39]. It is the ratio of correctly predicted positive
observations to the total actual positive observations.

Recall =
TP

TP + FN
(3)

F1-score is a metric used to combine the results of precision and recall into a single
value. The formula of the F1-score is as follows.

F1 − Score = 2 × Precision × Recall
Precision + Recall

(4)

4.1. Performance Evaluation

The performance evaluation for both Under-sampling and SMOTE samples for each
model are divulged in the sections below.

4.1.1. Under-Sampling Results

The results of the confusion matrix obtained during the evaluation of each model for
under-sampling are presented in Table 2.

Table 2. Confusion Matrix values for the Training sample.

SVM KNN RF Bagging Boosting P_M_1 LR P_M_2

True Positive 345 345 378 344 378 354 349 358

True Negative 372 372 378 371 378 378 371 378

False Positive 33 33 0 34 0 24 29 20

False Negative 6 6 0 7 0 0 7 0

Based on the provided results, both RF and boosting models exhibited 0 false positive
and false negative values, indicating accurate predictions for both classes. The second
proposed model predicted all negative class values accurately but misclassified 20 positive
class values. The proposed model with SVM (P_M_1) ranked third, with 24 false predictions
for positive class values. However, relying solely on these results, derived from the data
sample used for model training, is insufficient, as the models are already familiar with
these data points. To assess how the models respond to unseen data, the evaluation was
conducted on a testing sample of under-sampled data. Additionally, examining the results
of the prediction sample helps ensure that machine learning models are optimally trained,
avoiding underfitting or overfitting. Table 3 displays the values of the confusion matrix for
all models obtained from the testing Sample.

Table 3. Confusion Matrix values for the Testing Sample.

SVM KNN RF Bagging Boosting P_M_1 LR P_M_2

True Positive 87 86 86 87 86 85 87 87

True Negative 92 92 93 93 92 93 90 93

False Positive 8 9 9 8 9 10 8 8

False Negative 3 3 2 2 3 2 5 2

Big Data Cogn. Comput. 2024, 8, 6 14 of 27

The comparison of results between Tables 2 and 3 indicates that the models are
optimally fitted, as the results obtained from both samples are consistent (further clarified
in the discussion of other parameters). According to these findings, the second proposed
model with LR (P_M_2) and bagging outperformed all other models, with ten values
predicted falsely (8 FP, 2 FN). As mentioned earlier, accuracy is the ratio of all correct
predictions to the total number of predictions or entries in the sample [38]. Table 4 shows
the accuracy values of all models on the training sample and testing sample.

Table 4. Accuracy results of all Models for the Training and Testing Sample Datasets.

Training Sample of Under-Sample Dataset

SVM KNN RF Bagging Boosting P_M_1 LR P_M_2

Accuracy 0.96 0.951 1 0.95 1 0.97 0.955 0.97

Testing Sample of Under-Sample Dataset

Accuracy 0.9421 0.9368 0.937 0.9473 0.9368 0.9368 0.9315 0.9473

Similar to the results of the confusion matrix for training samples, the ACC of RF and
Boosting models is 100%. The ACC of other models, including P_M_1, P_M_2, LR, SVM,
KNN, and bagging, are 97.35%, 96.82%, 95.23%, 94.81%, 94.81%, and 94.57%, respectively.
Figure 5 visually represents these values through a bar chart. Each colour in the chart
corresponds to a model, with details about the colour and corresponding model specified
in the legend box located at the top right corner.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 16 of 30

Figure 5. Comparison of Accuracy Results of all Models for the Training Sample.

In the results obtained from the testing sample, the ACC of P_M_2 and the bagging
classifier were the highest among all models, reaching 94.73%. Following closely were the
ACC values of SVM and RF classifiers, both at 94.21%. The ACC of KNN, Boosting,
P_M_1, and LR classifiers were 93.68%, 93.68%, 93.68%, and 93.0%, respectively. The
graphical representation of these results can be seen in Figure 6, which depicts how mod-
els respond to the unseen data.

Figure 6. Comparison of Accuracy Results Comparison of all Models for the Testing Sample Da-
taset.

Figure 5. Comparison of Accuracy Results of all Models for the Training Sample.

In the results obtained from the testing sample, the ACC of P_M_2 and the bagging
classifier were the highest among all models, reaching 94.73%. Following closely were the
ACC values of SVM and RF classifiers, both at 94.21%. The ACC of KNN, Boosting, P_M_1,
and LR classifiers were 93.68%, 93.68%, 93.68%, and 93.0%, respectively. The graphical
representation of these results can be seen in Figure 6, which depicts how models respond
to the unseen data.

The precision, recall, and F1-score of a machine learning model explain how well a
classifier performs, rather than just relying on overall accuracy [39]. The results of these
parameters obtained on the training sample are listed in Table 5.

Big Data Cogn. Comput. 2024, 8, 6 15 of 27

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 16 of 30

Figure 5. Comparison of Accuracy Results of all Models for the Training Sample.

In the results obtained from the testing sample, the ACC of P_M_2 and the bagging
classifier were the highest among all models, reaching 94.73%. Following closely were the
ACC values of SVM and RF classifiers, both at 94.21%. The ACC of KNN, Boosting,
P_M_1, and LR classifiers were 93.68%, 93.68%, 93.68%, and 93.0%, respectively. The
graphical representation of these results can be seen in Figure 6, which depicts how mod-
els respond to the unseen data.

Figure 6. Comparison of Accuracy Results Comparison of all Models for the Testing Sample Da-
taset.

Figure 6. Comparison of Accuracy Results Comparison of all Models for the Testing Sample Dataset.

Table 5. Precision, Recall, and F1-score of all Models for the Training Sample Dataset.

SVM KNN RF Bagging Boosting P_M_1 LR P_M_2

Precision 0.961 0.955 1 0.953 1 0.971 0.957 0.971

Recall 0.96 0.951 1 0.95 1 0.97 0.955 0.97

F1-score 0.96 0.951 1 0.95 1 0.97 0.955 0.97

In line with the confusion matrix and ACC values, the RF and boosting classifiers demon-
strated 100% precision (accuracy of positive prediction) and 100% recall (ability to identify
the positive class correctly). Next to the best-performing classifiers are P_M_2 and P_M_1,
both achieving an accuracy of 97%. Subsequently, SVM, KNN, bagging, and LR each attained
results of 95%. The representation of these parameters is visually presented in Figure 7.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 17 of 30

The precision, recall, and F1-score of a machine learning model explain how well a
classifier performs, rather than just relying on overall accuracy [39]. The results of these
parameters obtained on the training sample are listed in Table 5.

Table 5. Precision, Recall, and F1-score of all Models for the Training Sample Dataset.

 SVM KNN RF Bagging Boosting P_M_1 LR P_M_2
Precision 0.961 0.955 1 0.953 1 0.971 0.957 0.971
Recall 0.96 0.951 1 0.95 1 0.97 0.955 0.97
F1-score 0.96 0.951 1 0.95 1 0.97 0.955 0.97

In line with the confusion matrix and ACC values, the RF and boosting classifiers
demonstrated 100% precision (accuracy of positive prediction) and 100% recall (ability to
identify the positive class correctly). Next to the best-performing classifiers are P_M_2 and
P_M_1, both achieving an accuracy of 97%. Subsequently, SVM, KNN, bagging, and LR
each attained results of 95%. The representation of these parameters is visually presented
in Figure 7.

Figure 7. Precision, Recall, and F1-score of all Models for the Training Sample Dataset.

Likewise, Table 6 presents the results for precision, recall, and F1-score for all models
when applied to unseen samples of the under-sampled data.

Table 6. Precision, Recall, and F1-score of all Models for the Testing Sample of the Under-Sample
Dataset.

 SVM KNN RF Bagging Boosting P_M_1 LR P_M_2
Precision 0.942 0.945 0.939 0.939 0.945 0.945 0.948 0.949
Recall 0.942 0.942 0.937 0.937 0.942 0.942 0.947 0.947
F1-score 0.942 0.942 0.937 0.937 0.942 0.942 0.947 0.947

Regarding the outcomes from the testing samples, the proposed model with LR
(P_M_2) emerges as the most proficient among all models in predicting the positive class
(fraud), achieving precision, recall, and an F1-score of 95%. In comparison, the other

Figure 7. Precision, Recall, and F1-score of all Models for the Training Sample Dataset.

Big Data Cogn. Comput. 2024, 8, 6 16 of 27

Likewise, Table 6 presents the results for precision, recall, and F1-score for all models
when applied to unseen samples of the under-sampled data.

Table 6. Precision, Recall, and F1-score of all Models for the Testing Sample of the Under-Sample Dataset.

SVM KNN RF Bagging Boosting P_M_1 LR P_M_2

Precision 0.942 0.945 0.939 0.939 0.945 0.945 0.948 0.949

Recall 0.942 0.942 0.937 0.937 0.942 0.942 0.947 0.947

F1-score 0.942 0.942 0.937 0.937 0.942 0.942 0.947 0.947

Regarding the outcomes from the testing samples, the proposed model with LR
(P_M_2) emerges as the most proficient among all models in predicting the positive class
(fraud), achieving precision, recall, and an F1-score of 95%. In comparison, the other
models—bagging, SVM, KNN, RF, boosting, P_M_1, and LR—display precision, recall, and
F1-score values of 95.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, and 94.0%, respectively.
These quantitative values are represented in Figure 8 for a more detailed understanding of
these results.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 18 of 30

models—bagging, SVM, KNN, RF, boosting, P_M_1, and LR—display precision, recall,
and F1-score values of 95.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, and 94.0%, respec-
tively. These quantitative values are represented in Figure 8 for a more detailed under-
standing of these results.

Figure 8. Precision, Recall, and F1-score values of all Models for the Testing Sample Dataset.

The ROC curve presented in Figure 9 illustrates the trade-off between the true posi-
tive rate (sensitivity or recall) and the false positive rate as the classifier’s decision thresh-
old varies. The ROC curve is generated by plotting the true positive rate (TPR) on the y-
axis against the false positive rate (FPR) on the x-axis at different classification thresholds.
Figure 9 displays the ROC curve for all models, with the corresponding AUC-ROC values
of each model indicated in the bottom right corner of the image.

Figure 9. ROC Curve Plot of all Models on the Testing Sample with AUC-ROC Value.

Figure 8. Precision, Recall, and F1-score values of all Models for the Testing Sample Dataset.

The ROC curve presented in Figure 9 illustrates the trade-off between the true positive
rate (sensitivity or recall) and the false positive rate as the classifier’s decision threshold
varies. The ROC curve is generated by plotting the true positive rate (TPR) on the y-axis
against the false positive rate (FPR) on the x-axis at different classification thresholds.
Figure 9 displays the ROC curve for all models, with the corresponding AUC-ROC values
of each model indicated in the bottom right corner of the image.

The ROC curves highlight distinct trade-offs between sensitivity and specificity across
our models. AUC-ROC values provide a concise overview of the overall ability of the
model to distinguish between positive and negative examples, with larger values indicating
superior performance. Notably, the Support Vector Machine (SVM) model exhibited the
highest Area Under the Receiver Operating Characteristic Curve (AUC-ROC) value at
0.9846, signifying robust discriminatory capabilities. Furthermore, the Logistic Regression
(LR) K Nearest Neighbor (KNN) and our proposed models (P_M_1 and P_M_2) emerge as
strong contenders, with AUC-ROC values surpassing 0.979.

Big Data Cogn. Comput. 2024, 8, 6 17 of 27

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 18 of 30

models—bagging, SVM, KNN, RF, boosting, P_M_1, and LR—display precision, recall,
and F1-score values of 95.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, 94.0%, and 94.0%, respec-
tively. These quantitative values are represented in Figure 8 for a more detailed under-
standing of these results.

Figure 8. Precision, Recall, and F1-score values of all Models for the Testing Sample Dataset.

The ROC curve presented in Figure 9 illustrates the trade-off between the true posi-
tive rate (sensitivity or recall) and the false positive rate as the classifier’s decision thresh-
old varies. The ROC curve is generated by plotting the true positive rate (TPR) on the y-
axis against the false positive rate (FPR) on the x-axis at different classification thresholds.
Figure 9 displays the ROC curve for all models, with the corresponding AUC-ROC values
of each model indicated in the bottom right corner of the image.

Figure 9. ROC Curve Plot of all Models on the Testing Sample with AUC-ROC Value. Figure 9. ROC Curve Plot of all Models on the Testing Sample with AUC-ROC Value.

4.1.2. SMOTE Results

All the training and testing results presented in this section were obtained using the
SMOTE sampled dataset. Similar to the previous section, we begin by discussing the results
of the confusion matrix for all models, as other parameters are derived from TP, FP, TN,
and FN values, and the confusion matrix encompasses all of these values. Table 7 shows
the confusion matrix for all models obtained for the oversampled dataset training sample.
These confusion matrices represent the results of predictions for 440,304 entries or values
present in the training sample.

Table 7. Confusion Matrix of all Models for the Training Sample of the SMOTE Dataset.

LR KNN RF Bagging Boosting P_M

True Positive 201,231 220,152 220,152 220,152 220,152 220,152

True Negative 214,606 219,868 220,152 219,864 220,152 220,082

False Positive 18,921 0 0 0 0 0

False Negative 5546 284 0 288 0 70

The results indicate that, similar to the under-sampled dataset, RF and Boosting
classifiers emerged as the top-performing models, making no false predictions on the
trained sample. The proposed model followed closely, exhibiting 70 false negative values
and no false positive values. Subsequently, KNN and Bagging showed 284 and 288 false
negative values, respectively, with no false positives. LR ranked last, displaying the highest
false negative and false positive values. Table 8 shows the prediction of models on the
unseen sample (Testing sample).

Table 8. Confusion Matrix of all Models for the Testing Sample of the SMOTE Dataset.

LR KNN RF Bagging Boosting P_M

True Positive 50,280 55,038 55,038 55,038 55,038 55,038

True Negative 53,660 54,947 55,028 54,941 55,028 54,993

False Positive 4758 0 0 0 0 0

False Negative 1378 91 10 97 10 45

Big Data Cogn. Comput. 2024, 8, 6 18 of 27

According to the results obtained from the testing sample of 110,076 entries, which
were unknown entries to machine learning models, RF and boosting showed the same
results with 10 FN values and no FP, which were the best results compared to other models.
The proposed model was second with 45 FN and 0 FP prediction, followed by KNN and
bagging classifiers, with 91 and 97 FN and 0 FP predictions, respectively. LR showed
the highest FN and FP results again. For a detailed evaluation of these models, other
performance parameters results are discussed in the next sections. To see how accurately
all models predict the training sample and testing sample, Table 9 summarises the accuracy
prediction results of all the models.

Table 9. Accuracy Results of all Models for the Training Sample of the SMOTE Dataset.

Training Sample of SMOTE Dataset

LR KNN RF Bagging Boosting PM

Accuracy 0.94443 0.999354 1 0.9993 1 0.99983

Testing Sample of SMOTE Dataset

Accuracy 0.944256 0.999173 0.99989 0.999 0.999092 0.9996

Concerning the training samples PM (Proposed Model) results, Adaboost and RF
showed about 100% accuracy on the seen or training sample while KNN and Bagging
classifiers had 99.93% accuracy and LR was ranked last with the lowest accuracy at 94.44%.
Figure 10 shows the comparison results of all the models.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 20 of 30

Table 9. Accuracy Results of all Models for the Training Sample of the SMOTE Dataset.

Training Sample of SMOTE Dataset
 LR KNN RF Bagging Boosting PM

Accuracy 0.94443 0.999354 1 0.9993 1 0.99983
Testing Sample of SMOTE Dataset

Accuracy 0.944256 0.999173 0.99989 0.999 0.999092 0.9996

Concerning the training samples PM (Proposed Model) results, Adaboost and RF
showed about 100% accuracy on the seen or training sample while KNN and Bagging
classifiers had 99.93% accuracy and LR was ranked last with the lowest accuracy at
94.44%. Figure 10 shows the comparison results of all the models.

Figure 10. Accuracy Comparison of all models for the Training Sample.

The accuracy results of all models on the testing sample are also shown in Table 9 to
demonstrate how the proposed models respond to new data. Results on the unseen data
show that the proposed models (PM) alongside Adaboost and Random Forest (RF) classi-
fiers demonstrate significantly high accuracy, with all three converging at roughly 100%
on the testing samples. This outcome highlights the effectiveness of these models in com-
prehending the underlying patterns present in the training data, resulting in predictions
that nearly correspond to the accurate labels. Equally noteworthy, the K-Nearest Neigh-
bors (KNN) and Bagging classifiers have a remarkable accuracy rate of 99.93%. These re-
sults are also presented visually in Figure 11.

0.944
0.999 1 0.999 1 0.999

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

LR

KNN

RF

Bagging

Boosting

PM

Figure 10. Accuracy Comparison of all models for the Training Sample.

The accuracy results of all models on the testing sample are also shown in Table 9
to demonstrate how the proposed models respond to new data. Results on the unseen
data show that the proposed models (PM) alongside Adaboost and Random Forest (RF)
classifiers demonstrate significantly high accuracy, with all three converging at roughly
100% on the testing samples. This outcome highlights the effectiveness of these models in
comprehending the underlying patterns present in the training data, resulting in predictions
that nearly correspond to the accurate labels. Equally noteworthy, the K-Nearest Neighbors
(KNN) and Bagging classifiers have a remarkable accuracy rate of 99.93%. These results are
also presented visually in Figure 11.

Big Data Cogn. Comput. 2024, 8, 6 19 of 27

Figure 10. Accuracy Comparison of all models for the Training Sample.

Figure 11. Accuracy comparison of all models for the Testing sample.

0.944
0.999 1 0.999 1 0.999

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

LR

KNN

RF

Bagging

Boosting

PM

0.944
0.999 0.999 0.999 0.999 0.999

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

LR

KNN

RF

Bagging

Boosting

PM

Figure 11. Accuracy comparison of all models for the Testing sample.

This visual representation of the outcomes underscores the adeptness of models
in extracting valuable insights from the provided training data. In contrast, Logistic
Regression (LR) demonstrates a lower accuracy rate of 94.44%, indicating a relatively
higher rate of misclassification compared to other models. Given the consistent presence of
these patterns throughout the training sample, it reaffirms the stability and generalizability
of our proposed model.

Table 10 consolidates the results of our analysis, specifically focusing on the evaluation
metrics of precision, recall, and F1-score. This comprehensive depiction demonstrates the
models’ performance in accurately predicting the positive class within the training sample,
elucidating their proficiency in correctly assessing positive class predictions (recall) and the
equilibrium between these two metrics as reflected in the F1-score.

Table 10. Precision, Recall, and F1-score of all models for the Training sample of the SMOTE dataset.

Prediction Results on the Training Sample of the SMOTE Dataset

LR KNN RF Bagging Boosting PM

Precision 0.94607 0.999355 1 0.9993 1 0.99983
Recall 0.94443 0.99954 1 0.9993 1 0.999831

F1-score 0.94438 0.99954 1 0.9993 1 0.999831

In a parallel evaluation of the results of the confusion matrix, we observe a consistent
trend in the precision, recall, and accuracy metrics across our models compared to both the
training and testing samples. Particularly, the majority of models have precision, recall, and
accuracy scores around 100 percent, demonstrating their proficiency in correctly classifying
positive instances, as shown in Figure 12.

Based on the results and visual representations, it is evident that these models adeptly
capture relevant data, leading to precise predictions and minimal false negatives. Despite
this outstanding performance, the Logistic Regression (LR) model stands out with slightly
lower yet commendable precision, recall, and accuracy scores of 95.0%. This distinction
highlights the sensitivity of the LR classifier to specific data complexities while affirming
the overall robustness of the results obtained by other classifiers. As mentioned earlier, the

Big Data Cogn. Comput. 2024, 8, 6 20 of 27

results for precision, recall, and F1-score obtained for both training and testing samples are
consistent, as verified by the data presented in Table 11 and Figure 13.

Figure 12. Precision, Recall, and F1-Score comparison of models for the training sample.

Figure 13. Precision, Recall, and F1-Score comparison of models for the testing sample.

0

0.2

0.4

0.6

0.8

1

LR KNN RF Bagging Boosting PM

Precision

Recall

F1-score

0

0.2

0.4

0.6

0.8

1

LR KNN RF Bagging Boosting PM

Precision

Recall

F1-score

Figure 12. Precision, Recall, and F1-Score comparison of models for the training sample.

Table 11. Precision, Recall, and Accuracy of all models for the Testing Sample of the SMOTE dataset.

LR KNN RF Bagging Boosting PM

Precision 0.945938 0.999174 0.999891 0.999 0.999092 0.999601

Recall 0.944256 0.999173 0.99989 0.999 0.999092 0.9996

F1-score 0.944204 0.999173 0.99989 0.999 0.999092 0.9996

Figure 12. Precision, Recall, and F1-Score comparison of models for the training sample.

Figure 13. Precision, Recall, and F1-Score comparison of models for the testing sample.

0

0.2

0.4

0.6

0.8

1

LR KNN RF Bagging Boosting PM

Precision

Recall

F1-score

0

0.2

0.4

0.6

0.8

1

LR KNN RF Bagging Boosting PM

Precision

Recall

F1-score

Figure 13. Precision, Recall, and F1-Score comparison of models for the testing sample.

All ROC curves obtained from the SMOTE-sampled dataset, including Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Bagging, AdaBoost,
and the proposed model (PM), exhibit exceptional performance, as indicated by the steep
ascent towards the upper-left corner of the graph. This demonstrates that these models
achieve high sensitivity while maintaining low false positive rates, highlighting their ability
to classify positive instances while minimising misclassifications of negative instances

Big Data Cogn. Comput. 2024, 8, 6 21 of 27

accurately. Figure 14 shows the results of the ROC curve of all models, with the AUC-ROC
values of all models shown in the bottom right corner.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 23 of 30

Figure 13. Precision, Recall, and F1-Score comparison of models for the testing sample.

All ROC curves obtained from the SMOTE-sampled dataset, including Support Vec-
tor Machine (SVM), K-Nearest Neighbors (KNN), Random Forest (RF), Bagging, Ada-
Boost, and the proposed model (PM), exhibit exceptional performance, as indicated by the
steep ascent towards the upper-left corner of the graph. This demonstrates that these mod-
els achieve high sensitivity while maintaining low false positive rates, highlighting their
ability to classify positive instances while minimising misclassifications of negative in-
stances accurately. Figure 14 shows the results of the ROC curve of all models, with the
AUC-ROC values of all models shown in the bottom right corner.

Figure 14. ROC Curve and AUC-ROC Values of all Models.

0

0.2

0.4

0.6

0.8

1

LR KNN RF Bagging Boosting PM

Precision

Recall

F1-score

Figure 14. ROC Curve and AUC-ROC Values of all Models.

The AUC-ROC values offer a quantitative assessment of the capability of the mod-
els. The AUC-ROC values, which range from 0.988 to 0.999, highlight the exceptional
performance exhibited by all the models. A higher AUC-ROC value indicates a stronger
discriminatory ability of the model to distinguish between positive and negative events.
In this comparative analysis, the AUC-ROC values continually converge towards or even
attain a value of 1, validating the excellent predictive capacities exhibited by the models.
The high AUC-ROC values observed in these models suggest a constant ability to predict
genuine positives while effectively minimising false positives accurately. The combined
utilisation of ROC curve analysis and the notable AUC-ROC values demonstrates the effec-
tiveness of the models under consideration in accurately distinguishing between positive
and negative occurrences.

4.2. Computational Efficiency

Computational efficiency in Machine Learning pertains to the time an algorithm
requires for training and evaluation, as well as the utilisation of system resources such as
RAM and storage during these processes. In this paper, the python-auto time and memory-
profiler extensions were employed to measure the training and evaluation durations and
the RAM usage, respectively. RAM usage was documented both before and after each
training and testing phase, with the results summarised in Table 12.

The collected data revealed variations in training and testing times among the different
algorithms. Notably, some algorithms, such as LR, SVM, and KNN, exhibited longer
training times but shorter testing times, while others demonstrated the opposite trend.
RAM usage values in the table are presented in units of Mebibyte (MiB), where 1 MiB is
equivalent to 1.04858 MB. It is crucial to emphasise that RAM usage values were recorded
both before and after each training and testing phase.

Furthermore, Figure 15 illustrates random RAM usage values noted during the training
and testing phases. These fluctuations indicate that RAM usage ranged between 2.3 to
4.0 GB during these phases. Specifically, in the case of SMOTE, where the training dataset
comprised 440,304 entries, the highest time recorded for evaluating results on these entries
was 11,681 s. Consequently, the system identified approximately 38 entries per second as
either legitimate or fraudulent during the utilisation of these computational resources.

Big Data Cogn. Comput. 2024, 8, 6 22 of 27

Table 12. Computational efficiency of all models for under-sampled and SMOTE datasets.

Algorithm Training Testing on Training Sample Testing on Testing Sample

Time (ms) Memory Usage
(MiB) Time (ms) Memory Usage

(MiB) Time (ms) Memory Usage
(MiB)

LR 583 1404.43–1403.46 569 1403.46–1403.46 548 1403.46–1403.46
SVM 619 1403.37–1403.37 550 1403.37–1403.37 550 1403.37–1403.39
KNN 536 1403.39 -1403.39 648 1403.39–1403.66 613 1403.66–1403.66

RF 889 1403.66–1403.90 569 1403.90–1403.90 555 1403.90–1403.90
Bagging 542 1403.90–1403.90 700 1403.90–1403.90 783 1403.90–1403.91

Adaboost 1710 1403.91–1403.91 692 1403.91–1403.91 661 1403.91–1403.91
PM1 2100 1403.91–1403.91 732 1403.91–1403.91 690 1403.91–1403.91
PM2 1860 1404.47–1403.47 1260 1404.47–1403.47 1260 1404.47–1403.47

SMOTE Dataset

LR 3.5 1190.03–1190.64 2.9 1190.65–1190.65 2.5 1190.77–1190.77
KNN 0.597 1190.77–1288.20 1431 1288.20–1295.43 355 1295.43–1295.89

RF 1135 1295.93–1296.31 19.9 1296.31–1296.31 8.28 1296.31–1296.33
Bagging 9.23 1147.86–1841.64 10,179 1841.89–819.89 2331 820.93–1342.43

Adaboost 883 1341.71–1454.40 14.8 1454.46–1458.23 6.05 1456.50–1456.86
PM 2049 1455.36–2282.86 11,681 2282.89–2158.89 2928 2155.05–2028.86

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 30

The RAM usage values presented in Table 12 were documented in Mebibyte (MiB),
with the conversion factor of 1 MiB equaling 1.04858 MB. Additionally, the computational
resource usage values were carefully recorded just before and after each training and test-
ing phase. In tandem with these measurements, random values of RAM usage were also
observed throughout the training and testing phases. Analysis of these random values
indicates that the RAM usage fluctuated between 2.3 to 4.0 GB during both the training
and testing phases. A visual representation of the time taken by each algorithm in the
training and testing phases is shown in Figures 15 and 16. These graphical representations
provide insights into the efficiency and performance of each algorithm throughout the
different stages of the machine-learning process.

Figure 15. Training and Testing Time for the Under-sampled Dataset.

Figure 16. Training and Testing Time for the SMOTE Sampled Dataset.

As depicted in Figures 15 and 16, certain algorithms, such as LR, KNN, and Ada-
boost, exhibited longer training times and shorter testing times. Conversely, other algo-
rithms, including Bagging and PM, needed less training time but had longer testing times.

0

500

1000

1500

2000

2500

LR SVM KNN RF Bagging Adaboost PM1 PM2

Ti
m

e
(m

s)

Models

 Algorithm Training Time (ms) Testing Time on Training Sample (ms)

Testing Time on Testing Sample (ms)

0

2000

4000

6000

8000

10000

12000

14000

LR KNN RF Bagging Adaboost PM

Ti
m

e
(m

se
c)

Models

Algorithm Training Time (sec) Testing Time on Training Sample (sec)

Testing Time on Testing Sample (sec)

Figure 15. Training and Testing Time for the Under-sampled Dataset.

The RAM usage values presented in Table 12 were documented in Mebibyte (MiB),
with the conversion factor of 1 MiB equaling 1.04858 MB. Additionally, the computational
resource usage values were carefully recorded just before and after each training and
testing phase. In tandem with these measurements, random values of RAM usage were
also observed throughout the training and testing phases. Analysis of these random values
indicates that the RAM usage fluctuated between 2.3 to 4.0 GB during both the training and
testing phases. A visual representation of the time taken by each algorithm in the training
and testing phases is shown in Figures 15 and 16. These graphical representations provide
insights into the efficiency and performance of each algorithm throughout the different
stages of the machine-learning process.

Big Data Cogn. Comput. 2024, 8, 6 23 of 27

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 25 of 30

The RAM usage values presented in Table 12 were documented in Mebibyte (MiB),
with the conversion factor of 1 MiB equaling 1.04858 MB. Additionally, the computational
resource usage values were carefully recorded just before and after each training and test-
ing phase. In tandem with these measurements, random values of RAM usage were also
observed throughout the training and testing phases. Analysis of these random values
indicates that the RAM usage fluctuated between 2.3 to 4.0 GB during both the training
and testing phases. A visual representation of the time taken by each algorithm in the
training and testing phases is shown in Figures 15 and 16. These graphical representations
provide insights into the efficiency and performance of each algorithm throughout the
different stages of the machine-learning process.

Figure 15. Training and Testing Time for the Under-sampled Dataset.

Figure 16. Training and Testing Time for the SMOTE Sampled Dataset.

As depicted in Figures 15 and 16, certain algorithms, such as LR, KNN, and Ada-
boost, exhibited longer training times and shorter testing times. Conversely, other algo-
rithms, including Bagging and PM, needed less training time but had longer testing times.

0

500

1000

1500

2000

2500

LR SVM KNN RF Bagging Adaboost PM1 PM2

Ti
m

e
(m

s)

Models

 Algorithm Training Time (ms) Testing Time on Training Sample (ms)

Testing Time on Testing Sample (ms)

0

2000

4000

6000

8000

10000

12000

14000

LR KNN RF Bagging Adaboost PM

Ti
m

e
(m

se
c)

Models

Algorithm Training Time (sec) Testing Time on Training Sample (sec)

Testing Time on Testing Sample (sec)

Figure 16. Training and Testing Time for the SMOTE Sampled Dataset.

As depicted in Figures 15 and 16, certain algorithms, such as LR, KNN, and Adaboost,
exhibited longer training times and shorter testing times. Conversely, other algorithms,
including Bagging and PM, needed less training time but had longer testing times. In
the case of SMOTE, where the training dataset comprised 440,304 entries, the highest
time recorded for evaluating the results on these entries was 11,681 s. Consequently,
utilising these computational resources, the system demonstrated the capability to identify
approximately 38 entries per second as either legitimate or fraudulent. These observations
provide valuable insights into the performance characteristics of each algorithm during
both the training and testing phases.

4.3. Comparison with Existing Models

As in the literature review of this paper, different studies have been summarised in
Table 1. The models proposed in [1,40] are comparable to the models proposed in this paper.
In [40], the proposed model consisted of a K-Nearest Neighbor (K-NN), Extreme Learning
Machine (ELM), Random Forest (RF), Multilayer Perceptron (MLP), and Bagging classifier
while the dataset used is different than that used in this research. In [1], the proposed
model contained Random Forest (RF), K-Nearest Neighbors (KNN), Logistic Regression
(LR), Adaboost, and Bagging, similar to P_M_2 in under-sampling and PM in SMOTE.
In [1], SMOTE was used for an unbalanced dataset, which was also used for our proposed
model. Table 13 and Figure 17 show the evaluation metrics adopted for the benchmarking
of the proposed model.

Table 13. Comparison of the Proposed Model with Existing Research.

[1] [40] PM
(SMOTE) P_M_1 P_M_2

Accuracy 99.9455 83.83 99.9591 93.684 94.737

Precision 99.947 94.5 99.9591 93.996 94.916

Recall 99.9455 86.47 99.9591 93.684 94.737

F1-Score 99.9462 90.31 99.9591 93.673 94.731

Big Data Cogn. Comput. 2024, 8, 6 24 of 27

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 26 of 30

In the case of SMOTE, where the training dataset comprised 440,304 entries, the highest
time recorded for evaluating the results on these entries was 11,681 s. Consequently, uti-
lising these computational resources, the system demonstrated the capability to identify
approximately 38 entries per second as either legitimate or fraudulent. These observations
provide valuable insights into the performance characteristics of each algorithm during
both the training and testing phases.

4.3. Comparison with Existing Models
As in the literature review of this paper, different studies have been summarised in

Table 1. The models proposed in [1,40] are comparable to the models proposed in this
paper. In [40], the proposed model consisted of a K-Nearest Neighbor (K-NN), Extreme
Learning Machine (ELM), Random Forest (RF), Multilayer Perceptron (MLP), and Bag-
ging classifier while the dataset used is different than that used in this research. In [1], the
proposed model contained Random Forest (RF), K-Nearest Neighbors (KNN), Logistic
Regression (LR), Adaboost, and Bagging, similar to P_M_2 in under-sampling and PM in
SMOTE. In [1], SMOTE was used for an unbalanced dataset, which was also used for our
proposed model. Table 13 and Figure 17 show the evaluation metrics adopted for the
benchmarking of the proposed model.

Table 13. Comparison of the Proposed Model with Existing Research.

 [1] [40]
PM$$$$$$(SM

OTE) P_M_1 P_M_2

Accuracy 99.9455 83.83 99.9591 93.684 94.737
Precision 99.947 94.5 99.9591 93.996 94.916
Recall 99.9455 86.47 99.9591 93.684 94.737
F1-Score 99.9462 90.31 99.9591 93.673 94.731

Figure 17. Performance Comparison of the Proposed Model with Existing Models [17,28].

The accuracy achieved by the present model [28] is 83.83%, which is significantly
lower compared to the accuracy achieved by our proposed model. This observation

99.9

94.5

99.9

94.0
94.9

99.9

86.5

99.9

93.7
94.7

99.9

90.3

99.9

93.7
94.7

[17] [28] PM (SMOTE) P_M_1 P_M_2

Precision Recall f1-Score

Fiore, U. (2019) Raghavan, P. (2019)

Figure 17. Performance Comparison of the Proposed Model with Existing Models [17,28].

The accuracy achieved by the present model [28] is 83.83%, which is significantly lower
compared to the accuracy achieved by our proposed model. This observation implies that
there may be certain constraints in the accurate classification of cases, as shown by [24]. The
proposed model in [25] had a strong performance, with an accuracy percentage of 99.9455%.
Although it demonstrated a high level of precision, it is crucial to consider additional
measures to offer a thorough evaluation. The proposed model, PM (SMOTE), demonstrated
exceptional performance with an accuracy of 99.9591%, exceeding the results achieved
by both references [17,28]. This suggests that the PM (SMOTE) algorithm demonstrates a
noteworthy capability in accurately classifying cases, perhaps leading to enhanced skills in
fraud detection.

P_M_1 and P_M_2, two more models under consideration, exhibited comparable or
somewhat inferior performance in accuracy, precision, recall, and F1-score compared to
the PM (SMOTE) model. The P_M_2 is the same model as PM; the only difference is the
sampling technique used for the dataset. In P_M_2, under-sampling was used, while in the
PM, SMOTE was used as a sampling technique. This implies that the utilisation of under-
sampling as the sampling strategy in P_M_1 and P_M_2 may have resulted in a decrease in
the size of the dataset. Although the process of reducing class distribution might contribute
to achieving a balanced distribution in a class, it is important to acknowledge that this
approach may lead to a certain degree of information loss. Consequently, the performance
of this method may be comparatively weaker than the PM (SMOTE) technique.

In summary, the assessment findings underscore the merits and limitations of different
approaches. The PM (SMOTE) technique demonstrated superior performance, exhibiting
the greatest levels of accuracy, precision, and F1 score. Nevertheless, it is crucial to consider
the contextual factors and trade-offs that are linked to various sampling approaches. The
utilisation of under-sampling, as seen in P_M_1 and P_M_2, might potentially impact the
overall performance of the model. When selecting an appropriate model, it is important to
consider the particular objectives and limitations associated with the work of credit card
fraud detection.

Big Data Cogn. Comput. 2024, 8, 6 25 of 27

4.4. Limitations and Challenges

This research found that there were substantial challenges with credit card fraud
detection. The acquisition of a suitable credit card dataset proved to be a formidable
task due to the sensitivity of client data. The profound social and financial consequences
associated with credit card fraud detection required thoughtful consideration at every step.
Selecting appropriate classifiers in a field saturated with ongoing research in credit card
fraud detection presented a unique set of challenges. The evolving nature of this subject
matter made the classifier selection process particularly intricate.

While Google Colab offered a convenient implementation environment, it introduced
its own set of challenges. Operating on a free cloud platform demanded vigilant attention
due to its sensitivity to extended durations, network outages, and even slight deviations
from attentive usage. Managing these intricacies became crucial to avoid accidental dis-
connections and process restarts. From the initial hurdles of dataset gathering to the
complexities of classifier selection and platform nuances, these challenges underscore the
intricate nature of the research landscape, contributing to a nuanced understanding of this
study’s limitations.

5. Conclusions and Future Work

This paper presented an in-depth literature review that underscored the significance
of the credit card fraud epidemic. The surge in identity theft, particularly through credit
card fraud, has inflicted financial losses and emotional distress on countless victims. Statis-
tics from organisations like the Federal Trade Commission (FTC) depict a disconcerting
portrayal of the ever-evolving fraud landscape. To counter these challenges, we delved into
various fraud detection techniques, exploring Statistical Analysis, Machine Learning, and
Deep Learning Techniques for discerning suspicious patterns in transaction data.

For classification tasks, an array of machine learning models, spanning from K-Nearest
Neighbors (KNN) to Support Vector Machines (SVM), Decision Trees (DT), Random Forest
(RF), Bagging, and Boosting, emerged as potent instruments. In this paper, we meticulously
evaluated the effectiveness of these models on a real-world dataset of European credit card
transactions. These endeavours culminated in the proposition of an ensemble model that
integrates SVM, KNN, RF, Bagging, and Boosting classifiers within a voting framework.
This ensemble not only showcased robust performance but also underscored the efficacy of
combining multiple classifiers to enhance fraud detection accuracy. During the evaluation
process, the models underwent rigorous testing, and their performance was scrutinised
using diverse metrics, including precision, recall, F1-score, ROC, and accuracy.

The outcomes affirmed the effectiveness of our ensemble model in mitigating false pos-
itives and false negatives, two pivotal challenges in credit card fraud detection. However,
this research also provides future research opportunities. Striking a balance between accu-
racy and computational efficiency emerged as a crucial consideration. As demonstrated
in the computational efficiency results, various algorithms exhibited distinct trade-offs
between training and testing times. The investigation of computational efficiency further
puts forward the performance of our model, which is measured using training and testing
time and memory usage.

In future investigations, there is an opportunity to enhance the efficiency of the model.
Despite the positive outcomes demonstrated by both our ensemble model and individual
predictors, there remains a keen interest in refining their training and testing durations.
Streamlining computing overhead holds the potential to develop fraud detection systems
capable of real-time operation, ensuring swift responses to evolving fraud trends. While not
the primary focus of this paper, exploring the potential integration of deep learning models
is a worthwhile avenue. The exploration of designs such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), in conjunction with traditional machine
learning methods, may yield more accurate and adaptable fraud detection solutions.

Furthermore, there is a need for the exploration of dynamic data sampling strategies
that adapt to changes in the distribution of data over time. This analysis is crucial for

Big Data Cogn. Comput. 2024, 8, 6 26 of 27

credit card fraud detection, as the patterns of fraudulent activities may evolve, and a model
that can adapt to these changes is more likely to maintain its effectiveness. This paper
also suggests further investigation into methods aimed at enhancing the resilience of the
proposed model against novel or adversarial attacks. Adversarial attacks have the potential
to exploit vulnerabilities in machine learning models, and exploring techniques to mitigate
these risks would be highly valuable. Lastly, future research can assess the scalability of
the model in handling larger datasets and meeting growing computational demands. This
technique could involve the utilisation of parallel processing or distributed computing
approaches to ensure efficient processing as the dataset size expands.

Author Contributions: Conceptualisation, A.R.K. and N.O.; methodology, A.R.K. and N.O.; software,
A.R.K.; validation, O.U.; data curation, A.R.K.; writing—original draft preparation, A.R.K.; writing—
review and editing, M.A.; visualisation, J.O. and J.A.; supervision, N.O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analysed in this study. This data
can be found here: [https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud (accessed on 20
November 2023)].

Conflicts of Interest: The authors state that they do not have any competing financial interests
or personal relationships that could potentially create biases or otherwise influence the research
presented in this paper. The authors affirm that the work reported is free of any competing interests
that could undermine the objectivity, integrity, or perceived validity of the paper.

References
1. Sahithi, G.L.; Roshmi, V.; Sameera, Y.V.; Pradeepini, G. Credit Card Fraud Detection using Ensemble Methods in Machine

Learning. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,
India, 28–30 April 2022; pp. 1237–1241. [CrossRef]

2. Federal Trade Commission. CSN-Data-Book-2022. no. February 2023. Available online: https://www.ftc.gov/system/files/ftc_
gov/pdf/CSN-Data-Book-2022.pdf (accessed on 11 March 2023).

3. UK Finance. Annual Report and Financial Statements 2022. Available online: https://www.ukfinance.org.uk/annual-reports
(accessed on 20 November 2023).

4. Gupta, P.; Varshney, A.; Khan, M.R.; Ahmed, R.; Shuaib, M.; Alam, S. Unbalanced Credit Card Fraud Detection Data: A Machine
Learning-Oriented Comparative Study of Balancing Techniques. Procedia Comput. Sci. 2023, 218, 2575–2584. [CrossRef]

5. Mondal, I.A.; Haque, M.E.; Hassan, A.-M.; Shatabda, S. Handling imbalanced data for credit card fraud detection. In Proceedings of the
2021 24th International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 18–20 December 2021; pp. 1–6.

6. Ahmad, H.; Kasasbeh, B.; Aldabaybah, B.; Rawashdeh, E. Class balancing framework for credit card fraud detection based on
clustering and similarity-based selection (SBS). Int. J. Inf. Technol. 2023, 15, 325–333. [CrossRef] [PubMed]

7. Bagga, S.; Goyal, A.; Gupta, N.; Goyal, A. Credit card fraud detection using pipelining and ensemble learning. Procedia Comput.
Sci. 2020, 173, 104–112. [CrossRef]

8. Forough, J.; Momtazi, S. Ensemble of deep sequential models for credit card fraud detection. Appl. Soft Comput. 2021, 99, 106883.
[CrossRef]

9. Karthik, V.S.S.; Mishra, A.; Reddy, U.S. Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model.
Arab. J. Sci. Eng. 2022, 47, 1987–1997. [CrossRef]

10. Sudjianto, A.; Nair, S.; Yuan, M.; Zhang, A.; Kern, D.; Cela-Díaz, F. Statistical methods for fighting financial crimes. Technometrics
2010, 52, 5–19. [CrossRef]

11. Data, S. Descriptive statistics. Birth 2012, 30, 40.
12. Walters, W.H. Survey design, sampling, and significance testing: Key issues. J. Acad. Librariansh. 2021, 47, 102344. [CrossRef]
13. Lee, S.; Kim, H.K. Adsas: Comprehensive real-time anomaly detection system. In Proceedings of the Information Security

Applications: 19th International Conference, WISA 2018, Jeju, Republic of Korea, 23–25 August 2018; pp. 29–41.
14. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A review of deep learning with special

emphasis on architectures, applications and recent trends. Knowl. Based Syst. 2020, 194, 105596. [CrossRef]
15. Muppalaneni, N.B.; Ma, M.; Gurumoorthy, S.; Vardhani, P.R.; Priyadarshini, Y.I.; Narasimhulu, Y. CNN data mining algorithm for

detecting credit card fraud. In Soft Computing and Medical Bioinformatics; Springer: Singapore, 2019; pp. 85–93.
16. Roy, A.; Sun, J.; Mahoney, R.; Alonzi, L.; Adams, S.; Beling, P. Deep learning detecting fraud in credit card transactions. In

Proceedings of the 2018 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 27 April
2018; pp. 129–134. [CrossRef]

https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://doi.org/10.1109/ICOEI53556.2022.9776955
https://www.ftc.gov/system/files/ftc_gov/pdf/CSN-Data-Book-2022.pdf
https://www.ftc.gov/system/files/ftc_gov/pdf/CSN-Data-Book-2022.pdf
https://www.ukfinance.org.uk/annual-reports
https://doi.org/10.1016/j.procs.2023.01.231
https://doi.org/10.1007/s41870-022-00987-w
https://www.ncbi.nlm.nih.gov/pubmed/35757149
https://doi.org/10.1016/j.procs.2020.06.014
https://doi.org/10.1016/j.asoc.2020.106883
https://doi.org/10.1007/s13369-021-06147-9
https://doi.org/10.1198/TECH.2010.07032
https://doi.org/10.1016/j.acalib.2021.102344
https://doi.org/10.1016/j.knosys.2020.105596
https://doi.org/10.1109/SIEDS.2018.8374722

Big Data Cogn. Comput. 2024, 8, 6 27 of 27

17. Fiore, U.; De Santis, A.; Perla, F.; Zanetti, P.; Palmieri, F. Using generative adversarial networks for improving classification
effectiveness in credit card fraud detection. Inf. Sci. 2019, 479, 448–455. [CrossRef]

18. Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A review of machine learning techniques using decision tree and support
vector machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation
(ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7.

19. Shah, R. Introduction to k-Nearest Neighbors (kNN) Algorithm. Available online: https://ai.plainenglish.io/introduction-to-k-
nearest-neighbors-knn-algorithm-e8617a448fa8 (accessed on 20 November 2023).

20. Jadhav, S.D.; Channe, H.P. Comparative study of K-NN, naive Bayes and decision tree classification techniques. Int. J. Sci. Res.
2016, 5, 1842–1845.

21. Randhawa, K.; Loo, C.K.; Seera, M.; Lim, C.P.; Nandi, A.K. Credit card fraud detection using AdaBoost and majority voting. IEEE
Access 2018, 6, 14277–14284. [CrossRef]

22. Yee, O.S.; Sagadevan, S.; Malim, N.H.A.H. Credit card fraud detection using machine learning as data mining technique. J.
Telecommun. Electron. Comput. Eng. 2018, 10, 23–27.

23. Prasad, P.Y.; Chowdary, A.S.; Bavitha, C.; Mounisha, E.; Reethika, C. A Comparison Study of Fraud Detection in Usage of Credit
Cards using Machine Learning. In Proceedings of the 2023 7th International Conference on Trends in Electronics and Informatics
(ICOEI), Tirunelveli, India, 11–13 April 2023; pp. 1204–1209. [CrossRef]

24. Qaddoura, R.; Biltawi, M.M. Improving Fraud Detection in An Imbalanced Class Distribution Using Different Oversampling
Techniques. In Proceedings of the 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence
(EICEEAI), Zarqa, Jordan, 29 November–1 December 2022; pp. 1–5. [CrossRef]

25. Tanouz, D.; Subramanian, R.R.; Eswar, D.; Reddy, G.V.P.; Kumar, A.R.; Praneeth, C.H.V.N.M. Credit Card Fraud Detection Using
Machine Learning. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems
(ICICCS), Madurai, India, 6–8 May 2021; pp. 967–972. [CrossRef]

26. Sailusha, R.; Gnaneswar, V.; Ramesh, R.; Rao, G.R. Credit Card Fraud Detection Using Machine Learning. In Proceedings of the
2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 13–15 May 2020;
pp. 1264–1270. [CrossRef]

27. Sadgali, I.; Sael, N.; Benabbou, F. Performance of machine learning techniques in the detection of financial frauds. Procedia Comput.
Sci. 2019, 148, 45–54. [CrossRef]

28. Raghavan, P.; El Gayar, N. Fraud Detection using Machine Learning and Deep Learning. In Proceedings of the 2019 International
Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 11–12 December
2019; pp. 334–339. [CrossRef]

29. Saputra, A.; Suharjito. Fraud detection using machine learning in e-commerce. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 332–339.
[CrossRef]

30. Jain, Y.; Tiwari, N.; Dubey, S.; Jain, S. A comparative analysis of various credit card fraud detection techniques. Int. J. Recent
Technol. Eng. 2019, 7, 402–407.

31. Naik, H.; Kanikar, P. Credit card fraud detection based on machine learning algorithms. Int. J. Comput. Appl. 2019, 182, 8–12.
[CrossRef]

32. Esenogho, E.; Mienye, I.D.; Swart, T.G.; Aruleba, K.; Obaido, G. A neural network ensemble with feature engineering for
improved credit card fraud detection. IEEE Access 2022, 10, 16400–16407. [CrossRef]

33. Group, M.L. Credit Card Fraud Detection Dataset. Available online: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
(accessed on 20 November 2023).

34. Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: Improving classification performance when training data
is skewed. In Proceedings of the 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December
2008; pp. 1–4. [CrossRef]

35. Ayling, J.; Chapman, A. Putting AI ethics to work: Are the tools fit for purpose? AI Ethics 2022, 2, 405–429. [CrossRef]
36. Malek, N.H.A.; Yaacob, W.F.W.; Wah, Y.B.; Nasir, S.A.M.; Shaadan, N.; Indratno, S.W. Comparison of ensemble hybrid sampling with

bagging and boosting machine learning approach for imbalanced data. Indones. J. Elec. Eng. Comput. Sci. 2023, 29, 598–608. [CrossRef]
37. Niveditha, G.; Abarna, K.; Akshaya, G.V. Credit card fraud detection using random forest algorithm. Int. J. Sci. Res. Comput. Sci.

Eng. Inf. Technol. 2019, 5, 301–306. [CrossRef]
38. Graser, J.; Kauwe, S.K.; Sparks, T.D. Machine learning and energy minimisation approaches for crystal structure predictions: A

review and new horizons. Chem. Mater. 2018, 30, 3601–3612. [CrossRef]
39. Kanstrén, T. A Look at Precision, Recall, and F1-Score. Available online: https://towardsdatascience.com (accessed on 20

November 2023).
40. Prusti, D.; Rath, S.K. Fraudulent Transaction Detection in Credit Card by Applying Ensemble Machine Learning Techniques. In

Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kanpur, India, 6–8 July 2019; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ins.2017.12.030
https://ai.plainenglish.io/introduction-to-k-nearest-neighbors-knn-algorithm-e8617a448fa8
https://ai.plainenglish.io/introduction-to-k-nearest-neighbors-knn-algorithm-e8617a448fa8
https://doi.org/10.1109/ACCESS.2018.2806420
https://doi.org/10.1109/ICOEI56765.2023.10125838
https://doi.org/10.1109/EICEEAI56378.2022.10050500
https://doi.org/10.1109/ICICCS51141.2021.9432308
https://doi.org/10.1109/ICICCS48265.2020.9121114
https://doi.org/10.1016/j.procs.2019.01.007
https://doi.org/10.1109/ICCIKE47802.2019.9004231
https://doi.org/10.14569/IJACSA.2019.0100943
https://doi.org/10.5120/ijca2019918521
https://doi.org/10.1109/ACCESS.2022.3148298
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://doi.org/10.1109/ICPR.2008.4761297
https://doi.org/10.1007/s43681-021-00084-x
https://doi.org/10.11591/ijeecs.v29.i1.pp598-608
https://doi.org/10.32628/CSEIT195261
https://doi.org/10.1021/acs.chemmater.7b05304
https://towardsdatascience.com
https://doi.org/10.1109/ICCCNT45670.2019.8944867

	Introduction
	Related Work
	Statistical Methods
	Deep Learning (DL) in Credit Card Fraud Detection
	Machine Learning (ML) in Credit Card Fraud Detection

	Methodology
	Dataset
	The Proposed Model
	Hardware and Platforms
	Model Design
	Data Pre-Processing
	Data Sampling
	Model Training

	Results and Discussion
	Performance Evaluation
	Under-Sampling Results
	SMOTE Results

	Computational Efficiency
	Comparison with Existing Models
	Limitations and Challenges

	Conclusions and Future Work
	References

