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Abstract. In this paper we present a characterization of hyper-connexivity
by means of a relating semantics for Boolean connexive logics. We also show
that the minimal Boolean connexive logic is Abelardian, strongly consistent,
Kapsner strong and antiparadox. We give an example showing that the
minimal Boolean connexive logic is not simplificative. This shows that the
minimal Boolean connexive logic is not totally connexive.
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Introduction

There is a common agreement that a connexive logic is based on the
following theses of Aristotle and Boethius:

(A1) ¬(A → ¬A)
(A2) ¬(¬A → A)
(B1) (A → B) → ¬(A → ¬B)
(B2) (A → ¬B) → ¬(A → B).

However, there is also common agreement that a logic defined only by
(A1), (A2), (B1), (B2) is very weak and should be strengthened in some
way or other. If we interpret → as material implication and ¬ as classical
negation then Aristotle’s and Boethius’ theses may be false, thus none
of formulas (A1), (A2), (B1), (B2) is a tautology of classical logic. On
the other hand, Aristotle’s and Boethius’ theses are true if we interpret
→ as material implication and ¬ as an assertion; i.e., v(A) = v(¬A). To
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exclude such a strange interpretation, Jarmużek and Malinowski defined
in [6] a class of Boolean connexive logics  that is, connexive logics where
conjunction, disjunction and negation behave in the standard classical
way. In this paper we will follow this line of research. As a consequence,
throughout this paper, the connectives ¬, ∨ and ∧ are Boolean.

A hyper-connexive logic [see 15] is a connexive logic where the fol-
lowing converses of Boethius’ theses are also valid:

(B1′) ¬(A → ¬B) → (A → B)
(B2′) ¬(A → B) → (A → ¬B).

Even if there have been criticisms about hyper-connexivity [see 12,
pp. 446–447], beyond mentioning some motivations for supporting it,
we will not in this paper discuss the correctness or incorrectness of
hyper-connexive principles from a philosophical point of view. We con-
sider them as one of possible ways of how to strengthen Aristotle’s and
Boethius’ theses.

There is also a counterexample based on another strange interpre-
tation. Aristotle’s and Boethius’ theses are true if we interpret ¬ as
classical negation and → as material equivalence, but it makes → sym-
metric. It would seem to be natural to exclude also interpretations where
→ is symmetric. For this reason we hold that symmetry of implication,
represented by the following schema should be invalid:

(SI) (A → B) → (B → A)

Estrada-González and Ramírez-Cámara [1] have considered totally
connexive logics defined by means of the schemas (A1)–(B2) and some
other widely considered formulas defining the following logics: Abelar-
dian logic, anti-paradox logic, simplificative logic, conjunction-idempo-
tent logic, (in)consistent logic and Kapsner-strong logic. As with hyper-
connexivity, we will not here be concerned with either philosophical mo-
tivations for totally connexive logics or even the formal consequences
of the conditions that define them. In this paper we will concentrate
only on characterizing the conditions in terms of relating semantics for
Boolean connexive logics.

The paper is structured as follows. In section 1, we present the
rudiments of relating semantics for Boolean connexive logics, following
[4, 6]. In section 2, we evaluate some connexive-related principles found
in the literature of connexivity and collected under the heading of ‘to-
tally connexive logics’ introduced in [1] and further studied in [14]. In
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section 3, we study the adjustments that need to be made to the relating
semantics to model hyper-connexive logics.

1. Relating semantics

1.1. Conceptual motivations

Relating semantics is important for the study of intensional logic, that is,
logic that focuses on valid arguments whose validity relies on more than
their truth values. We will explain it by way of an example. Consider the
following argument (in slightly-stilted English to avoid issues relating to
tense):

If I get shot, then if I die, I am buried

If I die, then if I get shot, I am buried
(∗)

In classical propositional logic, one formalizes this argument as follows:

(Permutation)
p → (q → r)

q → (p → r)

but (Permutation) is valid according to classical propositional logic.
However, from an intuitive point of view, there seems to be something
wrong with the argument (∗), and so, it could be argued, one would
expect that its formalization is not valid.

One might think that the validity of (Permutation) is given by the val-
ues of the propositional variables that appear in the argument, whereas
the invalidity of (∗) is given by the fact that one is not only considering
the values of the components of the premises and the conclusion, but
also the relations between them. Presumably, these relations have to
do with the sequential order of sentences, an order that does not let to
interchange the antecedents of the implications at one’s will.

In a relating semantics, one tries to capture these and other kinds
of relations in a formal language. For more examples on the kind of
relations that can be represented in a relating semantics, as well as its
history, its philosophical motivations, and recent achievements in this
field, one can consult [4, 5, 6, 9, 11, 13].

1.2. Technical preliminaries

Let Form be a propositional language defined in a usual way by a set
of propositional variables Var = {p1, . . . , pn} an unary connective ¬ and
binary connectives ∧, ∨, →.
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A relating model M for Form is a pair 〈v, R〉, where v : Var −→ {1, 0}
and R ⊆ Form × Form. A variable A is satisfied in a relating model M
(denoted by 〈v, R〉 |= A) if and only if v(A) = 1, and in the case of
complex formulas, particularly of the conditional, it is required that R

meets specific conditions (given below). As a notational convention, in
this text 〈A, B〉 ∈ R is denoted by R(A, B), and 〈A, B〉 /∈ R is denoted
by R̃(A, B). A formula A that is not satisfied in a relating model is
denoted by 〈v, R〉 6|= A.

Let M be the set of all the relating models for Form. For any model
〈v, R〉 ∈ M, formulas have the following truth conditions:

Definition 1.1. (Truth conditions for Form)

• 〈v, R〉 |= A if and only if v(A) = 1, if A ∈ Var

• 〈v, R〉 |= ¬A if and only if 〈v, R〉 6|= A
• 〈v, R〉 |= A ∧ B if and only if 〈v, R〉 |= A and 〈v, R〉 |= B
• 〈v, R〉 |= A ∨ B if and only if 〈v, R〉 |= A or 〈v, R〉 |= B
• 〈v, R〉 |= A → B if and only if [〈v, R〉 6|= A or 〈v, R〉 |= B] and R(A, B).

The truth conditions for most of the connectives are the classical ones,
the only exception being implication, which besides having its usual truth
conditions, requires that antecedents and consequents are related by R.

In this paper we will write R |= A if and only if for all v, 〈v, R〉 |= A.
To obtain suitable models for connexive logics in M, we recall here some
results from [6].

Definition 1.2. For any R ⊆ Form × Form:

• R satisfies (a1) if and only if for any A ∈ Form, R̃(A, ¬A).
• R satisfies (a2) if and only if for any A ∈ Form, R̃(¬A, A).
• R satisfies (b1) if and only if for any A, B ∈ Form,

– If R(A, B) then R̃(A, ¬B)
– R((A → B), ¬(A → ¬B)).

• R satisfies (b2) if and only if for any A, B ∈ Form,
– If R(A, B) then R̃(A, ¬B)
– R((A → ¬B), ¬(A → B)).

Theorem 1.1 (6, p. 435). For any R ⊆ Form × Form and A, B ∈ Form:

• If R satisfies (a1) then R |= ¬(A → ¬A)
• If R satisfies (a2) then R |= ¬(¬A → A)
• If R satisfies (b1) then R |= (A → B) → ¬(A → ¬B)
• If R satisfies (b2) then R |= (A → ¬B) → ¬(A → B).
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To obtain the converses of the implications of the previous theorem,
we need that the relation R be closed under negation, that is:

Definition 1.3. (Closure under negation)

(c1) R is closed under negation if and only if for any A, B ∈ Form: if
R(A, B) then R(¬A, ¬B).

Imposing this condition on R results in the validity of the formula
¬((A → B) ∧ ¬B ∧ ¬(¬A → ¬B))), a formula that is not valid with
the adoption of the conditions (a1)–(b2) on R. A classically equivalent
schema was used in [10] for an axiomatization of Boolean connexive logic
with closure under negation. This condition is also independent of (a1),
(a2), (b1) and (b2) and lets us pass from the appropriate models for
connexive logics to axiomatics and vice versa.

The relating semantics presented above, and constructed in [6], de-
termines Boolean connexive logics. However, the corresponding theorem
above does not provide by itself the right completeness result. The full
completeness theorem has been proven by Klonowski in [10]. We will
formulate it here in a way appropriate for our aims. We use ⊃ to de-
note material implication. Formally, A ⊃ B could be considered as a
shorthand for ¬(A ∧ ¬B).

By minimal Boolean connexive logic we mean the least set of sen-
tences of the language Form containing:

• all classical tautologies expressed by means of ¬, ∧, ∨ within the lan-
guage Form

• (A1), (A2), (B1), (B2)
• (A → B) ⊃ (A ⊃ B)

and closed under modus ponens with respect to ⊃. Let TJ denote a
class of all relations R such that R satisfies (a1), (a2), (b1), (b2). Let
TJ¬ denote a class of all relations from TJ satisfying (c1).

In [10] is proved the following completeness theorem:

Theorem 1.2. The class TJ determines the minimal Boolean connex-

ive logic. The class TJ¬ determines the least Boolean connexive logic

satisfying the following two axioms:

• (A → B) ⊃ (¬¬A → ¬¬B)
• (A → B) ⊃ ((¬A → ¬B) ∨ (¬A ∧ B)).
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2. Totally connexive logics

In [1, pp. 5–6] there are identified and named several desiderata for a
connexive logic, besides the satisfaction of the schemas (A1)–(B2). These
desiderata are the following:

Definition 2.1 (Desiderata for a connexive logic).

• An Abelardian logic is a logic that validates either of the following
schemas:
– ¬((A → B) ∧ (¬A → B))
– ¬((A → B) ∧ (A → ¬B))

• An anti-paradox logic is a logic that does not validate the following
schemas:
– A → (B → A)
– A → (¬A → B)
– A → (B → C)

(where A is a contingency and (B → C) is a logical truth).
• A simplificative logic is a logic that validates the following schemas:

– (A ∧ B) → A
– (A ∧ B) → B

• A conjunction-idempotent logic is a logic that validates the following
schemas:
– (A ∧ A) → A
– A → (A ∧ A)

• A weakly consistent logic is a logic that does not validate any formula
and its negation.

• A weakly inconsistent logic is a logic where any formula and its nega-
tion are both satisfiable.

• A strongly consistent logic is a logic where no formula and its negation
are both satisfiable.

• A strongly inconsistent logic is a logic that validates at least one for-
mula and its negation.

• A Kapsner-strong logic is a logic where:
– ¬A → A is unsatisfiable,
– A → ¬A is unsatisfiable,
– A → B and A → ¬B are not simultaneously satisfiable.

• A totally connexive logic is a connexive logic that is also Abelardian,
anti-paradox, simplificative, conjunction-idempotent and Kapsner-
strong.
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In [1] it is remarked that there are some difficulties in obtaining a
totally connexive logic. For example, a consistent connexive logic can-
not be simplificative if it satisfies contraposition for implication, modus
ponens and validates (A → B) → ((B → C) → (A → C)).1 As a
consequence, they pose the open problem of whether there are totally
connexive logics, and if any, which is the minimal one. In [14], using con-
trapossible implication and a refined version of Kapsner strength, Omori
and Wansing identify three logics that are expansions of Wansing’s logic
C [16] as possible candidates for a totally connexive logic.

In the following, we will examine whether the desiderata for totally
connexive logics hold in the models for connexive logics introduced in [6].

Theorem 2.1. Minimal Boolean Connexive Logic (or alternatively: the

logic determined by TJ) is Abelardian, strongly consistent, Kapsner

strong and antiparadox.

Proof. To prove the validity of ¬((A → B) ∧ (A → ¬B)) suppose
that 〈v, R〉 2 ¬((A → B) ∧ (A → ¬B)). From truth conditions of
the formulas in Form, 〈v, R〉 � (A → B) ∧ (A → ¬B). Then 〈v, R〉 �

A → B and 〈v, R〉 � A → ¬B. That is to say, R(A, B) and R(A, ¬B).
Consider R(A, B). As R satisfies (b1) and (b2), one has R̃(A, ¬B), but
this contradicts R(A, ¬B).2

To prove that it is consistent, we consider a relation R as the union
of the following sets:

1. {〈A → B, ¬(A → ¬B)〉 : A, B ∈ Form}
2. {〈A → ¬B, ¬(A → B)〉 : A, B ∈ Form}

1 The proof has been known since Alberic of Paris [see 2]. Just consider as
instances of simplification the following formulas (A ∧ ¬A) → A and (A ∧ ¬A) → ¬A.
Next contrapose the first one, ¬A → ¬(A ∧ ¬A), instantiate the schema (A → B) →
((B → C) → (A → C)) with ((A∧¬A) → ¬A) → ((¬A → ¬(A∧¬A)) → ((A∧¬A) →
¬(A∧¬A))) and use modus ponens twice. One thus obtains ((A∧¬A) → ¬(A∧¬A)),
but as the logic is connexive, one also obtains ¬((A ∧ ¬A) → ¬(A ∧ ¬A)). Note that
the proof only shows that one would need to add ((A ∧ ¬A) → ¬(A ∧ ¬A)) to the set
of theses, going against the spirit of connexive logics.

2 Note that ¬((A → B) ∧ (¬A → B)) can be validated if R is also closed under
negation: to prove the validity of ¬((A → B) ∧ (¬A → B)) suppose that 〈v, R〉 2

¬((A → B) ∧ (¬A → B)). From the truth conditions of the formulas in Form,
〈v, R〉 � (A → B) ∧ (¬A → B). Then 〈v, R〉 � A → B and 〈v, R〉 � ¬A → B. That
is to say, R(A, B) and R(¬A, B). If R were closed under negation, one would have
that R(¬A, ¬B). Moreover, R satisfies (b1) and (b2), so considering R(¬A, B) one
has R̃(¬A, ¬B), but this would contradict R(¬A, ¬B).
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It is clear that this relation defines a model that satisfies all Jarmużek
and Malinowski’s conditions, that is, it is a model for connexive logic.
However this model is not a model for both a formula and its negation.

To prove the unsatisfiability of A → ¬A consider condition (a1).

To prove the non-simultaneous satisfiability of A → B and A → ¬B
suppose that A → B is satisfiable. Then R(A, B) and using (b1), one
obtains R̃(A, ¬B), but this makes A → ¬B unsatisfiable. Conversely,
suppose that A → ¬B is satisfiable. Then R(A, ¬B) and using contra-
position on the first condition given in (b1), one obtains R̃(A, B). But
if R̃(A, B) then A → B is unsatisfiable.

To prove the invalidity of A → (B → A) and A → (¬A → B) consider
again the relation R as defined above. There is no pair of formulas
{〈A, B → A〉 : A, B ∈ Form} and {〈A, ¬A → B〉 : A, B ∈ Form} that
fall under R.

Likewise, for the invalidity of A → (B → C), where A is a contin-
gency and (B → C) is a logical truth, consider R as above. ⊣

However, the relating models just considered are not models for a sim-
plificative logic or for conjunction-idempotent or for strongly inconsistent
logics. Consider again the relation R as above. In the model defined by
this relation, there is no pair of formulas {〈A ∧ B, A〉 : A, B ∈ Form} or
{〈A ∧ B, B〉 : A, B ∈ Form} that falls under R. In addition, there is no
pair of formulas {〈A∧A, A〉 : A ∈ Form} or {〈A, A∧A〉 : A ∈ Form} that
falls under R. That a model for a connexive logic is not necessarily a
model for a (weakly/strongly) inconsistent logic is a corollary of the fact
that those models are precisely models for a strongly consistent logic.

Moreover those models do not validate the schemas ¬(A → ¬B) →
(A → B) and ¬(A → B) → (A → ¬B), and thus they are not mod-
els for a hyper-connexive logic, either. The above model on R gives a
countermodel.

3. Hyper-connexivity

Hyper-connexive principles have appeared in applications in categorial
grammar [see 17], in theories of counterfactual conditionals [see 8] but
also in the simplest semantics for connexive logics [see 16].

Sylvan [15] ascribes to Boethius himself a view on which logical con-
nectives are not merely truth-functional but presuppose an association
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between the formulas that are connected by the connectives, such an
association indicating understanding, nature or sense. For example, ac-
cording to Sylvan, in Boethius’ view implication requires the following
analysis (where ‘�’ is a necessity connective):

A → B iff {�(A ⊃ B) and A ∼ B},

where ‘A ∼ B’ represents the association between A and B. If the
association and the modality are somehow encapsulated in the R of re-
lating semantics, one could expect an easy and straightforward model
for Boethius’s views in relating semantics.

It would probably be expected that to validate one of those formulas
and thus obtain hyper-connexivity, one would just need the converses of
the implications that appear in (b1) and (b2) together with an appro-
priate relation between the antecedent and the consequent, that is:

Definition 3.1. For any R ⊆ Form × Form:

• R satisfies (b1∗) if and only if for any A, B ∈ Form,
– if R̃(A, ¬B) then R(A, B)
– R(¬(A → ¬B), (A → B))

• R satisfies (b2∗) if and only if for any A, B ∈ Form,
– if R̃(A, ¬B) then R(A, B)
– R(¬(A → B), (A → ¬B)).

But in fact, this is not enough (nor necessary for that matter). For
assume R satisfies (b1∗), and assume for reductio that 〈v, R〉 2 ¬(A →
¬B) → (A → B). That is 〈v, R〉 � ¬(A → ¬B) and 〈v, R〉 2 A → B,
because one has that R(¬(A → ¬B), (A → B)). Thus 〈v, R〉 2 A → ¬B
and 〈v, R〉 2 A → B. Now the implications in those formulas fail due to
one of the following situations:

1. R(A, B), R(A, ¬B); 〈v, R〉 � A, 〈v, R〉 2 B, 〈v, R〉 2 ¬B, but this is
impossible

2. R(A, B), R̃(A, ¬B); 〈v, R〉 � A and 〈v, R〉 2 B
3. R(A, ¬B), R̃(A, B); 〈v, R〉 � A and 〈v, R〉 2 ¬B
4. R̃(A, B) and R̃(A, ¬B), this is impossible because by R̃(A, ¬B) and

(b1∗) one has R(A, B), and this contradicts R̃(A, B).

In other words, when assuming (b1∗) alongside conditions (a1)–(b2) as
a restriction on R, one obtains that R cannot fail to relate to both any
formula and its negation, as it is indicated in the fourth case. But one
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still has two counterexamples to ¬(A → ¬B) → (A → B)  just consider
the second and the third cases. Something similar happens with (b2∗)
and ¬(A → B) → (A → ¬B).

To avoid the previous counterexamples, we propose to add on top of
(b1∗) and (b2∗) that a relation R ⊆ Form×Form satisfies (jm) if and only
if ∃v〈v, R〉 � A∧B ⇒ R(A, B). This proposal blocks the counterexamples
to ¬(A → ¬B) → (A → B) and ¬(A → B) → (A → ¬B).

Theorem 3.1. For any R ⊆ Form × Form and A, B ∈ Form:
If R satisfies the conditions that define TJ together with (b1∗), (b2∗)

and (jm), then:

• R � ¬(A → ¬B) → (A → B)
• R � ¬(A → B) → (A → ¬B).

Proof. The proof proceeds by cases.
Case 1. Assume R satisfies the conditions that define TJ together

with (b1∗), (b2∗) and (jm). Then R(¬(A → ¬B), (A → B)), and thus
R̃(¬(A → ¬B), ¬(A → B)) by (b1). Take any valuation v. Suppose
that 〈v, R〉 |= ¬(A → ¬B). By R̃(¬(A → ¬B), ¬(A → B)) and (jm),
〈v, R〉 6|= ¬(A → ¬B) ∧ ¬(A → B). But then 〈v, R〉 6|= ¬(A → B) in
virtue of 〈v, R〉 |= ¬(A → ¬B). Thus 〈v, R〉 |= (A → B), and then
〈v, R〉 � ¬(A → ¬B) → (A → B). As v was arbitrary, R � ¬(A →
¬B) → (A → B).

Case 2. Assume R satisfies the conditions that define TJ together
with (b1∗), (b2∗) and (jm). Then R(¬(A → B), (A → ¬B)), and thus
R̃(¬(A → B), ¬(A → ¬B)) by (b1). Take any valuation v. Suppose
that 〈v, R〉 |= ¬(A → B). By R̃(¬(A → B), ¬(A → ¬B)) and (jm),
〈v, R〉 6|= ¬(A → B) ∧ ¬(A → ¬B). But then 〈v, R〉 6|= ¬(A → ¬B)
in virtue of 〈v, R〉 |= ¬(A → B). Thus 〈v, R〉 |= (A → ¬B), and then
〈v, R〉 � ¬(A → B) → (A → ¬B). As v was arbitrary, R � ¬(A → B) →
(A → ¬B). ⊣

Now, the relating models defined by the conditions given in TJ to-
gether with (b1∗), (b2∗) and (jm) are not empty, as is proved in the
following theorem:

Theorem 3.2. The class of models determined by TJ and the conditions

(b1∗), (b2∗), and (jm) is not empty.

Proof. Take a classical valuation v defined on Var. We define a valua-
tion w on Var ∪ {A → B : A, B ∈ Form} in the following way:
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• w(A) = v(A), if A ∈ Var,
• w(A → B) = 0, if there is no C ∈ Form such that B = ¬C,
• w(A → B) = 1, if there is a C ∈ Form such that B = ¬C.

The valuation w is extended to the rest of Form by the standard classical
conditions.

We then define a relation R such that: R(A, B) iff w(A) = w(B).
It is clear that w(A) 6= w(¬A), w(A → B) = w(¬(A → ¬B)), w(A →
¬B) = w(¬(A → B)), and for any A and B, if w(A) = w(B) then
w(A) 6= w(¬B). Since all the equalities are symmetric, R is (a1), (a2),
(b1), (b2), (b1∗) and (b2∗). Now, we take a valuation v′ and the set
{A ∧ B : v′(A ∧ B) = 1 & w(A) 6= w(B)}. Then, 〈v′, R〉 |= A ∧ B, but
R̃(A, B), so R is not (jm).

Let R1 = R. For any n > 1, we define Rn to be the least relation Q
such that: Rn−1 ⊆ Q, and if 〈v, Rn−1〉 |= A∧B, then Q(A, B). As it was
shown above, if Q = R1, it might be the case that 〈v′, R1〉 |= A ∧ B but
R̃1(A, B). Suppose that this holds for any Rk, Rk < Rn. In particular, it
holds for Rn−1. Then, Rn−1 is (a1), (a2), (b1), (b2), (b1∗) and (b2∗) but
still (jm) is not satisfied. Given that Rn−1 ⊆ Rn, Rn is (a1), (a2), (b1),
(b2), (b1∗) and (b2∗). Consider again the valuation v′ defined above.
Then 〈v′, Rn〉 |= A ∧ B but R̃n(A, B), so Rn is not (jm).

Take M = 〈v,
⋃

m∈N
Rm〉. It is the case that: M |= A iff for some

n, 〈v, Rn〉 |= A. We need to show that if M |= A ∧ B then 〈A, B〉 ∈
⋃

m∈N
Rm. Suppose that 〈v, Rn−1〉 |= A ∧ B. Then Rn(A, B), and thus

Rn ⊆
⋃

m∈N
Rm. As all Rn’s are (al), (a2), (b1), (b2), (b1∗) and (b2∗),

⋃
m∈N

Rm is (a1), (a2), (b1), (b2), (b∗), (b2∗) and (jm). We would like
to note that a similar construction was used in [7]. ⊣

Adopting the conditions (b1∗), (b2∗) and (jm) on top of TJ also pre-
serves all the results from Theorem 2.1. That is, this adoption amounts
to a preservative class of models for minimal Boolean connexive logic
with respect to the properties mentioned in section 2.

It is worth noting that with the new conditions adopted, there also
will be new theses. Consider again a relation R as the union of the
following sets:

1. {〈A → B, ¬(A → ¬B)〉 : A, B ∈ Form}
2. {〈A → ¬B, ¬(A → B)〉 : A, B ∈ Form}

As previously remarked, this relation defines a model for connexive
logic satisfying all Jarmużek and Malinowski’s conditions. However, it
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is possible that R̃(¬(A → ¬A), ((A → B) → ¬(A → ¬B))) and thus
〈v, R〉 6� ¬(A → ¬A) → ((A → B) → ¬(A → ¬B)). But it is true that
〈v, R〉 � ¬(A → ¬A) and 〈v, R〉 � (A → B) → ¬(A → ¬B), and thus
〈v, R〉 � ¬(A → ¬A) ∧ ((A → B) → ¬(A → ¬B)). By expanding R with
(jm) one obtains that R̃(¬(A → ¬A), ((A → B) → ¬(A → ¬B))), and
thus 〈v, R〉 � ¬(A → ¬A) → ((A → B) → ¬(A → ¬B)).

4. Conclusions

In this paper, we have proposed one way to model hyper-connexive log-
ics using a relating semantics for Boolean connexive logics. It remains
for future work to discuss some doubts about the correction of hyper-
connexivity and probe whether alternative semantics within the relating
setting are more adequate to model hyper-connexive logics or even totally
connexive logics.
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