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Abstract

Measuring what people consume and do online is crucial across the social sciences.

In the last few years, web tracking data has gained popularity, being considered

by most as the gold standard for measuring online behaviours. This thesis studies

whether this prevailing notion holds true. Specifically, through a combination of

traditional survey and computational methods, I assess the quality of web tracking

data, its associated errors, and the consequences of these. The thesis is comprised

of three distinct papers. In the first paper, inspired by the Total Survey Error, I

present a Total Error framework for digital traces collected with Meters (TEM).

The TEM framework describes the data generation and the analysis process for web

tracking data and documents the sources of bias and variance that may arise in each

step of this process. The framework suggests that metered data might indeed be

affected by the error sources identified in our framework and, to some extent, biased.

The second paper adopts an empirical approach to address a key error identified in

the TEM framework: researchers’ failure to capture data from all the devices and

browsers that individuals utilize to go online. The paper shows that tracking under-

coverage is highly prevalent when using commercial panels. Additionally, through a

simulation study, it demonstrates that web tracking estimates, both univariate and

multivariate, are often substantially biased due to tracking undercoverage. The third

paper explores the validity and reliability of web tracking data when used to measure

media exposure. Merging traditional psychometric and computational techniques, I

conduct a multiverse analysis to assess the predictive validity and true-score relia-

bility of thousands of web tracking measures of media exposure. The findings show

that web tracking measures have an overall low validity but remarkably high reliabil-

ity. Additionally, results suggest that the design decisions made by researchers when

designing web tracking measurements can have a substantial impact on their mea-

surement properties. Collectively, this thesis challenges the prevailing belief in web

tracking data as the gold standard to measure online behaviours. Methodologically,

it illustrates how computational methods can be used to adapt survey methodology

techniques to assess the quality of digital trace data.
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Chapter 1

Introduction

The landscape of data collection in the social sciences has undergone a transfor-

mative shift in recent years. Traditionally, researchers heavily relied on probability-

based face-to-face surveys to understand human behaviours and attitudes. However,

the advent of the Internet has ushered in a new era of data abundancy. In this era,

when individuals engage with online platforms and digital technologies, they leave

behind digital traces. These digital systems include telecommunication networks,

websites, social media platforms, mobile apps, business transaction systems, sensors

built in wearable devices, and digital devices (Stier et al., 2019). Through innovative

data collection methods, such as data donations or web trackers, researchers can col-

lect these traces for scientific research. The resulting data is broadly conceptualised

as digital trace data.

From a substantive standpoint, this development is not trivial. During the

last decade the time that people spend online has doubled. The ways in which

people connect to the Internet, and how they use it, have also been altered, with

mobile devices and social media platforms becoming ubiquitous and gaining more

and more importance into people’s lives. This change of paradigm has had, most

likely, critical consequences on society, and how humans think, feel, and behave.

Understanding the effects that the Internet has on society, and the extent to which

these might be negative, is an important puzzle for social science and policy. This

understanding, nonetheless, can only be produced if scientists can accurately measure

people’s behaviours on the Internet. The availability and use of digital trace data,

hence, is key in the quest towards a better understanding of the role of the Internet

and digital technologies on society. Indeed, to some extent, digital trace data has

contributed to the emergence of computational social sciences (Edelmann et al., 2020;

1



Chapter 1: Introduction

Lazer et al., 2009).

Methodologically, the availability of digital trace data has heralded what some

have termed a measurement revolution in the social sciences (Golder and Macy, 2014;

Lazer et al., 2009). This enthusiasm is well-founded, given the immense potential

that digital traces hold for social research. Digital trace data enables the observa-

tion of human behaviour on a scale, granularity, and depth previously inconceivable.

These traces are produced in real-time, granting researchers the ability to explore

fluctuations in behaviours rather than relying solely on discrete time-point observa-

tions. Researchers can now investigate trends in real-time, in topics such as mobility

(Elevelt et al., 2019) or migration (Zagheni and Weber, 2012; Zagheni et al., 2014).

These traces, furthermore, allow to study human behaviours within the content of

critical events such as wars (Leasure et al., 2023) or natural disasters (Sutton et al.,

2013).

These data are not only very granular, but also offer unique, unsolicited in-

sights into the ways in which people behave and express themselves (Cesare et al.,

2018). Traditional data collection methods often grapple with issues such as social

desirability bias or memory errors when measuring both attitudes and behaviours.

In contrast, digital traces offer direct access to the behaviours of individuals, and

their public and sometimes private communications. This non-reactive nature of

digital trace data might help circumvent some of the errors of self-reports. For in-

stance, if behaviours can be directly observed, measures cannot be affected by recall

bias. Additionally, observed behaviours might potentially reveal controversial or de-

viant behaviours, which individuals might conceal in other forms of data collection

(Krumpal, 2011).

The enthusiasm surrounding digital trace data has led to a notable trend among

researchers: a shift away from traditional data sources such as surveys, in favour of

digital traces (Schoen et al., 2013). Paradoxically, however, this transition from

surveys to digital trace data has often been accompanied by a somewhat naive ap-

proach to measurement theory (Jungherr, 2019). The allure of digital trace data

has, in many cases, overshadowed the critical scrutiny typically applied to surveys.

While it is widely acknowledged that digital trace data often lacks representative-

ness, it has been somewhat uncritically regarded as a source that inherently reveals
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the ”objective” truth behind phenomena of interest. This perspective contradicts

the well-established measurement theories in social sciences and statistics. In these

fields, a nuanced understanding prevails (Jungherr, 2019): phenomena of interest are

translated into theoretical concepts, which, in turn, are transformed into measures.

These measures undergo rigorous assessment of their measurement quality, and sta-

tistical procedures are developed to draw meaningful inferences from the available

data.

In stark contrast, digital trace data has been somewhat unwarrantedly placed

on a pedestal as an absolute gold standard. This perception is somewhat surprising

when considering that digital trace data arises as a byproduct of activities not origi-

nally intended for research purposes (Ang et al., 2013). Digital traces are shaped by

the design of the digital services and devices that produce the data, users’ motivations

when using those, cultural usage norms, and the technologies used to capture these

traces (Jungherr et al., 2016). Hence, these traces cannot be taken at face value.

Instead, it is imperative to understand how these factors might deviate the variables

created with these traces from the constructs of interest. To date, nonetheless, there

is no theoretical or empirical evidence to assume that these byproducts are error-free,

or inherently superior in quality than survey self-reports. Hence, researchers should

focus not only on the opportunities that digital traces bring to the social science,

but instead on testing the sources of biases and variance that might affect digital

trace data. Similarly important is the development of guidelines, research designs,

and statistical techniques specifically developed for the correct use of digital trace

data in the social sciences (Salganik, 2019). As Jungherr (2019) succinctly argues,

”the development of a sophisticated measurement theory is a precondition for digital

trace data to be meaningfully integrated into the social sciences.”

To move in this direction, it is crucial to recognize that the term ”digital trace

data” encompasses a broad spectrum of approaches, each with its unique advantages

and limitations. These distinctions can arise from factors such as the nature of the

traces collected (e.g., Tweets vs. URLs), the data collection methods employed (e.g.,

web trackers vs. APIs), or the level of engagement of the individuals generating the

data (ranging from passive collection to complete control over the process). While it

is possible to discuss digital trace data at a macro-level, it is imperative to conduct

micro-level methodological investigations into each type of digital trace data source
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independently. The sources of error affecting digital trace data are likely to vary

based on the specific traces of interest, the methods of collection, and the extent of

user involvement. Therefore, while overarching discussions about digital trace data

are valuable, the bulk of methodological research should be dedicated to establishing

a comprehensive understanding of the challenges unique to each type of digital trace

data. By doing so, researchers interested in utilizing the various digital trace data

sources can benefit from specific guidelines and practical procedures tailored to their

chosen data type.

A key type of digital trace data is web tracking data. Web tracking data

stands as one of the most prevalent sources in the realm of digital trace data for

measuring individual-level online behaviours. As the name suggests, this approach

to gathering digital traces hinges on the utilization of web tracking technologies

(Christner et al., 2021). These technologies, known as meters (Revilla et al., 2021),

encompass a diverse array of solutions that participants can install or configure vol-

untarily onto their browsing devices. Once installed, these meters enable the tracking

of various traces left by participants during their online interactions, including vis-

ited URLs, accessed apps, search engine queries, and the content participants have

encountered (e.g., HTML information).

Historically, web tracking has been upheld as the de facto gold standard for

measuring online behaviours, especially those involving media exposure. Some re-

search has even used it as the benchmark to estimate the accuracy of survey self-

reports (Araujo et al., 2017; Scharkow, 2016), with certain authors advocating for

the replacement of survey self-reports with digital traces (Konitzer et al., 2021). Be-

cause of this, web tracking data has been widely used in the literature (see section

6 of the conceptual overview for more). Leveraging the data collected through me-

ters, researchers have investigated significant topics, predominantly in the media and

communication field. For example, existing studies have quantified the prevalence of

dubious media exposure during elections (Guess et al., 2020), the overlap in political

media diets between partisans (Guess et al., 2021), or the extent to which online

news environments are segmented by age groups (Mangold et al., 2021). Another

salient area of inquiry has been the degree to which social media and other sites

serve as intermediaries for online media exposure (Cardenal et al., 2019; Jürgens and

Stark, 2022; Stier et al., 2021; Scharkow et al., 2020).
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However, it is imperative to underscore that the assertion of web tracking data

enjoying gold standard status lacks substantial support. In reality, certain studies

have already sounded the alarm regarding the potential susceptibility of this data

to errors (Jürgens et al., 2019; Revilla et al., 2017). A recent report from the Pew

Research Center (2020), for instance, concluded that ”[web tracking data] does not,

at present, seem well suited for high-level estimates of news consumption.” Thus, it

becomes apparent that web tracking data shares more characteristics with surveys

than early enthusiasts had proclaimed, rendering it subject to many of the same

limitations (Jungherr, 2019). Unlike surveys, however, systematic information about

potential errors associated with web tracking data collection and their consequences

remains scarce.

Why is this crucial? While it is widely recognized that surveys are susceptible

to a plethora of errors (Groves et al., 2010), decades of research have equipped schol-

ars and practitioners with a wealth of evidence to comprehend the limits of surveys

and establish best practices in designing, collecting, and analysing survey data. For

instance, researchers can employ frameworks like Total Survey Error (TSE) (Groves

et al., 2009) to pinpoint and estimate potential errors, assess their impact on es-

timates, and develop strategies to mitigate them. Additionally, years of empirical

research in survey methodology have fostered an in-depth understanding of the mea-

surement quality of various survey questions and the influence of different design

decisions on the final quality of survey measurements (DeCastellarnau, 2017).

In stark contrast, our understanding of the constraints of web tracking data is

nearly non-existent. This gap in research predominantly stems from the presump-

tion that web tracking data is inherently unbiased, or that its potential errors are

inconsequential. Recognizing that a data source may indeed be susceptible to sys-

tematic and random errors opens avenues for a more comprehensive understanding

of these errors and strategies to mitigate them. Acknowledging that a data source

is not infallible does not inherently imply its rejection; instead, it suggests that data

collection, processing, and analysis should proceed cautiously, guided by informed

decisions.

In this thesis, I assess the quality of web tracking data, its associated errors,

and the consequences of these. The papers in my thesis contribute to the decades of
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methodological literature trying to improve the way in which social scientists collect

and use data. They do so by adapting this vast knowledge to digital trace data,

through the use of computational methods. This thesis, hence, serves as a guide

for academics and practitioners to better understand the quality and errors of web

tracking data, showcasing best practices that anyone can follow when collecting and

using this type of data.

The papers comprising this thesis

The first paper of my dissertation is entitled “When survey science met web tracking:

Presenting an error framework for metered data” and can be found in Chapter 3.

Inspired by the Total Survey Error, in this paper I present a Total Error framework

for digital traces collected with Meters (TEM). The TEM framework (1) describes

the data generation and the analysis process for metered data and (2) documents

the sources of bias and variance that may arise in each step of this process. Using a

case study, the paper also shows how the TEM can be applied in real life to identify,

quantify, and reduce metered data errors. The results of this paper suggest that

web tracking data might indeed be affected by the error sources identified in the

framework and, to some extent, bias. Hence, caution should be taken when using

metered data for inferential statistic. In the context of this thesis, the framework

works as the basis for the other papers. By clearly showing how web tracking data

is collected and analysed, and identifying the errors of web tracking data, it allows

to develop approaches to quantify those errors, and strategies to minimise them.

The paper, co-authored with Dr Melanie Revilla, has already been published in the

Journal of the Royal Statistical Society: Series A.

The second paper, “Uncovering digital trace data biases: tracking undercov-

erage in web tracking data”, can be found in Chapter 4. The second paper adopts

an empirical approach to address tracking undercoverage, a key error identified in

the TEM framework: researchers’ failure to capture data from all the devices and

browsers that individuals utilize to go online. The paper shows that tracking under-

coverage is highly prevalent when using commercial panels. Additionally, through

a simulation study, it demonstrates that web tracking estimates, both univariate
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and multivariate, are often substantially biased due to tracking undercoverage. This

represent the first empirical evidence demonstrating that web tracking data is, effec-

tively, biased. Methodologically, the paper showcases how survey questions can be

used as auxiliary information to identify errors in web tracking data. Additionally, it

shows how the granularity of web tracking data can be leveraged, in combination with

simulation techniques, to estimate the size of the web tracking errors. The paper,

co-authored with Professor Patrick Sturgis, Professor Jouni Kuha, and Dr Melanie

Revilla, has already been submitted to the journal Communication Methods and

Measures.

The third and last paper, entitled “Validity and Reliability of Digital Trace

Data in Media Exposure Measures: A Multiverse of Measurements Analysis”, is

found in Chapter 5. The last paper explores the validity and reliability of web track-

ing data when used to measure media exposure. Merging traditional psychometric

and computational techniques, I conduct a multiverse analysis to assess the pre-

dictive validity and true-score reliability of thousands of web tracking measures of

media exposure. The findings show that web tracking measures have an overall low

validity but remarkably high reliability. Additionally, results suggest that the design

decisions made by researchers when designing web tracking measurements can have

a substantial impact on their measurement properties. In terms of methods, this

paper demonstrates that the granularity of web tracking data can be used to explore

the measurement properties of the entire multiverse of measurements, instead of a

few ones, which is the norm in survey research. It also showcases how tools such

as Random Forests algorithms can be used to find patterns within the multiverse,

helping make sense of the high dimensionality of the results obtained through the

multiverse approach. The paper, single authored, will soon be submitted to the

journal Political Analysis.

The contributions of this thesis

The contributions of this thesis are varied. First, this thesis challenges the prevailing

belief in web tracking data as the gold standard to measure online behaviours. The

thesis comprehensively shows that web tracking data is affected by a plethora of
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different errors. Not only do I prove this theoretically, but I also provide some of the

first evidence, if not the first, that web tracking data is indeed biased. Although the

thesis mostly points to problems of web tracking data, it also shows that overall web

tracking data has a remarkably high reliability.

Second, this thesis includes a number of methodological advancements. I il-

lustrate how the frameworks and methods drawn from the extensive literature on

survey methodology and psychometrics, commonly used to assess survey quality,

can be adapted to evaluate web tracking data. To achieve this, the thesis demon-

strates that computational methods can be harnessed to aid in this endeavour, taking

advantage of the granularity and flexibility of web tracking data. Specifically, Paper

2 showcases how survey questions can be used as auxiliary information to identify

errors in web tracking data. Furthermore, it shows how simulation techniques can

be used to leverage the granularity of web tracking data to estimate the size of the

web tracking errors. Paper 3, additionally, demonstrates that the granularity of web

tracking data can be used to explore the measurement properties of the entire mul-

tiverse of measurements, instead of a few ones, which is the norm in survey research.

It also showcases how tools such as Random Forests algorithms can be used to find

patterns within the multiverse, helping make sense of the high dimensionality of the

results obtained through the multiverse approach.

Next, this thesis helps advance the study of media exposure. According to

my own literature review, most research using web tracking data has focused on

media exposure. This field of knowledge, hence, has become heavily dependent

on web tracking data. By specifically focusing on media exposure when assessing

the quality of web tracking data, this thesis provides some cautionary evidence to

communication scholars. Paper 2 shows that many of the most commonly computed

statistics in the media exposure literature are significantly biased when using web

tracking data, due to tracking undercoverage. Additionally, Paper 3 shows that web

tracking measures of media exposure present, overall, the same lack of association

with political knowledge that led many researchers to consider that surveys had a

worrying lack of predictive validity. All in all, the evidence presented by this thesis

should incentivise media scholars to re-assess some of their findings, as well as re-

think the way in which they used web tracking data.
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Fourth, this thesis has partially led to the creation of the TRI-POL database

(Torcal et al., 2023). This represents the first-of-its-kind open-access dataset merging

cross-national longitudinal survey data with individual-level web tracking informa-

tion. Thanks to the work done in this PhD, the TRI-POL database is the first to

be designed acknowledging the errors of web tracking data, with strategies in place

to minimize, quantify and report those errors. Hence, the thesis has contributed to

making web tracking data more transparent, as well as accessible to researchers with

limited access to resources.

Finally, the findings of these studies have practical implications and can be

applied by researchers and practitioners alike. Beyond critiquing the quality of web

tracking data, this thesis puts much focus on identifying best practices when collect-

ing and analysis web tracking data. The TEM framework presented in Paper 1 can

be used by researchers to improve the way in which they collect and analyse web

tracking data, as well as how they report the processes followed and their limitations.

Paper 2 presents and approach that any researcher can apply to identify tracking

undercoverage and simulate its impact on the statistics of interest. Additionally, it

provides much needed recommendations to online fieldwork companies offering web

tracking web tracking panels, to improve their practices. Paper 3 helps understand

the key design choices that significantly influence the validity and reliability of web

tracking measurements. This information can be used by substantive researchers

to make informed decisions when translating constructs into web tracking measure-

ments. In addition, the paper presents a multiverse of measurements approach that

can be used to better convey the uncertainty of their results produced with web

tracking data.
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Chapter 2

Literature Review

Digital devices and the Internet might have a lasting influence on society, af-

fecting how humans develop and socialize. During the last decade the time that

people spend online has doubled. The ways in which people connect to the Internet,

and how they use it, have also been altered, with mobile devices and social media

platforms becoming ubiquitous and gaining more and more importance into people’s

lives. This change of paradigm has had, most likely, critical consequences on society,

and how humans think, feel, and behave. Digital technologies are altering what it

means to communicate, work (Garrote Sanchez et al., 2021) and learn (Shortt et al.,

2021), and have changed how people consume news and information (Newman et al.,

2021), buy products and services (Terzi, 2011), and connect with family, friends, and

potential partners (Rosenfeld et al., 2019).

Understanding the effects that the Internet has on society, and the extent to

which these might be negative, is an important puzzle for social science and policy.

This understanding, nonetheless, can only be produced if scientists can accurately

measure people’s behaviours on the Internet. While surveys have been one of the

main tools available for researchers across disciplines to understand people’s opinions

and attitudes, as well as their offline behaviours, measuring behaviours in the online

realm has proven challenging. This, combined with the explosion in alternative

data sources generated as by-products of people’s interactions with digital devices

and services, has led social scientists to increasingly rely on digital trace data to

investigate the impact of the Internet and digital devices on people’s lives and, as an

extension, on society as a whole. On of the most commonly used types of individual-

level digital trace data is web tracking data, which is the focus of this thesis.

In this chapter, I present a broad review of the relevant literature on the impor-

tance of understanding what people do online, with a specific focus on digital media,

and the different challenges and opportunities of measuring online behaviours with

both surveys and digital trace data. I also describe and contextualise web tracking
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data, showing its main characteristics, and how it compares to other sources of digital

trace data. Additionally, I set the foundations to understand why, across the thesis,

I propose that the way forward for social scientists interested in understanding the

quality of digital trace data is to leverage new computational methods to adapt the

vast literature on survey methods and psychometrics to these new sources of data.

The importance of understanding digital media consumption

The measurement of media exposure, which refers to the extent to which individuals

encounter specific media messages or content online (Slater, 2004), is of paramount

importance for studying the uses and effects of online media. In this era defined by

the prevalence of digital and mobile technologies, with Britons on average spending

around four hours on the Internet (Ofcom, Online Nation 22), digital media already

accounts for more than half of the overall time that people spend consuming media.

Within digital media consumption, over fifty percent of this consumption is done

through mobile devices (Nielsen and Fletcher, 2020).

This shift in the way that media is created and consumed has sparked substan-

tial interest from both the general public and the academic community, each seeking

to comprehend the multifaceted applications and implications that they bring to the

table. Specifically, much attention has been devoted to two key topics: the impact

that social media might have on people’s mental wellbeing; and the role that digital

media might have on current concerning political trends such as polarization and

misinformation. Considering this, below I review some of the hypotheses and find-

ings regarding these two topics, to showcase the importance of having high-quality

measures of digital media exposure.

The relationship between social media exposure and mental well-being

Over the past decade, there has been a marked increase in depression, anxiety, and

suicidality among adolescents. Coinciding with this rise is a substantial increase

in the time young individuals spend online, particularly on social media platforms.

Consequently, both the public and various stakeholders, including policymakers and

researchers, have grown increasingly concerned about a potential connection between

these two trends. The question that arises is: what might link the amount of time
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exposed to social media with mental well-being? Among a multitude of hypotheses,

researchers have explored the notion that passive engagement with social media (e.g.,

scrolling through newsfeeds, profiles, or images and videos) could foster heightened

upward social comparisons and envy (Verduyn et al., 2017). Additionally, scholars

have theorized that individuals who present inauthentic versions of themselves on-

line may experience diminished self-esteem and heightened social anxiety as a result

(Twomey and O’Reilly, 2017). Beyond individual behaviours and predispositions,

some online content may inherently pose risks, particularly content that promotes

unhealthy habits (e.g., anorexia) (Boero and Pascoe, 2012) or is directly abusive in

nature.

While research findings have been somewhat conflicting, a consensus emerges

that there exists a modest negative correlation between the time spent on social

media and various well-being measures (Orben and Przybylski, 2019a,b). Moreover,

experimental evidence has demonstrated that participants who abstained from using

social media reported increased life satisfaction (Vanman et al., 2018).

However, the overall quality of much of the research conducted to date remains

a subject of debate. A key factor contributing to this debate is that a substantial

portion of the evidence relies on self-reported measures of individuals’ use and con-

sumption of digital media (Orben, 2020). Furthermore, critics have pointed out the

overly simplistic focus on the quantity of time spent using digital technologies and

media. They argue that the impact of digital media on mental well-being may vary

based on the type of digital diet individuals have, the balance of this diet, or the

utility of specific online behaviours (Orben, 2021).

Utilizing digital trace data could potentially enhance our understanding of the

possible link between digital media exposure and mental well-being. Specifically, the

granularity of digital trace data should allow to get more nuanced insights into the

digital diets of young people, helping understand not only how long media exposure

lasts, but to what media people are exposed to, and how they interact with it.

Is digital media responsible for the rise in polarization?

In recent years, digital media has emerged as the favoured source of news across

advanced democratic societies, surpassing television, and print media by a signif-

icant margin. Additionally, two-thirds of online media consumers prefer utilizing
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alternative avenues, such as social media platforms or news aggregators, to access

news outlets (Newman et al., 2021). These evolving consumption patterns have pre-

cipitated an accelerated diversification and fragmentation of the media landscape

(Van Aelst et al., 2017), alongside a transformation in how media is curated and

disseminated (Bakshy et al., 2015; Flaxman et al., 2016a). This changing landscape

has led some to worry about the implications for our political systems. Can the

news media landscape be responsible to some extent for the increased polarization

of western democracies? Are digital media driving individuals to isolate themselves

in their own ideological bubbles, eroding the common ground in the public arena?

Some suggest so. For years, researchers have hypothesised that the influx of

digital technologies could contribute to the emergence of echo chambers, defined as

“a bounded, enclosed media space that has the potential to both magnify the mes-

sages delivered within it and insulate them from rebuttal” (Jamieson and Cappella

2010:76). How can digital media lead to echo chambers? Digital technologies grant

individuals’ greater control over their content consumption. At the same time, peo-

ple are inclined to consume congenial information, especially in the realm of political

news (Stroud, 2007; Iyengar et al., 2008; Iyengar and Hahn, 2009). This increased

control might lead individuals to choose to consume only information that agrees

with their views and opinions, leading to the formation of echo chambers. Empiri-

cal research employing both surveys and digital trace data, nonetheless, contradicts

this hypothesis. Across various countries, only a limited portion of the population

appears to inhabit politically partisan online news echo chambers (for an extensive

review, refer to Arguedas 2022). For instance, in the UK, approximately 2% are

estimated to engage with a left-leaning echo chamber, while around 5% align with a

right-leaning echo chamber (Fletcher et al., 2021). Indeed, some research has shown

a remarkable degree of balance in people’s overall media diets regardless of partisan

affiliation, with audiences tending to converge onto mainstream news outlets (Guess

et al., 2020a; Nelson and Webster, 2017; Barberá, 2015). In reality, hence, digital

media might have the opposite effect, by enhancing the likelihood of individuals

encountering non-congenial information unexpectedly (Barberá, 2015; Dubois and

Blank, 2018; Dvir-Gvirsman et al., 2014a).

Others have contended, furthermore, that due to the prevalence of intermedi-

aries like Google and Facebook, which curate and personalize news delivery, individ-

uals might predominantly encounter content aligning with their preexisting beliefs.

This phenomenon is known as filter bubbles. However, contrary to this notion,
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gatekeepers such as search engines and social media platforms are, in most cases,

associated with an expansion in the diversity of news consumption (Flaxman et al.,

2016b; Cardenal et al., 2019b; Fletcher et al., 2021). As observed by Stier et al. (2021)

across six nations, intermediaries such as Facebook and Google foster exposure to

a broad range of political and nonpolitical news sources, enhancing the breadth of

news types consumed.

The concern underlying individuals’ media consumption patterns, and conse-

quently the notions of echo chambers and filter bubbles, revolves around the appre-

hension that people’s media choices might correlate with their levels of ideological

and affective polarization. If a surge in partisan media consumption coincides with

a decline in the diversity of people’s media diets, there is a potential for ideologi-

cal factions to drift further apart, eroding common ground. Presently, evidence on

this matter remains limited and inconclusive. Some studies suggest that a more

diverse media diet tends to mitigate polarization among individuals (Padró-Solanet

and Balcells, 2022). Complementary, research has also found that predominantly

engaging with like-minded partisan media can intensify affective polarization (Hasell

and Weeks, 2016). Nevertheless, certain evidence indicates a weak or negligible as-

sociation between individuals’ media diversity and their polarization levels (Guess

et al., 2021; Trilling et al., 2016).

Although recent research suggests that early worries about the pernicious ef-

fects of social media and digital media on the political system might have been

overstated, this does not mean that these have no negative effect. If anything, this

body of research shows that the effect of digital media might be more complex and

nuanced. Evidence seems to show that a small but relevant proportion of the pop-

ulation engages with misinformation and highly partisan media, sometimes making

their own positions more extreme. These small groups, generally with right-wing

and conservative tendencies (Guess et al., 2019), are significant enough to have a rel-

evant impact on the political system, and society as a whole. More refined research,

hence, is still needed. Furthermore, given that most of this research has been done

using digital trace data sources such as web tracking data, the uncertainty about

their results is real. As Paper 2 will show, many of the statistics computed with web

tracking data backing some of these claims are most certainly significantly biased.

It is highly likely that estimates of, for example, people falling into echo chambers

or consuming misinformation might be to some extent underestimated.
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The challenges of measuring online behaviours with self-reports

Numerous prior studies have employed a diverse array of methodologies to investigate

the when, why, and how of individuals’ online behaviours. Among these methods,

the prevailing approach has been reliant on self-reports collected through survey re-

sponses (de Vreese and Neijens, 2016). However, a plethora of research has shown

that modifications in wording, formatting, or order can have an effect on the answers

that participants give and, subsequently, their measurement quality (DeCastellar-

nau, 2017). Hence, if not properly designed, questions asking about behaviours can

lead to noisy and invalid measures. Specifically in the case of behavioural constructs,

the inherent limitation of studies reliant on self-reports lies in the requirement for

participants to recollect their past actions and accurately report them. A substan-

tial body of psychometric research has highlighted that self-reported behavioural

measurements are susceptible to a multitude of errors, encompassing recall errors

and social desirability bias (Sudman, 2010; Schwarz, 2001). Accurately recollection

behaviours is impeded by various cognitive constraints inherent in autobiographical

memory (Schwarz, 2001; Neisser, 1986). These constraints are particularly salient

for behaviours deeply integrated into respondents’ daily routines, making them chal-

lenging to accurately discern and retrieve (Jobe, 2003; Schwarz, 2001; Neisser, 1986).

These challenges are magnified when studying online behaviours, given their increas-

ing fragmentation across various situations, devices, and platforms (de Vreese and

Neijens, 2016). Online behaviours typically coexist with offline activities, complicat-

ing efforts to disentangle specific behaviours. Moreover, individuals’ online actions

are composed of micro-interactions (Andrews et al., 2015) that often become in-

tertwined with browsing or app sessions primarily serving a different purpose (e.g.,

visiting Instagram to check something and inadvertently engaging with an advertise-

ment). At a cognitive level, recollecting these fleeting exposure episodes becomes

daunting. This can be even more challenging when recalling specific information

such as the content they have been exposed to (e.g., content of articles) or interacted

with (e.g., ads clicked) in specific websites or services.

In the past decade, the proliferation of alternative data sources, generated

as by-products of people’s interactions with digital devices and services, has en-

abled social scientists to juxtapose self-reports with ”objective” log data. When

comparing self-reported and log measures of the same concepts, a consistent trend

emerges: there is no agreement between measures. For instance, Revilla et al. (2017)
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found that fewer than 4% of participants accurately reported their five most visited

webpages over the past week. Specifically, participants tend to overstate their in-

ternet consumption (Araujo et al., 2017; Guess, 2015; Pew Research Center, 2020;

Scharkow, 2016), with this tendency being more pronounced among heavy users than

light users (Araujo et al., 2017; Jürgens and Stark, 2022). Given these discrepancies,

self-reports of digital media usage exhibit only moderate correlations with different

measurements derived from digital trace data (e.g., call records, screen time) (Parry

et al., 2021).

The overarching inference drawn from the divergence between these two sources

of data is that self-reports are systematically subject to biases (Araujo et al., 2017;

Guess, 2015; Revilla et al., 2017; Scharkow, 2016), thereby challenging their appro-

priateness for measuring online behaviours whenever alternative options are feasible.

While this might not be true, and it will be the focus of much discussion during this

thesis, this consensus in the literature has led to an explosion in the interest and

use of digital trace data to measure people’s online behaviours and, specifically, their

exposure to digital media.

Digital trace data to the rescue

In response to the challenges of surveys, social scientists have made significant efforts

to develop alternative approaches that do not rely on participants’ memory. One in-

creasingly popular method involves collecting digital trace data. This type of data

records the interactions of users with specific digital systems (Howison et al., 2011),

such as business transaction systems, telecommunication networks, websites, social

media platforms, mobile apps, sensors built in wearable devices, and digital devices

(Stier et al., 2019). As discussed in Chapter 1, the appeal of digital trace data pri-

marily emanates from its ”objective” and highly granular nature, enabling the direct

observation of individuals’ online behaviours in real-time, at a frequency that sur-

veys cannot match. Moreover, the measurement of digital trace data is nonreactive

and non-invasive, obviating the need for individuals to self-report their behaviours.

Consequently, human cognition is removed from the data collection process (Keusch

and Kreuter, 2021). This capability has the potential to mitigate many of the afore-

mentioned errors associated with self-reports, ultimately enhancing the accuracy of

the resulting measurements. Given these advantages, recent literature has increas-
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ingly positioned digital trace data as the de facto gold standard for measuring online

behaviours (e.g., Araujo et al. 2017; Scharkow 2016), with some authors directly ad-

vocating for the substitution of survey self-reports with digital traces when assessing

individuals’ online behaviours (Konitzer et al., 2021).

However, it is important to note that despite being commonly treated as a

homogeneous data source, the term ”digital trace data” encompasses a wide array of

approaches, each with its own set of advantages and limitations. These approaches

can vary based on factors such as the type of traces collected (e.g., Tweets vs. URLs),

the methods employed for data collection (e.g., web trackers vs. APIs), or the degree

of involvement of the individuals generating the data (ranging from no involvement

to total control over the process). Additionally, owing to the rapid evolution of the

field, the types of digital trace data available are in constant flux. For instance,

while the original definition of digital trace data was limited to found data created

incidentally during activities unrelated to a deliberate research instrument, digital

trace data now can also be produced in a designed way. This is sometimes known as

designed digital data.

Although providing a taxonomy of the different types of digital trace data in

this context risks quickly becoming outdated (Keusch and Kreuter, 2021), the fol-

lowing subsections aim to elucidate some of the sources of digital trace data most

commonly employed for measuring general online behaviours, aside from web track-

ing data. The objective of these subsections is to offer context and situate web

tracking data within the broader category of digital trace data, illustrating how sim-

ilar research questions could be addressed with alternative types of digital trace data

and when such choices might be advantageous or not.

Commercial audience measurement data

A method employed by some researchers to measure individuals’ online behaviour

involves leveraging third-party audience measurement data (e.g., Wu and Taneja

2020). This type of data encompasses aggregated metrics at the level of online

entities (e.g., websites) and is derived from a panel of individuals tracked using

specific, albeit typically opaque, tracking technologies (Taneja et al., 2017). These

audience metrics are generally provided by companies such as comScore, Nielsen, or

GfK.
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While this data has been regarded as more precise than self-reports at the

aggregated level (Taneja, 2016), it does present several limitations. Firstly, this data

is sold at the aggregated level, rendering it unsuitable for individual-level analyses.

Secondly, researchers lack control over the composition of the sample of individuals.

Hence, compared with opt-in panels, there is no option of applying quotas or weights

to the samples. Lastly, this data is gathered for commercial purposes, with limited

consideration for issues that might hold significance for academic researchers. For

example, these panels typically do not treat all audience segments equally, often

over-representing demographics that advertisers find more economically appealing

(Taneja, 2016).

Platform trace data

An alternative involves acquiring data from specific online services and platforms

(e.g., Facebook, Burke et al. 2010; Binge Toolbar, Flaxman et al. 2016a). With this

approach, data is extracted directly from the platform, with users not involved in

the data collection process. This can be accomplished through various means, with

varying degrees of cooperation from the company that owns the data. At one end of

the spectrum, researchers can employ web scraping techniques to extract content and

data from websites without any collaboration from the platform. Another common

approach is to utilize platform-provided Application Programming Interfaces (APIs),

which allow for the extraction of retrospective user data from the platform. Lastly,

researchers can establish direct partnerships with private companies, granting them

with controlled access to some of the data that these companies collect for their

internal needs.

Platform trace data presents some benefits (Ohme et al., 2023). First, users do

not have to be burdened. Therefore, compared with other approaches, researchers do

not need to worry about people’s willingness to share their data or install technolo-

gies. Second, in most cases data can be collected for free or at a reduced cost. Third,

when using APIs or collecting data through direct collaborations, the data extraction

tends to be relatively easy: either documentation and tutorials are available, or the

company directly collects the data and shares it with researchers. All in all, hence,

platform trace data can be very convenient and less burdensome to collect for both

user and researchers.

Nonetheless, all these approaches present problems. In terms of web scrapping,
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this approach is affected by its own set of legal, ethical (Krotov et al., 2020), and

data quality challenges (see Freelon 2014; Lazer et al. 2021; Tufekci 2014). Moving

to APIs and direct collaboration, both approaches hinge on contractual agreements

with the data-generating companies, which typically impose specific restrictions on

researchers’ access to and usage of the data. This, in one way or another, limits re-

searchers’ autonomy. Specifically in the case of direct collaborations, companies may

exert control over what data can be accessed, and how it might be utilized (Breuer

et al., 2020). Additionally, the need for corporate cooperation means that the access

to this data can be altered at the discretion of private companies, at any time. A

recent example of this is Twitter’s announcement regarding the monetization of its

API access. Even without such changes, in many cases, few researchers are granted

access to this type of data: either because only a few elite researchers can sign agree-

ments with companies, or because APIs are becoming more and more restrictive.

This division is contributing to disparities in data access within the computational

social science community. Ultimately, as (Wagner, 2023:391) succinctly puts it, ”in-

dependence by permission is not independent at all. Rather, it is a sign of things to

come in the academy: incredible data and research opportunities offered to a select

few researchers at the expense of true independence. Scholarship is not wholly in-

dependent when the data are held by for-profit corporations, nor is it independent

when those same corporations can limit the nature of what it studied.”

Beyond these considerations, from a data quality perspective, platform trace

data typically does not originate from a designed sample of participants but rather

from individuals who choose to become users of a specific app or service, making it

more susceptible to self-selection biases. Additionally, these approaches usually do

not permit the collection of data from the entire platform, but only from specific

subsets of users or types of traces. Additionally, since users are not directly involved

in the collection of data, in most cases they cannot be contacted for follow-up surveys,

barring the collection of auxiliary survey data. Furthermore, the type of data that

can be collected and its quality are constrained by what data-generating companies

track for their internal purposes. Therefore, even if researchers are granted extensive

access to a company’s data, they will still be bound by the data infrastructure and

limitations set by that company, which to some extent dictate what they can and

cannot investigate (Wagner, 2023).
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Data donations

An increasingly popular method for gathering digital trace data is through data

donations. With this approach, users directly provide researchers with data that

has already been collected by their devices or platforms and to which they have

access. Various methods are employed to collect data donations in practice, such as

requesting participants to capture screenshots of information stored on their devices

(e.g., screen time recorded by iOS devices, Ohme et al. 2020a) or downloading the

Data Download Package (DDP) of a specific service like Instagram and sharing it

with researchers (van Driel et al., 2022). These methods vary along three dimensions

(Baumgartner et al., 2022): a) how participants access the relevant traces, b) how

they capture these traces, and c) how they share the captured information with

researchers. Hence, researchers should aim to make design choices across these three

dimensions that minimize the effort required from participants to share data, thereby

maximizing compliance, and reducing representation bias.

Data donations offer numerous advantages (Ohme et al., 2023). First, their

user-centric nature enables researchers to collect auxiliary survey data into their

designs. Second, participants have a higher agency over the data they share, al-

lowing them to provide proper informed consent. Third, compared with the other

approaches, data donations allow gathering information of a more private or sensi-

tive nature, such as individual’s private messages. Finally, data donations do not

require the direct collaboration of data-generating companies, nor rely on expensive

technologies normally controlled by a few private companies (more on this in section

4.2).

However, data donation also has its limitations. Because it requires active

participation from individuals, it is generally more burdensome for respondents com-

pared to more passive alternatives. In most cases, data donations necessitate par-

ticipants to take additional actions to collect and share the data with researchers.

For instance, with DDPs, participants need to ask companies for their data, wait

until this data is available, download it, and then locate it in their device in order

to upload it onto the specific data donation system. This can pose challenges for in-

dividuals with limited technical proficiency and create a significant burden for those

unwilling to go beyond traditional survey tasks. Consequently, this results in a higher

perceived cost for participants and potentially lower participation and compliance

rates (Silber et al., 2022), which can introduce biases into the final sample of donors.
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Indeed, prior research has often found data donation rates to be below 20% (Hodes

and Thomas, 2021; Ohme et al., 2020b; Gower and Moreno, 2018). Second, although

data donations do not require the direct collaboration of companies, this approach

can only yield data in the structure determined by companies. Hence, if companies

do not make some data available in their DDPs, or do not allow users to access it in

any other way, researchers will not be able to collect this data. This is the case, for

instance, with iOS devices, which are significantly more restrictive in the data they

make available to users and third parties, complicating the inclusion of iOS users

to many data donation projects. This severely limits researchers’ agency compared

to, for example, web trackers. Finally, data collected via data donation tends to

be retrospective in nature. Compared with passive approaches, the granularity of

data collected through donations might be limited by the amount of data stored in

people’s devices and digital services.

Understanding web tracking data

Having considered some of the main types of digital trace data used in the literature,

now I turn to the specific data source that this thesis investigates in detail: web

tracking data. This approach of collecting digital traces relies on the use of digital

tracking solutions (Christner et al., 2021). These solutions, called meters (Revilla

et al., 2021), are a heterogeneous group of tracking technologies that can be installed,

upon agreement, by participants on their browsing devices. Meters then allow to

track a variety of traces left by participants when interacting with their devices

online.

Depending on the characteristics of the tracking technologies used, different

traces can be collected. For instance, the URLs or apps visited, the terms used in

search engines or the content that participants have been exposed to (e.g., HTML

information). A variety of terms have been used in the literature to refer to this

resulting data, for example, ‘metered data’, ‘web tracking data’, ‘web log data’ and

‘digital trace data’ (Bach et al., 2019; Cardenal et al., 2019b; Revilla et al., 2017;

Dvir-Gvirsman et al., 2016; Cid, 2018). Although data coming from meters might

fall under the umbrella of these broad terms, during this thesis I mainly use the

terms ‘metered data’ and ‘web tracking data’ to refer to data coming from web

trackers/meters.

24



Chapter 2: Literature review

Web tracking data, as a type of design digital data source, differs from other

types of digital trace data in two fundamental aspects. First, it is collected from a

deliberately designed sample of participants. Web tracking samples can be designed

in a similar manner to surveys, enabling researchers to make inferences about specific

target populations, similar to survey-based studies. As for surveys, these samples

can be built using both probability and non-probability sampling approaches. As

such, errors do not come from issues regarding how representative online platforms

are, or the way in which to sample traces or users from those platforms, but rather

from traditional sampling problems as well as the challenges introduced by asking

participants to install tracking technologies on their devices. Together with data

donations, the use of web trackers is one of the very few approaches available to

collect designed digital data. This is one of the main advantages of web tracking

data over other digital trace data sources.

Second, compared to the aforementioned digital trace data sources, including

data donations, the nature and quality of the collected data are not heavily con-

strained by the original purpose of the traces, or the methods available to extract

them. Metered data is generated by tracking solutions that capture the traces par-

ticipants generate when interacting with their devices and online services. While

the feasibility of collecting these traces is somewhat limited by the technological ca-

pabilities and the cooperation of different operating systems and online platforms

with tracking solutions (e.g., iOS terms and conditions do not allow installing apps

that can track users’ online behaviours), the meters themselves are the primary fac-

tor shaping the data collection process, including what data can be collected and its

characteristics. As such, the choice of what tracking technologies to use is potentially

one of the main, if not the main, design feature of any web tracking project. This

choice will determine 1) which participants can be tracked, 2) the types of traces

that can be gathered, and 3) the quality and granularity of these traces.

A wide array of tracking technologies has been employed to collect web tracking

data (see Christner et al. 2021, and Breuer et al. 2020, for comprehensive reviews).

Below, I describe some of the most popular tracking technologies:

1. VPNs: Virtual Private Networks can be installed on participants’ devices

through apps or plugins. They work by routing a device’s internet connection

through a specially configured remote server network managed by researchers

or the company offering this technology. Although not originally designed for
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this purpose, VPN servers can be configured to log user activity, including

visited websites, data transfers, and timestamps. Individuals typically do not

need to perform any additional configuration once they install tracking software

based on a VPN.

2. Automatic Proxies: Automatic proxies, also known as transparent proxies,

can be installed as apps or plugins. Once installed, these proxy tools allow

researchers to intercept devices’ requests to the internet and save a compre-

hensive record of the content (Menchen-Trevino and Karr, 2012). Transparent

proxies act as “an ‘invisible’ link in the chain of computers between a user and

a website, through which all the traffic of all the participants flow through”

(Bodo et al. 2018, p. 147). Individuals do not need to configure the proxy after

installation.

3. Manual Proxies: Manual proxies, sometimes referred as non-transparent

proxies, do not require the installation of any piece of software. Instead, they

must be manually configured. Hence, individuals need to access their device

settings and manually set up a proxy. Similar to transparent proxies, non-

transparent proxies act as an intermediary between a participant’s computer

and the networks they use, automatically storing all traffic produced.

4. Browsing History Downloaders: Downloaders are pieces of software, nor-

mally in the form of browser plug-ins, that can access and download the brows-

ing history of participants. This data is retrospective, given that these technolo-

gies do not passively track people’s behaviours (Guess, 2015; Menchen-Trevino,

2016). Although some researchers consider this approach as a data donation

(Ohme et al., 2023), its use of a technology which collects browsing informa-

tion makes it qualify as a web tracker, according to this thesis definition of the

concept.

5. Screen Scraping: Screen scrapers, often available as plugins, collect informa-

tion from the websites that participants visit, by reading and extracting the

HTML or XML information of those pages (Marres and Weltevrede, 2013).

Data that can be collected is varied, such as URLs, the content of the web

pages, or whether participants interact with the content.

6. Smartphone Loggers: Loggers can be installed as apps and are used to

directly capture log data stored on participants’ devices. Depending on the
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programming of the logger, it can “monitor a wide range of user activities,

including call and SMS histories, GPS data, and information about visited

URLs and app usage” (Christner et al. 2021:85).

7. Screen Recorders: Screen recorders, generally available as apps, collect data

by capturing screenshots of participants’ devices at high frequencies (e.g., every

5 seconds; Reeves et al. 2019). They can also capture this data by recording

videos of users’ screens. Information from these images and videos is normally

extracted using computer vision algorithms (Krieter, 2019; Bosch et al., 2019).

As Paper 1 and 2 explore in more detail, these different tracking technologies

vary in many aspects, all presenting different benefits and drawbacks. Two aspects

are particularly important from a data quality perspective. First, not all the different

tracking technologies can collect the same type of information nor with the same

frequency, granularity, and precision. For instance, if data must be collected after

participants install the technology, using a Browsing History Downloader would not

be ideal. Second, tracking solutions differ according to the devices (PC or mobile),

Operating Systems (e.g., Android or iOS for mobile devices) and browsers (e.g.,

Chrome or Firefox) on which they can be installed. Hence, tracking solutions impact

both who is tracked and how well they are tracked.

Regardless of the technologies employed, these systems need to be set up in

order to collect, store, and extract the data (Harari et al., 2016). Researchers typ-

ically follow three main strategies, each with its unique characteristics, advantages,

and drawbacks. First, building custom solutions. Researchers can opt to create

tracking technology from scratch, as exemplified by the custom-built plug-in ”Robin”

by Bodo et al. (2018). This approach offers the highest degree of control but comes

with significant challenges. It demands advanced programming expertise and in-

volves maintaining the software and potentially the hardware infrastructure (e.g., a

proxy server). Researchers must also handle participant recruitment, management,

and incentives. While it provides full research independence in terms of data collec-

tion, it can be resource intensive. Hence, in most cases, these approaches have only

been used for smaller studies or pilot projects rather than larger-scale endeavours

(Breuer et al., 2020).

Second, using open-source technologies. Researchers can leverage existing

open-source tracking technologies developed by individuals and available for reuse.

For instance, the ”FBforschung” plug-in created by Haim and Nienierza (2019) is
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designed for collecting browser information and is open for others to adopt. This

approach offers the advantage of using technology already developed by others, typ-

ically at no cost. However, researchers may still need technical expertise to adapt

and run the code and will need to set up a server. The downside is that open-source

options are limited to the specifications of existing technologies, which can constrain

researchers’ capabilities due to the scarcity of suitable options.

Finally, employing commercial trackers. Some companies have developed

their proprietary tracking technologies, such as Wakoopa and RealityMine. When

using commercial trackers, researchers can either purchase data from opt-in online

panels of metered individuals (e.g., Araujo et al. 2017) or secure the rights to install

the commercial tracker within their own participant samples (e.g., Pew Research

Center 2020). Commercial trackers do not require researchers to set up a data col-

lection infrastructure, Nonetheless, they offer limited control over the data collection

process, with many aspects of the process remaining undisclosed. The costs asso-

ciated with purchasing metered data or using these trackers for researcher-owned

samples can be high. Consequently, some researchers may be hesitant to rely on

technologies not designed, configured, or processed by themselves, as this is the only

way they can ensure data quality. As the next subsection will show, this option is

the most used in the literature.

Web tracking data in the literature

Due to the well-documented limitations of self-reports and the growing recognition

of the advantages of web tracking data, its utilization has gained significant traction

in recent years. An exhaustive review of the literature has uncovered 80 published

and unpublished papers that leverage web tracking data, as defined in this thesis, for

substantive and methodological applications. Table 1 encapsulates some of the key

technical characteristics found in these papers. Specifically, it highlights the coun-

tries under investigation, the samples employed, the devices subject to tracking, the

tracking technologies employed, the focus of the papers, and the year of publication.

Focusing on the latter, it seems clear that there has been an upward tendency, with

an increased popularity of this approach from 2020 onwards.

Among the 80 papers identified, a notable concentration is observed in terms

of the countries studied. The majority of projects have centred their attention on a
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Table 2.1: Technical Characteristics of the Corpora of Papers Using Web Tracking
Data

Categories Types % Papers

Focus
Substantive 74.4

Methodological 25.6

Sample Provider

YouGov 30.8

Netquest 20.5

Unreported 9.0

GFK 6.4

LISSS 5.1

Respondi 3.8

Lucid 3.8

Others 25.7

Tracking Technology

Wakoopa 47.4

Unreported 16.7

RealityMine 14.1

WebHistorian 5.1

Robin 5.1

FBforschung / Eule 3.8

Custom built 3.8

Ethica 2.6

WebTrack 1.3

URL Historian 1.3

Devices Tracked

Desktop only 52.6

Desktop and mobile 44.9

Mobile only 2.6

Unreported 2.6

Country

USA 42.3

Germany 32.1

Spain 17.9

UK 11.5

The Netherlands 9.0

France 9.0

Italy 6.4

Switzerland 3.8

Other 6.5

Year
2015 - 2019 16.4

2020 - 2023 83.6

Total Number of Papers 80

Note: Percentages may not add up to exactly 100% due to rounding.
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limited selection of countries, with the United States (42.3%) and Germany (32.1%)

emerging as the most frequently examined. Additionally, a substantial portion of

research has targeted other European nations, including Spain (17.9%), the United

Kingdom (11.5%), the Netherlands (9.0%), and France (9.0%). These findings un-

derscore a significant gap in the adoption of web trackers for academic research in

regions often categorized as the Global South. This discrepancy may stem from the

absence of robust private and public web tracking infrastructures in these markets.

In terms of sample selection, a majority of papers have relied on opt-in on-

line panels, with YouGov (30.8%) and Netquest (20.5%) emerging as the dominant

providers. This dependence on a limited number of web-tracking panels, largely con-

trolled by two companies, underscores the substantial influence these companies wield

over the technologies and procedures employed for data collection and data quality

assurance. Notably, only four studies to date have employed probability-based sam-

ples. Consequently, despite the research’s overarching goal to make inferences about

the general population, minimal emphasis has been placed on ensuring the highest

possible sample quality.

The majority of papers have utilized third-party tracking technologies offered

by private companies, with Wakoopa being the most prevalent (47.4%). Although

RealityMine has gained traction in recent years, largely due to its collaboration with

YouGov, its adoption remains limited and primarily concentrated among a few Amer-

ican scholars. Among tracking technologies developed by academics, WebHistorian

and Robin are the most widely used (both at 5.1% of papers). Notably, Robin is

not open-access, and WebHistorian lacks passive data collection capabilities. An

issue of concern is that 16.7% of the papers do not disclose the tracking technolo-

gies employed, rendering it impossible for readers to comprehend the data collection

approach.

Regarding the devices tracked, most research has exclusively monitored desktop

devices (52.6%). However, this approach may not be ideal, as internet consumption is

increasingly prevalent on mobile devices compared to desktops (StatCounter, 2017).

Consequently, much of the research conducted using web tracking data may exhibit

inherent bias due to designed data gaps. Nevertheless, in more recent papers, espe-

cially those utilizing opt-in panels such as Netquest and YouGov, there is a growing

trend towards simultaneously tracking both desktop and mobile devices. This thesis

will further delve into these findings, addressing the potential implications of these

trends and patterns in the use of web tracking data for academic research.
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Moreover, as highlighted in Table 1, a significant proportion of research con-

ducted using web tracking data has primarily centred on substantive topics (74.4%).

In contrast, only a quarter of the 80 papers have delved into the methodological intri-

cacies and challenges associated with this emerging data source. This distribution is

unsurprising since the majority of research endeavours are inherently substantive in

nature. However, it is worth noting that the prevalent trend has been for research to

swiftly adopt web tracking data to address substantive questions, often overlooking

the methodological uncertainties surrounding its use and the potential biases it may

introduce into substantive findings.

Focusing more on the substantive applications of web tracking data, fields such

as political science, communication, and digital journalism research have embraced

web tracking data as their gold standard. In the realm of political science, web track-

ing data has been instrumental in investigating various topics, including the identifi-

cation of visits to untrustworthy websites (Guess et al., 2019, 2020b), the prevalence

of echo chambers (Cardenal et al., 2019b; Dvir-Gvirsman et al., 2014b; Peterson and

Damm, 2019), and filter bubbles (Cardenal et al., 2019b). Beyond merely describing

these phenomena, research has also delved into exploring the connections between

ideology and the use of intermediaries like search engines, examining how these fac-

tors influence individuals’ susceptibility to echo chambers or exposure to fake news

(Cardenal et al., 2019a; Guess et al., 2020a; Peterson and Damm, 2019). Moreover,

a substantial body of research has explored how media consumption, particularly

partisan media, may be linked to offline behaviours such as voting intention and

vaccine uptake (Bach et al., 2019; Cardenal et al., 2019c; Guess et al., 2021).

Beyond political science, web tracking data has found applications in communi-

cation and digital journalism research, shedding light on topics like generational dis-

parities in online news consumption (Mangold et al., 2021), the mechanisms behind

news discovery and consumption (Kalogeropoulos et al., 2019; Vermeer et al., 2020),

the impact of social networks on news consumption (Scharkow et al., 2020), and

individuals’ receptivity to various forms of branded content (Bol et al., 2020). This

multidisciplinary adoption underscores the versatility and relevance of web tracking

data as a valuable tool for investigating various facets of contemporary society.

31



Chapter 2: Literature review

The drawbacks of web tracking data

As highlighted in the preceding sections, web tracking data has been regarded as the

gold standard for measuring online behaviours. However, this assumption primarily

rests on two key pillars: 1) the acknowledgment that self-reports exhibit some degree

of bias, and 2) the presumption that web tracking data measurements are, if not

entirely bias-free, at least less biased. While there is ample evidence to support the

first pillar of this assumption, the second pillar remains largely unsubstantiated. Not

only has no research definitively demonstrated that web tracking data is devoid of

errors or of higher quality than self-reports, but certain evidence even suggests the

opposite.

Like any novel data collection approach, web tracking data poses methodolog-

ical challenges that can lead to errors. To liken web tracking data to surveys, and

for it to be considered unbiased, two conditions must be met:

1. The utilization of the meter should not introduce selection bias, causing the

final sample to systematically deviate from the target population of interest.

2. Throughout the processes of data collection, processing, and measurement cre-

ation, no biases should be introduced that deviate the value of the final pro-

cessed and adjusted measurement from the true behaviour.

Below I present some of the few literature available showing that these condi-

tions, in most cases, might not be realistic.

Representation problems

The installation of a meter can be perceived as intrusive and burdensome by some

individuals, potentially leading to a reluctance to participate. When participants who

are unwilling to install the meter systematically differ from those who are willing to

participate, it can introduce bias into samples of metered individuals.

Previous research has consistently demonstrated low willingness among individ-

uals to install web tracking technologies for scientific research. For instance, Revilla

et al. (2019) found that only 16.6% of participants in Spain were willing to install

a meter. Keusch et al. (2019) reported that across various experimental settings in

Germany, only 35.2% of respondents were willing to install an unspecified app for
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passive data collection from their devices. Wenz et al. (2019) found that a quarter of

participants in the probability-based Innovation Panel were willing to install an app

to track their smartphone usage. Actual participation rates, which involve both in-

stalling the technology and providing data, align with willingness studies. Gil-López

et al. (2023) found a participation rate of 30.4% in a German opt-in panel, while

Keusch et al. (2020b) reported a participation rate of 12.8% in a probability-based

survey, also in Germany.

These low participation rates may or may not pose problems depending on

whether those who accept participation differ significantly from the target popu-

lation of interest. Previous research has indicated that in nonprobability samples,

participant characteristics such as age, gender, education, income, and awareness and

use of digital platforms are associated with their willingness to share data, including

passive data collection (Kreuter et al., 2018; Revilla et al., 2019; Wenz et al., 2019).

Older age has been related to lower willingness to participate in passive data col-

lection via smartphone or smartwatch, while men have shown higher willingness to

participate in studies requiring tracking device installation (Mulder and de Bruijne,

2019; Revilla et al., 2021). Additionally, a negative relationship has been observed

between education and income and the willingness to participate in online tracking

studies (Mulder and de Bruijne, 2019; Revilla et al., 2021).

These differences in willingness to participate have also been evident in studies

asking a probability-based sample of participants to install tracking technologies on

their devices. Specifically, those who accept tend to be older, have higher income, are

more likely to be male, possess greater educational attainment, and exhibit greater

awareness and use of digital platforms (Pew Research Center, 2020). These differ-

ences persist even when weighted, suggesting that survey and metered data estimates

derived from samples of metered individuals could significantly differ from those rep-

resenting the general Internet population.

Moreover, a review of the existing literature reveals that most papers have pre-

dominantly tracked individuals on their desktop devices. This implies that much of

the research has excluded mobile-only individuals and, at times, even more specific

subgroups such as iOS-only individuals. From a representation standpoint, this can

be problematic, especially considering that in some countries, a growing proportion

of the population comprises ”mobile-only” Internet users, meaning they exclusively

use mobile devices to access the Internet (USA – 10%, Europe – 7%, Smith, 2015).

Research exploring the differences between mobile and PC survey participants has
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found significant disparities in terms of age, gender, income, ethnicity, household

type, and ideology (Cook, 2014; de Bruijne and Wijnant, 2014; Lambert and Miller,

2015; Toepoel and Lugtig, 2014; Wells et al., 2014). Consequently, excluding indi-

viduals based on device type and operating system can introduce coverage errors,

which sociodemographic weighting may not fully rectify (Keusch et al., 2020a).

Measurement problems

While representation issues have been acknowledged as a primary limitation of me-

tered data compared to high-quality surveys, web tracking data, in general, has

been perceived as unbiased or less biased than self-reports in terms of measurement

(Araujo et al., 2017; Parry et al., 2021). However, this assumption has yet to be

substantiated. As Jungherr (2019) points out, for metered data to be perfectly un-

biased, every process involved in generating this kind of data must be free of errors.

Thus, no errors should occur during 1) the installation or configuration of the meter

on individuals’ devices, 2) the passive recording of individuals’ online behaviour, and

3) the processing and adjustment of the data to calculate final measures. While

Paper 1 delves into the various sources of error that can affect web tracking data and

presents available evidence on the prevalence and impact of these errors, I will briefly

summarize some of the existing evidence regarding potential errors in metered data:

1. Technology Problems: Metered data relies on highly complex technologies

that are often not designed for research purposes. The complexity and novelty

of these technologies make them susceptible to errors. Although there is no

direct evidence of technologies introducing errors, Jürgens et al. (2019) found

that when using metered data as a gold standard to assess survey data, self-

reports of mobile internet use exhibited a higher average bias than self-reports

of desktop use. Individuals tended to overestimate the time they spent online

on their mobile devices to a greater extent than for desktop data. The authors

hypothesize that different tracking technologies used in PCs and mobile devices

might result in differential measurement errors.

2. Device Undercoverage: To obtain a comprehensive understanding of par-

ticipants’ online activity, meters should be installed on all devices individuals

use. Failure to do so will result in missing some of their behaviors, potentially

biasing the estimates derived from this data. Several factors can contribute
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to undercoverage (see Paper 2). Available information suggests that under-

coverage may be prevalent across countries and technologies. For example,

combining paradata and survey data, Revilla et al. (2017) found that while

almost 57% of respondents had the meter installed on one device, only 4% of

those participants reported using only one device to access the Internet. Sim-

ilarly, only 28% of metered panellists in an Ipsos’ Knowledge sample reported

having all their internet-accessing devices tracked (Pew Research Center, 2020).

3. Shared Devices: While researchers aim to measure individual behavior, they

are, in reality, tracking device information. It is typically assumed that all

behaviors observed on a device can be attributed to the individual of interest.

However, this assumption may be problematic. According to Revilla et al.

(2017), more than 60% of desktops, 40% of laptops and tablets, and 9% of

smartphones among a sample of metered data participants were shared. This

means that some of the observed online activities collected should not be at-

tributed solely to the surveyed individuals.

4. By-Design Missing Data: Researchers may decide to measure a concept

even when they are aware that some data is missing by design. For example,

during the design stage, researchers might know that their tracking approach

will not allow them to track mobile devices. Nevertheless, they might still

choose to make statistical inferences about individuals’ entire online behavior,

including their mobile activities, based on incomplete data. This can introduce

specification errors because what is measured differs from the actual concept

of interest. For instance, Reiss (2022) demonstrates that when measuring the

proportion of individuals avoiding news, omitting information about news ex-

posure through mobile apps leads to problematic outcomes. Specifically, disre-

garding app-based exposure results in an overestimation of the proportion of

individuals identified as news avoiders by 8.9 percentage points.

Moving forward

As demonstrated in the previous section, there is evidence to suggest that web track-

ing data can be susceptible to both representation and measurement errors. The

assumption that a data source is inherently unbiased or that its potential errors are

negligible can be problematic, as it implies a lack of need to comprehend, quantify,
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and rectify these potential issues. This is a critical concern because representation

and measurement errors can significantly impact statistical analyses. Conversely,

acknowledging that a data source may indeed be affected by systematic and random

errors opens the door to a more comprehensive understanding of these errors and

strategies to minimize them.

Accepting that a data source is not perfect does not necessarily imply that it

should be dismissed altogether. Rather, it suggests that data collection, processing,

and analysis should proceed with caution, driven by informed decisions. Treating

web tracking data as an imperfect source enables researchers to determine when and

under what circumstances it is most appropriate for use. It also provides a framework

for reducing the overall error associated with web tracking data measures through

improved design choices or statistical methods. For instance, although self-reports

can be biased, when evaluating their statistics, researchers can use frameworks such

as the TSE (Groves and Lyberg, 2010) to identify and estimate potential errors,

the effects of those on estimates, and how to minimize them. Extensive empirical

research in the survey methodology field has yielded a deep understanding of the

measurement quality of different survey questions and how various design decisions

can influence the final quality of survey measurements (see DeCastellarnau 2017).

To this date, researchers do not have systematic information about the poten-

tial errors associated with collecting web tracking data, or the consequence of these.

To help guiding the quality assessment of web tracking data and design appropriate

data collection approaches, I assess the quality of web tracking data from a concep-

tual and an empirical perspective. To achieve this, I suggest adapting frameworks

and methods drawn from the extensive literature on survey methodology and psycho-

metrics, commonly used to assess survey quality, to the evaluation of web tracking

data. I argue that digital trace data sources, despite their distinct data collection

processes and sources of error, share similarities with surveys in terms of represen-

tation and measurement errors. Consequently, errors in web tracking data can be

identified and categorized in a manner analogous to surveys.

However, it is essential not to overlook the inherent differences between surveys

and web tracking data. Surveys and web trackers produce vastly different data, both

in terms of their structure and dimensionality. The specific limits of survey data have

shaped, to some extent, the methods and approaches used to assess its own quality.

While methods can be adapted, directly transplanting survey assessment approaches

would not be prudent. The unique characteristics of web tracking data present novel
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possibilities for methodologists to explore. Specifically, web tracking data is more

granular and flexible than survey data. In this dissertation, I illustrate how, with the

aid of computational techniques, these distinctive characteristics can be harnessed by

researchers to enhance traditional psychometric approaches and evaluate the quality

of web tracking data. It is worth noting that this concept builds upon prior work in

the field. Several researchers have already expanded the TSE framework to assess

the quality of specific digital trace data sources like Twitter (Hsieh and Murphy,

2017), online platforms (Sen et al., 2021), and Big Data in general (Amaya et al.,

2020). Furthermore, Oberski et al. (2017) have demonstrated the feasibility of ex-

tending the use of MTMMs (Multi-Trait Multi-Method) to simultaneously estimate

the measurement quality of administrative and survey data. My work builds on the

foundation laid by these and other researchers in this evolving field of study.
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Keusch, Florian, Sebastian Bähr, Georg-Christoph Haas, Frauke Kreuter, and Mark Trapp-
mann. 2020b. “Coverage error in data collection combining mobile surveys with passive
measurement using apps: Data from a German national survey.” Sociological Methods
amp;amp; Research 52:841–878.

Keusch, Florian and Frauke Kreuter. 2021. “Digital trace data: Modes of data collection,
applications, and errors at a glance.” Handbook of Computational Social Science 1.

Keusch, Florian, Bella Struminskaya, Christopher Antoun, Mick P Couper, and Frauke
Kreuter. 2019. “Willingness to Participate in Passive Mobile Data Collection.” Public
Opinion Quarterly 83:210–235.

Konitzer, Tobias, Jennifer Allen, Stephanie Eckman, Baird Howland, Markus Mobius,
David Rothschild, and Duncan J Watts. 2021. “Comparing estimates of news consump-
tion from survey and passively collected behavioral data.” Public Opinion Quarterly
85:347–370.

Kreuter, Frauke, Georg-Christoph Haas, Florian Keusch, Sebastian Bähr, and Mark Trapp-
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et al. 2017. “Political Communication in a high-choice media environment: A challenge
for democracy?” Annals of the International Communication Association 41:3–27.

van Driel, Irene I., Anastasia Giachanou, J. Loes Pouwels, Laura Boeschoten, Ine Beyens,
and Patti M. Valkenburg. 2022. “Promises and pitfalls of Social Media Data donations.”
Communication Methods and Measures 16:266–282.

Vanman, Eric J., Rosemary Baker, and Stephanie J. Tobin. 2018. “The burden of online
friends: The effects of giving up facebook on stress and well-being.” The Journal of
Social Psychology 158:496–508.

44



Chapter 2: Literature review

Verduyn, Philippe, Oscar Ybarra, Maxime Résibois, John Jonides, and Ethan Kross. 2017.
“Do social network sites enhance or undermine subjective well-being? A critical review.”
Social Issues and Policy Review 11:274–302.

Vermeer, Susan, Damian Trilling, Sanne Kruikemeier, and Claes de Vreese. 2020. “Online
News User Journeys: The Role of Social Media News Websites, and Topics.” Digital
Journalism 8:1114–1141.

Wagner, Michael W. 2023. “Independence by permission.” Science 381:388–391.

Wells, Tom, Justin T. Bailey, and Michael W. Link. 2014. “Comparison of Smartphone and
Online Computer Survey Administration.” Social Science Computer Review 32:238–255.
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Abstract

Metered data, also called web-tracking data, are generally collected from a sample of partic-
ipants who willingly install or configure, onto their devices, technologies that track digital
traces left when people go online (e.g., URLs visited). Since metered data allow for the
observation of online behaviours unobtrusively, it has been proposed as a useful tool to
understand what people do online and what impacts this might have on online and of-
fline phenomena. It is crucial, nevertheless, to understand its limitations. Although some
research have explored the potential errors of metered data, a systematic categorisation
and conceptualisation of these errors are missing. Inspired by the Total Survey Error, we
present a Total Error framework for digital traces collected with Meters (TEM). The TEM
framework (1) describes the data generation and the analysis process for metered data and
(2) documents the sources of bias and variance that may arise in each step of this pro-
cess. Using a case study we also show how the TEM can be applied in real life to identify,
quantify and reduce metered data errors. Results suggest that metered data might indeed
be affected by the error sources identified in our framework and, to some extent, biased.
This framework can help improve the quality of both stand-alone metered data research
projects, as well as foster the understanding of how and when survey and metered data
can be combined.

Keywords:
Digital trace data · Error framework · Metered data · Web tracking data · Passive data ·
Total survey error

46

https://academic.oup.com/jrsssa/article/185/Supplement_2/S408/7069520


Chapter 3: When survey science met web tracking

1. Introduction

1.1. Definitions and main issues

Given the widespread adoption of the Internet, it is becoming vital to better un-

derstand what people do online and what impact this has on online and offline

phenomena. This requires high-quality data regarding people’s online behaviours.

Although surveys are one of the most used methods for collecting data in the social

sciences (Sturgis and Luff, 2021), it can be complex for participants to accurately

remember and report their behaviours through different devices and contexts. Be-

sides, the type of data that is collectable with surveys, as well as its granularity, is

inherently limited (e.g., we cannot ask thousands of questions on a single question-

naire, every day). Therefore, in recent years there has been an increase in the use

of digital trace data to directly observe what people do online (Breuer, Bishop, and

Kinder-Kurlanda, 2020).

A prominent strategy to collect traces about the web browsing and app be-

haviour of individuals has been to use digital tracking solutions (Christner et al.,

2021). These solutions, called meters (Revilla et al., 2021), are a heterogeneous

group of tracking technologies that can be installed, upon agreement, by partici-

pants on their browsing devices. Meters then allow for a variety of traces left by

participants when interacting with their devices online to be tracked. Depending on

the characteristics of the technology, different traces can be collected. For instance,

the URLs or apps visited, the terms used in search engines or the content that par-

ticipants have been exposed to (e.g., HTML information). A variety of terms have

been used in the literature to refer to this resulting data, for example, “web-tracking

data”, “web log data” and “digital trace data” (e.g., Dvir-Gvirsman et al., 2014;

Bach et al., 2019; Cid, 2018; Cardenal et al., 2019). Although data coming from

meters might fall under the umbrella of these broad terms, following Revilla, Ochoa,

and Loewe (2017), we use the term metered data, which describes the exact data

collection procedure.

By directly capturing the digital traces created by participants when interact-

ing with their devices online, data free of recall errors and memory limitations can

be captured, with a granularity not achievable by surveys (Revilla, 2022). This data

can be used to measure behavioural concepts of interest, potentially bypassing some

of the challenges faced by self-reports when measuring online behaviours to make in-
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ferences about theoretical concepts for finite populations. Non-behavioural concepts

like attitudes might also be measurable with metered data, although there may be

fewer benefits.

Albeit limited attention has been paid to metered data errors when used to

draw statistical inferences for finite populations, some research has warned about

potential errors (Jürgens et al., 2019; Revilla et al., 2017). Indeed, a recent report

from the Pew Research Center(2020: 9-10) concluded that “there are still too many

pitfalls to rely on [metered data] (. . . ) [metered data] does not, at present, seem

well suited for high-level estimates of news consumptions”. However, a systematic

categorisation and conceptualisation of these errors have yet to be developed. Thus,

in this paper, we propose a Total Error framework for digital traces collected with

Meters (TEM). Total Error is a paradigm used to refer to all the sources of bias and

variance that may affect the accuracy and efficiency of data (Lavrakas, 2008). When

operationalised as a framework, the Total Error conceptualises and categorises the

different sources of error allowing for the understanding of the data collection and

analysis process, as well as the identification and estimation of potential errors, their

effects on estimates and how to minimise them.

1.2. Goals and contribution

The two main goals of the TEM framework are to (1) describe the data generation and

analysis process of metered data, and (2) document all error sources that can affect

metered data when they are used to conduct inferential statistics (both univariate

and multivariate). To this end, we adapt the Total Survey Error framework (TSE,

Groves et al., 2010) for metered data, assuming that the error components presented

in the TSE framework can also be found in metered data. Hence, instead of creating

a completely new framework for metered data, we start from the TSE framework

and modify it to the specific error generating processes and error causes of metered

data. Consequently, the TEM can be used by researchers from different backgrounds.

This framework provides a common understanding of how to choose the best design

options for metered data projects and how to catalogue the potential errors affecting

them. For projects integrating both metered and survey data collection (sometimes

referred to as Smart Surveys ; see Ricciato et al., 2020), the TEM can also help

to make better-informed decisions while planning when and how to supplement or

replace survey data with metered data.
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The TEM framework enriches the current landscape of Total Error frameworks,

which have been developed for different types of digital trace data sources. Indeed,

previous frameworks (see Section 2.2) have focused on secondary data, which are

usually called “found” or “organic” digital trace data and which are not designed for

research, like the data coming from online platforms (e.g., Sen et al., 2021). Instead,

we propose a framework adapted to design-based digital data, mapping in detail the

specific error sources produced when tracking individuals’ online behaviours using the

heterogeneous group of technologies identified as meters. Furthermore, we illustrate

how the TEM framework can help plan metered data collection while minimising

errors, using a case study: the Triangle of Polarisation, Political Trust and Political

Communication (TRI-POL) project (https://www.upf.edu/web/tri-pol). This

project combined a cross-national longitudinal survey and metered data collection.

We show how the TEM was implemented in the design stage to document, quantify

and minimise (when possible) potential error sources affecting the metered data. We

also present empirical evidence about the prevalence of some of the error sources in

the TRI-POL datasets, and how these might affect the quality of metered data.

2. Background

2.1. Distinctive aspects of metered data

As a design-based digital data source, metered data differ from found data sources

in two key design aspects: the data collection and sampling approaches.

Regarding found data, the nature and quality of the data are heavily limited

by the original purpose of the traces (e.g., data from Twitter can only be obtained

as Twitter intends and allows to), and the approaches available to download them

(APIs, web scrapping, partnering with companies). Researchers have little control

over this. Metered data, conversely, are produced by specific tracking solutions that

capture the traces that participants generate when interacting with their devices and

online services. Although the feasibility of collecting these traces is limited to some

extent by the technological capabilities and the “friendliness” of the different oper-

ating systems and online platforms towards tracking solutions (e.g., iOS terms and

conditions do not allow tracking apps), meters can be considered as the main factor

shaping what data can be collected, as well as their characteristics. Many different
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technological approaches have been used to collect metered data (see Christner et al.,

2021 and Breuer et al., 2020 for in-depth reviews), which can be broadly grouped

into four categories:

1. Apps that passively and continuously track information from a device and its

browser(s).

2. Plug-ins that passively and continuously collect web browsing history and other

device and browsing information.

3. Plug-ins that collect the available web browsing history at a given point in

time, but without continuously tracking the device/browser activity.

4. Manually configured proxies that send all internet connections made by a device

through a network (e.g., WIFI at home) to a server set by the researcher. This

information is automatically stored.

These different tracking solutions vary in many aspects, but two are particu-

larly important from a data quality perspective. First, not all the different tracking

technologies can collect the same type of information nor with the same frequency,

granularity and precision. For instance, if data must be collected after participants

install the technology, using the second category (a plug-in that collects available

browsing history) would not be ideal. Second, tracking solutions differ according to

the devices (PC or mobile), Operating Systems (OSs; e.g., Android or iOS for mo-

bile devices) and browsers (e.g., Chrome or Firefox) on which they can be installed.

Hence, tracking solutions impact both who is tracked and how well they are tracked.

The Supplementary Online Material (SOM) 1 summarises the capabilities and limi-

tations of the tracking solutions offered by Wakoopa (https://www.wakoopa.com/),

which is currently the leading company providing these services. This is also the

solution used in our case study. Unlike found data sources (e.g., online platforms),

which require selecting existing data sources or platforms (e.g., Twitter) and then

extracting available traces (e.g., tweets), metered data are provided using samples of

individuals who install tracking solutions on their devices. As for surveys, these sam-

ples can be built using both probability and non-probability sampling approaches.

As such, errors do not come from issues regarding how representative online plat-

forms are, or the way in which to sample traces or users from those platforms, but

rather from traditional sampling problems as well as the challenges introduced by

asking participants to install tracking technologies on their devices.
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Figure 3.1: Reproduction of the TSE framework by Groves et al.(2009: 48).

2.2. Classification of error sources

Classifying error sources is a good way of thinking about data quality. Although data

quality can be conceptualised in many ways (e.g., credibility, comparability, usability,

relevance, accessibility), for the last 80 years, most error classification frameworks

have explored those sources affecting data accuracy (Groves and Lyberg, 2010). Fo-

cusing on accuracy, Groves et al. (2010) built a highly influential error framework

for cross-sectional probability-based surveys, the TSE, which links the steps of sur-

vey design, collection and estimation into the error sources and separates these into

two different dimensions: representation and measurement (see Figure 1). Errors of
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representation refer to failures to measure eligible members of the population of inter-

est. They include coverage, sampling, non-response and adjustment errors. Errors of

measurement refer to deviations between the concepts of interest for researchers and

the processed measures collected, and include validity, measurement errors and pro-

cessing errors. All these errors can affect the estimates’ variance or bias, contributing

to the overall mean square error of a statistic.

Although the TSE framework was initially conceived for probability-based

cross-sectional surveys, in recent years, given the emergence of new types of digital

data, researchers have expanded the TSE framework for some found data: Twitter

(Hsieh and Murphy, 2017), online platforms (Sen et al., 2021) and Big Data in gen-

eral (Amaya, Biemer, and Kinyon, 2020). These frameworks assume that the found

digital traces, although presenting their own specific data collection processes and

error sources, suffer from a number of representation and measurement errors that

is comparable to surveys. Therefore, their errors can be identified and classified in a

similar way to surveys. Despite these frameworks showing that the TSE framework

can be expanded to digital trace data sources, their applicability to design-based

digital data sources such as metered data is limited, given the differences in data col-

lection and sampling approaches exposed in Section 2.1. As such, this paper builds

on this cumulative knowledge to propose a new framework for metered data.

3. Building a Total Error framework for Metered data

The TEM framework is designed to be flexible and applicable across different types

of projects. To achieve this, first, we conceptualise the data collection and analysis

process of metered data, and the error components, in a comparable way to surveys.

Hence, we use the seven error components of the TSE presented by Groves et al.

(2009) as a starting point (see Figure 1). Nonetheless, given the Big Data nature

of metered data, we borrow the terminology used by Amaya, Biemer, and Kinyon

(2020) to refer to some error components, when it is better suited (i.e., we use

“specification errors” instead of “validity” and “missing data errors” instead of “non-

response errors”).

Moreover, although metered data are longitudinal by nature, most research

has used it in a cross-sectional way, aggregating data points to create a measure

for a given period (e.g., the time spent visiting online news during a week). As for
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surveys, aspects of the metered data errors and their interaction might be different

in longitudinal contexts. Considering that most past research has used metered data

in a cross-sectional way, and for the sake of simplicity, we developed the framework

for cross-sectional applications of metered data. Inspired by a previous adaptation of

the TSE for longitudinal settings (Lynn and Lugtig, 2017), nonetheless, we highlight

processes and error causes that could differ when researchers use metered data in a

longitudinal way.

Finally, as for surveys, probability and non-probability-based sampling strate-

gies can be used. Although substantial differences exist between both (Unangst et al.,

2019), these are not meter-specific and have already been discussed in previous re-

search (Unangst et al., 2019; Pew Research Center, 2016). Thus, we present the data

collection and analysis process when using a probabilistic approach and consider the

error causes which would happen for a probability-based approach. However, since

most research to date has used metered online opt-in panels, using the work by

Unangst et al. (2019), we also highlight the steps and errors that are different or

non-existent in that case. It should be noted, nonetheless, that large variations

can exist within online opt-in panels (e.g., because of the methods used to recruit

participants or select the samples).

4. The TEM: Metered data from a process perspective

Figure 2 presents an ideal workflow of the data collection and analysis process of

metered data. For concision purposes, we focus on metered data only, not in combi-

nation with survey data.

Researchers conducting metered data research need to make decisions related

to two main aspects: the sample and the measurement. On the measurement side

(left set of boxes), the first decision is to define the concept(s) of interest. This

means defining what the researchers want to measure (elements of information that

researchers want to collect). To obtain data about these constructs, researchers need

to subsequently design the measurements, i.e., the specific instrument(s) to be

used to gather information about the concept(s) of interest. In the case of surveys,

measurements are survey questions (Groves et al., 2009). For metered data, mea-

surements are the defined pieces of information from the participants’ tracked online

behaviour that are combined, and sometimes transformed, to compute a specific
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variable (e.g., all URLs that are considered as political articles).

Next, researchers need to develop or choose the tracking technology (or

technologies) that will be used to obtain the information needed to create the mea-

surement(s). The Supplementary Material (SM) 1 provides a summary of the ones

available through the most used provider of tracking solutions: Wakoopa. When

using an opt-in metered panel, participants have already installed some tracking

technologies on at least one of their devices. Thus, researchers only have the possi-

bility to choose the panel with the best-suited technology (or technologies) for their

project.

On the representation side (right set of boxes), the first step is to Define the

Target Inferential Population, i.e., who the researchers aim to draw conclusions

about. The second step is toConstruct the Frame. A frame is a list (e.g., emails of

university students) or a procedure (e.g., a map of houses) that is intended to identify

the elements of the target population. When using a metered panel, the panel acts

as the frame (Unangst et al., 2019). Consequently, it acts as a list of individuals with

a meter either installed or configured on at least one of their devices with an e-mail

associated. It does not aim to provide full coverage, but rather looks to include

individuals with enough diversity to cover the panel’s needs (Groves et al., 2009).

The next step is to Draw the Sample, which means selecting a fraction of the

frame from which measurement will be obtained. Ideally, this should be done using

a probability-based sampling approach. In practice, for metered panels, normally

non-probability sampling approaches are used, especially quota sampling (Ochoa

and Paura, 2018).

Once the sample has been drawn and the technology chosen, sampled individ-

uals can be asked to Install the Meter onto their devices. This usually involves

asking participants to install or configure several tracking solutions across different

devices (e.g., download an app onto an Android smartphone to track the behaviour on

the device’s browsers and download a plug-in onto a Chrome browser on a Windows

PC). This depends on (1) the traces needed by researchers and (2) the capabilities of

the chosen technologies. Traces of interest are produced when participants connect

to the Internet through specific web browsers and apps installed on a device that is

connected to a specific network (i.e., home Wi-Fi or 4G data plan). From now on,

we will call these combinations of device/app/web browser/networks the targets to

track. In some cases, more than one technology might be needed to track different

targets on one device (e.g., a plug-in for each web browser used, or a proxy for each
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Figure 3.2: Data collection and analysis process for metered data. The stars indicate
those processes that are different or non-existent for opt-in metered online panels.
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network). Consequently, the process of inviting participants can be complex and

may include various phases, with there being no standard way of doing it yet. Once

correctly installed, the meter starts collecting data from the device and browser logs.

When using an opt-in metered panel, the process of installing the technology is be-

yond the researchers’ control since researchers sample from a pool of already tracked

individuals. Nonetheless, these individuals can still be asked to further install track-

ing solutions on top of the ones that they have, only for the specific project (Haim

et al., 2021).

In the next step, the information collected by the meter is uploaded to a server

that Generates the Data Source. Systems to collect and store data can be set

in different ways depending on the technology. For example, for smartphone apps,

Harari et al. (2016) propose to do the following: a portal server receives the data

collected by the meter and checks them against the participant manager, which pro-

vides the unique user ID. The portal server subsequently stores the data collected in

the data storage, which is normally a database that can handle large datasets (e.g.,

MySQL). These datasets allow for the data to be queried, extracted and, when neces-

sary, allow for transformations to be applied for the construction of the final dataset

for the analyses. When using a metered panel, apart from the information gener-

ated after individuals have been sampled, the panel can also provide data already

collected from when the participants joined the panel.

Once the dataset of interest has been identified and/or generated, then comes

the Extraction, Transformation and Loading (ETL) of the metered data.

These steps follow a similar process as the one described by Amaya et al. (2020)

for found data. Usually, they involve converting the raw and unstructured data into

“structured” variables. The steps can be done simultaneously or iteratively (e.g.,

extracting information, transforming it, loading it back, and extracting it again).

First, the process of extracting traces can involve (1) selecting subsets from the raw

dataset to perform further transformations or (2) extracting information and per-

forming calculations to create “structured” variables (e.g., counts of visits to specific

URLs). After extracting traces from the whole dataset, information might need to

be further transformed to fit the defined measurement. Both simple transforma-

tions (e.g., from seconds to minutes) and complex codification procedures that may

require using machine learning (ML) applications (see Grimmer et al., 2021, for a

discussion of ML application for the social sciences) might be needed. For example,

in order to create the variable “time spent visiting pro-conservative news articles”,
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researchers need to code whether the content of the visited news articles can be con-

sidered as pro-conservative or not. This can be done manually (but might be too

time-consuming) or through a supervised ML algorithm. Once this information is

added to the extracted dataset, researchers can create the desired variables. Finally,

the extracted and transformed datasets are loaded and stored on the researchers’

devices or servers. When using a metered panel, these steps might be done by the

company or the researchers, depending on whether it is the latter who acquire the

raw dataset (i.e., information from all URLs visited by participants in addition to

auxiliary information like timestamps) and perform the ETL steps by themselves;

or if they buy a structured dataset created by the fieldwork company following the

researchers’ guidelines (i.e., panellists in the rows, variables in the columns; variables

based on the information from the raw dataset).

Once a final dataset is loaded, researchers can proceed toModel. This involves

adjusting the data to better reflect the target inferential population. As such, it

can include weighting for missing data, non-response or coverage deficiencies and/or

imputation for missing data. Finally, with the adjusted and modelled data, an

estimate can be created (e.g., the mean hours of media consumption).

5. The TEM: Metered data from a quality perspective

Each step of the process from constructing the frame to creating the estimates con-

tains some risk of errors. We consider that metered data are affected by the same

error components as the ones presented in the TSE (Figure 1). They differ, how-

ever, in some of their characteristics and the causes behind them. In the following

subsections, we conceptualise those error components for metered data and present

their specific error sources.

Metered data and surveys share a similar process when it comes to drawing the

sample from the frame, contacting sampled units and adjusting the estimates, and

consequently, some error causes are similar or shared with surveys. Since those error

causes have been explored extensively (Biemer, 2010; Groves et al., 2009), here we

mainly discuss those specific to metered data. Table 1 summarises all meter-specific

error causes, by component.
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Table 3.1: Specific Error Causes for Metered Data by Error Component

Error components Specific error causes

Specification errors - Defining what qualifies as valid information

- Measuring concepts with by-design missing data

- Inferring attitudes and opinions from behaviours

Measurement errors - Tracking undercoverage

- Technology limitations

- Technology errors

- Hidden behaviours

- Social desirability

- Extraction errors

- Misclassifying non-observations

- Shared devices

Processing errors - Coding error

- Aggregation at the domain level

- Data anonymisation

Coverage errors - Non-trackable individuals

Sampling errors - Same error causes as for surveys

Missing data error - Non-contact

- Non-consent

- Tracking undercoverage

- Technology limitations

- Technology errors

- Hidden behaviours

- Social desirability

- Extraction errors

- Misclassifying non-observations

Adjustment errors - Same error causes as for surveys

5.1. Specification errors

A specification error (also known as (in)validity) arises when the concept being mea-

sured differs from the concept of interest (Biemer, 2010). For surveys, this arises
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when the question and scales do not properly measure the defined concept (e.g., the

wording refers to something else). For metered data, errors might occur when the

traces used to build the variables do not properly match the concept of interest.

For instance, to construct the measurement “average time spent consuming political

news”, the list of visits to URLs considered as “political news” must be defined, and

then the time spent on them must be added. If this defined measurement instru-

ment deviates from the concept of interest, for instance by defining some non-political

content as political, specification errors appear.

5.1.1. Defining what qualifies as valid information

For surveys, the words used in the request for an answer and the scale categories

can affect how valid a measurement is (Saris and Gallhofer, 2014). Equally, when

constructing a measurement for metered data, researchers must define which pieces

of tracked information should be used and which not to measure behavioural or atti-

tudinal concepts; for instance, whether to consider URLs as fake news or not (Guess

et al., 2020). If, due to these specifications, the defined measurement instrument

deviates from the concept of interest (e.g., including non-fake news), specification

errors are introduced.

5.1.2. Measuring concepts with by-design missing data

Researchers might decide to measure a concept even when they are aware that part

of the data is missing by design. For instance, Guess et al. (2018) intended to

measure the total fake news consumption of a sample of Americans during the 2016

presidential election. However, the authors collected data only from metered PCs.

Thus, by design, the total fake news consumption could not be measured, but only

the fake news consumption from the PCs. However, the authors used the collected

data to make inferences about the total fake news consumption, making the (strong)

assumption that total fake news consumption can be inferred from the fake news

consumption found on PCs. If this is not the case, specification errors occur.
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5.1.3. Inferring attitudes and opinions from behaviours

Metered data collect behavioural information which can be used as a proxy to mea-

sure online behaviours. Other types of digital trace data have been used to measure

attitudes and opinions. For instance, Barberá (2015) inferred individuals’ left/right

position based on the Twitter accounts they followed. If a behavioural indicator (e.g.,

URLs visited) is used to infer about attitudes or opinions (e.g., left/right position)

without a solid theory behind it, it might produce weaker relationships, affecting the

validity of the measurement.

5.2. Measurement errors / Missing data errors

When using metered data, measurement and missing data errors can be confounded.

As such, we discuss them together. For surveys, the measurement consists in (at

least) one question. Participants can either answer or not answer (for whatever rea-

son). Those not providing an answer are considered as missing. Since no information

is available from them, they are excluded from the specific analyses. Missingness

might happen at the unit level (i.e., no information is available for any measure for

a given unit) or at the item level (i.e., information is not available for an item for a

given unit). When data are missing, estimates are drawn on a subset of the sample.

This can produce missing data errors if missing data differ systematically from the

available data. For those answering, their answer might deviate from their true val-

ues (e.g., their self-reported income does not match their real income), introducing

measurement errors. This can happen, among other reasons, due to human memory

limitations, interviewer influence, deliberate falsification or comprehension errors.

For metered data, a measurement is understood as the defined traces to use

and how to transform them (see section 5.1). Tracking solutions are used to collect

these traces, which are then transformed into usable variables. This process can

fail in at least two ways. First, undefined traces might be wrongly collected and/or

classified as correct (e.g., behaviours done by third non-tracked individuals). Thus,

more traces are observed than those needed, provoking a measurement errors (e.g.,

for univariate analyses, it normally leads to a similar phenomenon as with over-

reporting). Second, defined traces might not be collected and/or wrongly excluded

when creating the variables. This can lead to observing part or observing none of

a participant’s behaviour. On the one hand, if we observe part of the behaviour,
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the observed values are smaller than the participant’s true behaviour, leading to

measurement errors (e.g., similar to under-reporting in surveys). On the other hand,

not observing any of the defined traces leads to a lack of observation, which (as for

surveys) should lead to the participants being excluded from the analyses (the lack

of behaviour cannot be considered real, so the real value is unknown), introducing

missing data errors. Nonetheless, given the nature of metered data, a lack of data

(e.g., no adult website URLs recorded) might mean a true absence of behaviour (the

individual has not visited any URL of interest) or a failure to capture data (e.g., the

participant deactivated the meter to visit such URLs). Therefore, deciding whether

the lack of information is considered as missing requires additional information and

often depends on the researchers’ judgement (see subsection 5.2.9 for a more in-

depth discussion of the misclassification problem). This might not be the case,

nonetheless, when measuring non-behavioural concepts that require observations of

specific behaviours. For instance, to compute the participants’ left/right orientation

using their visits to political news media websites as a proxy, for participants who

do not visit any news media website, no left/right value can be computed.

In short, missing data and measurement errors might be confounded since the

same sources of error can lead to each of them depending on (1) how many traces are

missed, (2) the behavioural or non-behavioural nature of the concept and (3) how

researchers deal with the observed absence of behaviours.

5.2.1. Non-contacts

In order to collect metered data, sampled individuals need to be contacted and asked

to install the meter. Regarding surveys, researchers might fail to contact some of

the sampled units. For instance, mail or e-mail invitations might never arrive or be

seen by a sampled unit. In this scenario, the sampled individual does not become a

participant, producing a missing data error. No measurement errors are introduced

by non-contacts.

5.2.2. Non-consents

Once contacted, individuals are asked to install the meter onto at least one of their

targets. Some sampled units might not be willing to do so because of a variety of

reasons. For instance, if the project requires long tracking periods, some participants
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might not be willing to participate in the study. Hence, no information is collected

for those sampled units that do not become participants. Exploring the Netquest

opt-in metered panels in nine countries, Revilla et al. (2021) found that between

28.1% (United States) and 53% (Colombia) of those invited accepted to install the

meter. No measurement errors are introduced by non-consents.

5.2.3. Tracking undercoverage

Although researchers are normally interested in measuring individuals’ behaviours,

meters measure the traces left by individuals when using specific targets. To measure

the complete behaviour for a specific concept, meters must be installed on all specific

targets used to engage in the given behaviour. Nonetheless, several reasons might

prevent targets from being tracked:

1. Non-trackable targets. Some of the targets used by participants might not be

trackable with the chosen technology (or technologies). Hence, information

cannot be collected from them. For instance, tracking apps cannot be installed

onto iOS devices due to Apple’s terms of service.

2. Meter not installed. Individuals who consent to being tracked must install or

configure the meter into their targets. Even if participants agree to install the

meter, they might finally decide not to do so (e.g., after reading the instructions

they realise it is too much of a burden) or might fail to successfully do it in

some targets (e.g., low IT skills, technical problems).

3. Uninstalling the meter. Participants who installed the meter at the beginning

of the study can change their mind over time (e.g., lack of memory in the device,

change on privacy concerns) and decide to uninstall the meter. Moreover, some

participants may uninstall the meter accidentally. Both can happen for some

or all the tracked targets. Data are unavailable from the moment the meter is

uninstalled.

4. New non-tracked targets. During the study, participants might purchase new

devices or substitute old ones, switch to new browsers or start to use new

networks. If these new targets are not tracked, their information is lost.

When any of these problems occur, not all participant’s targets are tracked,

leading to tracking undercoverage. The evidence so far suggests that 53% (Spain,
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Revilla et al., 2017) to 68% (USA, Pew Research Center, 2020) of metered partici-

pants do not have the meter installed on some devices. As a result, for some specific

concepts of interest, part or all of the data from some participants might not be

observed. When the loss of information is partial, this induces measurement errors

(see section 5.2). When it is absolute, researchers observe a lack of behaviour. In

this scenario, and for behavioural concepts, whether missing data or measurement

errors are introduced depends on the researchers’ decisions (see section 5.2.9). For

non-behavioural measures (e.g., left/right position), an absolute loss of information

provokes missing data errors.

For longitudinal research, if the level of undercoverage fluctuates over time,

measures of change can be affected by the potential fluctuations in measurement

error sizes.

5.2.4. Technology limitations

Tracking technologies are subject to limitations. These prevent them from capturing

some data types, in particular, currently: 1) not all available tracking technologies

allow for behaviours happening in incognito mode to be captured. 2) Although

most technologies can capture domain-level information (i.e., theguardian.com) for

all webpage types, some approaches cannot capture subdomain-level information

(i.e., theguardian.com/sport/. . . ) for https sites. 3) Behaviours happening inside

apps (e.g., profiles visited within the Twitter app), to the best of our knowledge,

cannot be captured with any current technology. 4) HTML content cannot be ob-

tained from all tracking technologies. Therefore, depending on the technologies used,

some information might not be trackable. Technology limitations can lead to both

measurement and missing data errors depending on whether all traces are unobserved

or not, the researchers’ handling of the absence of behaviours, and the behavioural or

non-behavioural nature of the concepts. For longitudinal uses, if technology limita-

tions vary over time (e.g., a new version solving some of the limitations or introducing

new ones), measures of change can be affected by the variations in measurement error

sizes.
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5.2.5. Technology errors

The meters, like any technology, can suffer from technological errors. If the meter

stops recording or fails to correctly record information, information is lost. Several

reasons can lead the technology behind the meter to fail: 1) the devices or third-party

apps might shut down the ability to collect data when devices are low on battery,

to reduce the devices’ energy consumption. 2) If the meter is working through a

proxy, the proxy generates raw data that must be processed to identify which part

of the tracked traffic was done passively by the device (e.g., downloading Facebook

information) or actively by the participant. This is normally done by trained algo-

rithms. However, this is not completely accurate. 3) Since tracking technologies are

built on top of OSs and browsers when new versions of the software are released,

they can prevent the technologies from working, causing a loss of information until

the technology is adapted to the new version. These errors can provoke an incorrect

collection or a loss of information.

Technology errors can lead to both missing data errors and measurement errors.

In addition, for proxies, if there is an incorrect collection of information (e.g., the

algorithm incorrectly categorises a passive behaviour done by the device as an active

behaviour done by the participant), this produces a measurement error similar to

over-reporting. For longitudinal uses, technology errors have a similar impact as

technology limitations.

5.2.6. Hidden behaviours

Some technological approaches allow participants to disconnect the meter or to con-

figure blacklists of domains not to be tracked. For instance, this can be used to

avoid sharing information when dealing with online banking or visiting sensitive web

pages.

Hidden behaviours can lead to both measurement and missing data errors de-

pending on whether all traces are unobserved or not, researchers handling of the

absence of behaviours, and the behavioural or non-behavioural nature of the con-

cepts. For longitudinal studies, measures of change can be affected by modifications

of the blacklisted web pages or how the meter disconnection is allowed and/or used.
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5.2.7. Social desirability/Hawthorne effect

Participants might change their behaviours if they know that they are being ob-

served (Jürgens et al., 2019). Consequently, their observed behaviours could deviate

from their habitual (non-observed) behaviours. This can especially affect sensitive

behaviours, with participants behaving in a more socially desirable way when ob-

served. Although no experimental research has been conducted yet, preliminary

evidence using quasi-experimental data suggests that individuals might not change

their behaviour when observed (see Toth and Trifonova, 2021).

Changes in behaviours produce measurement errors unless they produce a com-

plete loss of the information needed to compute a non-behavioural measurement, in

which case it should be considered as a missing data error. For longitudinal uses, if

participants start behaving differently, measures of change can be biased.

5.2.8. Extraction/query errors

Often researchers do not extract all the data, but select specific domains, periods

of time or individuals from which/whom to extract information. When specifying

the domains or the time frame, incomplete or erroneous specifications can generate

measurement errors. For instance, in the case of URLs, if a fake news domain is not

specified in the query to extract data, this would underestimate the total fake news

consumption. This is not a specification error since the error is produced not from

the conceptualisation phase but rather as a mistake when creating and executing the

queries used to extract the specified data. Extraction errors can lead to both missing

data and measurement errors. Besides, problems with the query can leave sampled

participants out of the final database if their information is not extracted.

5.2.9. Misclassifying non-observations

When extracting data from the entire dataset to create metered data variables, only

available tracked traces can be used. When no traces are observed for a specific

defined measurement, the only reportable information is that no observation exists

for that individual. For instance, a query can specify that a variable should be created

reporting every time that the URL “theguardian.com” has been observed during a

determined time frame. If an individual does not present any observation containing
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this URL, the query can report that there is no observation. By default, this can be

set to missing, or to 0. This lack of data can be due to a true absence of behaviour or

a failure to capture data. In a perfect scenario, non-observations should be treated

differently depending on whether they are real or the result of some of the previously-

mentioned error sources (e.g., tracking undercoverage). Nonetheless, metered data

alone do not provide enough information to make this decision. Therefore, researchers

might misclassify an individual when deciding. If an individual is misclassified as

presenting a lack of behaviour instead of being considered as missing, this inflates

measurement errors and deflates missing data errors. Conversely, misclassifying a

true lack of behaviour as an error-induced one inflates missing data errors. Hence,

misclassifications can introduce missing data or measurement errors, depending on

their nature.

5.2.10. Shared devices

Metered data are produced by individuals using specific devices. Devices, nonethe-

less, can be shared between different individuals. Revilla et al. (2017) found, for the

Netquest opt-in metered panel in Spain, that more than 60% of desktops, 40% of

laptops and tablets, and 9% of smartphones used to go online by the participants

were shared to some degree. Let us assume that researchers want to measure parti-

san news consumption. Participant 1 shares a metered PC with their father. During

the metered period, Participant 1 does not visit any news media website. However,

Participant 1’s father consumes an average of 1 hour of liberal news media outlets

from the shared PC. Participant 1 is considered to present a liberal consumption

pattern, although they did not visit any news media website. Now, let us assume

that Participant 1 does in fact visit 1 hour of conservative media outlets. Then,

Participant 1 is considered to engage with both conservative and liberal media out-

lets equally, not being polarised. However, their true behaviour would be exclusively

conservative.

Shared devices, hence, introduce measurement errors but no missing data er-

rors. For longitudinal uses, if the shared devices patterns vary across time, measures

of change can be affected by variations in the sizes of measurement errors.
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5.3. Processing errors

Processing errors can be introduced after the data have been collected and before

the estimation process. These errors create deviations between the variables used for

estimation and the observed ones. For survey data, processing errors can be produced

during data entry, coding, editing, disclosure limitation and variable conversions or

transformations (Amaya et al., 2020). In the case of metered data, tracked traces

might need to be extracted and transformed in specific ways before building the

variables, to fit the researchers’ needs. Thus, the processed variables can differ from

the desired measures.

5.3.1. Coding/categorisation errors

Metered data can take an unstructured form like URLs, text, images or videos. Un-

structured data often need to be processed and transformed to be useful. This process

might involve coding or categorising the unstructured data into classes, labels, senti-

ment, etc. This can either be done before extracting the data (e.g., coding domains

and subdomains as “political”, and then using queries to group their URLs in those

defined categories), or after (e.g., extracting the raw dataset, coding each URL in

it, and then building the variables). Categorisation, as a process, is related but dif-

ferent to the one presented in section 5.1.1. In this step, the definitions are used to

classify the specific information, for instance with coders looking at each URL and

judging by using the given definitions. This can be done manually (e.g., using MTurk

coders, Peterson et al., 2018), using ad hoc ML algorithms (e.g., supervised ML to

categorise the topic of news articles, Peterson and Damm, 2019), or using already

available third-party ML algorithms (e.g., Google’s Vision AI, Bosch et al., 2019).

Manual coding can prompt the same errors as for survey data, i.e., that different

individuals coding the same raw data have different judgments or that coders sys-

tematically misinterpret and misclassify some information. ML solutions might also

present problems. Indeed, recent work has found that label errors are ubiquitous in

the test sets of most of the popular benchmarks used in computer vision algorithms

(Northcutt, Athalye, and Mueller, 2021). Even if classification algorithms correctly

classify the information, labels can still be biased. For instance, for many commer-

cially available systems, images of female U.S. members of congress receive three

times more annotation about their physical appearance than about their profession,

something which is not observed for their male counterparts (Schwemmer et al.,
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2020). If these algorithms were to be used to understand the type of images that

individuals are exposed to when reading news articles, results would be systemati-

cally different depending on the proportion of articles about female/male politicians

consumed.For longitudinal analyses, changes to the underlying characteristics of the

ground truth data or the ML algorithms used could affect the size of the errors and

have an impact on the obtained measures of change.

5.3.2. Data aggregation

In some cases, the final analyses cannot be carried out using the data at the URL

level due to vendors, privacy regulations or researchers’ decisions. Then, data are

aggregated at the domain level (e.g., the domain for theguardian.com/uk/sport/ is

theguardian.com). Hence, information is lost. On the one hand, this can lead to

some concepts not being measurable. For instance, it is not possible to measure the

time spent visiting the sports section of The Guardian if all the URLs with the-

guardian.com/uk/sport/ are converted into theguardian.com. On the other hand,

some concepts might be measured less accurately. For instance, if interested in the

total time spent visiting sports articles, the time spent on sports outlets (Eurosport)

can be measured accurately but not the one spent on generalist outlets (e.g., the-

guardian.com). Thus, the final measure underestimates the total time spent visiting

sports articles.

5.3.3. Data anonymisation

Data can be anonymised, i.e., all the pieces of information that could lead to identi-

fying participants are obscured. This can be done manually or using ML algorithms.

Both approaches, however, can cause errors. Thus, relevant information that was

not intended to be hidden can be lost (Ochoa and Paura, 2018).

5.4. Coverage errors

Coverage errors occur when the sampling frame from which the sample is drawn dif-

fers from the target population, either because units are excluded, wrongly included

or duplicated. If researchers use a metered panel, coverage errors occur when the

full panel differs from the target population (Groves et al., 2009). Although unquan-

68



Chapter 3: When survey science met web tracking

tifiable per se when using a metered panel, errors are linked to one or more panel

practices: for instance, their refreshment strategies or if they blend samples from dif-

ferent sources. Researchers can qualitatively assess panels beforehand to potentially

reduce these errors (Unangst et al., 2019).

5.4.1. Non-trackable individuals

Individuals might only use non-trackable targets to access the Internet. Although

these individuals might appear in the sampling frame, once contacted, they do not

have the possibility of participating. Specific coverage errors related to trackable

devices can often not be assessed until sampled units are contacted and the use of

trackable devices is assessed. This type of coverage error can be solved if the sam-

pled units using the Internet with non-trackable devices are provided with trackable

devices.

5.5. Sampling errors

Sampling errors arise due to the analysis of a subset rather than the entire population

of interest. The causes behind sampling errors do not differ between survey and

metered data. When units in the sampling frame have a zero chance of selection,

these units are excluded from every potential sample drawn. If the excluded units

differ from the non-excluded ones in the frame, a bias is introduced. Sampling also

introduces variance into estimates. For a given sampling design, many different

samples can be drawn. Each sample, by chance, produces different values for the

statistics of interest (e.g., average time spent visiting online political media outlets).

Several factors can increase sampling variance, such as small sample sizes or the use

of clustering.

When using an opt-in metered panel, non-probability sampling is used. There-

fore, units are included with unknown probabilities and the sampling error size is

unknown.

5.6. Adjustment errors

When modelling and creating estimates, researchers can make use of weighting or

imputation strategies with the objective of improving the representativeness of statis-
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tical estimates. Since metered data can be based on probability and non-probability

samples drawn in a similar fashion as done for surveys, similar weighting and imputa-

tion strategies can be used, with similar risks of producing errors. Hence, deficiencies

in missing data and coverage error weighting adjustments, as well as imputation for

an item missing data, can introduce adjustment errors (see Mercer et al., 2017: 256-

257 for an example).

In recent years, ML approaches have been considered to improve weighting and

imputation adjustments, with some promising results (Dagdoug, Goga, and Haziza,

2021). The volume and richness of metered data might allow adjusting strategies to

be more accurate when dealing with missing data. Nonetheless, it is still too early

to know whether we should expect different sources of error when applying these

approaches.

6. Case study: applying the TEM to the TRI-POL project

The objective of the TRI-POL project is to understand whether and how online

behaviours are related to affective polarisation across Southern European and Latin

American countries (https://www.upf.edu/web/tri-pol). To this end, a three-

wave survey was conducted in Argentina, Chile, Italy, Portugal and Spain between

September 2021 and March 2022, and matched at the individual level with metered

data. The TRI-POL web tracking strategy was designed using the TEM, to maximise

the quality of its data.

Data were collected through the opt-in metered panels of Netquest (www.

netquest.com) in the five countries of interest. Cross quotas for age, gender, edu-

cational level and region were used in each country to guarantee a sample similar

to these variables to the general Internet population. Survey questions were used

to measure the participants’ affective polarization and other attitudinal and demo-

graphic variables, while metered data were used to measure variables related to the

participants’ general Internet use as well as their consumption of news media outlets,

political news and social media.

TRI-POL represents a good case study for four main reasons: (1) it focuses

on the most frequently measured concepts so far using metered data (social media

and news media consumption). (2) As with most past research, it uses a metered

panel, as well as the most common tracking solutions provider (Wakoopa). (3) Its
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cross-national nature allows for the testing of how the TEM framework can be used

to create comparable cross-national measures, which is key when comparing stan-

dardised relationships across nations (Bosch and Revilla, 2021). (4) Once completed,

TRI-POL data will be available with open access (check here: Torcal et al. 2023).

The TEM allows for the transparent documentation and communication of the de-

velopment of the dataset, its limits and best practice when using it.

Below, we describe how the TEM was used to minimise the size of the error

sources and/or quantify them. For concision purposes, we limit our consideration

to the error sources that could realistically cause bias in our estimates of interest

and be measured and/or improved within the TRI-POL context. For those error

sources, we also present empirical evidence about their prevalence and/or potential

to introduce bias within the TRI-POL datasets of Italy, Portugal and Spain. SM 3

to 8 give more in-depth explanations of the data used and the analyses performed to

reach those results. A discussion of the other error sources is provided in SM 2.

6.1. Specification errors in TRI-POL

6.1.1. Defining what qualifies as valid information

The TRI-POL project aimed to measure more than 5,000 concepts across five coun-

tries. Due to this big volume, it was key to develop a standardised strategy to

create valid measurement instruments across topics and countries. Below, we briefly

summarise our strategies to minimise and quantify the specification errors. A more

in-depth discussion is proposed in Bosch and Revilla (2022).

Strategy to minimise errors: To operationalise each concept of interest into

valid metered data measurements, we developed the following three-step procedure:

1. Definition of the lists of URLs/apps to be used. Regardless of the concept (e.g.,

time in specific sites, type of content exposed), traces of interest are created

when an individual accesses to a specific URL or app. Hence, we created

comprehensive lists of URLs/apps where traces of interest would be produced

for each concept. For instance, for the concept “online news media exposure”,

we defined a list of all the URLs/apps considered as ”news media articles”.

This involved defining: (1) the news media outlets to be considered in each

country and (2) the URLs to consider within each outlet.
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2. Definition of what a visit of interest is. Even if an individual visited one of

the defined URLs/apps, the generated traces could still not be relevant to the

concept of interest. For instance, if what was being measured was whether a

person read an article or not, only visits complying with the requirements for

being considered as read should be used (e.g., a threshold of 120 seconds).

3. Establishment of the time frame of interest. Most of the TRI-POL concepts of

interest involved measuring average behaviours. To this end, the total sum of

behaviours of an individual during the tracked period was divided by a given

number of days. This had to be grounded in theory because the chosen time

frame could affect the likelihood and prevalence of outliers and the skewness

of the data, which can ultimately impact the estimates.

Following these steps not only helped to properly define the traces to use for

each concept of interest but also highlighted the design choices for which not enough

evidence was available to make informed decisions.

Strategy to quantify errors: When different design choices could be used

(e.g., using different lists of the main news media domains in a country), and not

a particular one was identified as being better, we computed one variable for each

potential design choice. For instance, for the concept “online news media exposure”,

we had to make different decisions, such as which list of news media domains to

consider or how many days of tracking to use when computing the variables (see

SM 4 for the complete list of design choices that we considered). Nonetheless, given

the available literature, we thought not possible to make an informed decision about

which design choices to use (e.g., is it preferable to use 2 weeks of tracking or one

week?). Thus, we created a variable for each potential combination, which resulted

in 3,573 variables to measure the concept of “online news media exposure”.

Mirroring what is normally done in the survey literature (see e.g., Smith et al.,

2020), for those concepts for which we created more than one variable, we then com-

puted the convergent, discriminant and predictive validity. Following the example of

“online news media exposure”, in terms of convergent validity, we computed one cor-

relation for each potential pair of variables. Therefore, we obtained 6,349,266 unique

Pearson’s correlation coefficients for each country. On average we found that, across

countries, the correlation between the different computed variables was between .40

(Spain) and .51 (Italy), which can be considered as a sign of medium to low conver-

gent validity. This indicates that, depending on the design choices made, variables
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could not be considered to measure the same latent concept of “online news media

exposure.”

Finally, to make sense of this abundant amount of data, we applied random

forests of regression trees to estimate the influence of the different design choices on

the validity of measurements, drawing inspiration from the Survey Quality Predictor

(SQP) software (Saris et al., 2011). This informed us about (1) which measures to

use in the final analyses and (2) the robustness of TRI-POL results. (see SM 4 for an

in-depth explanation about this). For example, for “online news media exposure”, we

used this approach to investigate which design choices helped maximise the predictive

validity of the measurements. We found that: 1) tracking participants in both PCs

and mobile devices should be preferred over using only PCs or mobile devices (this

contrasts with what most past literature has done); 2) when deciding which news

media outlets to track, the top 50 most visited news media outlets of a country should

be tracked, with little additional predictive power gained with extra tracked outlets;

and 3) 10 to 15 days of tracking data should be used, with longer tracking periods

not necessarily performing better. A more in-depth and up to date discussion of

these results can be found in Bosch (2023).

6.2. Missing data/measurement errors in TRI-POL

6.2.1. Tracking undercoverage

For TRI-POL, we used a panel of self-selected individuals who were already being

tracked with specific tracking solutions. Undercoverage was expected (Revilla et al.,

2017). However, asking panellists to install new tracking technologies was not pos-

sible due to time and budget constraints. Therefore, we assessed the prevalence of

undercoverage and estimated the bias it introduced, as summarised below. For a

more in-depth explanation, we refer to Bosch and Revilla (2022).

Strategy to quantify errors: To assess the prevalence of undercoverage, two

pieces of information were needed for each participant; which targets were tracked,

and which targets they used to go online. The first piece of information was obtained

using paradata and the second by asking participants questions about which devices

and browsers they used to access the internet during the 15 days before the first

survey wave (see SM 5 for the exact formulation used). Combining both sources

of information, we estimated the proportion of undercovered individuals, as well as
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the number and types of non-tracked devices and browsers. Across the different

countries, we found that the between 80.5% (Spain) and 85.7% (Portugal) of TRI-

POL participants had at least one device or browser not tracked. Hence, tracking

undercoverage is highly prevalent in the TRI-POL datasets.

The combination of survey and tracking paradata also allowed us to develop

an approach to estimate the bias introduced by undercoverage. Specifically, using

metered data from the subsample of fully covered individuals, we simulated how

different levels (% of participants not having all PCs or mobile devices covered) of

undercoverage would cause a bias for a set of univariate and multivariate estimates

from their true values (see SM 5 for more detailed information about this approach).

As an example, we simulated the bias that device undercoverage could introduce to

the results obtained for the measure “average time spent on the Internet”, which

represents the average time spent on any URL or app across all tracked targets, for

the 15 days prior to the survey being answered. We estimated that, when using

the TRI-POL dataset, tracking undercoverage could underestimate the average time

spent by participants on the Internet by 3.9% (Spain, in a scenario with 25% of

the sample without information about PC behaviours) to 25.8% (Spain, 75% of

the sample without information about mobile behaviours). This would imply that,

at the actual levels of participants in the TRI-POL samples with all their PCs or

mobile devices not tracked, the observed average time spent on the Internet might

be underestimated by around 14%, across the different countries. This estimate does

not take into account the effect of individuals having some but not all of their PCs

or mobile devices not tracked, hence, the real bias is most likely even higher. A more

in-depth discussion of these results can be found in Bosch et al. (2023)

6.2.2. Technology limitations

To reduce errors produced by technological limitations, ideally, we would: (1) identify

the digital traces and their characteristics and (2) design or select the technologies

allowing for their collection with the highest level of accuracy possible. In the TRI-

POL project, the control over (2) was limited since data were collected through an

already existing metered panel. Nonetheless, we defined strategies to quantify the

prevalence and potential impact of these limitations on the estimates.

Strategy to quantify errors: We asked Netquest to provide information on

all their tracking solutions and their limitations (what devices and traces they could
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or could not track, their level of accuracy, potential limits and interactions between

devices/OSs and technologies; see SM 1 and 6). We then combined this information

with the paradata about the technologies used to track each participant to compute

the proportion of participants who could be affected by specific technology limita-

tions (e.g., not being able to track incognito tabs). This allowed us to compute of

proportion of participants:

1. Not trackable in incognito mode: we found 13.5%, 6.2% and 8.1% of partic-

ipants affected by this technological limitation in Italy, Portugal and Spain,

respectively.

2. Without subdomain information: those represented 20.5% (Italy), 12.0% (Por-

tugal) and 14.8% (Spain) of participants.

3. Without in-app information: given that the tracking solutions used by Netquest

cannot capture in-app behaviour, 100% of TRI-POL participants were affected

by this, across all countries.

The nature of these limitations, nonetheless, prevented us from assessing the

extent to which they might influence the final estimates. For instance, since the

information from in-app behaviours cannot be obtained with any current approach,

it is not possible to assess how much and which type of information is missed.

6.2.3. Technology errors

Although researchers have little control over technology errors when using a metered

panel, we designed the following strategies.

Strategy to minimise errors: First, we identified whether the tracking solu-

tions used were susceptible to being shut down by energy-saving apps and/or built-in

features of the devices. This was not the case. Second, we limited the sampling pool

to participants with up-to-date meters, which are better equipped to deal with the

latest OS versions. Third, due to some of the errors, meters can stop tracking en-

tirely. As such, sampled participants might not produce any metered data during

the tracking period. To avoid this, we excluded participants without any tracked

behaviour during the last month from the sampling pool. This could exclude very

low-frequency internet users, but their very presence should be rare in an opt-in

75



Chapter 3: When survey science met web tracking

online panel. Finally, manually configured proxies sometimes produce inaccurate

results. An approach to avoid these problems could be excluding participants using

iOS devices. We considered that the undercoverage errors introduced by this would

outweigh its benefits. As such, TRI-POL data from iOS devices might potentially

be affected by measurement errors, which should be quantified.

Strategy to quantify errors: The nature of proxy errors makes them hard

to quantify since it is complex to understand when and how the classification al-

gorithm might have failed deciding which traces to include or exclude. However,

indirect strategies can be used to test whether iOS users present different measure-

ment properties. As an example, we tested whether being tracked on an iOS was

associated with the absolute difference between the self-reports and metered data

for the variable “average time spent on the Internet” (Absolute difference = — Self-

reported time – Tracked time —, see Araujo et al., 2017). Although we expect both

the survey and metered measures to be affected by errors, a significant effect of being

tracked on an iOS could indicate that participants tracked on an iOS present different

measurement properties. SM 7 discusses in more depth the exact analyses conducted.

We found that being tracked on an iOS significantly increases the absolute difference

in Italy and Spain, but not in Portugal. Specifically, in the TRI-POL dataset, being

tracked on an iOS device is associated with having and absolute difference 56.8 and

57.6 minutes larger than for those not tracked on an iOS. Therefore, controlling for

different potential confounders, we see that the mismatch between the survey and

the metered data measures for iOS respondents is substantially higher than for those

not tracked on an iOS. This could indicate that measures coming from iOS devices

present different measurement properties, potentially of lower quality.

6.2.4. Hidden behaviours

Participants had two potential ways of hiding their behaviours: blacklisting domains

and disconnecting their tracking technologies.

Strategy to minimise errors: We asked Netquest for their blacklisted do-

mains in order to know whether some behaviours would be missing by design. None

of TRI-POL’s defined URLs were blacklisted.

Strategy to quantify errors: No information was available about whether

participants disconnected their trackers or not, nor was there information about
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the types of content triggering this. Besides, considering that participants had

the tracking technologies installed before sampling them, we could not apply quasi-

experimental approaches like the ones proposed by Toth and Trifonova (2021). Con-

sequently, we could not quantify (1) whether participants disconnected their meters

and (2) the extent to which this could cause a bias in TRI-POL’s estimates.

6.2.5. Misclassifying non-observations

Minimising and quantifying misclassifications required collecting as much informa-

tion as possible about the errors which could provoke error-induced non-observations,

to clearly differentiate which non-observations should be considered real and which

not.

Strategy to minimise errors: Information about other error sources was

used to decide which non-observations were coded as real (0), as error-induced (NA)

or as unclear (specific code). For instance, for a few concepts, we directly asked

participants whether they had visited specific domains with non-tracked targets (see

SM 7 to check the questions asked). This information allowed us to discern between

real and undercoverage-induced non-observations, potentially reducing the extent to

which misclassification could affect the estimates.

Strategy to quantify errors: This same information also allowed us to com-

pute the prevalence of undercoverage-induced true non-observations across different

topics, individuals and countries. For instance, we computed the proportion of indi-

viduals with undercoverage-induced non-observations for Facebook, Twitter and the

five most popular news media outlets in each country (see SM 8 for a more in-depth

explanation). Across the different countries and domains, we found between 3.1%

(Italy, GazzetaSud) and 25.9% (Spain, RTVE) of participants with undercoverage-

induced non-observations. These proportions, nonetheless, varied highly depending

on the domain of interest. In terms of social media, Facebook presents a low pro-

portion of participants with undercoverage-induced non-observations (from 6.7% in

Portugal to 8.4% in Spain), whereas the proportion of affected participants is sub-

stantially higher for Twitter (11.7% in Spain - 19.0% in Italy). The proportion

of individuals with undercoverage-induced non-observations for news media outlets

was on average between 10.1% (Italy) and 15.1% (Portugal). Thus, in the TRI-

POL dataset, there is a non-negligible risk of increasing the size of the estimate’s

measurement errors if these participants are not excluded from the analyses.
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In order to quantify the extent to which misclassifying these non-observations

as true lacks of behaviours could introduce bias, one could apply a similar simulation

strategy as for undercoverage (see 6.2.1): undercoverage scenarios can be combined

with misclassification scenarios; simulated non-observations should be randomly mis-

classified to approximate the effect that this could have in the full dataset.

6.3. Processing errors in TRI-POL

6.3.1. Coding/categorisation errors

The TRI-POL project measured variables about the participants’ consumption of

specific news media content (e.g., political, national, opinion). Thus, we had to

define what we considered, for instance, to be “political” or “opinion” content. Using

these definitions, we created guidelines to code subdomains of the tracked news media

outlets as “political” or not, “opinion” or not, etc. (see https://www.upf.edu/web/

tri-pol/documentation-and-data-archive). Using the guidelines, human coders

went through all the listed news media outlets in each country and categorised their

subdomains as mostly containing national, international, regional, opinion or other

articles (e.g., theguardian.com/politics mostly lists URLs covering political news and,

as such, it is considered as political).

Strategy to minimise errors: Coders were required to have language and

country-specific knowledge. To supervise that the coding approach was applied in

a comparable way across countries and to spot potential coding errors, another re-

searcher supervised all the coders’ work.

Strategy to quantify errors: Given the time and budget constraints, only

one coder per country was used for the full dataset, preventing us from computing

inter-coder reliability. Therefore, it was not possible to quantify how codes varied

across coders.

7. Discussion

Metered data are increasingly being used to understand people’s online behaviours.

In this article, we propose a Total Error framework for Metered data, the TEM, which

documents and conceptualises the data generation and analysis process of metered
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data. It also distinguishes the various kinds of errors that might arise during each step

in the process. By expanding the TSE for metered data, the TEM framework can be

used by researchers from different backgrounds, to improve documenting, quantifying

and, when possible, minimising errors. Given the framework’s flexibility, the TEM

can be applied to stand-alone metered data projects and projects combining metered

data with surveys, to probability and non-probability-based sampling approaches and

to cross-sectional and longitudinal research.

7.1. Limitations and future research

The TEM framework presents some limitations. First, as the TSE, the TEM only

considers a definition of data quality. Other factors should be considered when

deciding whether to use metered data (e.g., cost, timeliness, risks). In particular,

privacy and ethical issues must be considered when planning to collect metered data.

Truly informed consent might be more difficult to obtain than in surveys due to

the limited understanding of some participants regarding the data being collected

(Revilla, 2022). Moreover, metered data should not be shared nor made publicly

available in its raw form if it can represent any risk to the participants’ privacy, even

if this could make some results not fully reproducible.

Second, the TEM considers the errors of the metered data independently.

Nonetheless, metered data have mostly been collected in parallel with surveys. In

such cases, one must consider the potential trade-offs between the active (surveys)

and passive (metered) data collection parts of their projects. These trade-offs might

vary across the many potential ways in which surveys and metered data can be com-

bined (Revilla, 2022). In-the-moment surveys represent a good example (Ochoa and

Revilla, 2022). By tracking what people do online with metered data, in-the-moment

surveys can be triggered when a participant shows a specific behaviour, allowing (1)

for the measurement of new survey concepts and (2) the enhancement of metered

data (for instance, by recording the reasons behind behaviours). Nonetheless, send-

ing surveys after a specific behaviour might make participation in the project more

burdensome, as well as the monitoring of their behaviours more evident. This could

potentially increase social desirability and the likelihood of dropping out even if the

(limited) existing evidence does not seem to support these ideas (Ochoa and Re-

villa, 2021). Although our framework does not directly address the particularities of

these projects, its similarity with the TSE allows researchers to use both frameworks
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simultaneously to consider potential interactions. Nonetheless, further research is

needed to get a better understanding of how to theoretically and empirically do this.

Third, although this paper discusses and exemplifies the strategies followed in

the TRI-POL project to quantify error sources, standardised approaches to quantify

metered data errors still need to be developed and tested. The TEM framework,

however, can serve as the foundation for future empirical research. Based on our

experience, future research should explore at least three areas: (1) since the rep-

resentation and measurement processes of metered data resemble those of surveys,

approaches used to quantify surveys errors could, in principle, be adapted to me-

tered data (e.g., GMTMM for administrative and survey data, Oberski et al.). (2)

Combining metered data with survey data can help have a better understanding of

the quality of both sources. (3) Metered data allow for the creation, for each concept

of interest, of dozens or hundreds of variables by simply altering the specifications

of the queries. This might allow for ML algorithms to be fed with hundreds or thou-

sands of quality estimates, for a single study, to predict what characteristics might

yield the least biased estimates.

Fourth, even if this paper presents some empirical evidence regarding the data

quality of the TRI-POL datasets, the prime goal of these examples is to showcase

how the TEM might help when designing instruments based on metered data, and

how the quality of these can be empirically tested. More in-depth research must be

conducted to get a good understanding of a) the best approaches to measure metered

data quality, b) the general quality of metered data and c) the relevance of each error

source.

Fifth, in the coming years, ML might play an important role in future uses

of metered data. For instance, ML might increasingly be used to process metered

data and/or the use of metered data in predictive statistics might become more

prevalent (Hofman et al., 2021). If this happens, the TEM framework can be used

to accommodate current debates on the challenges of ML for big data sources, and

potential solutions (see Qiu et al., 2016 for a good summary of this). This could mean

understanding how ML might amplify (Wang and Russakovsky, 2021) or reduce

(Ramirez, Abrajano, and Alvarez, 2019) already existing biases or how and when

automatisation errors could introduce new sources of error.

Finally, although key differences separate metered data from other digital trace

data sources, the TEM framework can be applied to better understand the errors of
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other digital trace data sources or used as the foundation for new frameworks. On the

one hand, metered data are similar to platform trace data or data donations; error

sources like defining what qualifies as valid information or tracking undercoverage

can be translated. On the other hand, parallels can be drawn with traces like GPS

or call log data. In these cases, most measurement, processing, missing data and

coverage errors might apply (with potential differences in the details), since these

have to do with the technologies being installed and properly working.

7.2. Conclusions and practical recommendations

Well-designed metered data can be a very useful resource. By developing the TEM,

our goal was twofold: to help researchers (1) understand the limitations of already

published research using metered data, and (2) to design metered data collection

strategies that minimise the error size and allow for the quantification of the remain-

ing errors.

Most research done to date has not discussed the potential limitations of me-

tered data in enough detail. For instance, it is common not to report the tracking

solutions used, nor how measurements have been defined, nor the prevalence of er-

rors such as tracking undercoverage. This is not an adequate practice since it does

not provide enough information to judge data quality, and it is not in line with cur-

rent good practices in survey research (e.g., comparable to not reporting response

rates). This is even more pressing if we consider that, when applying the TEM to

quantify the error sources affecting the TRI-POL datasets, we have found that some

errors such as tracking undercoverage, invalidity, technology errors or the misclassifi-

cation of non-observations are highly prevalent. Moreover, we showed that invalidity

and tracking undercoverage have the potential to bias the results obtained (e.g., un-

derestimating univariate estimates or reducing the predictive power of variables in

multivariate models).

Considering this, and based on the TEM and our experience with TRI-POL,

we propose some practical recommendations when using metered data:

1. Clearly define the list of traces (and how to transform them) to create valid

measurement instruments. If it is not possible to make an informed decision

and differences in the validity of different design choices are expected, create

several measurements and test the robustness of the results and/or validity.
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2. Consider the potential consequences that the different technologies can have

on data quality before deciding which one(s) to use. If this is out of control,

list all their limitations and report their prevalence and how these might affect

the final estimates.

3. Clearly define what targets need to be tracked and try to maximise their cover-

age. If this is not possible or is out of your control, collect auxiliary information

to assess its prevalence and potential to introduce bias.

4. Be mindful that tracked devices might be used by non-participants. Try to

develop strategies to minimise or assess how this can affect the estimates.

5. Non-observations might be caused by errors. Auxiliary information should be

collected to classify non-observations as real or induced by errors, in order to

deal with them accordingly.

6. Develop strategies to minimise and correct for human or machine induced er-

rors when extracting and transforming the raw data into observed variables.

Metered data projects can quickly become complex, involving many steps that

might be sensible to errors.

To conclude, collecting high quality metered data is complex and involves a

high degree of uncertainty. Decisions often require balancing many pros and cons

with limited information. This does not imply that metered data should not be

used, or that previous research might be biased. It means, instead, that working

with metered data requires a high degree of care and transparency and that further

research is needed to help researchers to optimise their use of such data.
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Chapter 4

Uncovering digital trace data biases: tracking

undercoverage in web tracking data

Oriol J. Bosch, Patrick Sturgis, Jouni Kuha, and Melanie Revilla

Abstract

In the digital age, understanding people’s online behaviours is vital. Digital trace data
has emerged as a popular alternative to surveys, many times hailed as the gold standard.
This study critically assesses the use of web tracking data to study online media exposure.
Specifically, we focus on a critical error source of this type of data, tracking undercover-
age: researchers’ failure to capture data from all the devices and browsers that individuals
utilize to go online. Using data from Spain, Portugal, and Italy, we explore undercover-
age in commercial online panels and simulate biases in online media exposure estimates.
The paper shows that tracking undercoverage is highly prevalent when using commercial
panels, with more than 70% of participants affected. In addition, the primary determinant
of undercoverage is the type and number of devices employed for internet access, rather
than individual characteristics and attitudes. Additionally, through a simulation study,
it demonstrates that web tracking estimates, both univariate and multivariate, are often
substantially biased due to tracking undercoverage. This represent the first empirical ev-
idence demonstrating that web tracking data is, effectively, biased. Methodologically, the
paper showcases how survey questions can be used as auxiliary information to identify and
simulate web tracking errors.

Keywords:
Digital trace data · Web tracking data · Undercoverage · Bias · Media exposure · Monte
Carlo simulation
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1. Introduction

In the age of the internet, measuring how people behave and what they consume

online is crucial for academic, policy, and commercial researchers. Whether they

are studying the use and potential effects of fertility apps (Rampazzo et al., 2022);

gender inequalities in access and participation in online platforms (Kashyap et al.,

2020); or how filter bubbles shape news media exposure (Cardenal et al., 2019), high-

quality measures of online behaviours are essential. Although respondent self-reports

have traditionally been used as the main instrument to measure online behaviours

(González-Bailón and Xenos, 2022), there have long been good reasons to doubt

their accuracy (Parry et al., 2021). These relate, most notably, to social desirabil-

ity bias and recall error, as well as the cognitive burden they place on respondents,

which can have negative impacts on response rates and sample composition. Con-

sequently, researchers have long been searching for alternative ways of measuring

online behaviours.

In this context, the collection of digital trace data has become prominent in

recent years. This type of data records the interactions of users with specific digital

systems (Howison et al., 2011), such as online transaction systems, telecommuni-

cation networks, websites, social media platforms, smartphone apps, sensors built

in wearable devices, and digital devices (Stier et al., 2019). Given the ‘objective’

and granular nature of these digital traces, some have advocated for the possibility

of using them to enhance or substitute self-reports (Revilla, 2022). Indeed, recent

studies have already begun to treat digital trace data as the de facto gold stan-

dard when measuring online behaviours (Araujo et al., 2017; Scharkow, 2016), with

some authors recommending substituting survey self-reports for digital traces when

measuring what people do and consume online (Konitzer et al., 2021).

Nonetheless, digital trace data is itself subject to a wide range of different

errors, which may introduce bias to estimates and substantive conclusions (Bosch and

Revilla, 2022b; Sen et al., 2021; Amaya et al., 2020). Probably the most concerning

of these errors is tracking undercoverage. It occurs when researchers fail to capture

data from certain digital systems that individuals utilize to engage in specific online

behaviours. For instance, when investigating an individual’s interaction with harmful

content on social media platforms, researchers must gather data from all the various

social media platforms and accounts that the person employs. Failure to track data

from all relevant digital systems leads to incomplete measurements. This, in turn,
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can introduce bias to the estimates produced with digital trace data, if the observed

behaviours differ from participant’s true ones. This issue arises because digital trace

data is generated at the level of the digital systems individuals employ, rather than at

the individual level. Therefore, to obtain individual-level measurements, it is crucial

to collect information from all pertinent digital systems and devices utilized by each

respondent.

In this paper we focus on understanding the impact of tracking undercoverage

for one of the most widely used approaches of collecting individual-level digital trace

data: web trackers. These technologies, also known as meters (Revilla et al., 2021),

can be installed on participants’ browsing devices with their consent. Meters enable

researchers to track the traces left by participants while interacting with their devices,

such as visited URLs, apps, timestamps, and sometimes even HTML content. We

consider the consequences of tracking undercoverage when studying online media

exposure, a behaviour that is well-suited to measurement with web trackers.

The remainder of this article proceeds as follows: in the next section, we review

the literature on measurement of media exposure and web trackers. In the third sec-

tion, we set out how tracking undercoverage can introduce bias to survey estimates.

Next, in the fourth section, we describe the data and variables used, and in the

fifth section, we describe our analytical approach to estimating bias due to tracking

undercoverage. In the final section we present the results and, in the seventh, we

conclude.

2. Measuring online media exposure with web trackers

Survey self-reports, while widely used for studying media use, face significant and

well-known challenges (Price and Zaller, 1993; Chang and Krosnick, 2003; Prior,

2009). Research has shown that participants tend to overstate their media exposure,

due to the complexities of the recall task. This has negative consequences on the

accuracy of media exposure measures, evidenced by the low levels of agreement

between self-reported and more ‘objective’ measures of media exposure (Prior, 2009;

Araujo et al., 2017; Parry et al., 2021; Scharkow, 2016).

To overcome these challenges, social scientists have made significant efforts

to develop alternative approaches for measuring online media exposure that do not

rely on participants’ memory and can also collect more granular data in greater vol-
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Figure 4.1: Diagram to illustrate the impact of device undercoverage

umes. Recent examples include public application programming interfaces (He and

Tsvetkova, 2023) or data donations (Bosch et al., 2023). However, the most com-

mon approach is through use of web tracking technologies. Substantive researchers
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have used meters to quantify the prevalence of dubious media exposure during elec-

tions (Guess et al., 2020), the overlap in political media diets between partisans

(Guess, 2021), and the extent to which online news environments are segmented by

age groups (Mangold et al., 2021). Another salient area of inquiry is the degree to

which social media and other sites serve as intermediaries for online media exposure

(Cardenal et al., 2019; Jürgens and Stark, 2022; Scharkow et al., 2020; Stier et al.,

2021).

However, web trackers are not immune to errors themselves. For researchers to

obtain complete data on what an individual does online, they must track respondent

behaviours across all relevant digital systems they use to connect to the Internet. How

this is achieved, however, can vary a lot depending on the meters available as well as

the number and type of devices used by respondents. Figure 1 provides an illustration

of device undercoverage. Here, the target individual browses the Internet using

several browsers (sometimes more than one within a device) and connecting though

different networks. Collecting data from all devices can be achieved in different ways.

Participants may be asked to install tracking apps in all their devices. Alternatively,

if it is not possible for one or more devices, they can ask participants to install

tracking plug-ins (i.e., VPNs) in each of the browsers they use on those untracked

devices. Or a proxy can be manually configured to collect data at the network level.

In practice, most tracking projects require a combination of different meters and

tracking approaches, as exemplified in Figure 1. This is because there is rarely a

one-size-fits-all tracking technology available: PCs are better tracked with browser

plug-ins, Android devices with tracking apps, and iOS devices can (generally) only

be tracked with proxies. However, achieving the goal of full coverage can be very

challenging (Bosch and Revilla, 2022a,b). For instance, some participants are not

willing to install all the required technologies on all their devices, or the meters used

by researchers might not be installable in some types of devices/browsers.

Research has shown that between 53% (Spain, Revilla et al. (2021)) and 68%

(United States, Pew Research Center (2020)) of participants in web tracking surveys

do not have the meters installed in all the devices they use to go online. Hence, web

tracking data likely only captures some but not all of the online behaviours. Nonethe-

less, so far, most research comparing self-reported and metered data measures of the

same concepts has treated metered data as the gold standard, considering differences

between these measures as attributable to errors in the self-reports. For example, re-

search has shown that metered measures of Internet use and media exposure tend to
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be substantially lower compared to self-reports (Araujo et al., 2017; Scharkow, 2016),

and correlate only modestly with digital trace data measures (Parry et al., 2021).

Researchers have concluded that these differences derive from errors in the side of

self-reports. For instance, (Parry et al., 2021, pp. 1541) concluded “self-report mea-

sures of media use may not be a valid stand-in for more objective measures.” while,

(Ernala et al., 2020, pp. 10) went as far as recommending “using logging applications

rather than self-reports where feasible and appropriate, treating self-reports as noisy

estimates rather than precise values.” On the other hand, a Pew Research Center

(2020) study found that participants with uncovered devices had a higher probability

of a mismatch between self-reported and metered data measures (self-reported mea-

sures being higher than metered data) than those fully covered. This suggests that

device undercoverage results in underestimation of online behaviours using metered

data, an intuitively plausible expectation.

Nonetheless, much is still uncertain. Nothing is known about the character-

istics of tracking undercoverage nor the mechanisms behind this phenomenon. Ad-

ditionally, the size and direction of tracking undercoverage bias is still unknown.

Considering this, the paper explores three research questions:

1. What is the prevalence of tracking undercoverage? (RQ. 1)

2. What characteristics are associated with tracking undercoverage? (RQ. 2)

3. To what extent does device undercoverage bias estimates of media exposure?

(RQ. 3)

3. Defining tracking undercoverage bias

Here we provide a formal definition of tracking undercoverage and undercoverage

bias. Consider respondents i = 1, . . . , n in a sample from a target population and

three kinds of variable.

Variables that will be measured using web tracking data are denoted Yijk for

individual i, variable j = 1, . . . , J , and device k = 1, . . . , K. We can, without loss

of generality, assume that Yijk ≥ 0, and take them to represent time/visits spent in

a given period on specific internet activities on different devices. Suppose that in

each case the variable of interest is the sum Yij =
∑K

k=1 Yijk of the values across all
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the devices. An example of this kind of variable is the time an individual spends

on a specific website, on each device (Yijk) and in total (Yij). Let Yi=(Yi1,. . . ,YiJ)

denote the vector of these variables for individual i. A vector of variables Zi that

will be measured in the survey part of the data collection. Examples include the

respondent’s level of education and self-reported level of political interest. And a

vector of variables Vi which characterise the internet sources and activities under

consideration.

Zi and Vi can be combined with Yij to derive further variables related to internet

behaviour. They could be obtained from external sources (in which case they do

not depend on respondent i) or from the survey. An example of the former is the

identification of a website as a news site vs. not, and an example of the latter the

respondent’s self-report of which news site they have most trust in.

Suppose that the parameter of interest is some function of (Yi,Zi,Vi) across the

individuals in the population. For example, this could be the average daily time a

person spends on the internet, the proportion of their internet time they spend on

news sites, the average variance of political ideology scores of the news sites that

they visit, or the correlation between the time a person spends on news sites and

their self-reported voting behaviour in elections.

Define dik = 1 if individual i uses device k at all, and dik = 0 if they do not.

Similarly, let d∗ik = 1 if device k is recorded in web tracking data for individual i and

d∗ik = 0 if it is not, and let eik = 0 if d∗ik = dik and eik = 1 if d∗ik ̸= dik. There is

undercoverage of device k for individual i if eik = 1, i.e. dik = 1 but d∗ik = 0 (we

assume that the false recording case dik = 0, d∗ik = 1 does not occur).

The true value of Yij can be written as Yij =
∑K

k=1 dikYijk and its measured

values from web tracking data as Y ∗
ij =

∑K
k=1 d

∗
ikYijk. Undercoverage leads to mea-

surement error in the measured values if Y ∗
ij − Yij =

∑K
k=1 eikYijk ̸= 0. The expected

size of this error depends on the probabilities of undercoverage P (eik = 1), but also

on the distribution of Yijk across the devices and on the correlations between eik and

Yijk.

The measurement error can lead to undercoverage bias in estimates of the

parameters of interest that use Y ∗
ij instead of the true values Yij. The size of this

bias will depend not only on the magnitude of the measurement errors but also

on the definition of the parameter and the joint distribution of all the variables

involved in it. Here it is worth noting, in particular, that the bias does not need
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to be toward zero, i.e., undercoverage does not need to lead to underestimation.

Downward bias is inevitable only if the parameter is a simple total or mean, such

as the average time spent on the internet, since then every missed device can only

reduce the estimate. For other types of parameters, however, the undercoverage bias

can be in any direction. For example, the average proportion of time that individuals

spend on news sites will be underestimated, overestimated, or estimated with little

bias, depending on whether and how the individual uses the devices that are included

in tracking tend to differ from how they use the devices that are not included.

4. Data and variables

4.1. The TRI-POL dataset

We use data from the first wave of the TRI-POL project (Torcal et al., 2023),

the goal of which is to understand whether and how online behaviours are related

to affective polarisation across Southern European and Latin American countries

(https://www.upf.edu/web/tri-pol)1. TRI-POL conducted a three-wave survey be-

tween September 2021 and March 2022. Questionnaire responses were matched at the

individual level with metered data. Data were collected through the Netquest opt-in

metered panels (https://www.netquest.com), which consist of individuals who have

meter(s) already installed in their devices and who can also be contacted to conduct

surveys. We can thus link these respondents’ online behaviour with their question-

naire data. When the panellists join the metered panels, they must agree to install

the meter on at least one device (PC, tablet, or smartphone), and they receive more

incentives if they install it on more devices (up to a maximum of three). Here we

use the data collected in Italy, Portugal, and Spain.

Cross quotas for age and gender, and quotas for educational level, and region

were used in each country to ensure a sample matching on these variables to the

general online populations. Survey questions were used to measure attitudinal and

demographic variables, while metered data were used to measure variables related to

the general Internet use as well as consumption of specific news media outlets, polit-

ical news, and social media (see the TRI-POL data protocols in footnote 2 to check

the specific URLs defined to measure these concepts). Metered data was collected

1More information about the data collection strategy of both survey and digital trace data can
be found in the TRI-POL data protocols: https://osf.io/3t7jz/
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for the 15 days prior to and following participants completing the questionnaire. The

meter logged each URL accessed by the panellists, along with timestamps indicat-

ing the initial visit to the URL, and the duration in seconds during which the URL

remained the active content within the browser, or in the case of mobile devices,

on the smartphone screen. It is important to note that a URL or app was classi-

fied as ’active’ when it was the foremost content displayed in the browser or on the

device’s screen. This definition excludes any other URLs or apps that might have

been open in separate tabs or screens, as they were not considered active during

this time frame. The duration of active engagement was computed as the elapsed

time between the moment the URL or app first gained ’active’ status within the

browser or device and the point at which a different URL or app took over as the

active content in the browser or device. A visit was defined as any opened URL/app

lasting one second or more. Participants were tracked on iOS and Android mobile

devices, and Windows and MAC computers, using the tracking solutions provided by

Wakoopa (https://www.wakoopa.com/). Windows and MAC devices were tracked

with desktop apps and/or web browser plug-ins, Android devices through apps and

iOS devices through manually configured proxies. More information about the col-

lectable data and the characteristics of each of the tracking technologies used can be

found in Torcal et al. (2023).

Challenges were faced when filling some of the specific cross-quotas with partic-

ipants from the metered panel. Hence, in some cases panellists were invited without

a meter installed to fill some of the quotas. Thus, in total, for the first wave, 3,548

respondents completed the survey, but only 2,653 had the meter installed in at least

one mobile (smartphone or tablet) or PC device: 993 in Spain, 818 in Portugal and

842 in Italy. For the analyses, we combine the samples from the three countries.

No significant differences are observed between the full sample and the subsample

of tracked participants, across a selection of demographic, political and technolog-

ical variables (see Supplementary Material 1, i.e., SM 1). Nonetheless, to correct

for any unobserved difference in the sample characteristics between the full sample

of respondents, and those with the meter installed, estimates from the subsample

of metered participants were weighted with inverse probability weights, computed

using the random forest relative frequency method (Buskirk et al., 2015).
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4.2. Identifying undercoverage and its characteristics

We first had to identify when a participant was undercovered, and through which de-

vices. To do so, two pieces of information were needed: which sources were tracked,

and which sources panellists used to go online. The first piece of information was

obtained using paradata about the technology with which participants were being

tracked, the type of device, the operating system, whether it was a tablet or smart-

phone and, for plug-ins, the browser in which they were installed2. The second piece

of information was obtained by asking participants questions about which devices

and browsers they used to access the internet during the 15 days before the start of

the survey. SM 2 shows the wordings of these questions (English translations), as

well as the paradata available. We were able to identify any mismatches between the

self-reported devices used to go online, and the paradata of those that we tracked.

With this, we were able to identify how many of devices were not covered, and which

type of devices they were (e.g., Windows or MAC).

In terms of browser undercoverage, we did not have information about the

number of browsers that participants used within each of their devices, but only the

types of browsers (e.g., Chrome or Firefox) used on all their Windows PC, MAC,

and Android devices (see SM 2 to see the exact question used). Hence, for fully

undercovered panellists, it would not be possible to discern whether a browser is

not covered because the panellist did not install it in a tracked device, or because

it was installed on an untracked device. Conversely, for fully covered panellists,

we know that all their devices have a tracking technology installed; if a browser is

not tracked, it is because the technology installed in the device is not tracking that

browser. Hence, for fully covered panellists we were able to identify the types of

browsers that they were not covered, in general and within each type of device (e.g.,

Windows PC). No information was computed for undercovered panellists.

It should be noted, nonetheless, that this identification strategy is affected by

errors, given that the self-reported measures of the number and types of devices and

browsers used by participants can be affected by measurement errors.

2No information about the networks in which proxies were configured was available.
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4.3. Predictors of tracking undercoverage

To assess which individual characteristics are associated with undercoverage, we

conducted three logistic regressions predicting whether a participant was not fully

tracked in terms of device (1= at least one device not tracked, 0 = fully covered). In

the first model, we focus on the profile of the people more likely of being undercov-

ered. Hence, as independent variables, we introduced sociodemographic information

about participants’ sex (male = 0, female = 1), education (0 = not completed high

education, i.e., post-secondary education such as university or superior technical

training, 1 = completed high education), age group (18-24 = 1, 25-34 = 2, 35-44 =

4, 45-54=5, +55 = 6), and country of residence. Also included were political vari-

ables measuring participants’ political ideology (0 = left, 10 = right) and political

interest (1= not at all, 2= a little, 3= a fair amount, 4= a lot), as well as a measure

of panel loyalty (the number of years a participant had been part of the Netquest

panels) a self-reported measure of participants’ Internet use (as hours spent on the

Internet on a typical day). The second model introduced variables relating to the

devices that people use. Therefore, as predictors, we introduced variables for the

self-reported number of Windows PCs, MACs, Android, and iOS devices that par-

ticipants used to go online during the 15 days prior to the survey. We also included

dummy variables for whether the participants used both PCs and mobile devices to

go online, or only mobile or PCs. In Model 3, we combined all predictors.

5. Simulated estimates of undercoverage bias

The bias introduced by device undercoverage cannot be directly quantified, since data

that would be collected from the noncovered devices is, by definition, not observed.

Hence, to assess the likely extent of this bias, we developed a Monte Carlo simulation

to examine the magnitude of bias introduced by device undercoverage. To do so, we

used data from the subset of 688 participants identified as fully covered in terms

of device (i.e., match between self-reports and paradata on the number and type of

devices used), considering that they are the only ones for which we can observe their

complete online behaviours in terms of device. We take this to be the true complete

sample of n respondents in the simulation. No significant difference is found between

this sample and the full sample of participants in a selection of sociodemographic,

political, and technological variables, except for the average number of devices (see
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SM 3 for the results).

Table 4.1: Scenarios for the simulations

Scenario P(PC undercoverage) P(Mobile undercoverage)

1 0.25 0.0

2 0.50 0.0

3 0.75 0.0

4 0.0 0.25

5 0.0 0.50

6 0.0 0.75

7 0.25 0.25

8 0.25 0.50

9 0.25 0.75

10 0.50 0.25

11 0.50 0.50

12 0.75 0.25

13* 0.33 0.33

Note: *Scenario 13 represents the actual undercoverage in the sample

For this group of fully covered participants, we generated simulated observed

samples by setting one or more of their devices to be non-covered and the metered

data for these devices to be missing (i.e., setting d∗ij to 0, in the notation of Section 3).

Ideally, we would do this at the level of individual devices. However, we did not have

meter data for respondents at the level of devices but only aggregated at the level

of PC and mobile devices. Hence, in our simulation we consider all PCs together

as one device (k = 1) and all mobile devices as one device (k = 2). We defined

13 simulation scenarios which vary in the probability of participants having no PC

or mobile device covered (P (d∗ij = 0)). These probabilities were independent for

different participants. For scenarios simulating both PC and mobile undercoverage,

this independence was relaxed to constrain the simulations to not allow both PC

and mobile undercoverage for the same participant. Hence, the simulation took two

steps: in the first step, all participants had a random chance to be selected to have

their PCs untracked. In the second step, a subsample of those fully tracked on PC

were randomly selected to have their mobile devices untracked. Additionally, fully

covered participants using only PCs or mobile devices were kept in the sample, but

were not affected by undercoverage, given that this would have resulted in them
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having no device covered whatsoever, an impossible scenario. Table 1 presents the

details for each scenario.

For each scenario, we created 1,000 random allocations. In each of them,

devices were set to be uncovered with the probabilities shown in Table 1. Estimates

of several parameters of interest, as described below, were calculated for each such

dataset3. Their average over the 1,000 simulations is the expected value of the

undercovered estimate in each setting, and the difference between it and the fully

covered estimate (which uses all the data) estimates the undercoverage bias. Monte

Carlo standard errors were computed using the R “rsimsum” package (White, 2010;

Gasparini, 2018).

Simulations were conducted for a range of univariate and multivariate statistics

selected based on the conceptualisation of undercoverage bias presented in section 3.

The univariate statistics were the following:

• Average time spent on the Internet. This measure captures the time

spent by each participant on any URL and online app (Araujo et al., 2017).

• Average time spent on Social Network Sites (SNSs). This corresponds

to the time spent on any URL or app identified as being a SNS (i.e., Facebook,

Instagram, Snapchat, TikTok, Twitter, WhatsApp, Messenger, YouTube) (Scharkow

et al., 2020).

• Proportion of non-users of online news. We replicate Reiss (2022) ap-

proach to measure news avoiders. Non-users were defined as those who during

the period of one month never visited an URL or app defined as “news” (Palmer

et al., 2020). In our case, we only consider the consumption of written “news.”

• Total number of media consumed. We replicated Padró-Solanet and Bal-

cells (2022) and computed a statistic showing the total number of media con-

sumed by participants (during the first wave), to measure the variety of their

media diet.

• Proportion of Internet time spent on SNSs. We computed a measure of

importance of SNSs consumption over all the time participants spend on the

Internet: ((Time on SNSs)⁄(Time on the Internet)×100).

3Weights applied to compute these estimates. The weights bring closer the already very close
sample of fully covered participants and the full sample, on a selection of sociodemographic, political,
and technological variables.
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• Proportion of Internet time spent on news media outlets. We com-

puted a measure of importance of news media consumption over all the time

participants spend on the Internet: ((Time on news media outlets)⁄(Time on

the Internet)×100).

For multivariate statistics, we focused on the following five statistics:

• Correlation between the average time spent on SNSs and trust in

SNSs. We computed the Spearman4 correlation between trust in SNSs (0 to

10 scale, 0 being “I don’t trust it at all”, and 10 “Completely trust”), and the

average time spent on SNSs during the month of tracking.

• Association between the trust in news and news avoidance. We ran a

logit regression with news avoidance as the dependant variable, trust in news

as the main independent variable (0 to 10 scale, 0 being “I don’t trust it at

all”, and 10 “Completely trust”), and several common control variables (age,

gender, higher education, left-right self-placement, and country).

• Association between the total number of media consumed and ide-

ological extremism. Similarly as Padró-Solanet and Balcells (2022), we ran

an OLS regression with a measure of ideological extremism as the dependent

variable , the total number of media as the main independent variable, and sev-

eral common control variables (age, gender, higher education, political interest,

left-right self-placement, and country).

• Correlation between age and Instagram use. We computed the Spearman

correlation between the age of the participant (continuous), and the average

time spent on Instagram during the month of tracking.

• Correlation between the average time spend on SNSs and on news

sites. We computed the Spearman correlation between the average time spent

on SNSs during the month of tracking, and the average time spent on news

media sites.

4Given the zero-inflated nature of the web tracking measures used, we use Spearman instead of
Pearson. Spearman correlation is non-parametric and does not rely on the distributional assump-
tions of the data that Pearson does.
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Table 4.2: Proportion of participants fully covered, and median number of untracked
devices, in general and per specific sub-groups of participants

Coverage n % Fully Covered Median Number of

Untracked Devices

General Coverage

All Participants 2653 26 2

Participants who reported using. . .

1 device 207 100 0

2 devices 1103 34 1

3 devices 611 13 2

4 devices 305 1 3

+5 devices 416 0 6

Only PC 66 77 1

Only Mobile 264 66 1

Both PC and Mobile 2312 20 2

Device Specific Coverage†
Participants who reported using. . .

PC

Any type 2379 47 1

Windows 2305 49 1

MAC 302 27 1

Mobile

Any type 2577 41 1

Android 2340 52 1

iOS 782 10 1

Note: † Values for the device specific undercoverage are computed over all members
of those subsamples. Therefore, the 49% fully covered of “Windows” means that,
out of all Windows users, 49% have all their self-reported Windows devices covered.
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6. Results

6.1. The prevalence and characteristics of tracking undercoverage

Table 2 presents the proportion of participants that had all their devices covered,

and the median number of untracked devices for those who were not fully tracked.

Results are additionally presented for the number and types of devices used. Only

26% had all reported devices tracked, which is very similar to the 28% of fully

tracked participants that the Pew Research Center (2020) found in a probability-

based sample in the United States. Of those who were not fully tracked, the median

number of untracked devices was 2.

Table 2 also shows that the prevalence of device undercoverage differs depend-

ing on the number and types of devices of the participant. The more reported devices,

the higher the proportion of participants not fully tracked and the median number

of untracked devices. Specifically, while 34% of individuals using two devices were

fully tracked, this number drops to 1% and 0% for those using four and five or more

devices, respectively. There are also clear differences between those who use only

PCs and mobiles devices, and those who use both, with the latter group yielding a

three-times lower proportion of fully covered participants.

These estimates also show notable differences in the prevalence of undercover-

age depending on the types of devices that participants use. For PCs, while 49% of

those using a Windows PC had all their Windows PCs tracked, only 27% of MAC

users had all their devices tracked. Similarly for mobile, while 52% of Android users

had all their devices tracked, only 10% of iOS users had all their devices tracked.

Therefore, tracking undercoverage is more prevalent for Apple devices, especially

iPads and iPhones. Indeed, 85% of participants with at least one iOS mobile device

had none of them tracked. This means that, for 29% of the participants, almost

everything that they did through their iOS devices was missed. This is likely to

be because Netquest, the panel provider, tracks these devices using proxies, which

require participants to manually configure them according to a complex and burden-

some process.

Even if all devices are covered, we might still miss people’s behaviours if we

do not track the browsers that they use within those devices. Table 3 presents the

proportion of participants that, having all their devices tracked, also have full browser
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coverage. Results are additionally presented for different subgroups, depending on

the types of devices and browsers that they use to go online.

Table 4.3: Browser coverage conditional on device full coverage

Coverage n % Fully Covered Browser

Device Specific Browser Coverage

Fully covered in terms of...*

All devices 688 38

Windows PC 1109 51

MAC 83 48

Android 1224 91

iOS 79 100

Browser Specific Coverage

Fully covered using...†
Internet Explorer 130 0

Chrome 401 97

Firefox 124 26

Safari 7 0

Other 132 15

Note: *Values for the device specific browser undercoverage are computed over those
participants that are fully covered in terms of the specific devices listed. Therefore,
the 91% fully covered of “Android” means that, out of all those participants that have
all their Android devices covered, 91% have all their browsers covered.† Values for
the specific types of browsers are computed over all those fully covered participants
that self-reported using the listed browsers. Therefore, the 97% fully covered of
“Chrome” means that, out of all fully covered (in terms of device) participants using
Chrome, 97% have all their self-reported Chrome covered.

Only 38% of those who were fully covered in terms of device, also had all

browsers tracked. This shows that even if we track people on all the devices that

they use to go online, there is still a high rate of undercoverage. Focusing on the

different subgroups by device used, we see that browser undercoverage is mainly a

phenomenon affecting PCs. Of those with all Android and/or iOS devices covered,

respectively 91% and 100% of them had all browsers within those devices covered.

Conversely, these numbers go down to 51% and 48% for fully covered Windows and

MAC users. This is to be expected; while mobile tracking technologies tend to
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track all browsers used within a device5, most technologies used to track PCs have

to be installed as plug-ins in each browser that participants use. Additionally, it

is more common to have multiple browsers on a PC than a mobile device. This

might result from participants not installing the plug-ins in all the browsers they use

to go online. Another potential hypothesis might be that participants satisfice by

installing trackers on browsers they do not use, to get the incentives without having

their behaviours tracked.

Furthermore, Table 3 shows that the prevalence of browser undercoverage is

highly dependent on the browsers that people use. While we observe very high

coverage rates for Chrome (97%), all other browsers are substantially lower (0 to

26%). In particular, for Internet Explorer or Safari users, none of those participants

had all those specific browsers covered. This points to technological limitations on

the side of the panel provider: if most panellists are tracked with web browser plug-

ins, and these are only available for Chrome and Firefox, almost all behaviours done

through other types of browsers will be missed.

Table 4 presents the results of three logistic regression predicting whether an

individual was not fully tracked in terms of device (1= at least one device not tracked,

0 = fully covered). Results show that the more longstanding the panellists and peo-

ple who completed tertiary education have a lower probability of being undercovered,

Model 1 also shows significant differences in terms of the country of residence, with

people residing in Italy and Portugal being more likely to not be fully covered than

those from Spain. In Model 2 we observe that for each additional device, the odds

of being undercovered increase by a factor of 4.7 (Android), 6.9 (iOS), 7.1 (Win-

dows PC), and 10.1 (MAC). The odds of a participant who uses only PCs being

undercovered are 83% lower than for those using both PCs and mobile devices.

Model 3 shows that education and country of residence of individuals is no

longer significant (and the odds ratios are smaller), suggesting that the main driver

behind those effects is that the number and types of devices used varies across educa-

tional levels and country groups. Additionally, we find that women are slightly more

likely to be undercovered than men. All in all, these models seem to suggest that,

although there might be some slight differences in the demographics of those being

5This is, however, not always the case. Depending on the OS version, and the tracking tech-
nology used, uncommon browsers might not be trackable even with a tracking app. This has been
accounted in our approach to identify browser undercoverage. Hence, why there is some proportion
of undercoverage for Android devices.
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fully tacked and those not, the biggest driver behind someone being undercovered is

the type and number of devices that they use to go online.

Table 4.4: Characteristics associated with tracking undercoverage

Variables Model 1 Model 2 Model 3

Coefficient SE Coefficient SE Coefficient SE

Type of user

Mobile only .64 .17 0.62 0.18

PC only .17*** .07 .19*** .09

Self-reported number of. . .

Windows PC 7.07*** 1.45 7.37*** 1.56

MAC 10.13*** 2.92 11.93*** 3.69

Android 4.72*** .63 4.31*** .60

iOS 6.88*** 1.03 7.13*** 1.16

Internet consumption † 1.02 .02 0.97 .02

Years in panel .96** .01 .93*** .00

Ideology 1.01 .02 1.02 .02

Political interest 1.06 .05 1.01 .06

Age

25-34 .95 .19 1.08 .25

35-44 .85 .16 0.95 .22

45-54 .81 .15 0.87 .20

55+ .81 .15 1.04 .24

Female .86 .07 1.25* .13

Tertiary education 1.32** .12 0.98 .11

Country

Portugal 1.27* .15 1.12 .16

Italy 1.33** .14 1.26 .16

Constant 2.99** .76 .05*** .01 .07*** 0.1

AIC 3307.1 2542.3 2263.7

n 2374 2641 2366

Note: Coefficients reported in odds ratios. *p < .05, **p < .01, ***p < .001. † In
hours

6.2. The bias introduced by tracking undercoverage

Table 5 presents the results of the Monte Carlo simulations for estimating biases due

to device undercoverage. The top row (in bold) shows the ‘true value’ which is taken
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as the estimate from the subset of fully covered participants, and the following rows

show the estimates under the different undercoverage scenarios.

Table 4.5: Average estimates of univariate statistics under different scenarios of
simulated undercoverage.

Undercoverage Scenarios Univariate Estimates

P(PC P(Mobile Time Time % News Num. Media % Internet Time % Internet Time

Undercoverage) Undercoverage) Internet SNSs Avoiders Exposed SNS News

0.00 0.00 221’ 64’ 17% 4.3 29% 1.6%

(Full Coverage) (.18) (.08) (.01) (.29) (1.22) (.23)

0.25 0.00 206 61 22 3.4 30 1.4

(.06) (.02) (.02) (.01) (.01) (.00)

0.50 0.00 191 58 27 3.0 31 1.3

(.06) (.02) (.03) (.01) (.01) (.00)

0.75 0.00 176 55 32 2.7 32 1.1

(.06) (.02) (.02) (.01) (.01) (.00)

0.00 0.25 188 53 23 3.5 25 1.8

(.13) (.05) (.03) (.01) (.01) (.00)

0.00 0.50 153 42 28 3.2 23 2.0

(.16) (.06) (.03) (.01) (.01) (.00)

0.00 0.75 119 31 33 2.8 20 2.2

(.13) (.05) (.03) (.01) (.01) (.00)

0.25 0.25 172 50 27 2.4 27 1.6

(.12) (.04) (.04) (.01) (.02) (.00)

0.25 0.50 138 39 33 .9 24 1.9

(.13) (.05) (.04) (.01) (.02) (.00)

0.25 0.75 104 28 38 .2 21 2.1

(.13) (.05) (.04) (.01) (.02) (.00)

0.50 0.25 157 47 32 1.5 28 1.5

(.13) (.05) (.04) (.01) (.02) (.00)

0.50 0.50 123 36 37 1.0 25 1.7

(.12) (.04) (.04) (.01) (.02) (.00)

0.75 0.25 142 44 37 .5 29 1.3

(.16) (.05) (.04) (.01) (.02) (.00)

0.33* 0.33* 157 45 31 2.0 26 1.7

(Sample Undercoverage) (.14) (.02) (.04) (.01) (.02) (.00)

Note: Averages computed over the 1,000 simulated scenarios, with the exception of
the full coverage scenario, which represents the sample estimate. Empirical Monte
Carlo standard errors in brackets.

We can see that tracking undercoverage results in biases for most of the uni-

variate statistics considered. In many instances, these biases are of a substantial

magnitude, both in absolute and relative terms (see Figure 2). In absolute terms,

the direction of the effects is as expected: while device undercoverage reduces the

average time participants spend on the Internet (by between 15 to 117 minutes) and

SNSs (by 3 to 36 minutes), it increases the estimated proportion identified as news

avoiders (by 5 to 21 percentage points). Furthermore, undercoverage reduces the
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average number of media outlets exposed to (by 0.9 to 4 fewer media), which implies

that people do not have consistent media diets across devices.

The effect of tracking undercoverage is less pronounced for the percentage of

time spent on SNSs and on news. In these cases, the bias would be introduced

if tracking undercoverage had a different effect on the numerator (time on SNSs /

news) than the denominator (time on the Internet). What we observe is that, while

undercovered estimates deviate from the full coverage, the deviations are smaller and

more varied. For instance, for percentage of time spent on SNSs, PC undercover-

age alone inflates the estimates by around 1 to 3 percentage points, while mobile

undercoverage reduces it by 4 to 9 percentage points.

If we focus on the relative size of these biases (see Figure 2), undercoverage is

responsible for a relative overestimation of 29 to 123% of the participants identified

as news avoiders, and an underestimation of 21 to 93% of the number of media that

people consume on average. Figure 2 also shows that undercoverage leads to an

underestimation of 5 to 53% of the average time spent on the Internet and SNSs.

Although the relative bias for the percentage of time spent on SNSs and on news

is smaller than for the other statistics, in some scenarios these are still substantial,

with the estimated percentage of Internet time spent on SNSs underestimated by up

to 31%, while the percentage of Internet time spent on news can be both under- and

overestimated by up to 31%.

Additionally, as we would expect, there is an association between the extent

of undercoverage and the size of the bias. In the scenarios with only PC or mobile

undercoverage, the scenarios with 50% and the 75% undercoverage reveal biases two

and three times the size of the scenario with 25% of the sample, respectively. In

general, mobile undercoverage introduces more bias than PC undercoverage. This

can be observed both in the scenarios with mobile and PC undercoverage alone, and

when combined.

Table 5 also shows the estimated bias that undercoverage would introduce at

the observed undercoverage level of TRI-POL dataset (around 33% for both PCs

and mobile devices), which is expected to be very similar to what other studies have

experienced. This shows that the observed time spent on the Internet and on SNSs

is underestimated by 29 and 30%, or between 64’ and 19’ lower than what we would

observe without undercoverage, respectively (221’ vs 157’ / 64’ vs 45’). In addition,

undercoverage is estimated to lead the observed proportion of news avoiders to be
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overestimated by 82%, or 14 percentage points higher than what it would be without

undercoverage (17% vs 31%). The number of media outlets that we observe people

being exposed to is less than half of what we would observe with full coverage (4.3 vs

2.1). On the other hand, at this level of undercoverage both the estimated percentage

of time spent on SNSs and on news would be very similar to full coverage (29% vs

26% / 1.6% vs 1.7%).

Figure 4.2: Estimates of relative bias for the univariate estimates

Table 6 presents the Monte Carlo simiulation estimates of bias for the set

of multivariate statistics, again the ‘true scores’ are in bold in the first row of the

table. This shows that, overall, the biases of tracking undercoverage are considerably

smaller than for the univariate quantities but that there is wide variability between

them. For three of the statistics the biases are close to zero. Two of them are
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severely affected by tracking undercoverage: the correlations between time spent on

the Internet and both age and time spent on SNSs and news media outlets.

Table 4.6: Average estimates of univariate statistics under different scenarios of
simulated undercoverage.

Undercoverage Scenarios Univariate Estimates

P(PC P(Mobile Time SNSs ˜ News % Polarization ˜ Time Instagram % Time SNSs ˜

Undercoverage) Undercoverage) Trust SNSs Avoidance ˜ No media ˜ Age Time News

Trust news Consumed

0.00 0.00 .03 .89 -.01 .41 .16

(Full Coverage) (.02) (.02) (.02) (.02) (.02)

0.25 0.00 .03 .92 -.01 -.41 .19

(.00) (.00) (.00) (.00) (.00)

0.50 0.00 .03 .93 -.01 -.40 .22

(.00) (.00) (.00) (.00) (.00)

0.75 0.00 .02 .95 -.01 -.39 .24

(.00) (.00) (.00) (.00) (.00)

0.00 0.25 .02 .90 -.01 -.32 .27

(.00) (.00) (.00) (.00) (.00)

0.00 0.50 .00 .91 -.01 -.24 .35

(.00 (.00) (.00) (.00) (.00)

0.00 0.75 -.02 .91 -.01 -.17 .40

(.00) (.00) (.00) (.00) (.00)

0.25 0.25 .01 .92 -.01 -.31 .28

(.00) (.00) (.00) (.00) (.00)

0.25 0.50 -.01 .92 .02 -.23 .33

(.00) (.00) (.00) (.00) (.00)

0.25 0.75 -.03 .92 .03 -.17 .35

(.00) (.00) (.00) (.00) (.00)

0.50 0.25 .01 .93 .00 -.31 .27

(.00) (.00) (.00) (.00) (.00)

0.50 0.50 -.01 .93 .00 -.23 .29

(.00) (.00) (.00) (.00) (.00)

0.75 0.25 .00 .94 .01 -.30 .26

(.00) (.00) (.00) (.00) (.00)

0.33* 0.33* .01 .93 -.01 -.29 .29

(Sample Undercoverage) (.00) (.00) (.00) (.00) (.00)

Note: Averages computed over the 1,000 simulated scenarios, with the exception of
the full coverage scenario, which represent the sample estimate. Empirical Monte
Carlo standard errors in brackets. “Time SNSs ˜ trust SNSs”, “Time Instagram
˜ Age” and “Time SNSs ˜ Time News” expressed as correlation coefficient, “News
avoidance ˜ trust news” as odds ratios, and “Polarization ˜ No media consumed” as
non-standardised regression coefficients.

Focusing on the association between the time spent on Instagram and age,

device undercoverage reduces the estimated correlation by 24% (-.41 vs -.29), a dif-

ference with potentially important substantive implications. For the correlation be-

tween the time spent on SNSs and on news media outlets, we observe the opposite

effect: device undercoverage now inflates the correlation, by between 3 and 24%;
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the estimated correlation increases from .16 to .29. This might be due to the differ-

ence in the strength of the associations in the full coverage scenario: while the first

three statistics show small and weak associations under full coverage, the associations

showed for the other two statistics are substantially higher.

7. Discussion

There has been much excitement about the possibility of obtaining unbiased mea-

sures of online behaviours using web tracking data, and digital trace data in general.

This has led to an increasing use of this type of data in the social sciences, under the

assumption that they fix the well-established problems of self-reports. In this paper,

however, we have shown that web tracking data suffers from severe limitations of its

own. Specifically, tracking undercoverage is very prevalent in web tracking research

and this can produce substantial biases across a broad range of univariate and multi-

variate statistics that are of substantive interest to scholars of media, communication,

and public opinion.

Overall, we found that tracking undercoverage is highly prevalent in a com-

mercial panel in the three studied countries: 74% of participants had at least one

of the devices they use to go online not tracked. These results are in line with

the 68% of device undercoverage found by the Pew Research Center (2020) in a

US probability-panel. Additionally, of those fully tracked, 62% had at least one web

browser uncovered, showing that undercoverage is multi-layered: even when we track

all participant devices, we can still fail to observe online behaviours within those de-

vices. For the vast majority of participants in this study we could not track at least

some of what they did online during the period of observation.

Besides describing the prevalence of tracking undercoverage, our results also

identify the main issues faced when trying to track online behaviours, and potential

approaches to reduce them. Our data shows that, at least in the context of our

panel company and period studied, there are specific difficulties when tracking de-

vices, and browsers other than Chrome and Firefox. Indeed, between 90% of those

participants that reported browsing online with iPhones and/or iPads had at least

one of those not tracked (a large majority had all of them untracked), and none of

the self-reported Internet Explorer and Safari browsers were tracked. Considering

that our tracking approach is based on current standard research practice (provided
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by Wakoopa), these results highlight the technological limitations that the field still

faces when tracking anything apart from Android and Windows devices, and main-

stream browsers. Our analysis also shows that the main determinant of tracking

undercoverage is the number, type, and combination of devices that participants

use, pointing to the importance of creating tailored recruitment approaches based

on participants’ self-reported information on what devices and browsers they use

to go online. This has several practical implications. First, if the behaviours that

people do online vary across devices and browsers, web tracking data will system-

atically miss some behaviours more than others. Hence, the size of the biases will

differ across statistics of interest. Second, if the probability of using of these devices

and browsers varies across key demographics, tracking undercoverage will introduce

differential errors.

The results of our Monte Carlo simulations show that most statistics derived

with web tracking data are highly likely to be biased due to tracking undercoverage.

Specifically, when simulating the bias at the level found in the TRI-POL dataset,

tracking undercoverage led to very large biases across a broad range of quantities

of substantive interest. For example, the estimated proportion of participants iden-

tified as not consuming news almost doubled from 17% to 31% and the number of

media outlets exposed dropped by 50% under this scenario. Our results confirm that

the higher the level of undercoverage, the larger the bias introduced. The type of

devices missed is also important; mobile undercoverage leads to higher biases than

PC undercoverage. There are two potential and complementary explanations for

this. On the one hand, internet consumption is more common through mobile de-

vices (StatCounter, 2017). On the other hand, most of the online behaviours that

we have tested are done more often through mobile devices (Festic et al., 2021). The

bias due to device undercoverage also varies depending on the statistic of interest.

For univariate statistics, undercoverage underestimates count variables (e.g., count-

ing number of visits, time, or media), but will under- or overestimate proportions

engaging in specific behaviours when the underlying variables used are simple counts

(e.g., people avoiding news). In terms of multivariate statistics, we observe big vari-

ations depending on the associations tested. Although just a speculation, results

suggests that when the true association is small, undercoverage might be irrelevant.

Nonetheless, for associations that are expected to be more substantial, our results

propose that tracking undercoverage might heavily deviate the estimated correlation

coefficients from their true value.
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There are some limitations in our research design that should be acknowledged.

First, participants were recruited using an opt-in online panel of already tracked par-

ticipants. Although this is the most common approach in the literature, it is unclear

whether these results would replicate when conducted on another opt-in panel using

a different recruiting and tracking approach, as well as on a probability-based sample

of less experienced respondents. Additionally, given that participants were already

tracked by the fieldwork company, we had no control over the tracking technologies

used or the recruitment techniques, preventing us from testing approaches to reduce

the prevalence of undercoverage. Second, tracking undercoverage has been identified

combining paradata and self-reports, the latter being sensitive to measurement er-

rors. Since participants might have trouble properly recalling the devices/browsers

used to go online, the estimates of undercoverage cannot be themselves expected to

be free of errors. Furthermore, the results from the simulations must be understood

together with several caveats: simulations are based on a small subsample of fully

covered participants. Although no relevant differences are observed between the sub-

sample used and the full sample of participants, and the weighting approach should

reduce some of the potential problems introduced by this, it is to expect that these

results to be biased on the side of representation, as well as noisier than desired.

Although we would ideally have simulated undercoverage at the level of in-

dividual devices and browsers, we were limited by the granularity of our dataset,

forcing us to focus only on the effect of full mobile/PC undercoverage (i.e., having

all mobile or PC devices undercoverage). Considering that partial undercoverage

(i.e., some but not all mobile/PC devices undercovered) is more common, the sim-

ulated bias is expected to be lower than realistically expected. Furthermore, the

mechanism leading to undercoverage in our simulation is at random (everyone has

the same probability). This might not be realistic in real life given that some people

being more prone to be undercovered because of some of their demographics. Ad-

ditionally, undercoverage could also be associated with how individuals use specific

devices or browsers, leading to missingness not at random. This could exacerbate

the biases that might be affecting real web tracking studies. Future studies should

consider simulating undercoverage under not-random scenarios, where undercoverage

is dependant on the characteristics of the participants and their devices.

Our results have implications for improving best practice in this area. First,

fieldwork companies offering panels of already tracked individuals should increase

efforts to minimise device undercoverage. This can be achieved by increasing the
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resources allocated to making sure that participants install tracking technologies in all

their devices/browsers, and they keep them installed and updated. Device coverage

can also be increased by improving the capabilities of tracking beyond Windows,

Android, Chrome, and Firefox. In parallel, they should be more transparent to

their clients, disclosing the approaches used to assure full coverage, and up to date

information of the level of undercoverage of each of their panellists.

Tech companies can also improve their practices. Currently, some of the chal-

lenges faced when tracking specific devices (e.g., iOS) can be linked to tech compa-

nies’ terms of services, which limit the information that apps can track from users’

devices. Although this can be beneficial in many instances, these companies need

to acknowledge that if their products and services might lead to negative effects to

their users, it should be possible for individuals to willingly access and share this

information with academics for research purposes. Hence, research-based tracking

technologies should not be treated in the same way than those that exploit personal

data for commercial purposes.

Finally, researchers using metered data (and other digital trace data by exten-

sion) should not assume that this data is without error. In recent years there has

been a great deal of excitement about the ‘zero measurement error’ of meters and

how they can solve longstanding problems of self-reports in areas of research such

as media consumption. Our research suggests treating meters as a gold standard

is itself highly problematic. Therefore, researchers using web tracking data reflect

these limitations in their analysis plans and reporting practices. Best practice when

using metered data must involve:

1. Identify what participants are affected by undercoverage, and to what extent.

Our approach can be used as a template to replicate or build on.

2. Report the proportion of people affected by tracking undercoverage, and some

information about the characteristics. This should be similar as to what is

done with nonresponse or drop-out rates in survey research, allowing readers

and secondary data users to understand the quality of the data. The TRI-POL

data protocols can be used as a good example of transparency (Torcal et al.,

2023).

3. When possible, researchers should try to simulate the extent and ways in which

tracking undercoverage might bias their results, in a similar way as robustness
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checks are conducted when using survey data.

4. Potentially, researchers could try to develop imputation strategies to reduce

the size of the biases.

Even though our findings raise serious concerns about the quality of meter data,

there are also reasons to be optimistic. While device and browser undercoverage are

highly prevalent and result in large biases, there is clear room for improvement in the

future. Our findings point toward some of the areas where low-hanging fruit can lead

to big improvements. Specifically, much of this undercoverage seems to be linked to

the current limitations faced by the tracking technologies that we use. With extra

investment, most of these limitations could be addressed. Our results shows that it is

possible to develop approaches to identify, estimate, and report these errors. Doing

so in a similar way as we did should be easy and mostly inexpensive to any other

researcher dealing with digital trace data and, especially, web tracking data.
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Chapter 5

Validity and Reliability of Digital Trace Data

in Media Exposure Measures: A Multiverse of

Measurements Analysis

Oriol J. Bosch

Abstract

Understanding online media exposure is critical, especially in contemporary politics. Given
the doubts about survey self-reports, research on media exposure has turned to web track-
ing data, sometimes considered the gold standard. However, studies revealed that web
tracking data is also biased. To improve the understanding of the quality of web tracking
measures of media exposure, this paper estimates their predictive validity and true-score
reliability. It additionally identifies design choices that optimize their validity and relia-
bility. Using data from a three-wave survey in Spain, Portugal, and Italy, combined with
web tracking, this paper conducts a multiverse analysis to assess the validity and relia-
bility of +2,500 web tracking measures of media exposure. Results show an overall high,
but imperfect, reliability (0.86). However, in terms of predictive validity, the association
between media exposure measures and political knowledge appears weak. This raises ques-
tions not only about the predictive validity of web tracking measures but also about the
overemphasis on similar critiques regarding survey-based measures. Additionally, results
suggest that the design decisions made by researchers can have a substantial impact on
the quality of the web tracking data. Methodologically, the paper presents the multiverse
of measurements approach, allowing researchers to embrace uncertainty, and improve the
transparency of web tracking research.

Keywords:
Digital trace data · Web tracking data · Media exposure · Reliability · Validity · Multiverse
analysis
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1. Introduction

The measurement of online media exposure, which refers to the extent to which in-

dividuals encounter specific media messages or content online (Slater, 2004), is of

paramount importance for studying the uses and effects of online media. When re-

searching pressing political phenomena, it becomes essential to have reliable and valid

measures of people’s online media exposure. However, obtaining suitable measures

of media exposure has proven challenging for years.

Traditionally, survey self-reports have served as the primary instrument for

measuring media exposure (González-Bailón and Xenos, 2022). Despite testing vari-

ous approaches (see Golder and Macy 2014, for a summary), doubts persist regarding

the validity and reliability of self-reports in measuring online behaviours in general

(Parry et al., 2021) and media exposure in particular (Guess, 2015). Research indi-

cates that participants tend to overstate their self-reported media exposure due to

complexities in recall, contributing to poor reliability and validity of such measures.

Evidence supporting the low quality of self-reports can be observed in the lack of

agreement between self-reported and ”objective” measures of media exposure (Prior,

2009; Parry et al., 2021).

In response to these challenges, researchers have made significant efforts to

develop alternative approaches for measuring media exposure that do not rely on

participants’ memory. One increasingly popular method involves collecting digital

trace data, which records users’ interactions with specific digital systems (Howison

et al., 2011), including telecommunication networks, websites, social media plat-

forms, mobile apps, and digital devices (Stier et al., 2019). One of the most used

approaches for collecting individual-level digital trace data is the use of web trackers,

or meters, a group of technologies which can be installed on participants’ browsing

devices with their consent. These meters enable researchers to track various traces

left by participants while they interact with their devices, such as visited URLs,

apps, timestamps, and HTML content. Using the data collected through meters,

researchers have investigated pressing questions related to media exposure. For in-

stance, studies have explored the relationship between media consumption and af-

fective polarization (Torcal et al., 2023), the influence of social networks on digital

media exposure (Scharkow et al., 2020), and engagement with untrustworthy media

(Guess et al., 2020).
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However, contrary to the common assumption that web tracking data is the

gold standard to measure media exposure (Araujo et al., 2017; Scharkow, 2016; Guess,

2015), recent research has highlighted errors that can affect this kind of data (Revilla

et al., 2017; Bosch and Revilla, 2022a,b; Pew Research Center, 2020). In particular,

Chapter 4 demonstrate that web tracking estimates of media exposure are often

substantially biased due to panel companies’ inability to track participants across all

devices they use to go online. Such device undercoverage errors negatively affect the

validity of web tracking measures and introduce bias into the research findings and

conclusions, similar to what happens with surveys.

Given these considerations it is key to assess the quality of media exposure

measures derived from web tracking data to understand the potential biases affecting

the conclusions drawn from this new source of data. Consequently, this paper has

two primary goals, to: 1) estimate the validity and reliability of media exposure

measures derived from digital traces collected through meters, and 2) identify design

decisions that maximize the validity and reliability of these measures. To explore

this, this study uses data from a three-wave survey in Spain, Portugal, and Italy,

combined at the individual level with web tracking data. The empirical part of the

paper builds upon the multiverse analysis framework initially developed by Steegen

et al. (2016), to create a ”multiverse of measurements.” Hence, instead of focusing on

one or a few arbitrarily created measures of media exposure, I test the validity and

reliability of more than 2,500 different measurements. Specifically, in this Chapter I

explore the following research questions:

• What is the overall true-score reliability of news media exposure measures

created using digital traces?(RQ. 1)

• What is the overall predictive validity of news media exposure measures created

using digital traces? (RQ. 2)

• Does the predictive validity and reliability of media exposure measures fluctuate

across different measurements? (RQ. 3)

• What design choices maximise the predictive validity and reliability of web

tracking measures? (RQ. 4)

The remainder of this article is divided as follows: in the second section, I

review the literature on the validity and reliability of media exposure measures. In
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the third section, the data used is presented. In the fourth section I conceptualise

the “multiverse of measurements” and detail how it was built. Next, in the fifth

section, the paper’s analytical approach is detailed. In the sixth section I present the

results and, in the seventh, I conclude.

2. Background

2.1. Conceptualising reliability and validity

When drawing inferences about individuals’ media exposure, surveys and digital

trace data are employed in a comparable manner. In both contexts, their objective is

to quantify an underlying latent concept of interest: media exposure. This construct

can be conceptualized as the degree to which an individual comes across media

content or messages (Slater, 2004). In quantifiable terms, this could be the amount

of time that an individual is typically exposed to media.

To measure this concept, measurements are devised. These can be understood

as methods of collecting information about the latent concepts. In surveys, mea-

surements typically take the form of survey questions. When these measurements

are employed, for instance, by recording the answer of a person to our question, or

tracking and combining a list of traces, we observe a specific quantity of interest

(y). Nonetheless, a same respondent could answer a question in different ways if

they were asked the same question on different occasions, depending on their mood,

attention, or context. Hence, an observed score is only a single draw of an infinite

number of different potential observations that could be produced using the specific

measurement designed. We can imagine this as a probability density function of

possible values of Y (Alwin, 2007).

Given these random fluctuations, hence, a single observation might not be an

accurate representation of the true score of a measurement (τ). This true score can

be though as the expected value of that hypothetical distribution of observations of

Y , for a fixed person p (see Lord et al. 1968). These diversions from the true score

are what in psychometrics is considered random measurement errors (ε):

ϵp = yp − τp (5.1)
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Hence, the true score represents the value that the measurement should produce

if no random errors occurred when producing the data. Knowing this, for a given

population we can consider that the observed score (Y ) is a product of the true score

of the measurement (T ), plus random error (E):

Y = rT + E (5.2)

The association between the true score and the observed score (r), when standard-

ised, is what we consider the population parameter of reliability. Or in other terms,

reliability refers to the relative proportion of random error versus true variance in

the measurement of Y , allowing to understand to what extent what we observe is

due to noise or signal. Although random errors might not inherently bias univariate

estimates, an inflated variance could potentially distort statistical estimates based

on them, such as mean difference tests (Cleary et al., 1970), and potentially under-

estimate standardized relationships derived from correlations or regressions (Alwin,

2007). This model, nonetheless, only accounts for random measurement errors. The

true score can still be affected by systematic errors, but this is not the focus of this

paper (a better explanation of this is provided in Alwin 2007: 41-42).

Beyond reliability, an important issue of concern is whether the measurement

is valid. In the true-score framework, this means: does the true score specified

correspond to the conceptual variable that we intend to measure? Is it a valid

representation of the theoretical quantity of interest? Across the literature, the

concept of validity has a large number of different meanings. Essentially, nonetheless,

the validity of a measurement can only be assessed with respect to some criterion

(Alwin, 2007). What makes a measure valid? If the concept of interest can be

objectively assessed in any way possible, validity will refer to the extent to which

the observed values of the measurement and the objective score are the same. This

is what is known as construct validity.

Conversely, in many cases it is not possible to obtain an objective measure of

the construct of interest, because it is inherently unobservable, or there is no unbiased

method available. Within the true score tradition, then, the main interest lays in

criterion validity (Alwin, 2007). Criterion validity is defined simply as the correlation

of the observed score with some other variable (X). This variable is assumed to be a

criterion linked to the objective of the measurement. In this case, hence, the validity

coefficient of a measurement Y with respect to a second measurement X is defined
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as the absolute value of their correlation coefficient:

COR(X, Y ) =
COV(X, Y )√

VAR(X) · VAR(Y )
(5.3)

In this context, hence, the closer the association between the observed score and

the criterion score to the true association between the construct and the criterion

variable, the higher the validity of the measurement. Nonetheless, given that nor-

mally the true association is in itself unknown, it is assumed that higher associations

between the observed and criterion score mean higher validity. Although imperfect,

when backed by a strong theory, criterion validity can be used as an indicator of

whether measures capture the concept of interest. If a relationship should be found

and no correlation exists in actuality, it could mean that the designed measure is af-

fected by specification errors and, hence, measures the incorrect parameter (Biemer,

2010).

Section 5 describes how these definitions of reliability and validity are analyti-

cally operationalised, and the data used to do so.

2.2. The reliability of media exposure measures

Traditional survey-based self-reports of media exposure are susceptible to a multi-

tude of errors that may compromise the reliability of the reported responses. Con-

ventional exposure measurements have been criticized for imposing a considerable

cognitive burden on survey participants (Price and Zaller, 1993). Generating a reli-

able estimate of the hours (or even days) spent watching political (or news) content

within a typical week necessitates an extended multistage recall process (Schwarz,

2001). Given the inclination for rapid responses, respondents often resort to mental

shortcuts to provide offhand estimates. All these factors can lead participants to pro-

vide answers that diverge from their true score, potentially affecting the reliability

of the measures (Prior, 2009).

Despite these concerns, a limited number of studies examining the true-score

reliability of self-reported media exposure measures have reported acceptable to good

true-score reliability estimates. Specifically, Bartels (1993) reported a true-score

reliability of .75 for a traditional television exposure measure, while Dilliplane et al.

(2012) found that a list-based measure assessing the number of political programs

viewed on TV yielded a true-score reliability of .83. These findings align with the
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average reliability of factual survey questions (approximately .75) reported by Alwin

(2007). Nevertheless, to the best of the author’s knowledge, the true-score reliability

of online media exposure remains unexplored.

While the process of gathering and processing digital traces through web track-

ers to formulate a specific variable distinctly differs from traditional survey methods,

it remains susceptible to measurement errors. Notably, Bosch and Revilla (2022b)

outlined eight theoretical sources of measurement errors inherent in digital trace data

collected via web trackers. These sources include errors related to the tracking tech-

nologies, participants’ incomplete installation of tracking technologies across their

devices, and device-sharing scenarios with non-participants.

Some of these error sources might exhibit high variability, fluctuating in their

direction and magnitude. For example, if patterns in device sharing with non-

observed individuals are not constant, they could introduce random errors to mea-

sures. Similarly, technology errors can significantly fluctuate when participants use

multiple devices, each with different tracking technologies, and varying usage pat-

terns. Nonetheless, based on the limited available past research, it is expected that

most web tracking data sources of error introduce systematic rather than random

errors (see Chapter 4).

Empirical research to date has not undertaken the task of estimating the re-

liability of media exposure variables computed from digital trace data. Although

we might expect measures created with web tracking data to be reliable, the lack

of evidence leaves researchers without a comprehensive understanding of the extent

to which prior and ongoing research might potentially yield underestimated stan-

dardized relationships and draw misleading conclusions regarding the significance of

estimates.

2.3. The validity of media exposure measures

In the realm of surveys, specification errors often manifest when questions and scales

fail to accurately encapsulate the intended concept. In today’s intricate media land-

scape, the conventional approach of inquiring about participants’ exposure to specific

media, such as political news, is fraught with challenges. These challenges encom-

pass determining the precise definition of ”news” and what qualifies as ”political,” as

well as ensuring a uniform understanding among all participants. Given these com-
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plexities and others, concerns about the validity of self-reported measures of media

exposure are pervasive.

The primary criticism levied against such measures centres on their predic-

tive validity, a subtype of criterion validity. Specifically, self-reports gauging media

exposure aim to assess (news) media exposure, yet the observed scores exhibit a no-

tably weak correlation with their hypothesized outcomes: political knowledge (Zaller,

2002) and news recall (Price and Zaller, 1993; Chang and Krosnick, 2003). This lack

of correlation has prompted some to advocate for the abandonment of self-reported

measures of media exposure (Price and Zaller, 1993).

However, weak validity is not exclusive to self-reports (Jungherr, 2019). In the

realm of digital trace data, measurements are based on specific pieces of information

derived from participants’ tracked online behaviour. These pieces are subsequently

combined and, at times, transformed to compute a particular variable. In the context

of media exposure, this process may involve categorizing all URLs related to political

articles and aggregating the time users spend on those URLs. If the traces utilized

for constructing the variables do not align accurately with the concept of interest,

web tracking measures may also be rendered invalid, even in the absence of random

or systematic errors during the collection and processing of the traces (Bosch and

Revilla, 2022b).

While often lacking empirical validation, two potential mechanisms could give

rise to specification errors in web tracking research. Firstly, discrepancies may emerge

when mismatches occur between the traces defined for constructing the measurement

and the intended concept. For instance, when aiming to measure exposure to political

media, URLs must be categorized as either political media or not. This categorization

can be achieved through manual or automated methods (e.g., Peterson et al. 2018;

Bach et al. 2022). Any disparities between the actual nature of the URL and the

manual or automated classifications will introduce specification errors. Secondly, me-

dia exposure measures can also suffer from weak validity if they incorporate by-design

missing data (Bosch and Revilla, 2022b). To illustrate, Reiss (2022) demonstrates

that when measuring the proportion of individuals avoiding news online, omitting

information regarding news exposure through mobile apps yields problematic out-

comes. Specifically, the author shows that disregarding app-based exposure leads to

an overestimation of the proportion of individuals identified as news avoiders by 9

percentage points. If researchers want to measure whether an individual is generally

a news avoider online, using this measure would introduce specification errors.
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Despite the presence of some evidence, research examining the validity of media

exposure measurements derived from digital trace data remains limited.

2.4. The effect of researchers’ design decisions

The reliability and validity of a variable depend not only on the data source, such as

surveys or digital trace data but also on the design decisions made during the for-

mulation of the measurement instrument. For surveys, over 60 design characteristics

can significantly influence their validity and reliability (Saris and Gallhofer, 2007,

2014), especially concerning how survey questions and their scales are designed and

administered (DeCastellarnau, 2017; Bosch et al., 2018; Bosch and Revilla, 2021;

Michaud et al., 2023). Therefore, various approaches can be employed to measure

media exposure through survey self-reports, and the validity and reliability of these

measurements can exhibit notable variation based on the design choices made (see

Goldman and Warren 2019, for a comprehensive review).

Within the context of measuring media exposure using digital trace data, sev-

eral key design questions arise, such as: which URLs and apps can be considered

as news media articles? How do we define a visit to a URL that qualifies as expo-

sure to media content? For how long do we need to track someone to capture their

typical media exposure? These and other design questions are often approached in

non-uniform ways across the literature. The definition of ”news,” the methods used

to categorize URLs as ”news,” and the duration of the tracking period all exhibit

substantial variability, for example. Interestingly, most of these design decisions are

made once the raw dataset of traces has already been collected, in contrast to surveys,

which require designing measurements before data collection. This presents both ad-

vantages and challenges for web tracking data. While it means that researchers can

compute multiple measures of the same concept at no extra cost, it also implies that

for every concept, there is nearly an endless number of different design choices that

researchers could test.

Although empirical evidence remains scarce, previous investigations have indi-

cated that specific design choices yield disparate outcomes. For instance, Mangold

et al. (2021) demonstrated that altering the time threshold used to define a visit to a

news outlet—ranging from a 3-second threshold to a 120-second threshold—resulted

in divergent estimates regarding the proportion of millennials categorized as news

avoiders, as well as the breadth of their news consumption. Similarly, Reiss (2022)
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explored whether the proportion of individuals identified as news avoiders differed

based on the approach used to classify URLs as ”news” or otherwise. Findings in-

dicated that employing a supervised text classification approach to categorize the

textual content of articles accessed by participants, as opposed to designating any

URL within a news media outlet webpage as containing news-related content, led to

a higher prevalence of online news non-users.

Yet, the extent to which researchers should be concerned about each potential

design choice when using digital trace data remains an open question. If digital

trace data is inherently valid and reliable, one might assume that any measurement

instrument created using this data source would yield acceptable levels of validity and

reliability. Nonetheless, if fluctuations exist, comprehending the individual effects of

each design choice on the resulting validity and reliability becomes crucial in crafting

optimal measurement instruments and predicting the quality of digital trace data

variables both a priori and a posteriori (Saris et al., 2011).

3. The TRI-POL dataset

I use data from the TRI-POL project (Torcal et al., 2023), the goal of which is to

understand whether and how online behaviours are related to affective polarisation

across Southern European and Latin American countries (https://www.upf.edu/web/tri-

pol)1. TRI-POL conducted a three-wave survey between September 2021 and March

2022. Survey responses were matched at the individual level with metered data. Data

were collected through the Netquest opt-in metered panels (https://www.netquest.com),

which consist of individuals who have meter(s) already installed in their devices and

who can also be contacted to conduct surveys. Panellists receive more incentives if

they install the meter on more devices (up to a maximum of three). Respondents’

online behaviours, hence, can be linked with their survey answers. In this study I

focus on the data collected in Italy, Portugal, and Spain.

Cross quotas for age and gender, and quotas for educational level, and region

were used in each country to ensure a sample similar on these variables to the gen-

eral online population of those countries. Survey questions were used to measure

attitudinal and demographic variables, while metered data were used to measure

1More information about the data collection strategy of both survey and digital trace data can
be found in the TRI-POL data protocols: https://osf.io/3t7jz/
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variables related to the general Internet use as well as consumption of specific news

media outlets, political news, and social media (see the TRI-POL data protocols in

footnote 2 to check the specific URLs defined to measure these concepts). Metered

data was collected for the 15 days prior to and following participants starting the

questionnaire. The meter logged each URL accessed by the panellists, along with

timestamps indicating the initial visit to the URL, and the duration in seconds dur-

ing which the URL remained the active content within the browser, or in the case of

mobile devices, on the smartphone screen. It is important to note that a URL or app

was classified as ’active’ when it was the foremost content displayed in the browser

or on the device’s screen. This definition excludes any other URLs or apps that

might have been open in separate tabs or screens, as they were not considered active

during this time frame. The duration of active engagement was computed as the

elapsed time between the moment the URL or app first gained ’active’ status within

the browser or device and the point at which a different URL or app took over as the

active content in the browser or device. A visit was defined as any opened URL/app

lasting one second or more. Participants were tracked on iOS and Android mobile

devices, and Windows and MAC computers, using the tracking solutions provided by

Wakoopa (https://www.wakoopa.com/). Windows and MAC devices were tracked

with desktop apps and/or web browser plug-ins, Android devices through apps and

iOS devices through manually configured proxies. Torcal et al. (2023) provides more

information about the collectable data and the characteristics of each of the track-

ing technologies used. Overall, the sample presents a tracking undercoverage rate

of 74%, meaning that three quarters of the participants were not tracked in all the

devices they use to go online.

Challenges were faced when filling some of the specific cross-quotas with par-

ticipants from the metered panel. Hence, in some cases panellists without a meter

installed had to be invited to fill some of the quotas. Thus, in total, for the first wave,

3,548 respondents completed the survey, but only 2,653 had the meter installed in at

least one mobile (smartphone or tablet) or PC device: 993 in Spain, 818 in Portugal

and 842 in Italy. No significant differences are observed between the full sample and

the subsample of tracked participants, across a selection of demographic, political

and technological variables (see Supplementary Material 1, i.e., SM 1).
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4. A multiverse of measurements

In this study, I build upon the multiverse analysis framework initially developed by

Steegen et al. (2016), introducing the idea of a ”multiverse of measurements.” In-

stead of being limited to a single measurement, a concept can be captured through

various alternative measurements. Each measurement within this extensive multi-

verse represents a distinct combination of design choices. As a result, a multiverse

of measurements also leads to a variety of quality assessments, as each measurement

produces its own set of validity and reliability parameters.

Traditionally, researchers often focus on a single set of choices and present it as

the only approach taken in their analyses. This practice of selectively emphasizing

one set of choices assumes that the chosen measurement either perfectly represent

the entire universe of measurements, or it can be considered as the best multiversal

alternative. However, the decisions made during the design phase are often arbitrary

and lack clear justification. When researchers choose one measurement from the

many possibilities, they overlook the range of quality estimates that could arise.

The inherent uncertainty in the data and the sensitivity of the results are not fully

considered, making it difficult to interpret a single result accurately. This is justified

with surveys, given the complexity of asking participants repeated questions about

the same concept. For web tracking data, nonetheless, it is not. Once the raw data

from the web trackers is collected, it is mostly inexpensive and effortless to go from

one measurement to thousands of them.

To address the challenges posed by selective reporting, I adopt a multiverse

analysis which enhances transparency by revealing the sensitivity of the results to

different design choices. Additionally, it allows identifying the key choices that signif-

icantly improve or harm the reliability and validity of media exposure measurements,

helping future researchers make better informed decisions.

In the present study, I explore the reliability and validity of the multiverse

of measurements aimed at measuring one of the most explored constructs in the

media exposure literature: the extent to which individuals are exposed to written

news media in the online domain. Several important considerations merit discussion:

Firstly, this paper’s measurement scope excludes exposure to visual or aural media,

such as videos or podcasts. Secondly, this examination is confined to the domain of

news, broadly defined as accounts of recent, interesting, and significant events (Ker-
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shner, 2012) published in news media outlets. This conceptualization is intentionally

broad, to account for the fluctuation in the definition of “news” as a design feature

(Reinemann et al., 2011). Thirdly, the used definition excludes exposure to ”news”

disseminated via social media, blogs, and other non-media platforms. Lastly, the

focus is directed towards online exposure, reflecting the fact that web trackers can

exclusively capture activities transpiring within the digital realm. All in all, as most

past research studying media exposure with web trackers, I focus on written articles

and news produced as an output of journalism and published by a news media outlet.

To perform the multiverse analysis for this specific construct, I first constructed

its multiverse of measurements, encompassing all potential measurements resulting

from the combination of various reasonable design choices. Subsequently, the relia-

bility and validity of each measurement within this multiverse were independently

computed, resulting in a multiverse of quality estimates. Reliability estimates were

produced using the Quasi-Markov Simplex Model (QSM, Alwin 2007). Validity was

estimated as the association between media exposure and political knowledge. Sec-

tion 5 explains the analytical approach in more detail.

In this multiverse analysis, we considered design choices that other researchers

have previously followed and those outlined by Bosch and Revilla (2022a,b) in their

error framework

4.1. Constructing the multiverse of measurements

Table 1 presents a summary of the six identified design choices that were followed

when creating measures for the concept of interest, along with the various reasonable

options that were considered for each choice. Below, I provide detailed descriptions

of the different options.

Metric: I measured media exposure using multiple metrics: the number of

visits to news media outlets, time spent exposed to news, days of exposure, and the

number of different media outlets exposed to.

List of traces: I adopted a list-based approach by defining a list of websites

that publish ”written news” and then considering either all or part of their URLs

as ”written news.” To create this list, I followed the stepwise approach proposed

by Bosch and Revilla (2022a). Firstly, I identified websites on the Internet that

publish ”written news” in Spain, Portugal, and Italy using four distinct top site
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rankings: Tranco, Alexa, Cisco, and Majestic. Secondly, from the aggregated lists

of these ranking sites, I selected which websites to include in the list, based on their

popularity. Hence, I chose different media outlets based on their ranking: the top 10,

20, 50, 100, and 200 most popular, as well as all identified news media outlets (up to

761 in Spain). Thirdly, I defined which URLs within each listed news media outlet’s

website I would consider as news. ”News” can encompass various meanings, often

divided into categories such as ”hard” and ”soft” news (Reinemann et al., 2011).

Past research has embraced different definitions, ranging from considering any URL

posted by a news media outlet as news (including sports news or movie and theatre

reviews) to manually or automatically identifying subsets of ”hard” or ”political”

news only (e.g., Reiss 2022). I considered URLs as news in two distinct ways: 1)

any URL published by a news media outlet, and 2) only URLs dealing with ”hard”

news2. More in-depth insight into the approach used for identifying these URLs can

be found in the official documentation of the TRI-POL dataset3.

Table 5.1: Design choices and options for measuring media exposure

Choices Options

Metric Visits, Seconds, Days, No Media

List of traces

List of media Tranco, Alexa, Cisco, Majestic

Top media 10, 20, 50, 100, 200, All

Information All URLs, only those identified as ”hard” news

Exposure 1-second, 30-seconds, 120-seconds threshold

App behaviour Included, excluded

Tracking period 2, 5, 10, 15 days

Criteria to define exposure: Even if an individual visits one of the defined

URLs and/or apps, the generated traces may not be relevant to the concept of

interest. Exposure can involve merely encountering the content, irrespective of the

duration, or also interacting with the content, such as reading it. To capture different

levels of exposure, I defined three distinct categories based on the time spent on a

specific URL or app. I assume that longer visits indicate a higher likelihood that

the person read all or part of the content. For this study, I replicate Mangold et al.

2I considered as “hard” news any articles covering political, national, international, and regional
affairs, as well as political opinion pieces.

3https://osf.io/38kt6?viewonly = 22e669dfd9a946d5b706e0efcd584d7c
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(2021) approach, considering that for a visit to lead to exposure a person should

spend 1, 30, or 120 seconds or more on the defined URLs.

App behaviour: Some individuals get exposed to news through news media

apps. For example, people can read news on the app of The Guardian, as well as

on its webpage. Researchers, with their design decisions, can exclude or include the

traces that researchers leave when using apps to consume news. Although in some

cases this will be a by-product of the limitations of the tracking technologies that

researchers used, it is a researcher’s choice to use this information with by-design

missing data to make inferences for people’s general media exposure. In this case, I

computed the measures with or without using app information.

Tracking period: Researchers generally aim to measure participants’ ”typi-

cal” or ”normal” behaviours by calculating the average behaviour during the tracked

period. The tracking period, however, can impact the prevalence of outliers and the

skewness of the data, ultimately influencing the estimates. As such, I computed the

average time individuals engage with written news media in the online domain using

2, 5, 10, and 15 days of tracking information.

Based on this tabulation of choices, the multiverse of measurements was con-

structed by considering all possible combinations of design choices, resulting in a

unique measurement for each combination of choices. In total, there were 4 × 4 ×
6 × 2 × 3 × 2 × 4= 4,608 choice combinations, although some of the combinations

were not possible. For instance, when counting the minutes of exposure, I could not

apply a “visit” threshold. Additionally, “hard” news were only identified for the top

10, 20 and 50 for each country since they were manually coded. After excluding

impossible combinations, the study was left with 2,631 choice combinations.

5. Analyses

5.1. Reliability

To compute the true-score reliability of each variable, I used the Quasi-Markov Sim-

plex Model (QSM) (Alwin, 2007), using the Wiley and Wiley (1970) approach. This

can be summarised by the following system of equations:

Yt = rTt + Et (5.4)
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Tt = βt,t−1Tt−1 + Zt (5.5)

where the observed score Yt for a given wave t is the true score Tt for that wave

plus a random error E. The true score at a given wave (Tt), in turn, reflects the

true score at the previous wave (Tt−1) plus change over time ( Zt). Here, βt,t−1

reflects the relationship between the true score at wave t and the true score at the

prior wave. The association between the true score and the observed score (r), when

standardised, is what we consider the parameter of reliability. Figure 1 shows this

model.

Figure 5.1: Quasi-simplex model with six waves

Wiley and Wiley’s (1970) quasi-simplex model is only empirically testable when

several assumptions and restrictions about the relations between the estimated pa-

rameters Et, Tt and Zt are made (see Cernat et al. 2021 for a more in-depth discussion

of these). First, observations are assumed to be independent over time, hence, Et

and Zt are uncorrelated across waves. Second, the mean of the observed score and
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the true score are 0. This implies that all variables are centred. Third, a Markovian

process is assumed, in which the distribution of the true variables at time t are only

dependant on the distribution at time t−1. Fourth, measurement errors are assumed

to be equal over time. Hence, the error variances V (Et) must be equal at every time

t. Fifth, the variance of the error term V (Et), and the stability term V (Zt) are

constrained to follow a normal distribution with mean of 0. Finally, the covariances

between the true scores, errors, and stability are zero.

With three waves of data, a QSM that implements the assumptions above will

be just identified. Any more waves of data will lead to a degree of freedom greater

than 0, and thus enable a test of the model fit. Additionally, if more waves are

available, it is possible to test and relax some of these assumptions, which in some

cases can improve the fit of the model and reduce the likelihood of models presenting

convergence issues and implausible parameter estimates (Cernat et al., 2021).

In order to relax the assumptions of the model, and test whether by doing

so models performed better, I subdivided the web tracking dataset into a six-wave

panel dataset. Specifically, the raw dataset had data for three time periods of 30

days, amounting to a total of 93 days of data covering a span of six months. In order

to compute the average measures of media exposure of participants, I subdivided

this dataset into six distinct time periods within the 90-day span, to calculate the

average news exposure for each period. The length of these time periods varied

depending on how long the tracking period was determined to be for each of the

2,631 measurements created: 2, 5, 10 or 15 days (see Table 1). Figure 2 exemplifies

this for measures computed using 15 days of tracking.

Figure 5.2: Exemplification of how web tracking data is operationalised into waves
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Using these datasets, I computed the reliability for each variable using Con-

firmatory Factor Analysis (lavaan R package, Oberski 2014). To account for the

truncated and zero inflated nature of media exposure variables, these were log trans-

formed4. Following Cernat et al. (2021)’s recommendation, I computed a base model

using Wiley and Wiley (1970)’s assumptions. Additionally, I tested four more mod-

els, each of them independently relaxing one of the previously presented assumptions.

After comparing the proportion of models leading to improper solutions, and

the overall fit of the models, I determined that two models performed the best. On

the one hand, a model relaxing the Markovian process assumption, which included

four lag-2 effects between the true scores:

Yt = rTt + Et (5.6)

Tt = βt,t−1Tt−1 + βt,t−2Tt−2 + Zt (5.7)

Were βt,t−2Tt−2 represents the coefficient that reflects the relationship between the

true score at wave t and the true score at the wave two time points before (Tt−2).

On the other hand, a model adding means to the baseline model by estimating the

intercept of the observed scores (set to be equal across time), also outperformed the

others:

Yt = α + rTt + Et (5.8)

Tt = βt,t−1Tt−1 + Zt (5.9)

Where α represents the estimated intercept of the observed scores. I call these models

“2-LAG” and “Equal means.” SM 2 explains these comparisons in more detail and

presents information about the proportion of improper models, and their average

reliability. In the main text, I will only present the results for these two models.

Therefore, I obtained 2,631 true-score reliability coefficients (average reliability

across the six waves), for each country and model. This information was used to

measure the average reliability (RQ. 2), and its fluctuation across measurements

(RQ. 3).

4To deal with 0s, all observations were added +1 before transformation.
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5.2. Validity

To evaluate the validity of the 2,631 media exposure measures created with web

tracking data, I focused on their predictive validity, a type of criterion validity.

Predictive validity assesses whether the measurement predicts or correlates with an

external criterion that is theoretically related to the construct being measured (Smith

et al., 2019). To do so, researchers compute the (partial) correlation between the

observed score of the measurement, and the observed score of the criterion. While in

general the true relationship between the construct and the external criterion is often

unknown, stronger associations between the observed scores are often considered to

be an indication of better validity (Prior, 2009). Although I refrain from making this

assumption, any variations across the multiverse of measurements in the predictive

power of their variables would indicate differences in terms of predictive validity.

In the media effects literature, the common external criterion used to assess

predictive validity is political knowledge. The underlying assumption is that exposure

to news should lead to enhanced political information, resulting in higher political

knowledge (e.g., Dilliplane et al. 2012). However, tests of validity typically focus on

examining how well a measure correlates with political knowledge at a single point

in time. This approach assumes that individuals who consume more news generally

possess higher levels of political knowledge. To assess predictive validity, I employ

two distinct approaches based on previous literature (Dilliplane et al., 2012; Prior,

2009).

First, for each country, I conducted a fixed-effects regression model examining

within-person changes in political knowledge between waves 1 and 3:

Xit = β1Yijt + αi + ut + ei (5.10)

Here, Xit represents the observed political knowledge for participant i at time t, and

Yijt the observed media exposure score for participant i at time t, measured with

measurement j. The political knowledge variable was an additive index ranging

from 0 to 4, with 0 indicating no correct answers to political knowledge questions

and 4 indicating all answered correctly. Questions revolved around basic knowledge

about how institutions work, and the composition of the current government (specific

questions for each country are detailed in SM 3). The media exposure measures

were computed using web tracking data collected immediately before participants
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answered each survey wave. Additionally, the model included an individual- (αi) and

a wave-specific (ut) fixed effect, allowing to account for unobserved time-invariant

heterogeneity among individuals and time-specific effects. From this equation, hence,

predictive validity is assumed to be represented by the partial regression coefficient

of Y (β1). To facilitate the comparison of the coefficients across the multiverse

of measurements, the coefficients used were standardised. Considering the limited

number of waves available and the short time span between them ( three months),

there was limited margin for substantial fluctuations in people’s knowledge over time.

Hence, I also conducted separate Ordinary Least Squares (OLS) regressions for each

country using data from the first wave of TRI-POL:

Xi = β1Yij + β2 + Ci + ei (5.11)

The dependent variable (Xi) was the index of political knowledge, and the main

independent variable was our measures of media exposure (Yij). Again, the political

knowledge variable ranged from 0 to 4. Ci represents the vector of the different

common control variables included in the model, accounting for participants’ self-

reported sex (Male/Female), age (continuous), education (completed tertiary educa-

tion/did not complete), left-right orientation (partially labelled on a 0 to 10 scale),

and political interest (fully labelled on a 1 to 5 scale, five representing the highest in-

terest). Further details on these variables can be found in SM 4. As for the previous

model, predictive validity is assumed to be represented by the partial (standardised)

regression coefficient of Y (β1).

Both models were executed for each computed measure, resulting in 2,631

standardized partial regression coefficients for each country, and for each model.

This comprehensive analysis allowed us to measure the average predictive validity

and assess its variation across different measurements.

5.3. Predicting the effect of each design choice

In addition to examining how the validity of online news media exposure measure-

ments created with metered data varies across different measurement approaches, I

also aimed to understand how these choices impact the reliability and validity of the

measurements.

Inspired by the Survey Quality Predictor (SQP, Saris et al. 2011), the study
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took a predictive approach to uncover the connection between each design choice and

the reliability and validity of media exposure measurements from web tracking data.

To do this, I compiled a new dataset with the multiverse of quality assessments.

In this dataset, I used the total of 7,893 variables computed across countries as

observations, their validity and reliability coefficients as dependent variables, and

the seven design choices of the measurements (see Table 1) plus the country of the

variables as the group of predictors.

For predicting the impact of each design choice, I used random forests of re-

gression trees (using the R package randomForest, Liaw and Wiener 2002). Random

forests have been shown to work best for similar endeavours (e.g., SQP 3.0, Felderer

et al. 2023), due to their ability to handle complex relationships, interactions, and

outliers effectively. A random forest is a machine learning algorithm that combines

the predictions of multiple decision trees to make more accurate and robust predic-

tions. While OLS regression tries to find a single linear equation that best fits the

data, a random forest uses an ensemble of regression trees, making it capable of han-

dling complex, nonlinear relationships. Hence, a random forest builds not just one

but many decision trees. Each regression tree is created through a Classification and

Regression Tree (CART) algorithm (Breiman et al., 1984). Each tree is trained on a

subset of the measurements (some in-bag, some out-of-bag), and a random subset of

predictors (design choices). This randomness introduces diversity among the trees.

I employed 500 trees for each of the four models: two for the validity coefficients and

two for the reliability coefficients. On average, each measurement was ”out-of-bag”

about 346 to 374 times, which means it was absent in around 69-75% of the trees in

the forest. Additionally, I randomly selected five out of the eight variables without

replacement for each analysis.

To gain a comprehensive understanding of how individual design options (e.g.,

using 15 days of data, instead of 10) impact the reliability and validity of measure-

ments, while accounting for the effect of other design choices, I computed Partial

Dependence Plots (PDPs) for each design choice. PDPs allow to compute the pre-

dicted reliability and validity as it systematically varies the values of each feature

while keeping all other design choices averaged, capturing the average effect across

those choices. Building upon the PDP analysis, I extended the investigation to

predict the reliability and validity that each design option would achieve. This pre-

diction involved averaging the predictions across the categories of all other features,

effectively estimating the expected reliability and validity for each design choice un-
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der varying configurations. This step enables providing quantitative insights into the

anticipated performance of different design options.

Figure 5.3: Descriptive results of the 7,893 reliability coefficients obtained, for each
method

6. Results

6.1. True-score reliability

Figure 3 presents an overview of the findings on the multiverse of reliability estimates.

The diagram illustrates the distribution of the 7,893 reliability coefficients for all

countries combined, separately for each model. Additionally, the graph shows the

first, second, and third quartiles.

Focusing on the 2-LAG model, Figure 3 shows that the median reliability

coefficient obtained across countries is of 0.85. Hence, the median explored measure

of media exposure captures 85% of the variance of its true score. Although Figure

139



Chapter 5: Validity and Reliability of Digital Trace Data in Media Exposure
Measures

2 shows that variation exists across measurements, and following DeCastellarnau

et al. (2017), 24.9% of the measurements present values deemed as acceptable (0.70-

0.80), 39.5% as good (0.80 – 0.90), and 29.6% excellent (> 0.90). Only 0.9% of the

measurements yielded measurements deemed poor or unacceptable (< 0.60).

Figure 3 also shows the results for the model with equal means. This model,

overall, yields slightly higher reliability coefficients. The median reliability is of 0.87.

Again, although variability is observed across measurements, 17.2% of the measure-

ments present acceptable reliability coefficients, 37.6% good, and 39.4% excellent.

Out of all measurements tested, only 0.4% presented measurements deemed poor or

unacceptable.

Considering these results, the measurements explored generally present high

reliability coefficients. Not only so, many of them present excellent reliability esti-

mates, which capture close to all the variance of their true score.

6.2. Predictive validity

Next, I focus on predictive validity. Figure 4 illustrates the distribution of stan-

dardized regression coefficients for all countries combined, separately for each model.

These coefficients represent the association between media exposure and (gains in)

political knowledge.

When examining the average values derived from the fixed effect regression

model, Figure 4 shows that the median standardized association between changes in

media exposure and political knowledge is of 0.01. Essentially, this suggests that,

overall, a one standard deviation increase in media exposure corresponds to a min-

imal 0.01 standard deviation increase in political knowledge. Although results ex-

hibit fluctuations across measurements, the overall impact of all coefficients remains

notably diminutive, denoting a near-null to very weak association. The highest stan-

dardized coefficients attained is 0.13. Notably, it is interesting to observe that 38.7%

of coefficients across countries manifest negative values, implying that augmented

media exposure corresponds to marginal declines in political knowledge across dif-

ferent waves. For comparison purposes, across countries, the average standardised

coefficient yielded by a survey self-report was of 0.02 (see SM 5 for the details of this

analysis).

Figure 4 also shows the outcomes stemming from the cross-sectional OLS re-
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gression model. In this context, the median standardized association is substantially

larger, at 0.09. Although the distribution of coefficient estimates diverges among

these outcomes, both models yield comparably modest standard deviations (approx-

imately 0.03). The peak standardized coefficients reached if of 0.17. Across countries,

36.2% of coefficients surpass values of 0.10, with 1.7% even exceed 0.15. Neverthe-

less, despite the relatively larger coefficients presented by the cross-sectional OLS

regression model, most of the examined measurements still show notably feeble as-

sociations. In comparison, across countries, a survey self-report yielded an average

standardised coefficient of 0.10 (also see SM 5).

Figure 5.4: Descriptive results of the 7,893 standardised regression coefficients ob-
tained, for each method

On the whole, while the theoretical expectation is that media exposure would

be associated to a gain in people’s political knowledge, or at least that people that

are exposed to media should show higher political knowledge, these results hardly

suggest so. Most of the measures show that media exposure, in the time explored,

hardly lead to any increase in political knowledge. Additionally, while there is an

association between media exposure and political knowledge at the cross-sectional
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level, it is modest if not low.

If we follow what past research has done, this suggests that the explored mea-

sures of media exposure derived from web tracking data exhibit low predictive va-

lidity, irrespective of the regression model employed. While this is hard to prove

with this data, given that the true association between media exposure and political

knowledge is unknown, results do show that validity fluctuates to some extent across

measurements, suggesting that how measurements are designed has an impact on

validity.

6.3. The effect of each design choice

In the following section, we consider the connection between various design options

and the validity and reliability coefficients of the explored measurements related to

media exposure. Overall, the models yielded strong results, with R-squared values

of 0.97 for both reliability models, and 0.89 and 0.95 for the fixed and cross-sectional

validity coefficients, respectively. The squared correlations between predicted and

observed coefficients were 0.97-0.98 for the reliability coefficients, and 0.91-0.90 for

the validity ones. SM 6 graphically presents the predicted coefficients against the

observed ones.

Presented in Figures 5 and 6 are the adjusted predicted reliability and validity

coefficients for each design option across the different models I explored. These

results encompass data from all countries, with the effects unique to each country

being accounted for through three distinct dummy variables.

Figure 5 presents the average predicted reliability coefficients, for both models.

Both the 2-LAG and the equal means model show almost identical results. Based

on a variable importance test, the design choices with a higher importance in the

prediction model (i.e., higher increase in the RMSE when excluded) are the length

of the tracking period, the metric used, whether metrics are computed considering

all URLs as news or only those dealing with politics, and the country (see SM 7 for

the exact values). This can also be appreciated in Figure 5.

The reliability varies greatly depending on the length of the tracking period.

While, on average, we should expect a predicted reliability of 0.75/0.78 when com-

puting a measure of media exposure only with two days of data, this value goes up to

0.90/0.91 when using 15 days of data. Hence, results seem to suggest that the longer
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Figure 5.5: Average predicted reliability coefficients

the tracking period, the higher the reliability of the methods. However, this increase

does not follow a strictly linear trajectory, as evidenced by the present yet not overly

substantial difference between the measures computed with 15 and 10 days of track-

ing data. Furthermore, the choice of metric significantly influences the reliability

of measurements. Computing the average number of media outlets consumed leads

to the lowest average predicted reliability, while using the average number of visits

clearly appears to be the best option. Interestingly, this finding contrasts with the

advocacy for a list-based approach in surveys, often touted as superior to visit or

time-based counts. In addition, considering any URL published by a media outlet as

news leads to an average increase in the percentage of the measure explained by the

true score of 3 to 4 percentage points, compared to only using those URLs manually

identified as hard news. Furthermore, the predicted reliability of measures seems to

be, on average, associated with the country. Specifically for the equal means model,

Italy seems to present substantially higher reliability coefficients, with Spain under-
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performing. This implies that cross-national comparisons of standardized coefficients

might exhibit some bias if not corrected for measurement errors (Bosch and Revilla,

2021). Besides these design decisions, Figure 5 shows that all other design options

do not have a strong effect on the size of the measurement errors of media exposure

measures computed with web tracking data.

Focusing on predictive validity, a key observation stemming from Figure 6 is

that although minor fluctuations are evident, the size of all the predicted coefficients

is small. However, beneath these variations lie intriguing patterns. Across the array

of models, Figure 6 demonstrates that the predicted validity coefficients exhibit fluc-

tuations across countries, and across the metrics and length of the tracking periods

employed. A more in-depth analysis of the variable importance within the model

(outlined in SM 7) provides similar insights, thus reinforcing these observations.

While the outcomes from the two models differ slightly, they both suggest a

consistent trend: the magnitude of the association between media exposure and po-

litical knowledge is greater, on average, when employing a metric based on average

visits (with the minutes metric demonstrating notably weaker performance). Fur-

thermore, both models indicate that extended tracking periods do not inherently

result in higher predicted regression coefficients. Surprisingly, either the 10-day or

5-day tracking measures surpass those computed using a 15-day tracking dataset.

Variations are also evident across the models. The fixed effects model indicates

that the projected association between media exposure and political knowledge is, on

average, least pronounced in Spain. Conversely, the cross-sectional model presents

a contrary scenario. Additionally, the cross-sectional model uncovers a connection

between other design choices and the average predicted coefficient of the measure-

ments. Notably, considering any URL published by a media outlet as news yields

a higher standardized regression coefficient compared to exclusively utilizing URLs

manually identified as ”hard” news or political in nature. Furthermore, utilizing

information from the top 50 to 200 most popular news media outlets in each country

corresponds to higher regression coefficients compared to the usage of only the top

10 or 20 outlets.
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Figure 5.6: Average predicted validity coefficients

7. Discussion

The measurement of online media exposure is of paramount importance for studying

the uses and effects of online media. In the recent years, there has been much excite-

ment about the possibility of obtaining unbiased measure of online media exposure

using web tracking data. Nonetheless, considering that past research has shown that

web tracking data can be affected by errors, in this paper I explored to what extent

media exposure measures computed with web tracking data are valid and reliable.

In addition, through an adaptation of the multiverse analysis approach, the paper

also explored the association that several key design decisions have on the reliability

and validity of media exposure measurements.

145



Chapter 5: Validity and Reliability of Digital Trace Data in Media Exposure
Measures

7.1. Main results

First, results show that the reliability of the multiverse of measurements explored is,

in general, quite high. Across the different models studied, the median reliability of

the multiverse of measurements ranged between 0.85 and 0.87. Hence, overall, the

explored measures of media exposure capture around 86% of the variance of their

true score. Although variation exists across measurements, with some performing

below this average, most of the measurements present reliability coefficients deemed

as good or excellent (DeCastellarnau et al., 2017). Considering these results, the

measurements explored generally present high reliability coefficients. To put it in

context, Bartels (1993) reported a reliability of .75 for a traditional television expo-

sure measure, while Dilliplane et al. (2012) found that a list-based measure assessing

the number of political programs viewed on TV yielded a reliability of .83. Hence,

on average the media exposure measurements computed with web tracking data ex-

plored in the multiverse analysis show, in general, higher reliability estimates.

Second, regarding the predictive validity of the multiverse of measurements,

results show that overall, the association between the measures of media exposure

and political knowledge is weak. Specifically, for the fixed effect model, the median

standardised coefficient is of 0.01, with a substantial proportion of the measurements

yielding small but negative coefficients. The cross-sectional model, additionally, pro-

duced a slightly higher but still small median coefficient of 0.09. These results are

almost identical than the ones obtained using a survey self-report. Past research has

considered that, for a media exposure measure to be valid, it should show a signifi-

cant and substantial association with political knowledge. Based on this assumption,

most self-reported measures of media exposure have been criticized because of their

low predictive power. Results suggest that this lack of predictive power is not limited

to self-reports, but it is also found when using web tracking data. Based on past

research’s approach, these results would suggest that the explored measures of media

exposure derived from web tracking data exhibit low predictive validity, irrespective

of the regression model employed. Nonetheless, this could also mean that the com-

mon approach used to measure the predictive validity of media exposure measures

is, to some extent, flawed. As Prior (2009) already said, we do not know the “true”

association between media exposure and political knowledge. We assume that there

should exist one, and that its size should not be small. However, there is a chance

that consuming media does not necessarily lead to an increase of political knowledge.
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Or even more feasible, that small fluctuations of media exposure are not related to

a change in the knowledge that people have about how their basic political system

works. These results could be an indication that the true relationship is indeed small,

indicating that the lack of predictive power of surveys is not an indictment of their

validity.

Besides describing the overall validity and reliability of the multiverse of mea-

surements, results also help understand the key design choices that significantly

influence the validity and reliability of the explored measurements. Results from the

random forest of regression trees models show that some design choices do affect

both the reliability and validity coefficients obtained. Based on these results, we can

extract some interesting patters:

1. The length of the tracking periods is significantly associated with the reliability

of the measurements, and their validity. While the average predicted reliability

of a measure computed with two days of data is of 0.75/0.78, this value goes

up to 0.90/0.91 when using 15 days of data. This relationship, however, is not

observed when focusing on the validity coefficients. In this case, an extended

tracking period does not result in higher predicted coefficients: five days of

data can yield a stronger predictive power than 15 days.

2. The choice of metric significantly influences the reliability and validity of mea-

surements. Using an average count of the number of visits to media outlets

seems to yield the highest reliability and validity coefficients.

3. The approach used to decide what URL should be considered as “written news”

is also significantly linked to the reliability and validity of measures. Specif-

ically, considering any URL published by a media outlet as news leads to an

average increase in the percentage of the measure explained by the true score,

and an increase on the cross-sectional association between media exposure and

political knowledge.

4. Both the reliability and validity of the explored measurements are affected by

the country where measurements were computed. This indicates that the mea-

surement properties of media exposure measures computed with web tracking

data vary across countries. Hence, any cross-national comparison of standard-

ised coefficients must take this into account or run the risk of being flawed

(Bosch and Revilla, 2021).
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5. Other design choices present significant differences across their available op-

tions, but most of them are rather small. For instance, focusing only on the

top 10 or 20 most popular media outlets leads to slightly smaller reliability

and validity estimates. And using stricter time thresholds when defining what

can constitute as a visit is associated with smaller reliability coefficients, and a

higher cross-sectional association between media exposure and political knowl-

edge.

6. The list used to identify and rank news media outlets, as well as the inclusion

(or not) of app data, seem to be mostly irrelevant choices.

7.2. Limitations and future research

These results present some limitations. First, participants were recruited using an

opt-in online panel of already tracked participants. Although this is the most com-

mon approach in the literature to recruit participants for web tracking studies, and

the most popular tracking provider in the market was used, it is unclear whether

these results would replicate when conducted on another opt-in panel using a differ-

ent recruiting and tracking approach, as well as on a probability-based sample of less

experienced respondents. Second, the limited number of survey waves, and the re-

duced spacing between waves ( three months), mean that there might not be enough

margin to capture any kind of political knowledge formation. Additionally, the used

measure of political knowledge, albeit common, might not be the best suited one to

assess the type of political knowledge that might be gained through the consump-

tion of news. Future research could explore whether these results hold when asking

participants about knowledge of current political events, instead of only focusing

on basic questions about the political system. Third, the Quasi-Markov Simplex

Model depends on some potentially unrealistic and strict assumptions. Although

in this study I have tested the effect of relaxing some of these assumptions on the

fit and overall performance of the models, following Cernat et al. (2021) approach,

this approach has been applied on the macro-level. Considering that I have run

the same models for the 2,631 measurements, it is feasible to assume that the two

models used (2-LAG and equal means) might not be the best performing models for

all measurements. Ideally, I would have manually tested, for each measurement, the

best model to use. Nonetheless, given the large volume of measurements, I applied

the two models performing the best on average, for all measurements. Fourth, the
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reliability estimated by the QSM measures the percentage of variance due to the true

score as opposed to random error. Therefore, even if the results suggest that the reli-

ability of the explored measurements is very high, there is still the chance that these

measurements are affected by systematic errors and, hence, severely biased. This

could partially explain the weak association between media exposure and political

knowledge. If systematic errors are present, measures could be very consistent across

time, while still being severally biased. Future research should consider testing the

measurement quality of media exposure measurement created with web tracking data

using methods that allow disentangling the systematic and random components of

measurement errors, such as MultiTrait-MultiMethod models (e.g., Bosch and Re-

villa 2021). Fifth, although the multiverse of measurements has considered many

of the most important design decisions that researchers face when designing media

exposure measurements, I have not been able to cover all of them. Specifically, much

research has measured media exposure by tracking participants only on their desktop

devices, excluding mobile devices. I was not able to test this design feature, since

the sample was composed by people tracked in both mobile and desktop devices and

excluding those tracked in only one device would have led to a substantial drop in the

size of the sample. Sixth, interactions were not directly considered when fitting the

random forest of regression trees. This is the common approach, given the random

forests model’s nonparametric nature, lack of assumption of independence between

variables, and sequential approach. Nonetheless, new research suggests that interac-

tion forests can deliver better predictions than conventional random forests (Hornung

and Boulesteix, 2022). Lastly, the media exposure measure explored in this study

(i.e., “written news media”) is very narrow. Research has suggested that most news

and political content that people are exposed online is not encountered on news me-

dia outlets, but on other webpages (Wojcieszak et al., 2023). Additionally, news are

increasingly consumed via videos and podcasts (Newman et al., 2021), which are not

considered in this study. A more comprehensive definition of media exposure should

be explored in future research, to test the performance of web tracking measures

when focusing on a richer but more complex concept of interest.

7.3. Conclusions and practical recommendations

First, web tracking measures of media exposure exhibit, on average, a very high

reliability. Most of the explored measures show very small measurements errors,
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capturing most of the variance of the measurement’s true score. Maybe even more

encouraging, only a very small minority of the explored measurements presents re-

liabilities below 0.70, meaning that it is very unlikely for web tracking measures of

media exposure to be affected by sizable random measurement errors. Although this

is an overall improvement to self-reports, the main critique of survey measures of me-

dia exposure was never their reliability. It has been established that these measures

present acceptable or even good reliabilities (see Bartels 1993; Dilliplane et al. 2012).

Collecting web tracking data is more complex, expensive, and ethically challenging

than collecting survey data. Hence, researchers must consider the trade-off between

these drawbacks, and the potential reduction of random measurement errors. This

is not to say that web tracking data is not worth it, it might still be. But the gains

need to be considered more carefully than simply assuming that this new source of

data is the gold standard.

Compared with the high reliability found, the association between media ex-

posure measures computed with web tracking data and political knowledge is weak.

This can mean that web tracking measures are not an improvement to self-reports,

and/or that the critiques to self-reports based on this commonly used approach to

measure predictive validity have been overstated all along. Whatever of the hypoth-

esis leads to the same conclusion, nonetheless: we need to improve the way that we

think about validity, and the approaches used to assess it. Changing self-reported

measures for web tracking ones is not justified based on this paper’s results, either

because both are equally bad, or because we have too little understanding on the va-

lidity of both approaches to establish any evidence-based comparison. This is in line

with what other researchers have found, and advocated, when using data donations

to measure concepts related to mobile usage (Bosch et al., 2023).

Finally, I recommend researchers to embrace the multiverse of measurements

approach. Results show that the reliability and validity of measurements substan-

tially fluctuate across design choices. It is to be expected, hence, that substantive

results might also considerably vary. An advantage of web tracking data over survey

self-reports is the feasibility of creating a large multiverse of measurements. Once

the raw data from the web trackers is collected, it is mostly inexpensive and effortless

to go from one measurement to thousands of them. In the current context of the

social sciences, with many disciplines experiencing replication crises, the multiverse

of measurements approach allows researchers to embrace uncertainty, improve the

transparency of their research, and provides readers with a rich amount of data to
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form their own opinions and conclusions. Beyond this, and for those researchers

unable or unwilling to apply the multiverse of measurements approach, the results

provide practical evidence of potential best practices when designing web tracking

measures of media exposure: use at least 10 to 15 days of tracking data, use a count

of visits as the metric, and consider all URLs published by new media outlets as

“written news”, especially if the only alternative is to manually identify the URLs

that publish “hard” news.

Acknowledgements: I would like to thank Patrick Sturgis, Jouni Kuha, Melanie Revilla,

and Mariano Torcal for their comments and support

Funding: Fundación BBVA; H2020 European Research Council, Grant/Award Number:

849165; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2019-106867RB-

I00/AEI/10.13039/501100011033

Data: The data that support the findings of this study is openly available in OSF at

https://osf.io/3t7jz/ (DOI: 10.17605/OSF.IO/3T7JZ). More information can be found in

the following paper

Bibliography

Alwin, Duane F. 2007. Margins of error a study of reliability in survey measurement .
Wiley.

Araujo, Theo, Anke Wonneberger, Peter Neijens, and Claes de Vreese. 2017. “How Much
Time Do You Spend Online? Understanding and Improving the Accuracy of Self-
Reported Measures of Internet Use.” Communication Methods and Measures 11:173–190.

Bach, Ruben L., Christoph Kern, Denis Bonnay, and Luc Kalaora. 2022. “Understand-
ing political news media consumption with digital trace data and Natural Language
Processing.” Journal of the Royal Statistical Society Series A: Statistics in Society 185.

Bartels, Larry M. 1993. “Messages received: The political impact of media exposure.”
American Political Science Review 87:267–285.

Biemer, Paul P. 2010. “Total survey error: Design, implementation, and evaluation.”
Public Opinion Quarterly .

Bosch, Oriol, Marc Asensio, and Caroline Roberts. 2023. Data donations, are they worth
the effort? The accuracy and validity of smartphone usage measures computed with
self-reports and data donations.

151

https://osf.io/3t7jz/
https://www.sciencedirect.com/science/article/pii/S2352340923003384


Chapter 5: Validity and Reliability of Digital Trace Data in Media Exposure
Measures

Bosch, Oriol J. and Melanie Revilla. 2021. “The Quality of Survey Questions in Spain: A
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Conclusion

We are currently in an exhilarating era for the social sciences. The prolifera-

tion of digital data has revolutionized the research landscape, expanding the horizons

of what social scientists can investigate and how they conduct their studies. This

transformative wave has disrupted various aspects of the field, reshaping curric-

ula, and influencing research funding priorities. The enthusiasm surrounding digital

trace data, driven by its granularity and objectivity, has been undeniably warranted.

However, this enthusiasm has also, to some extent, obscured the potential challenges

associated with leveraging this data for rigorous social scientific research.

To fully harness the transformative potential of this ”measurement revolution”

(Watts, 2012) offered by digital trace data in the social sciences, we must subject

this new data source to the same rigorous scrutiny in terms of conceptualization and

methodology as we do with traditional data sources (Gerring, 2016; Hand, 2004).

While digital trace data holds tremendous promise, it still has a considerable distance

to cover before becoming a widely accepted and credible mainstream data source,

firmly entrenched in the core of social science discourse and funding priorities.

This thesis makes a significant contribution to this ongoing effort. Specifically,

it provides a comprehensive theoretical and empirical examination of the quality of

web tracking data, shedding light on its associated errors and their ramifications. As

a methodological thesis, this work underscores a crucial point: the initial promises of

web tracking data must be viewed through a lens of scepticism. Like any other data

source, web tracking data is imperfect. This observation is not intended to dampen

enthusiasm or convey negativity; instead, it represents a realistic perspective. This

thesis does not aim to criticize; rather, by acknowledging the imperfections of web

tracking data, it paves the way for the development of approaches that enhance

our understanding of this data source and establish best practices for its utilization.

By aligning web tracking research more closely with the established practices of

imperfect yet well-understood data collection methodologies such as surveys, this
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thesis contributes to the integration of digital trace data into the social science toolkit

and workflow.

Paper 1, in Chapter 3, serves as the foundation for a more mature and im-

proved use of web tracking data in the social sciences. It addresses a historical

gap where researchers utilizing web tracking data often lacked a clear understanding

of the entire process, from data collection design to the computation of statistical

estimates. This knowledge gap was understandable, as social researchers typically

lacked familiarity with the intricacies of digital trace production processes, while

computer scientists lacked training in social research methodology. Consequently,

few researchers employed strategies to measure, mitigate, or transparently report er-

rors. Moreover, methodological research quantifying these errors and assessing biases

in web tracking research was exceptionally scarce.

In this context, there was an urgent need to establish a systematic description

of the data generation and analysis processes for web tracking data, along with a

classification of potential sources of bias and variance at each stage of this process.

Drawing on the extensive scholarship in survey methodology, psychometrics, and

social statistics, Paper 1 adopts a survey science perspective to examine web tracking

data. The result is the Total Error framework for digital traces collected with Meters

(TEM). The TEM elucidates that making statistical inferences with web tracking

data is an intricate endeavour, involving numerous understudied design decisions

that often go unacknowledged. It also underscores that, theoretically, web tracking

data can be vulnerable to a plethora of errors that might bias research outcomes and

conclusions. Consequently, the TEM validates the early critiques of digital trace data

voiced by researchers like Jungherr (2019) and highlights the imperative need for a

more rigorous measurement approach when employing this data source for scientific

research.

A glaring oversimplification in the existing literature is the assumption that

web tracking data measures individual-level behaviours. This assumption is fun-

damentally incorrect. As elaborated in Paper 2 (Chapter 4), web tracking data is

captured at the device level, not the individual level. Therefore, we can only consider

web tracking data as representative of a person’s complete online behaviours if two

conditions are met: 1) the device is used exclusively by the person of interest, and 2)

all the devices they use for online activities are being tracked. Focusing on the second

condition, achieving a comprehensive understanding of individuals’ online behaviour

necessitates collecting data from all the devices they use. Nevertheless, this is a com-

157



Chapter 6: Conclusion

plex task. As demonstrated in the first and second papers of this thesis, achieving

perfect device coverage is highly challenging. Tracking technologies are imperfect,

and there is no universal option that can be installed and configured across all types

of devices and operating systems. Furthermore, participants might not be willing to

cooperate, and even when they are, the installation of tracking technologies on all

their devices can be logistically challenging. Failure to track participants on some

of their online devices leads to incomplete measurements, which can introduce bias

by deviating observed behaviours from the participants’ true actions. Despite its

conceptual simplicity, tracking undercoverage has not been acknowledged in the field

of web tracking data research.

Paper 2 rectifies this oversight. It demonstrates that tracking undercoverage

is widespread and consequential, and addressing this source of error is imperative

for conducting sound research. The paper reveals that across the three countries

examined, 74% of people had at least one device they used for online activities that

went untracked. Consequently, given that this thesis collected data using the most

common online panels and web tracking technologies prevalent in the literature, this

implies that a significant portion of past research may have been based on data

significantly affected by tracking undercoverage. Is this problematic? According

to the results from the simulations conducted in Paper 2, it is indeed. Across a

range of univariate and multivariate statistics typically computed in media effects

research, Paper 2 demonstrates that tracking undercoverage introduces substantial

biases. For instance, considering the level of undercoverage observed in the TRI-POL

dataset, it reveals that the estimated average time participants spend on the Internet

is underestimated by approximately 30%.

These findings pose significant challenges for the field of web tracking research.

Firstly, they debunk the assumption that web tracking data is largely unbiased, call-

ing into question the legitimacy of many claims made using this data. Phenomena

that have been downplayed based on web tracking data, such as the prevalence of

Fake News exposure, may actually be more widespread. If these issues are not ad-

dressed, the credibility of a substantial portion of claims made with web tracking

data may be rightfully challenged. Additionally, much of the research asserting that

surveys are biased when measuring online behaviours has been built on comparisons

between self-reports and web tracking data, or other forms of digital traces. These

studies typically suggest that survey participants ”overreport” their behaviours, such

as news exposure, compared to web tracking data. However, based on the findings
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of Paper 2, it is plausible that the web tracking estimates used in these compar-

isons were themselves underestimated. If we continue to believe that self-reports are

somewhat overestimated, it is possible that the ”true” behaviours of participants

fall somewhere between the underestimated web tracking measures and the overesti-

mated self-reports. This implies that self-reports may be less biased than previously

assumed.

Secondly, the evidence presented in Paper 2 clearly exposes deficiencies in

the practices and procedures followed by both online fieldwork companies and re-

searchers. Companies offering metered panels frequently fall short in capturing a

comprehensive view of their panellists’ online activities. This shortcoming often

stems from limitations in their tracking technologies, which are seldom addressed.

Alarmingly, these companies typically do not provide information about the level

of tracking coverage within their panels and rarely disclose how they address these

issues. On the researcher’s side, the prevailing practice has been to accept the data

provided by these companies uncritically. No research paper has ever reported the

prevalence of tracking undercoverage in web tracking samples or discussed the po-

tential limitations stemming from this issue in their results. If we compare this with

the standard practice when using surveys, it would be akin to not reporting response

or participation rates—a practice widely recognized as suboptimal.

The simplistic measurement approach used with web tracking data, it seems,

has far-reaching negative consequences. These results, coupled with the theoretical

contributions of Paper 1, underscore the need for a comprehensive examination of

the measurement properties of web tracking data. In survey research, substantial

time and resources have been devoted to understanding the validity and reliability

of measures employed. This endeavour is essential for ascertaining whether the mea-

sures accurately capture the concept of interest, as well as to understand the extent

random errors might inflate variance, potentially distorting statistical estimates. Ad-

ditionally, assessing the validity and reliability of measures allows for standardized

comparisons between different measurement methods. When working with imperfect

data sources, it is key to understand what design choices maximise the validity and

reliability of the measurements used. Having a good understanding of the measure-

ment properties of measures designed with different combinations of design choices

can aid researchers in understanding the expected quality of published research and

designing their own measures.

Paper 3, in Chapter 5, marks a significant step towards narrowing the existing

159



Chapter 6: Conclusion

gap in our understanding of the measurement properties of web tracking data in com-

parison to well-established data sources, particularly surveys. Its primary focus cen-

tres on media exposure measures. Firstly, the paper challenges the prevailing assump-

tion that translating a construct into a web tracking measurement is a straightforward

process. It demonstrates that creating these measurements—deciding which traces to

employ, how to transform them, and in what manner to amalgamate them—involves

a multitude of uncharted decisions. In fact, the paper reveals that there are po-

tentially thousands of different measures for assessing media exposure within web

tracking data. However, what becomes evident is a conspicuous dearth of empirical

evidence to guide the selection of appropriate design decisions in this context. Within

this landscape of uncertainty, it becomes challenging to make informed decisions re-

garding measurement approaches when working with web tracking data. The lack

of established guidelines and empirical evidence surrounding these critical decisions

envelops the results derived from web tracking data with a level of uncertainty that

distinguishes it from the use of traditional data sources like surveys.

Secondly, Paper 3 raises questions about the presumption that web tracking

measures of media exposure inherently possess greater validity than survey self-

reports. Prior research has contended that, for a media exposure measure to be

deemed valid, it must exhibit a significant and substantial association with political

knowledge. Building upon this assumption, most self-reported measures of media

exposure have faced criticism due to their limited predictive power. Our findings

challenge this belief by demonstrating that this lack of predictive power is not unique

to self-reports; it is also prevalent when utilizing web tracking data. This suggests

that web tracking measures might not represent a substantial improvement over self-

reports. Alternatively, it implies that critiques of self-reports, premised on the ”gold

standard” approach to predictive validity, may have been overstated. Regardless of

which hypothesis holds true, the shift from self-reports to web tracking data seems

unjustifiable based on the validity of surveys and web tracking, either because both

approaches are equally suboptimal, or because our understanding of their validity is

insufficient to establish an evidence-based comparison.

Lastly, Paper 3 reveals that web tracking measures of media exposure gener-

ally demonstrate very high reliability. Thus, while these results acknowledge that

web tracking measures of media exposure are subject to random measurement er-

rors, the magnitude of these errors is minimal. Furthermore, among the multitude of

measurements explored, only a small fraction exhibits low reliability estimates, un-
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derscoring the inherent stability of web tracking measures to some extent. Although

this represents an overall improvement over self-reports, it is important to note that

the primary critique of survey-based measures of media exposure has never revolved

around their reliability. It has been well-established that these measures typically

demonstrate acceptable or even commendable levels of reliability. Consequently, it

remains uncertain whether this slight improvement in reliability alone justifies a com-

plete shift in how social scientists collect data regarding individuals’ online media

consumption behaviours.

An optimistic way forward

This thesis may appear critical and, at times, even pessimistic in its tone. However,

its findings are fundamentally optimistic. The notion that digital trace data could

serve as a flawless and unbiased data source was, from its inception, more of an

illusion than a reality. The pioneering work of those who ventured into the realm

of digital data opened doors and ignited excitement within the social sciences, but

their efforts were never intended to create a perfect solution. Just as digital trace

data was never meant to remain unquestionably perched upon a ”gold standard”

pedestal indefinitely, this thesis reaffirms that there is ample room for improvement

and maturation in this field.

Indeed, this thesis embodies optimism by demonstrating that we can move

the field forward. It reveals that we have the capacity to approach digital trace

data, and by extension, computational social sciences, with greater maturity and

discernment. Optimistically, the thesis underscores the adaptability of the extensive

methodological and statistical knowledge developed for traditional data sources, such

as surveys, to enhance our comprehension of the quality and errors inherent in web

tracking data. As a result, researchers and practitioners are encouraged to view

digital trace data through the lens of survey science and psychometrics, enhancing

their utilization of digital traces for social scientific research.

Furthermore, the thesis offers practical tools to aid researchers in this endeav-

our. Firstly, the Total Error Framework presented can serve as a valuable resource

for planning the design of web tracking projects, as well as for devising strategies

to identify and address various sources of error. Secondly, the thesis introduces a

method to recognize, report, and simulate the bias stemming from tracking under-
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coverage, a critical error source. Lastly, the last paper introduces a guide to measure

the predictive validity and true-score reliability of web tracking measures in a manner

comparable to surveys.

With this thesis as a foundation for future progress, researchers can consider the

adaptation of other methodologies. A notable example is MultiTrait-MultiMethod

(MTMM) models, which have empowered survey scientists to refine their under-

standing of the measurement quality of survey questions and identify the methods

least susceptible to errors. MTMMs have even been used to predict the quality

of prospective survey questions, as demonstrated by the Survey Quality Predictor

(SQP). Extending and adapting MTMMs could offer valuable insights into the mea-

surement quality of web tracking data. These models might even evolve to simulta-

neously estimate the quality of survey and web tracking data for the same concepts

of interest, akin to the work conducted by Oberski et al. (2017) for administrative

data.

The inherent nature of web tracking data also presents an intriguing oppor-

tunity for methodological research. This thesis highlights how the flexibility and

granularity of web tracking data can be harnessed for methodological purposes, of-

fering solutions to overcome some of the limitations inherent in surveys. Leveraging

these characteristics, however, requires a different set of tools and methods than the

ones that survey methodologists are normally used to use. By looking at methods

normally used in the data sciences and more computationally demanding fields, the

field can find creative ways to go beyond what has been possible for surveys. For

instance, Paper 2 demonstrates how the sheer volume of data generated by web track-

ers, coupled with insights into certain types of errors, enables the use of simulation

techniques to estimate the biases affecting web tracking data. In the realm of sur-

veys, we face the challenge of attempting to measure something inside people’s minds,

making it inherently elusive. Unlike surveys, web tracking data is produced through

known mechanisms. Simulations can manipulate these mechanisms to quantify the

impact of errors on data production. An illustration of this approach is presented in

Paper 2, which focuses on tracking undercoverage. By identifying individuals with

all their devices tracked and collecting data separately for mobile devices and PCs,

we were able to simulate the effects on various statistics when certain devices were

not tracked. This approach could similarly be applied to simulate errors stemming

from other sources discussed in the TEM, such as misclassification, shared devices,

or technological errors.
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Paper 3 further underscores the opportunities that stem from the granular-

ity of web tracking data. In traditional surveys, generating multiple measures for

a single concept of interest is a resource-intensive and complex undertaking. Sur-

veys are bound by constraints on the number of questions that can be included in

a questionnaire, and participants’ memory limitations can affect the independence

of responses to repeated measures. Typically, surveys include only a limited num-

ber of measures for select concepts, often with no more than three repetitions. In

contrast, web tracking data is unrestricted by such limitations. When researchers

have access to the raw web tracking dataset, they can craft hundreds, if not thou-

sands, of distinct measures for a single concept of interest. This flexibility empowers

researchers to conduct analyses across a multiverse of measurements within a single

project. This can serve various purposes, such as reporting result uncertainties in

web tracking research or assessing the measurement properties of diverse measures

and focusing on those demonstrating the highest quality. In essence, the capabil-

ity to perform analyses using not just one arbitrary measurement, but the entire

multiverse, positions web tracking research to establish a more extensive corpus of

methodological evidence than surveys have ever provided. To illustrate, decades of

MTMM experiments in numerous countries have paved the way for the creation of

the SQP program. SQP can predict the quality of survey questions based solely on

their characteristics and uses a database comprising 3,483 variables, complete with

question attributes and quality evaluations. Notably, Paper 3 alone assembled a

database of 7,893 web tracking measures, including their respective characteristics,

as well as estimates of validity and reliability. Therefore, it becomes evident that as

methodological research increasingly adopts a multiverse approach to web tracking

data, the volume of available evidence will swiftly surpass what resource-intensive

traditional data sources like surveys can offer. With this abundance of data, it should

be feasible to promptly identify patterns in the characteristics of web tracking mea-

sures that hold relevance, thereby aiding future research in predicting data quality

even before collecting it.

Optimistically, most of the errors and problems identified seem to be fixable.

Contrary to surveys, which will always have to deal with the limits of human cog-

nition, there is no reason to believe that most of the errors of web tracking data

are unsolvable. By identifying these challenges, companies and researchers can start

working on them. In the next section, I present an optimistic agenda of improvements

for the next few years.
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An agenda for an improved use of web tracking data

This thesis, as a methodological endeavour, aims to empower both researchers and

practitioners to enhance their utilization of web tracking data. The findings presented

here illuminate significant areas for improvement, with each paper offering evidence

that can be applied by both data providers and users.

The insights within this thesis imply that online fieldwork companies have

substantial room for advancement in their practices. While much of web tracking

research has been facilitated by the availability of metered panels from companies

like Netquest and YouGov, it is imperative that we collectively encourage them

to elevate their standards. A key aspect demanding enhancement is ensuring that

participants are comprehensively tracked. As elucidated in Paper 2, the pervasive

issue of tracking undercoverage significantly taints the statistical estimates derived,

introducing substantial biases. Companies should intensify their efforts to address

this issue. This may entail refining their array of tracking technologies or providing

stronger incentives, potentially linked to panellists’ coverage. Failure to address this

issue might render it challenging for academic researchers to justify allocating public

funding for the acquisition of data that is evidently biased.

Furthermore, these companies must prioritize transparency in their practices.

While the confidentiality surrounding the tracking technologies they employ, and

the constraints they face, might align with their business interests, it contradicts the

principles of open science. Researchers require transparent information regarding

the tools utilized in data production to establish trust in the data. Additionally,

it should be required for online fieldwork companies to collect information about

the prevalence of errors such as tracking undercoverage within their panels, and to

make this information accessible to researchers purchasing their data. Additionally,

this information should be available to enable researchers to tailor their sampling

approaches more effectively. Moreover, companies must diligently work on improving

tracking practices for Apple users. As Paper 2 reveals, iOS and MAC devices are

disproportionately undercovered. While it is acknowledged that tracking iOS devices

poses greater challenges than other devices, heightened efforts should be directed

towards minimizing the systematic loss of data from these widely adopted devices.

Funders and major research institutions must reevaluate their practices in light

of the challenges posed by web tracking data. Presently, many of these issues lie be-
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yond the control of researchers. When utilizing data already collected by private com-

panies, researchers cede control over how the data is generated and its source. This

has far-reaching implications for data representativeness and measurement quality in

social research. The most effective way for researchers to implement the recommen-

dations from this thesis is to gain control over the entire data collection process. This

encompasses everything from the development of tracking technologies to participant

recruitment and convincing them to install tracking tools across all their devices, to

data processing. However, given the complexity and substantial cost associated with

this approach for individual web tracking studies, resources should be allocated to

establish publicly funded, open web tracking infrastructures.

These infrastructures could take various forms, such as probability-based or

high-quality nonprobability metered panels constructed and maintained by public

research institutions. Alternatively, they might manifest as a versatile toolkit avail-

able to researchers for a nominal fee or through open-call competitions, offering

open-access tracking technologies with easily configurable servers. Cumulatively, the

resources directed towards private companies for data acquisition could be redirected

to initiate these infrastructures. Nonetheless, their success hinges on adhering to es-

tablished best practices, including those outlined in this thesis. If data from private

companies is still perceived as of higher quality, it may hinder the full transition from

private to public data.

Researchers and practitioners using web tracking data should also reconsider

their practices. Firstly, there is considerable room for improvement in the reporting

practices of already published papers. If researchers opt to employ a single mea-

surement instrument (or a few), they should be explicitly defined, similar to the

way survey questions are typically reported in papers. This involves disclosing how

concepts were translated into measures, including details such as the list of URLs,

criteria for their selection, which visits to those URLs were considered, and the du-

ration of participant tracking. Additionally, journals should require researchers to

transparently disclose the mix of tracking technologies employed, document them,

and elucidate the limitations associated with each. If this data is not made available

by the private companies used, it raises concerns about the suitability of this data

for scientific research.

Secondly, researchers should implement strategies to identify and, if possible,

mitigate some of the error sources identified in the TEM. For example, they can

include a battery of questions in their questionnaires to ascertain the devices indi-
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viduals use for online activities and who uses those devices. This aids in identifying

the extent to which tracking undercoverage and shared devices may affect the data.

All web tracking studies should include this information to allow for the assessment

of data quality.

Thirdly, researchers should embrace uncertainty. Unlike traditional social re-

search, where the use of a single measure is commonplace, digital trace data research

does not necessitate such limitations. The design of these measures is often arbitrary,

given the lack of substantial evidence to determine the best approach. Rather than

concealing this uncertainty, researchers using web tracking data should acknowledge

it and incorporate it into their analyses. In psychology, multiverse analysis has been

defended as a valuable and legitimate approach to address the replication crisis in the

social sciences. This thesis demonstrates that adopting a multiverse of measurements

approach can inject much-needed transparency into web tracking research.

Lastly, one of the key takeaways from this thesis is that partial observations

of online behaviours can result in significantly biased measures. Given that most

research to date has solely tracked individuals on desktop devices, and contempo-

rary projects still adhere to this practice, it is essential to encourage researchers to

reconsider this approach. Desktop-only approaches provide insights only into what

individuals do on their desktops. Extrapolating beyond this, particularly considering

that half of online activities occur on mobile devices, can lead to erroneous conclu-

sions. While tracking individuals on mobile phones presents greater complexity and

raises concerns about data quality, it is insufficient reason to entirely disregard mo-

bile browsing. This is particularly relevant for phenomena primarily occurring on

mobile devices, such as those associated with social media usage.

Limitations

This thesis clearly contributes to an enhanced utilization of web tracking data in

the realm of social sciences, yet it does possess some inherent limitations. While

each individual study within this thesis underscores specific limitations, there are

overarching constraints that warrant consideration.

First and foremost, it is crucial to recognize that this thesis does not endeav-

our to present a comprehensive and exhaustive understanding of the quality of web

tracking data. As elucidated in Paper 1, there exists a multitude of errors that the-
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oretically could affect web tracking data. This thesis, however, narrows its focus to

those errors which, based on my experience with this data, appeared to demand more

immediate scrutiny. A comprehensive comprehension of the quality of web tracking

data will only emerge through cumulative research that exhaustively explores all

potential sources of error.

Secondly, while Paper 3 delves into the validity and reliability of media ex-

posure measures computed with web tracking data, it is essential to acknowledge

that alternative approaches exist for exploring this dimension. For example, this

thesis only concentrates on predictive validity, in line with the traditional research

practices in political communication, neglecting other dimensions of validity tradi-

tionally explored in psychometrics. Moreover, the simplex model utilized enables

the estimation of random measurement errors but falls short of addressing system-

atic ones. Consequently, even though the thesis asserts that web tracking measures

are generally highly reliable, it does not rule out the possibility that measures are

severely biased. To attain a comprehensive understanding of the measurement prop-

erties of web tracking data, it is imperative to supplement the findings in this thesis

with other approaches to measuring validity and reliability. The application MTMM

models, as previously mentioned, could offer insights into the systematic errors of

web tracking data measures and their measurement validity.

Thirdly, this thesis predominantly centres on the use of web tracking data to

replace survey self-reports. Consequently, it emphasizes the creation of simple mea-

sures that gauge behaviours at the URL or domain level, aligning with the prevailing

research approach. However, it is essential to recognize that web tracking data holds

the potential for more innovative applications. For instance, it can be leveraged

to extract information from the content participants visit, subsequently generating

variables for analysis. This includes quantifying the time individuals are exposed

to news content, irrespective of the URL source. Furthermore, web tracking data

can be employed to measure people’s attitudes, opinions, or their interactions with

webpage content. It can even serve purposes beyond statistical inferences, such as

identifying individuals to invite to real-time surveys. While many of the errors iden-

tified in Paper 1 remain relevant to these applications, and the issues scrutinized in

Papers 2 and 3 will inevitably impact any form of web tracking data application,

the conclusions drawn from this thesis can be directly applied primarily to studies

utilizing web tracking data in a manner akin to the approach taken here.

Lastly, this thesis predominantly centres on the use of web tracking data for
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measuring media exposure and related constructs. This focus is unsurprising, given

that a majority of prior studies employing web tracking data have adopted a similar

approach. However, it is pertinent to highlight that measuring other constructs might

present varying degrees of complexity and challenge. For instance, assessing online

behaviours like TV and movie streaming, which often transpire on digital devices

typically not tracked by web trackers (e.g., smart TVs) or occur on devices from

non-tracked individuals (e.g., partners), might entail significantly greater complexity.

Similarly, behaviours that unfold in the background, such as listening to music or

podcasts, rather than on active browser tabs, may also pose distinct challenges.

Consequently, further research is imperative to ascertain the magnitude of errors

associated with web tracking data for other constructs, enabling a comprehensive

understanding of when web tracking data is suitable or unsuitable for specific research

purposes.

Conclusions

This thesis collectively challenges the prevailing notion that web tracking data stands

as the gold standard for measuring online behaviours. To identify and quantify

the errors inherent in web tracking data, this thesis draws upon traditional survey

methodology and psychometrics theories and methods. These established meth-

ods and theories are adapted to the realm of digital trace data through the use of

approaches and frameworks commonly employed in the field of computational so-

cial sciences. While the promises of digital data and computational methods hold

immense potential for advancing our understanding of society, it is imperative to

acknowledge the persistent issues surrounding measurement and representativeness

in web tracking research.

Throughout this thesis, I have provided both theoretical and empirical evidence

of the errors and biases embedded within web tracking data. I have also illuminated

the complexities and uncertainties surrounding the use of this data for statistical

inferences. However, I have demonstrated that these challenges can be effectively

addressed by applying a mature measurement theory tailored specifically for web

tracking data.

Since the inception of this thesis, there has been a notable shift in the per-

ception of web tracking data. Many researchers are now coming to terms with the
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limitations of this emerging data source. This shift has led to the production of

empirical examinations of these errors, the formulation of best practices, and the de-

velopment of guidelines to navigate this challenging terrain. Moreover, initiatives are

underway to establish publicly funded web tracking infrastructures, with the work

of organizations like GESIS serving as a commendable example.

Researchers have also started to exhibit greater creativity in their utilization of

web tracking data. Unlike in the past, where web tracking data was predominantly

employed as a substitute for survey data, researchers are beginning to recognize that

web tracking data possesses unique and valuable characteristics that can enhance,

rather than replace, surveys. For instance, web tracking data allows for the measure-

ment of the content individuals are exposed to. Leveraging advanced computational

tools, researchers can extract more nuanced insights from this data than from con-

ventional aggregated lists of URLs.

In sum, these developments signal that the field is finally maturing. Collec-

tively, we can progress toward a new era characterized by open and publicly accessi-

ble web tracking data, healthy scepticism and methodological rigor, and marked by

collaboration rather than competition between traditional and novel data sources.

It is important to note that no data source is flawless. Surveys have provided

society with unprecedented insights into itself. Meanwhile, digital trace data has the

potential to enhance our understanding of the human experience, especially within

the digital domain, in ways that may have otherwise been unattainable through

surveys alone. Realizing this potential hinges on our ability to combine both new

and traditional data sources, viewing digital trace data through the lens of survey

science, and leveraging digital data and computational methods to enhance the use

and analysis of surveys. With a commitment to realism and rigor, we can usher the

social sciences into a new measurement revolution.
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Supplementary Material: Paper 1

SM1: Tracking solutions offered by Wakoopa, and their limitations

Table 1 shows the different technologies that the company Wakoopa (currently the

main provider of tracking solutions, and the one used by Netquest) uses, as well as

the type of information that these collect and for which devices they are used.

Table 6.1: Data Collectable by Tracking Technology and Target for Wakoopa

Data Category Data Type PC App PC Plug-ins Android SDK iOS Proxy Chrome Firefox

Online Tracking

URLs - HTTP Traffic Yes Yes Yes Yes Yes Yes

URLs - HTTPS Traffic No Yes Yes Yes Yes No

Incognito Sessions No Yes Yes Yes Yes No

HTML No Yes Yes Yes No No

Time Stamps Yes Yes Yes Yes Yes Yes

Apps

App Name - - - - Yes Yes

App Usage Start Time - - - - Yes Yes

App Usage Duration - - - - Yes Estimated

Offline Apps - - - - Yes No

Search Terms Search Terms Yes Yes Yes Yes Yes No

Device Information

Device Type (e.g., desktop) Yes Yes Yes Yes Yes Yes

Device Brand (e.g., Xiaomi) - - - Yes Yes -

Device Model (e.g., S9) - - - - Yes Yes

Operating System (e.g., iOS) Yes Yes Yes Yes - Yes

OS Version (e.g., 10.1.2) - - - - Yes Yes

Internet Provider (e.g., Voxi) - - - - Yes Yes

SM2: A discussion of why we could not minimize or quantify some error

sources for TRI-POL

This SM briefly discusses why, in the TRI-POL project, we could not design strate-

gies to minimize or quantify some of the error sources affecting metered data not

mentioned in the main manuscript’s text.

Noncontacts and Non-consent: This error source cannot be measured nor

prevented for samples obtained through metered online panels since the invitation
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to install a meter is outside researchers’ control.

Social desirability: Currently, the best approach to assess the potential effect

of social desirability on people’s behaviour is to use or combine tracking approaches

that allow to collect traces from before participants installed the tracking solutions

and compare these with post-installation traces. This should allow assessing whether

installing the meter changed their behaviours. Unfortunately, this cannot be done

with a metered panel, since sampled participants installed their technologies before

being sampled.

Shared devices: Several approaches can potentially reduce the effects of

shared devices and/or allow to assess the associated errors. First, depending on

whether a fresh sample is used or not, participants can be asked to only install

tracking solutions on non-shared devices, or we can only sample participants who

use non-shared devices. This, nonetheless, could potentially introduce tracking un-

dercoverage and/or selection errors. A more appropriate strategy would be to use

algorithms to differentiate between the participant’s behaviour and third-person’s

behaviours . This approach helps estimate the bias introduced by shared devices

and select only participant’s traces to create the desired variables. Nonetheless, we

could not apply this strategy since these classification algorithms are trained using

the raw data of participants, which we did not have access to. Hence, we expect

TRI-POL data to be affected by shared-device-related measurement errors but do

not know to what extent.

Data aggregation: Although we did not have access to the raw dataset, we

were able to use all the tracking information to compute our desired variables. Hence,

we do not expect data aggregation errors.

Data anonymization: Since we did not have access to the raw data, but

to a structured dataset composed of pre-defined variables, there was no need to

anonymize pieces of information from the raw dataset. Hence, we do not expect

data anonymization errors.

Non-trackable individuals: Opt-in online panels are affected by coverage

errors, but they are unmeasurable per se. The problem of non-trackable individu-

als might make this problem worse. Given that we used a metered opt-in online

panel, the prevalence and added potential bias of non-tracked individuals was not

measurable.
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SM3: Information about the TRI-POL data

For the empirical analyses, we used web survey answers, metered data and paradata

from the first wave of the TRI-POL panel dataset. Specifically, we focus on the

data collected in Italy, Portugal and Spain. Data was collected through the metered

panels of Netquest. The Netquest metered panels provide a pool of individuals with

the meter installed, who can also be contacted to conduct surveys and, hence, link

their online behaviour with their survey answers. When the panellists agree to join

the metered panel, they must install the meter on at least one device (PC, tablet, or

smartphone) and start sending information (passively) to Netquest to become part

of the metered panel.

Cross quotas for age, gender, educational level and region were used to guaran-

tee that the samples were similar on these variables to the general Internet population

between 18 and 70 years, for each country. Data collection for the three waves took

place between September 2021 and April 2022. In total, for the first wave, 3,548

respondents completed the survey until the end, 1,289 in Spain, 1,028 in Portugal

and 1,231 in Italy. Challenges were faced when filling some of the specific cross-

quotas with participants from the metered panel. This required supplementing in

some cases with non-metered panellists. For the first wave, 993, 818 and 842 partic-

ipants in Spain, Portugal and Italy respectively had the meter installed in at least

one mobile or PC device. We will focus on this subsample of metered individuals.

Metered data was collected for the 15 days prior and posterior of participants

starting each survey wave. The meter captured each URL (or app for mobile devices)

accessed by the panellists, with timestamps for when the panellists first visited the

URL, and the number of seconds in which the URL remained active in the browser.

Participants were tracked on iOS and Android mobile devices, and Windows and

MAC computers. Besides, we collected paradata from participants. For all individ-

uals we were able to identify the technology with which they were being tracked, the

type of device, the OS, whether it was a tablet or smartphone and, for plug-ins, the

browser in which they were installed. Finally, the questionnaire focused on measur-

ing, among others, political trust, participation and polarization, as well as several

sociodemographic variables
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SM4: Quantifying the validity of metered data measures

As an example, SM 4 briefly discusses the approach followed to quantify the validity

of “online news media exposure.”

Measuring online news media exposure

Our first step was defining how to create the measurement of “online news media

exposure.” The goal was to get a measure of participants average exposure during

the project’s period of interest. Hence, we considered all the potential design choices

that we could make. We identified eight design questions, with several choices to be

made within them. Table 2 summarises these.

Table 6.2: Design Characteristics and Choices for the Concept ”Online News Media
Exposure”

Questions Choices

What list of news media domains to use? Own list, Alexa, Tranco, Cisco, Majestic

How many news media domains to use? All domains, top 200, 100, 50, 20, 10 most visited

What information to use within those domains? All URLs, only those identified as political

What do we consider as being exposed to a URL? Visits equal or longer than 1 second, 30 seconds, or 120 seconds

What is the level of interest? Number of visits, number of minutes

Should we use information from all devices? Mobile and PC, only PC, only mobile

How many days of tracking should we use? 2, 5, 10, 15, 31

Should we use information from before or after the survey? Before, after, both

Since it was unclear what design choices would be the ones yielding the most

valid measures, we decided to apply our proposed approach to measure the validity of

metered data measures (presented in section 6.1.1 of the paper). Hence, we created a

variable for each potential combination, which resulted in 3,573 variables to measure

the concept of online news media exposure.

Analysing convergent validity

We first explored the convergent validity of the 3,573 variables computed. Conver-

gent validity describes the fit between independent measures of the same underlying

concept. Hence, if different variables were measuring the same underlying concept,

they should highly correlate with each other. To explore whether this is the case or

not, we computed one correlation for each potential pair of variables. Therefore, we

obtained 6,349,266 unique Pearson’s correlation coefficients for each country.
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Analysing predictive validity

Next, we explored the predictive validity of the different computed variables. Pre-

dictive validity refers to the degree to which a measurement instrument is related

to a gold standard measurement. Measures closer to the theorised true relationship

should be preferred. Often, when the true relationship is unknown, it is assumed

that the higher the predictive power, the better. Although we do not make this

assumption, any fluctuation in the predictive power of the variables would indicate

differences in terms of predictive validity. Specifically, we use political knowledge

as gold measure, since it is the accepted practice in the media effects literature.

To measure political knowledge, we use an additive political knowledge index that

ranges from 0 to 4. Hence, for each of the 3,573 variables we ran an OLS regres-

sion model, with political knowledge as the dependant variable, the media exposure

variable as the main independent variable, and some common control variables (age,

gender, and educational level). Consequently, we obtained 3,573 partial regression

coefficients for media exposure, in each country.

Analysing the impact of each design choice on predictive validity

Next, to understand the extent to which these choices affect the validity of measure-

ments, drawing inspiration from the Survey Quality Predictor (SQP), we created a

new dataset, in which the 3,573 variables were used as the observations, their associ-

ated partial regression coefficients as the dependant variables and the characteristics

of the variables as the predictors. To predict the impact of each design choice, we

used random forests of regression trees (R package randomForest) to extract the

following information:

• the variable importance, measured as the percentage increase of Mean Squared

Error (MSE) of the model if a specific variable had not been included in the

trees used.

• the marginal effect of each design choices, understood as the adjusted predic-

tions when holding all predictors constant.
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SM5: Quantifying the prevalence and bias of tracking undercoverage

This SM discusses the approach followed to compute the prevalence of tracking un-

dercoverage and simulate the potential bias it can introduce, focusing on the “average

time spent on the Internet.”

Analysing the prevalence of tracking undercoverage

The prevalence of tracking undercoverage was estimated by combining survey ques-

tions and paradata Netquest collects from their metered panellists about the tech-

nology with which they were tracked, the type of device, the OS, whether it was a

tablet or smartphone and, for plug-ins, the browser in which they were installed.

In terms of survey questions, we measured the number of devices used to access

the Internet by asking the following: “During the last 15 days, from how many

of these different types of devices have you accessed the Internet (including using

apps such as Facebook, Twitter or YouTube)? Please, type the number of devices

in the respective boxes.” The list of devices provided was designed to match the

information available from the paradata. Specifically, we asked for: (1) Computer(s)

with Windows OS; (2) Apple computer(s) (MAC); (3) Smartphone or tablet with

Android OS; (4) Apple smartphone or tablet (iPhone or iPad); (5) Others.

Moreover, to assess the types of browsers used to access the Internet, we asked

participants a maximum of three questions (depending on which devices were tracked,

and the technology used according to the available paradata), as follows: “During the

last 15 days, have you used any of the following web browsers to access the Internet

through [a computer with Windows operating system/ an Apple computer (MAC)/

a smartphone or tablet with Android operating system]?” The list of browsers varied

depending on the ones available in each OS.

Combining both sources of data, we created a variable indicating whether a

participant had at least one device or browser not covered. (i.e., the number of

devices and/or browsers tracked was lower than the self-reported one). Although we

are mindful that self-reports might themselves be affected by measurement errors,

we computed the proportion of individuals being undercovered, for each country in

this way due to the lack of better information.
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Simulating the bias introduced by tracking undercoverage

We used data from those participants being fully covered to run Monte Carlo simu-

lations. Given that metered data was collected separately for computers and mobile

devices, for fully covered participants it is possible to compute their estimates us-

ing all tracked targets, as well as only some of the tracked targets, simulating their

estimates for specific undercoverage scenarios. Differences between the fully tracked

behaviours and those affected by undercoverage can be considered as tracking under-

coverage bias. Hence, in our simulations we modified the targets used to compute the

estimates and simulated the effect on those estimates for different tracking under-

coverage scenarios. Specifically, to run the Monte Carlo simulations, we developed

the following steps:

1. We identified the participants fully covered and tracked in both mobile and PC

devices.

2. We defined seven tracking undercoverage scenarios to simulate varying the

targets being omitted when computing the estimates (PCs or mobiles), and the

prevalence in the sample. Specifically, we tested the effect of having 25%, 50%

and 75% of participants with no PC or mobile device tracked. In addition, we

conducted the simulation of the actual undercoverage scenario in our samples,

together for PC and mobile.

3. For each of the coverage scenarios, we randomly created 1,000 allocation sce-

narios, in which all participants had the same chance to be undercovered. For

instance, for the scenario with 25% of participants without any mobile de-

vice tracked, an individual would have .25 probability of having all the mobile

devices untracked, and a .75 probability of being fully covered.

4. For each specific variable, in our case the “average time spent on the Internet”,

1,000 estimates were created for all seven tracking undercoverage scenarios.

Participants selected as undercovered got part of their tracking data removed

when computing the estimates of interest. As an example, if Individuali was

tracked on a PC and a mobile device and Individuali was randomly selected to

be non-tracked for all their mobile devices, all data from these devices would

be considered as 0 when computing the estimates of interest. For the sake of

simplicity, all complete losses of information were set to zero.
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5. All estimates were computed using inverse probability weights created with the

random forest relative frequency method, to account for differences between the

subsample of fully covered and the full sample of metered participants. Finally,

for each tracking undercoverage scenario, the average of the 1,000 simulations

was considered as the average undercovered estimates. The difference between

the average undercovered estimate and the fully covered estimate was consid-

ered as the average bias estimate.

As illustration, we focus on the “average time spent on the Internet”. First,

we added the duration of the visits to all URLs and apps across all tracked devices

and browsers to compute the total time spent on the Internet in a day. Then we

computed the average time for the 15 days prior to the survey being answered.

SM 6: Quantifying the prevalence of technology limitations

Since we knew exactly what information could and could not be collected with each

tracking technology (see SM 1), as well as the specific technologies used to track

each participant, we could compute the proportion of participants affected by the

following technology limitations: 1) unobserved behaviours in incognito mode, 2)

impossibility of tracking subdomain information, and 3) in-app information.

We computed the prevalence of all these limitations separately, for each country.

We considered a participant to be affected by any of these limitations if at least one of

their targets was tracked with a technology suffering from the limitation of interest.

SM 7: Exploring whether participants tracked on iOS devices present

different measurement properties

We designed an approach to identify differential measurement properties for partic-

ipants tracked on iOS devices. First, we asked participants the following: “Approx-

imately, how much time do you spend on a typical day on the Internet (including

using apps such as Facebook, Twitter or YouTube)? Please, type the number of

hours and minutes in the respective boxes.”

We then combined this self-reported information with the observational data

from the meter, to compute the absolute difference in minutes (Absolute difference:

—Self-reported time – Tracked time—). Next, we ran a model exploring which vari-
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ables were associated with this absolute difference. The main independent variable

was “Tracked on iOS”, which indicates whether someone was tracked on an iOS or

not (0 = No, 1 = Yes). The model also included other variables to control for po-

tential confounders: general undercoverage (1= undercovered, 0 = fully covered); a

self-reported measure of Internet use (continuous, minutes spent on the Internet on a

typical day); the number of months that a participant had been part of the Netquest

panels (continuous), as a proxy for panel loyalty; whether the person self-reported

using mobile devices to access the Internet (0 = No, 1 = Yes); finally, we introduced

age (continuous), gender (women= 0, male= 1) and whether a participant had com-

pleted higher education (0 = no, 1= yes). Although we expect both the survey and

metered measures to be affected by errors, a significant effect of “Tracked on iOS”

could indicate that participants tracked on an iOS present different measurement

properties.

SM 8: Quantifying the prevalence of participants with undercoverage-

induced non-observations.

We asked participants whether they had visited Twitter, Facebook, and the top 10

most visited news media domains in each country (according to Tranco: https://tranco-

list.eu/) with non-tracked targets. Specifically, the questions asked: “During the last

15 days, have you used another device or browser apart from [INSERT DEVICE(S)]

to visit the following web pages or apps.” For each individual, the devices inserted

where those targets which we knew, thanks to the paradata, that participants were

being tracked with. After that, the list of web pages / apps was presented, with a

yes/no scale.

For each specific web pages and/or apps, participants were identified of hav-

ing undercoverage-induced non-observations when they self-reported having visited

those web pages and/or apps, but no behaviour had been tracked with the meters.

Although we are mindful that the self-reports might also be affected by measurement

errors, since we did not had access to other sources of information, after identifying

those participants, we computed the proportion for each country.
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Supplementary Material: Paper 2

SM1: Comparison between full sample and subsample tracked partici-

pants.

Table 3 presents an analysis comparing the full sample to the subsample of tracked

participants, considering a range of demographic, political, and technological vari-

ables. To assess these differences, I employed t-tests for continuous variables (age,

left-right, self-reported minutes online, and number of devices), as well as chi-square

tests for categorical variables (sex, education, and interest in politics).

Importantly, the results displayed in Table 1 indicate that no statistically signif-

icant differences were detected between the two samples across the selected variables.

Furthermore, it is noteworthy that these differences, even when present, are of neg-

ligible magnitude. Consequently, both the full sample and the subsample of tracked

participants exhibit remarkable similarity in terms of the explored variables.

Table 6.3: Comparison Between Full Sample and Subsample Tracked Participants

Variables Full Sample Tracked Participants

% Female 53.1 51.7

Avg. age 45 45

% Tertiary education 39.5 40.4

Avg. left-right 4.8 4.8

% Interested in politics 11.6 12.3

Self-reported minutes online 195 197

Avg. number of devices 3.2 3.3

SM2: Questions and paradata used to identify tracking undercoverage

The prevalence of tracking undercoverage was estimated by combining survey ques-

tions and paradata Netquest collects from their metered panellists about the tech-

nology with which they were tracked, the type of device, the OS, whether it was

a tablet or smartphone and, for plug-ins, the browser in which they were installed.

Specifically, they collect:
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• Number of tracked PCs with Windows OS.

• Number of tracked PCs with MAC OS.

• Number of tracked Android devices.

• Number of tracked iOS devices.

• Number of chrome browsers tracked on Windows devices.

• Number of chrome browsers tracked on MAC devices.

• Number of Firefox browsers tracked on Windows devices.

• Number of Firefox browsers tracked on MAC devices.

• Number of Safari browsers tracked on MAC devices.

• Whether a participant is tracked with a desktop app tracker (can track all

browsers in device)

• OS version of Android device (will have an effect on what browsers can be

tracked with technology used)

In terms of survey questions, we measured the number of devices used to access

the Internet by asking the following: “During the last 15 days, from how many

of these different types of devices have you accessed the Internet (including using

apps such as Facebook, Twitter or YouTube)? Please, type the number of devices

in the respective boxes.” The list of devices provided was designed to match the

information available from the paradata. Specifically, we asked for: (1) Computer(s)

with Windows OS; (2) Apple computer(s) (MAC); (3) Smartphone or tablet with

Android OS; (4) Apple smartphone or tablet (iPhone or iPad); (5) Others.

Moreover, to assess the types of browsers used to access the Internet, we asked

participants a maximum of three questions (depending on which devices were tracked,

and the technology used according to the available paradata), as follows: “During the

last 15 days, have you used any of the following web browsers to access the Internet

through [a computer with Windows operating system/ an Apple computer (MAC)/

a smartphone or tablet with Android operating system]?” The list of browsers varied

depending on the ones available in each OS.
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SM3: Comparison full sample and subsample of fully tracked participants.

Table 4, akin to SOM 1, presents a comparative analysis between the full sample and

the subsample comprising participants who were comprehensively tracked on their

devices, a subset used for the simulation analyses. This analysis encompasses the

same array of demographic variables and employs identical statistical methodologies

for assessment.

However, in contrast to the findings of SM 1, Table 4 reveals a noteworthy

difference between the two samples. Specifically, individuals in the subsample of fully

tracked participants tend to utilize a fewer number of devices for online activities on

average. This distinction aligns with our analytical results, highlighting that device

usage significantly influences the likelihood of being fully tracked.

It is imperative to note that apart from this variable, no other statistically

significant differences were observed between the two samples. Furthermore, the

magnitude of these differences, where present, remains minimal, underscoring the

overall similarity between the full sample and the subsample concerning the examined

variables.

Table 6.4: Comparison Between Full Sample and Subsample of Fully Tracked Par-
ticipants

Variables Full Sample Tracked Participants

% Female 53.1 52.8

Avg. age 45 46

% Tertiary education 39.5 36.5

Avg. left-right 4.8 4.7

% Interested in politics 11.6 12.4

Self-reported minutes online 195 191

Avg. number of devices 3.2 1.8*

* Note: The value in this column represents an average with a different scale or unit
than the corresponding value in the ”Full Sample” column.
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Supplementary Material: Paper 3

SM1: Comparison between full sample and subsample tracked partici-

pants.

As for SM 1, Paper 2, Table 3 presents a comparison between the full sample and

the subsample of tracked participants across various demographic, political, and

technological variables. This analysis employed t-tests for continuous variables (such

as age, left-right political orientation, and self-reported minutes spent online) and chi-

square tests for categorical variables (including sex, education level, and interest in

politics). It is noteworthy that not only were the observed differences not statistically

significant, but Table 5 also underscores the negligible nature of these differences. In

essence, both samples exhibit an almost identical profile in terms of the examined

variables.

SM2: Comparison between Quasi-Markov Simplex Models

This SM briefly discusses the differences found between the different Quasi-Markov

Simplex Models tested to estimate the reliability of the measures. The tested models

are the following:

1. Basiline model: the one described in the equations 4 and 5.

2. 2-LAG: the one presented in equations 6 and 7.

3. Equal means: presented in equations 8 and 9.

4. Correlations between errors: This model adds four lag-1 correlations be-

tween random errors to the baseline model. They are freely estimated.

5. Unequal variances in time: This model relaxes the assumption of equal

variances in time by constraining the variance of the measurement errors to be

equal only at waves one and six. The other measurement error variances are

freely estimated.

These models were run for the 2,631 measures, in all three countries. Table 5

shows the proportion of improper models that these approaches yielded, and their

average reliability. Results are presented for the three countries separately.
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Table 6.5: Performance Comparisons Between Models

Models % Improper Reliability

Spain Italy Portugal Spain Italy Portugal

Baseline 75 73 72 0.77 0.89 0.76

2-LAG 35 13 18 0.83 0.84 0.86

Equal means 34 12 20 0.83 0.92 0.86

Correlated errors 77 67 63 0.78 0.89 0.84

Unequal variances 100 100 100 NA NA NA

Note: ”NA” indicates not applicable.

As Table 5 shows, both the LAG-2 and Equal means models perform signifi-

cantly better than the other models, with substantially lower proportions of mod-

els being improper. The model with unequal variances performs so badly that no

reliability coefficient could be obtained from any of the measurements. Although

not always, in general these two models yield higher average reliability coefficients.

Nonetheless, these differences are not very large.

SM3: Political knowledge questions

In this SM I present the political knowledge questions asked to build the index of

political knowledge used to compute the predictive validity of the explored measures.

Every participant was asked four questions about their country’s political system,

and their current cabinet. These questions asked them whether a specific sentence

was true, or not true. They had a limit of 30 seconds to answer the question, to avoid

participants looking for the answers online. After 30 seconds, they were moved to the

next question. The order of the questions was randomized for each participant. The

general request for an answer was the following: “Now you will read some statements

about politics in [Insert country]. These questions are not a personal ”test”, it’s just

a matter of finding out how much knowledge people have about certain topics that

are considered somewhat complicated. For each one, could you please indicate if you

think it is true or false? If you don’t know, just select ”I don’t know” and move on

to the next one.”

The specific questions for each of the countries are the following:
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Questions in Spain

• The Spanish Congress has 525 deputies: True / False / Don’t Know

• A person must be 25 years of age or older to stand as a candidate in the Spanish

general: True / False / Don’t Know

• Salvador Illa is a member of the Spanish Government: True / False / Don’t

Know

• The current government is a coalition government formed by the PSOE, Unidas

Podemos, and ERC: True / False / Don’t Know

Questions in Portugal

• The Portuguese Parliament has 175 deputies: True / False / Don’t Know

• A person must be 25 years of age or older to stand as a candidate in the

Portuguese general election: True / False / Don’t Know

• Pedro Marques is a member of the Portuguese Government: True / False /

Don’t Know

• The current government is a minority government formed by the PS: True /

False / Don’t Know

Questions in Italy

• The Chamber of Deputies currently has 630 members: True / False / Don’t

Know

• A person must be 35 years or older to stand as a candidate in the Italian

Senate: True / False / Don’t Know

• Vincenzo Spadafora is a minister in the Italian government: True / False /

Don’t Know

• The current Italian government is supported in Parliament by Fratelli d’Italia,

Lega, Partito Democratico and Movimento 5 Stelle: True / False / Don’t Know
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SM4: Control variables for the predictive validity models

In accordance with the main text’s description, the cross-sectional OLS regression

model used to evaluate the predictive validity of the media exposure variables in-

cluded a set of common control variables. This section provides a brief overview of

the phrasing employed to gauge these variables and outlines their respective mea-

surement scales.

1. Sex and Age: The first and second control variables encompassed partici-

pants’ self-reported sex and age. The sex question featured two response op-

tions: ”male” and ”female.” Meanwhile, the age query required participants to

input their age as numerical values.

2. Education Level: The third control variable pertained to participants’ self-

reported education. Respondents were presented with the following ques-

tion: ”What is the highest level of education you have completed?” Numerous

country-specific response options were made available in each participating

country. For example, Spain had 27 education options. For the complete list of

categories, please refer to the translated questionnaires, accessible here: Link

to Questionnaires. To simplify this variable, I recategorized it into a binary

variable representing tertiary education status, with the following criteria for

each country: Spain (>20), Italy (>7), Portugal (>10).

3. Left-Right Ideology: The fourth control variable involved participants’ self-

reported left-right political ideology. It was assessed using the widely utilized

question: ”When discussing politics, people often refer to the terms ’left’ and

’right.’ Can you please indicate where you position yourself on a scale from 0

to 10, where 0 signifies ’left’ and 10 signifies ’right’?” This scale was a partially

labeled 10-point scale, featuring ”left” at 0 and ”right” at 10. Participants also

had the option to select ”I prefer not to answer.” The scale was displayed in a

vertical orientation across all devices.

4. Interest in Politics: Finally, the model included a variable measuring partic-

ipants’ interest in politics. This was assessed through the following question:

”To begin with, to what extent are you interested in politics?” The scale, pre-

sented in an inverted format, featured four response options: Not at all, A

little, A fair amount, A lot

186



Supplementary Material

SM5: Predictive validifty for self-reports

To compare the predictive validity results obtained using web tracking data, I con-

ducted parallel analyses by substituting the web tracking measures with a self-

reported measure of media exposure. In this alternative approach, the main indepen-

dent variable was derived from the following question: ”Could you please indicate

how often you keep yourself informed about current political issues, news, or opinions

through online newspapers?” Respondents could select from the following scale of

responses: never, less than once a month, once a month, several times a month, once

a week, several times a week, every day, and several times a day.

Using this self-reported question, I performed both the fixed-effects regression

model and the cross-sectional OLS model, which are presented in equations 10 and 11.

Across the different countries considered, the standardized regression coefficients are

as follows, presented in descending order: 0.12 (Spain-OLS), 0.11 (Portugal-OLS),

0.07 (Italy-OLS), 0.05 (Portugal-Fixed), 0.03 (Spain-Fixed), and -0.03 (Italy-Fixed).

SM6: Predicted coefficients versus observed ones

This SM includes two graphs that display scatter plots of predicted and observed

values for both reliability and validity. These figures also incorporate multiple lines,

illustrating the OLS regression line, the lowess smoother line, and the 45-degree line

of unbiasedness. Lowess, an acronym for ”Locally Weighted Scatterplot Smoothing,”

represents a non-parametric regression technique that fits a smooth curve to the data

points. It offers a way to visualize data trends without making explicit assumptions

about the functional form, such as assuming a linear relationship. In this context,

the red dotted line represents a smoothed curve that approximates the relationship

between the predicted and observed values. The 45-degree line serves as a reference

line, denoting a perfect one-to-one correspondence between predicted and observed

values. In an ideal scenario where predicted values perfectly align with observed

values, all data points would fall precisely on this line. Departures from this line

indicate the extent of bias or inaccuracy present in the predictions.

As detailed in the main text, the correlation between the squared correlations

of predicted and observed coefficients ranged from 0.97 to 0.98 for the reliability coef-

ficients and 0.90 to 0.91 for the validity coefficients. The figures visually demonstrate

that, on the whole, the predictions perform admirably. However, two potential ob-
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servations regarding model biases are worth noting. First, in the case of the 2-LAG

reliability model (Figure 1), it appears to generate inflated predictions for questions

with low reliability, evident from the deviation of the blue and red lines from the red

45-degree line. Second, the fixed-effects validity model (Figure 3) consistently inflates

lower validity coefficients while deflating higher ones. Nevertheless, it is important

to emphasize that, overall, the models provide more than satisfactory predictions of

the observed values.
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Figure 6.1: Predicted reliability versus observed reliability, 2-LAG model. Blue line
represents an OLS regression line, the red line a lowess smoother line, and the green
one the 45-degree line of unbiasedness.
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Figure 6.2: Predicted reliability versus observed reliability, equal means model. Blue
line represents an OLS regression line, the red line a lowess smoother line, and the
green one the 45-degree line of unbiasedness.
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Figure 6.3: Predicted validity versus observed validity, fixed-effects model. Blue line
represents an OLS regression line, the red line a lowess smoother line, and the green
one the 45-degree line of unbiasedness.
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Figure 6.4: Predicted validity versus observed validity, cross-sectional model. Blue
line represents an OLS regression line, the red line a lowess smoother line, and the
green one the 45-degree line of unbiasedness.
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SM6: Variable importance

The random forest procedure also provides what are commonly referred to as ”vari-

able importance” measures. These measures gauge the marginal deterioration in

mean square prediction error when a specific variable is omitted. To determine a

variable’s importance, the algorithm randomly permutes the observed values of that

variable and then recalculates the out-of-bag mean square error of predictions. If

this reduction in mean square error is substantial, the variable is considered to have

high importance. To evaluate the significance of each design choice, I calculated

Breiman’s variable importance. However, it’s important to note that this approach

has limitations, primarily related to its inability to account for correlations among

different predictive variables. To address this concern, I also calculated conditional

(unbiased) importance, using the r package ”cforests.” The results obtained from

both approaches align, and thus, I present the traditional variable importance here.

The following table displays the variable importance scores for the four random

forest models examined in this study. Focusing on the outcomes for the reliability

models, for the 2-LAG model, the design choices with the highest importance in

the prediction model include the length of the tracking period, the metric used, the

country, and whether metrics are computed based on all URLs or only those related

to ”hard” news. Similar results are observed for the equal means model. Concerning

the validity models, for the fixed-effects model, the most influential design choices

are the country of analysis, the metric employed, the length of the tracking period,

and the number of media outlets used. These findings are consistent with those of

the cross-sectional model, with the primary difference being the emphasis on the

number of outlets versus the type of URLs categorized as news.
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Table 6.6: Percentage Increase of RMSE when Variable is Excluded from the Model

2-LAG Equal means Fixed-effects Cross-sectional

Metric 0.006 0.005 0.0009 0.0004

List of media 0.00 0.00 0.00 0.00008

Top media 0.0003 0.0003 0.0005 0.0001

Information 0.001 0.002 0.0003 0.0002

Exposure 0.0005 0.0007 0.0004 0.0001

App behaviour 0.00003 0.00004 0.00003 0.000003

Tracking period 0.008 0.007 0.0005 0.0002

Country 0.002 0.005 0.0012 0.0009
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