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Abstract

The Insect Detection Server was developed to explore the deployment and

integration of an Artificial Intelligence model for Computer Vision in the context

of insect detection. The model was developed to accurately identify insects from

images taken by camera systems installed on farms. The goal is to integrate the

model into an easily accessible, cloud-based application that allows farmers to an-

alyze automatically uploaded images containing groups of insects found on their

farms. The application returns the bounding boxes and the detected classes of in-

sects whenever an image is captured on-site, enabling farmers to take appropriate

actions to address the issue of the insects’ presence. To extend the capabilities of

the application, the server is linked to a GPT-3.5 API. This will allow users to ask

questions about the bugs detected on their farms, creating an “online expert”-like

feature. Python, C++, and Computer Vision libraries were used for the detection

model, while the OpenAI API was used for GPT-3.5’s integration. By combining

these technologies, farmers can more effectively and efficiently manage pests on

their farms than current alternatives. This Generative Pre-trained Transformer

(GPT) aspect of the project can be leveraged to enable the emulation of agricul-

tural experts for users/farmers. The large language model (LLM) neural network

can be fine-tuned using prompt engineering to generate natural language responses

to user queries. This will enable farmers to get expert advice and guidance on pest

management without having to consult with a human expert. The integration of

GPT-3.5 API will also allow the application to provide personalized recommenda-

tions based on each farm’s specific needs and circumstances. This added feature

will give the farmers a more comprehensive and tailored approach to pest man-

agement, further increasing the efficiency and effectiveness of their pest control

strategies. The significance of this research lies in the development of a practical

and accessible tool for farmers to manage pests on their farms. Using Computer

Vision and Artificial Intelligence, farmers can quickly and accurately identify in-

sects, leading to more efficient and effective pest management. This could help

farmers reduce the use of pesticides and other forms of pest management, leading



to improved crop yields and reduced environmental impacts. The potential bene-

fits of this technology extend beyond the agricultural industry, as the techniques

used in this research can be applied to a wide range of computer vision and user-

facing data analytic applications. For example, the developed techniques could be

applied to other fields, such as surveillance, security, and medical imaging.
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1 Introduction

The U.S. agricultural industry has long been a cornerstone of the country’s

economy, contributing over a trillion dollars in value-added to the GDP annually.

Specifically, farms generate approximately $164.7 billion annually, as illustrated in

Fig 1.1 [4, 5]. One of the significant challenges farmers face is managing pests and

crops, with the average cost being approximately “34% of a farmer’s variable crop

production costs” [6]. While pests can cause economic loss and harm to farmland,

there are also beneficial insect species that save growers millions of dollars annually

[7].

Figure 1.1: Chart displaying the value added to U.S. GDP by Agriculture and

related industries, 2011-21. Farms alone exceed $150 billion annually.
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To account for rising number of pests and invasive species over the past

century, farmers have increased their pesticide use to match, as seen in Fig 1.2

[8]. Besides increased costs, the consequences of this rise in pesticide usage include

unintentional environmental and human harm due to runoff and unintended targets

[9]. Another risk related to classic pesticide usage is the development of insecticide

resistance through surviving insect populations and mutations [10]. With this

many risks associated with traditional pesticide use, adding more quantity can lead

to diminishing returns on pesticide efficacy and even negative returns in extreme

cases.

Figure 1.2: Chart displaying the rise and fall of pesticide usage in the U.S. with

a peak in 1981, 1960-2008.
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To combat the rise in pesticides we see in Fig 1.2 due to classic pest con-

trol methodologies, farmers began planting new pest-resistant strains of crops and

implemented Integrated Pest Management (IPM). IPM is a pest control strategy

that prioritizes long-term prevention through environmentally considerate meth-

ods. These methods include manipulating the pests’ habitat, replacing possibly

outdated practices by the farmer, planting resistant crop varieties, etc. Though

there are many different IPM practices, all IPM programs contain the same six

general components [11]:

1. Pest identification

2. Monitoring and assessing pest numbers and damage

3. Guidelines for when management action is needed

4. Preventing pest problems

5. Using a combination of biological, cultural, physical/mechanical
and chemical management tools

6. After action is taken, assessing the effect of pest management

IPM is becoming increasingly adopted among farmers to reduce costs and

yield losses. A concise version of an IPM is illustrated in Fig 1.3 [12]. The limita-

tion of many IPMs is their labor constraints, as the identification and monitoring

of pests require consistent manual sampling, inspection, and expertise regarding

insects [13]. A novel system combining modern hardware and software has been

developed to address these challenges to create a consistent and efficient pest iden-

tification and monitoring method.
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Figure 1.3: Bed Bug Algorithm: small-scale Integrated Pest Management (IPM)

plan.

Integrating an on-site camera system running an insect detection and clas-

sification model with a user-facing application can revolutionize farmers’ manage-

ment of pests. By leveraging Artificial Intelligence, farmers can take informed

action and track pest numbers in real-time, thereby improving the sustainability

of IPM plans and increasing the efficiency of pest management. Furthermore, the
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system is complemented by the integration of an additional AI model that is used to

emulate an agriculture expert: OpenAI’s GPT-3.5. This feature provides farmers

with personalized recommendations based on their unique farm conditions, allow-

ing for faster and more effective pest control strategies. This innovative approach

can potentially reduce the use of harmful pesticides and improve crop yields by a

significant amount.
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2 Related Works

Currently, a majority of farmers and insect researchers manually sample in-

sects regularly. Since many insects and mites can be tiny, the samplers must carry

tools like digital cameras and 10x magnifying glasses. This monitoring procedure

will include traps, beating counts, fecal pellet collection, and more [14]. Though

these procedures are successful, maintaining the sampling schedule is troublesome

since the researcher/farmer must use different techniques and traps for various

insects. For example, to detect and monitor populations of alfalfa weevils, army-

worms, and leafhoppers, the recommended guidelines are to do a sweep-net sample

twice a week or more [15]. Moreover, manual sampling can be prone to errors and

biases, resulting in inaccurate insect population estimates. Researchers or farmers

may miss small insects or misidentify them, leading to incorrect population counts.

Additionally, the accuracy of the estimates can be affected by the sampling fre-

quency, location, and timing, as well as the experience of the sampler. These

manual sampling limitations can result in delays and errors in the Integrated Pest

Management plan.

The Agricultural industry is known for its innovation as farming has im-

proved throughout history for the sake of efficiency. Original manual labor was

replaced with machines that increased harvest yields and decreased time spent on

many farming processes, including planting, maintenance, and harvesting. Recent

advancements in robotic agricultural technology have resulted in the creation of

automated harvesting systems that use Deep Learning, sensor-map fields, etc.,

to replace some of the many manual aspects of agriculture [16]. Although this

principle of automation and technological advancement is exceptionally efficient,

it often needs to account for issues like pest control which may be external to the

base processes like seeding, growing, and harvesting of arable land.
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2.1 Automated Farm Management

Automated farm management systems have expanded their scope to en-

compass pest monitoring and control, increasing efficiency and accuracy. For in-

stance, Zhang et al. [17] developed a system that uses deep learning to identify

and count insects on crops within a greenhouse. The system utilizes cameras to

capture images and processes them with a convolutional neural network, providing

real-time pest data to farmers. This method has the advantage of offering con-

tinuous monitoring but may be limited by factors such as camera resolution and

lighting conditions. Similarly, an automated pest detection system for crops using

unmanned aerial vehicles (UAVs) equipped with cameras and a machine learning-

based classification algorithm was proposed, as shown in Fig 2.1 [18, 19]. This

approach enables large-scale monitoring and rapid response to pest infestations

but may be affected by environmental factors such as wind and weather.

Figure 2.1: Hexacopter spraying pesticides in Tamil Nadu Agricultural University

Farm rice fields in Tamil Nadu, India, during October 2019.
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Additionally, “Internet of Things” (IoT) based systems have been employed

to improve pest management. Qazi et al. [20] mention examples of IoT-based smart

agriculture systems that integrate pest monitoring with other farm management

tasks, such as soil and climate monitoring. By consolidating multiple aspects of

farm management, these systems enable an increase in informed decision-making

and rapid interventions. However, implementing IoT systems may require sig-

nificant upfront investment and technical expertise, which may be a barrier for

small-scale farmers.

Recent advancements in remote sensing technology have also been employed

in pest detection and monitoring. There is an example where remote sensing was

used to detect insects in agriculture, focusing on the spectral characteristics of

insect sounds [21]. This approach can help identify and localize insects in the field

but might be limited by the complexity of the acoustic environment and the need

for extensive insect sound libraries.

2.2 Detection and Classification

Recent advances in AI and computer vision have facilitated the development

of more sophisticated detection and classification methods for insect monitoring.

There are examples of efficient deep learning-based approaches being used for de-

tecting and classifying insects through convolutional neural networks (CNNs) [22].

This method accurately recognizes various insect species, including pests and ben-

eficial insects. However, the performance of such models may be limited by the

quality and diversity of the training data, which could lead to misclassifications.

Thenmozhi et al. [23] developed an automatic recognition system for insect

pests using image processing techniques and machine learning classifiers. This

approach achieved high recognition rates but required manual preprocessing of

images for feature extraction, which could be time-consuming and labor-intensive.
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2.3 Support Tools

The emergence of AI-driven support tools has provided farmers and re-

searchers with valuable resources for making educated choices in pest control.

Navarro-Hellin et al. [24] created a decision support system that integrates pest

monitoring information, meteorological data, and crop growth simulations to de-

liver customized pesticide application guidance. This system encourages eco-

friendly pest management by reducing pesticide use and optimizing crop produc-

tion.

A pest risk prediction system based on deep learning and remote sensing

data was proposed by Chen et al. [25]. The system predicts the likelihood and

severity of pest outbreaks, allowing farmers to implement preventative actions and

reduce the consequences of pest infestations. Nevertheless, the precision of these

models may be affected by the quality and promptness of input data and the

intricacy of the factors that contribute to pest behavior.

Mimicking expert knowledge and decision-making has been an area of inter-

est in research and development across various sectors. Expert systems have been

created to help users with tasks that would usually necessitate the skills of a pro-

fessional, such as medical diagnoses, financial planning, and legal counsel. These

systems often employ AI, machine learning, and natural language processing to

enable expert-like decision-making and deliver tailored recommendations [26, 27].

Expert emulation has been applied to various areas, including pest man-

agement in agricultural settings. Gonzalez-Andujar [28], for example, designed

an expert system to estimate the risk of insect pests in olive crops. This system

uses specialized knowledge to offer personalized pest management advice based on

user-provided information, like plant species and geographic location. Similarly, an

expert system for assessing pest risk in organic agriculture was created that assists

farmers in recognizing potential hazards and executing suitable pest management

tactics [29].

In addition to conventional expert systems, chatbots have been utilized to

9



replicate expert guidance and offer support in different industries. For instance,

Agil-Ifdillah et al. [30] created a chatbot to help farmers identify crop diseases and

pests while providing expert suggestions on prevention and treatment methods.

This approach enables farmers to access expert knowledge in a more accessible

and user-friendly way, lowering the obstacles to adopting sophisticated pest man-

agement techniques.
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3 Background

Artificial Intelligence has advanced at a remarkable rate recently, with Deep

Learning models achieving state-of-the-art performance in various tasks. These

models, which include Transformers, Convolutional Neural Networks (CNNs), and

Generative Pretrained Transformers (GPTs), have been applied to a wide range of

applications, including Natural Language Processing (NLP) and Computer Vision.

This chapter provides an overview of the critical concepts and architectures un-

derpinning these models and their applications in the on-site insect detection and

classification system. The chapter also discusses prompt engineering, a technique

used to optimize the performance of language models like GPT.

3.1 Transformers

Transformers are a type of Deep Learning Neural Network architecture [1].

They have become the foundation for many state-of-the-art NLP and Computer

Vision models. The primary value of the new transformer architecture is its “self-

attention mechanism,” which enables selection across multiple inputs based on

importance when processing each element. This mechanism enables transformers

to effectively capture long-range dependencies and relationships in the input data.

Transformers have been widely used for machine translation, language mod-

eling, and text classification. The Transformer architecture has an encoder and

decoder component, each composed of multiple layers of self-attention and feed-

forward neural networks. The encoder takes in the input sequence for processing,

and the decoder creates the output sequence. The generic model architecture of a

Transformer developed by Google is shown in Fig 3.1.
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Figure 3.1: The Transformer - model architecture [1].
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3.2 Computer Vision Model

The on-site insect detection and classification system leverages the power

of deep learning models to achieve accurate and efficient results. By building

upon previous research in the field of Computer Vision, the system employs a

combination of detection and classification models to identify and categorize insects

in images captured by the camera. The use of transformers in the computer vision

domain allows the system to capture complex patterns and relationships in the

image data, leading to high levels of accuracy and reliability. The following sections

cover the details of the deep learning models and techniques used in the system.

3.2.1 Deep Learning

Within the field of Machine Learning exists its subset, Deep Learning, which

involves the training of Neural Networks with many layers to perform tasks such

as image and speech recognition [31]. A specific type of Deep Learning model used

in Computer Vision is Convolutional Neural Networks (CNNs). CNNs consist of

convolutional layers that automatically learn spatial rankings of features from the

input data.

The ImageNet classification challenge has been a driving force behind de-

veloping Deep Learning models for Computer Vision. Notably, the AlexNet archi-

tecture [32] achieved a breakthrough in the ImageNet challenge using deep CNNs.

YOLO (You Only Look Once) is another popular deep learning model for real-

time object detection and classification [33]. What makes YOLO more efficient

than traditional methods is its ability to process the entire inputted image in one

go rather than multiple possessions. YOLO employs a single CNN that divides

the input image into a grid and predicts each grid cell’s bounding boxes and class

probabilities. The model then thresholds these predictions to produce the final

object detections.

Vision transformers [2] are a recent development that applies transformer

architecture to computer vision tasks. They divide an image into fixed-size patches

13



and process them as a sequence using self-attention mechanisms. The model ar-

chitecture of a Vision Transformer developed by Google is shown in Fig 3.2.

Figure 3.2: The Vision Transformer - model architecture [2].

3.2.2 Insect Detection and Classification Models

The on-site system that is responsible for sending insect data and running

the Machine Learning models uses advanced AI detection and classification models

to locate objects in the image returned from the camera and assign classes to those

detections based on an insect dataset [34].

The dataset used combines manually sourced images of bee flies, the IP102

dataset [35], and the EU Moths dataset [36]. The 2,205 image dataset was man-

ually annotated for the detection model to work. The final detection model was

implemented using a Detection Transformer (DETR) as opposed to yolov5 due to

its higher accuracy [37]. Similarly, the final classification model was implemented

using a Vision Transformer instead of a CNN to improve accuracy in recognizing

minuscule differences between insect specifies. Using both models, the automated
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system can produce annotated images and extract data from them, as shown in

Fig 3.3.

Figure 3.3: Bug system transformer diagram.

3.3 Generative Pretrained Transformer (GPT)

The Generative Pretrained Transformer (GPT) is a groundbreaking large

language model (LLM) based on the Transformer architecture that leverages un-

supervised learning for natural language understanding tasks. The underlying

principle of GPT is a two-step process that involves unsupervised pre-training

followed by supervised fine-tuning. Initially, the model is trained on a large unan-

notated text corpus to learn a general language representation. Subsequently, it is

fine-tuned on specific, smaller labeled datasets for targeted tasks [38].

The GPT model employs a variety of masked language modeling called

“masked multi-head self-attention,” which allows it to scale to longer sequences

and capture long-range dependencies more effectively than traditional recurrent

neural networks (RNNs). The Transformer architecture at the core of GPT enables

the model to process input tokens in parallel, resulting in improved computational

15



efficiency and scalability compared to RNNs and LSTMs.

A key aspect of GPT’s success is its ability to achieve state-of-the-art per-

formance across various natural language understanding tasks, including sentiment

analysis, natural language inference, and question answering. By leveraging a gen-

erative language model for unsupervised pre-training and fine-tuning for specific

tasks, GPT outperforms previous models by a significant margin [38].

As GPT has evolved through different versions, such as GPT-3.5 and GPT-

4, it has experienced significant improvements in model size, architecture, param-

eters, and performance. Each new version incorporates advancements in train-

ing techniques, data sources, and architectural refinements that enhance language

understanding capabilities. Fig 3.4 shows the enormous gap in the number of

parameters between GPT-4 and previous models.

Figure 3.4: Chart of No. of Parameters for multiple LLMs [3].

3.3.1 Prompt Engineering

Prompt engineering is the development and refinement of input prompts

to guide the behavior of language models. It involves crafting the input text

to effectively communicate the desired task to the model and elicit the desired

16



response. Prompt engineering is important because the quality of the prompt can

significantly impact the model’s performance.

The choice of examples, the phrasing of the task, and other elements of

the prompt can influence the model’s understanding and output. For instance,

in few-shot learning, the prompt may include a few examples of the task to be

performed, followed by the specific instance on which the model should generate a

response. Prompt engineering is still an active area of research, with development

being done to create more effective prompts and evaluate model performance in

various tasks for comparison [39, 40].
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4 Implementation

This chapter covers the implementation process behind the user-facing ap-

plication that combines the insect detection and classification model with an em-

ulated agriculture and insect expert using GPT. The implementation process was

divided into three major components: the backend, the frontend, and the AI Chat

feature.

The backend component is responsible for the application’s core functional-

ity, including the integration of the insect detection and classification model with

the database management system. The backend was developed using TypeScript

and ExpressJS framework, which provided a solid foundation for building scalable

and robust web applications. For database management, we’ve opted for Firebase,

a highly-regarded open-source solution by Google known for its dependability and

data integrity.

The frontend component is responsible for the visual representation and

interaction of the application with the user. It includes the development of the user

interface, which was designed to be intuitive and user-friendly, allowing farmers to

access the features they need easily. The frontend was implemented using modern

web technologies and packages such as HTML, CSS, TypeScript, Recharts, and

more, with the React framework being used as the primary tool for development.

The AI Chat feature is the most innovative component of the application.

It integrates OpenAI’s GPT-3.5 model to provide personalized responses and rec-

ommendations based on the unique input from each farmer. This feature was de-

veloped using Typescript and the OpenAI API. Implementing this feature required

extensive testing of various prompts to ensure its effectiveness as an emulator of

agricultural expertise.
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4.1 Backend

The backend for the Insect Detection Server project is primarily responsible

for managing the database, which stores detections and related data from the on-

site machines, and maintaining the Application Programming Interface (API). The

project’s API is a service between multiple applications that essentially exposes

routes to the frontend to read from the database and exposes routes for the on-site

machines to write data to the database.

4.1.1 Database

The original design of this work had several goals in mind, which included

creating an interface for farmers to access their pest-related data and connecting

on-site machines running computer vision models responsible for insect detection

and classification. Since there were no requirements for complicated queries on the

stored data, a NoSQL approach with high scalability was preferred, and Google

Firebase’s FireStore Database met those demands better when compared to an

alternative such as MySQL [41]. The importance of designing the database schema

lies in matching the payloads of the requests we send from other applications

through our API. As such, we chose to use a simplified JSON payload that contains

the date of the detection, the image with the bounding boxes returned from the

on-site machine, and the array of detection objects, including all of the insect

detections/classifications from the model. As shown in Fig 4.1, the structure of

each detection within the detections array includes the date it was captured and

the name and confidence score returned by classification.
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Figure 4.1: TypeScript interface structures for the Detection and Detection In-

stance object used in the JSON payload and database schema.

Within the FireStore Database, the types match those of the structures

from Fig 4.1. We store the image as a string rather than using a separate object

storage service because we can convert our consistent 2K resolution images re-

trieved from the camera on the farm into Base64 strings, which are relatively easy

to store and retrieve at smaller image sizes. Another concept specific to Firebase

is “collections,” which are simply containers for “documents,” the unit of storage

in Firebase [42]. The main benefit of these collections is that they provide easy

user-based data storage, as each user can have a unique collection of data of a

similar structure. The structure of each detection document within our detections

collection can be seen in Fig 4.2.
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Figure 4.2: Cloud FireStore Database data showcasing the detections collection

and its child document structure. The document structure matches the interfaces

from Fig 4.1.

4.1.2 API

The API serves as an interface between the frontend, on-site machines,

and the database, allowing them to exchange data. It provides necessary routes

to access and manipulate the data stored in FireStore. The API was developed

in TypeScript using ExpressJS, a popular and powerful web application frame-

work, and Firebase Functions, allowing us to run serverless functions responding

to HTTP requests.

To implement the API, we defined the routes corresponding to the various

actions the frontend and on-site machines can perform. The primary routes include

fetching all detections for a specific day, fetching the latest detection data, and

posting new detection data. The JSON response for a typical GET request from

the frontend for a particular day’s data is shown in Fig 4.3.
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Figure 4.3: JSON response example for a GET request from the frontend, re-

turning all the detection data for a specific day.

The on-site machines use the POST route to send new detection data to

the database. These machines are responsible for running the insect detection and

classification models, and they send the resulting data as a JSON payload. The

response of the GET request is very similar to the payload of the POST request,

as they contain the same data. A key difference is the format of dates due to

their storage as milliseconds-since-epoch in the database. In Fig 4.4 we can see

the POST request payload that matches up with the second detection document

in the response from Fig 4.3.
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Figure 4.4: JSON payload example for a POST request from the on-site machine.

To handle these requests, we use Firebase Functions to define serverless

functions that interact with the FireStore database. For example, we use a Firebase

Function to fetch the latest detection data such that we can query the FireStore

collection and return the most recent detection document. The sample Firebase

Functions for handling the latest detection data request and saving detection data

from the on-site machines are shown in Fig 4.5 and Fig 4.6, respectively.
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Figure 4.5: Function for handling a GET request to fetch the latest detection

data from the database.
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Figure 4.6: Function for saving new detections to the database.

Once the API and Firebase Functions were implemented, they could then

be deployed to Firebase Hosting. This process involves bundling the API code and

configuration files into a single package and uploading it to the Firebase servers.

The deployment process is straightforward and ensures the API is accessible and

scalable, handling many requests as needed. Ultimately, the API implementation

facilitates seamless communication between the frontend, on-site machines, and

the FireStore database. It enables efficient data retrieval and storage, ensuring a

smooth user experience and accurate tracking of insect detection data over time.
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4.2 Frontend

The frontend component was implemented using the React framework and

TypeScript. React is a widely-used library for building user interfaces, while Type-

Script adds static types to JavaScript, ensuring better code quality and maintain-

ability. The frontend is deployed on Netlify, which automatically builds and deploys

the application from the GitHub repository.

The primary goal of the frontend design was to provide an intuitive and

user-friendly interface for farmers to monitor insect detections and classifications

daily and review individual detection instances. To achieve this goal, we created

a UI with a header row with a date picker in the center and an open chat button

in the top right. The page’s main content consists of a pie chart for the total

insect detection statistics for the selected day, followed by images of detections

throughout the day, which users can click left and right through. The pie chart is

implemented using Recharts, a popular charting library for React.

Figure 4.7 presents the website UI with the pie chart at the top and the

image with detections returned from the on-site machine at the bottom. The pie

chart is tooltip-enabled, allowing users to see the average confidence percentage

and the insect’s name when they hover over a chart section.
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Figure 4.7: The frontend user interface showcasing the pie chart with tooltip

functionality and the image carousel for individual detections.
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4.3 Artificial Intelligence Chat Feature

The Artificial Intelligence chat feature is designed to provide farmers with

personalized responses and recommendations based on their specific questions re-

lated to pests. To implement this feature, we integrated OpenAI’s GPT-3.5 model

using the OpenAI API and TypeScript. The decision to use GPT-3.5 over Ope-

nAI’s recently released GPT-4 was due to the superior speed and simplicity of

GPT-3.5. However, due to its advanced reasoning, integrating GPT-4 could re-

sult in more advanced discussions on the implications of the insects’ presence. To

maintain the previous message history and enable the model to generate coherent

and accurate responses, exchanged messages are saved during the conversation.

The chat feature is accessible via a chat modal UI, as shown in Figure 4.8,

where users can converse with the AI about their pest concerns. The AI assis-

tant can address various pest-related questions, from identification and potential

impact to research and case studies and offering specific advice on control and man-

agement strategies tailored to the user’s farm and crop conditions. By leveraging

the advanced capabilities of GPT-3.5, the AI chat feature can provide detailed

and accurate information, empowering farmers to make more informed decisions

regarding pest management on their farms.

A limitation of the GPT model used, and large language models as a whole,

is hallucinations. Hallucinations in AI are the generation of outputs that could

be valid when they are factually incorrect. These phenomena can be explained

by the limitations in the data the model was trained on. The issue with these

hallucinations is their potential to mislead users since they can cause improper

decision-making and a breakdown in trust in the model’s other outputs [43]. We

can see an example of GPT “hallucination” in frames 1 and 2 of Fig 4.8 as most

of the research articles referenced in its output do not exist. There are efforts to

resolve these cases of hallucinations by implementing a validation step on GPT

outputs. Still, the most effective response is transparency and disclosure of the

model being used and its possible inaccuracies [44].
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Figure 4.8: The chat modal UI with an example conversation about pest-related

questions.

We employed prompt engineering techniques to guide the GPT-3.5 model

in generating appropriate responses to ensure that the AI chat feature provides
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relevant and accurate information. In the API call, we specified the expertise in

agriculture and insects as a system prompt so that the generated responses are

appropriate and informed by agricultural knowledge. The importance of using a

well-tested system prompt is to narrow the scope of the model’s responses and

promote only relevant conversations that are most beneficial to the typical user.

We can see an example of the model’s narrowed scope and promotion of relevant

questions in Fig 4.9. Figure 4.10 shows the example array of messages, a parameter

in the API call’s payload, including the system prompt.

Figure 4.9: Example conversation where the AI assistant exhibits narrowed scope.
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Figure 4.10: Example messages parameter of payload for an API call to OpenAI’s

GPT-3.5 model with specified expertise in agriculture and insects.

Implementing the AI chat feature required extensive testing and refining of

prompts to ensure its effectiveness as an emulator of agricultural expertise. The

result is an innovative and valuable addition to the application that helps farmers

get quick and accurate information about their pest-related concerns, ultimately

contributing to better decision-making in pest management.
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5 Conclusion

The Insect Detection Server project demonstrates the potential of com-

bining Artificial Intelligence, Computer Vision, and advanced language models to

create a practical and accessible solution for pest management in the agricultural

industry. By integrating the insect detection and classification model with Ope-

nAI’s GPT-3.5 model, the application provides farmers with a comprehensive tool

that identifies insects on their farms and offers expert advice and personalized

recommendations on pest management strategies.

The implementation of this project involved developing the backend, fron-

tend, and AI chat feature, resulting in a user-friendly interface that allows farmers

to monitor insect detections and engage in conversations about their pest concerns.

The integration of GPT-3.5 API enables the AI chat feature to provide accurate

and contextually relevant responses to user queries, emulating the expertise of a

human agricultural specialist.

One of the primary benefits of this system is the potential for reducing

pesticide use and hastening farmers’ Integrated Pest Management plans, leading

to improved crop yields and reduced environmental impacts. Furthermore, the

techniques used in this research can be applied to a wide range of computer vision

and user-facing data analytic applications, extending their potential implications

beyond the agricultural industry.

Although the current implementation utilizes GPT-3.5, future work could

explore integrating the more advanced GPT-4 model for even more advanced dis-

cussions on the implications of insect presence and potential pest management

strategies. Additionally, further research could be conducted to refine the prompt

engineering techniques and ensure the AI chat feature continues to provide relevant

and accurate information in response to evolving agricultural practices and pest

management strategies.
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In conclusion, the Insect Detection Server project showcases the innovative

application of Artificial Intelligence and Computer Vision technologies in address-

ing real-world problems farmers face. By providing a user-friendly and accessible

tool for insect detection and expert advice, this project contributes to the ongoing

efforts to improve the efficiency and sustainability of agricultural practices.
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A Broader Impacts of Research

A.1 Applicability of Research Methods to Other Problems

The innovative techniques and technology utilized in the creation of the

Insect Detection Server hold great potential for application in various fields beyond

agriculture. The incorporation of Computer Vision and AI for insect identification

and classification, along with GPT-3.5’s ability to simulate agricultural expertise,

can be tailored to tackle various issues in different industries.

1. Medical Imaging: In diagnostic scans, the Computer Vision methods em-

ployed for insect detection can be applied to medical imaging to identify and

categorize medical conditions, such as tumors or lesions

2. Environmental Conservation: The technology for wildlife monitoring and

conservation initiatives can be modified. Utilizing computer vision to iden-

tify and track endangered species in their natural habitats allows conserva-

tionists to gather essential data on population dynamics and devise effective

conservation strategies.

3. Security and Surveillance: The computer vision model can be employed in

security and surveillance systems to detect and recognize suspicious activities

or individuals, thus enhancing security measures in public spaces and private

properties.

4. Customer Service: The implementation of GPT-3.5 as an “online expert”

can be expanded to other areas, including customer service and technical

support. Companies can utilize AI chatbots to offer instant and personalized

customer assistance, boosting customer satisfaction and reducing response

times.
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A.2 Impact of Research Results on U.S. and Global Society

The Insect Detection Server has the potential to generate substantial pos-

itive impacts on both U.S. and global society, particularly within the agricultural

sector.

1. Improved Pest Management: The capacity to accurately identify and classify

insects on farms enables farmers to implement targeted and timely pest con-

trol measures. This can result in more effective pest management, decreased

crop damage, and heightened agricultural productivity.

2. Reduced Pesticide Use: By supplying farmers with precise information about

pest presence, the technology can help minimize the indiscriminate applica-

tion of pesticides. This can reduce the environmental and health hazards

associated with pesticide exposure.

3. Enhanced Food Security: Better pest management and decreased crop losses

contribute to improved food security by increasing the availability and af-

fordability of food. This is especially crucial in regions where agriculture is

a primary source of livelihood, and food security is a significant concern.

4. Access to Expertise: The integration of GPT-3.5 as an “online expert” offers

farmers expert advice and guidance on pest management. This democratizes

access to agricultural knowledge, particularly for small-scale farmers who

may not have access to traditional agricultural extension services.

A.3 Impact of Research Results on the Environment

The implementation of the Insect Detection Server can produce several

positive environmental impacts:

1. Reduction in Pesticide Pollution: By facilitating targeted pest management,

the technology can decrease pesticide usage, reducing pesticide runoff into
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water bodies and soil contamination. This helps safeguard aquatic and ter-

restrial ecosystems from the detrimental effects of pesticides.

2. Biodiversity Conservation: By curbing the indiscriminate application of pes-

ticides, the technology can help protect non-target species, including benefi-

cial insects such as pollinators, from pesticide exposure. This supports the

conservation of biodiversity in agricultural environments.

3. Sustainable Agriculture: The technology promotes sustainable agriculture

practices by providing farmers with data-driven insights for pest manage-

ment. This empowers farmers to make informed decisions that balance agri-

cultural productivity with environmental responsibility.

In conclusion, the Insect Detection Server holds the potential to promote

more sustainable and eco-friendly agricultural practices. By harnessing AI and

computer vision technologies, the research results can lead to enhanced pest man-

agement, reduced environmental impacts, and agricultural sustainability.
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Open source web-development libraries

Google Firebase

OpenAI API

Netlify

Machine #2:

Included CPU on the prototype bug system

Software

Ubuntu 16.04

Required scripts for system operation
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