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Abstract 

Background 

Comparative effectiveness research (CER) studies using non-randomised study designs 

sometimes employ instrumental variables (IVs) to address the problem of unmeasured 

confounding. Physician’s prescribing preference (PPP) is a commonly used IV in this context 

and had been shown to have utility in many CERs. However, these IVs are generally used as 

a supplementary method rather than the main analytical strategy. In this thesis, I aim to test 

the validity of PPP IVs, including an evaluation of the different ways they can be constructed 

to help promote their more widespread use in CER. 

Methods 

This thesis consists of a range of underpinning methodological approaches, including a 

literature review summarising applied and simulation studies between 2005 and 2020 that use 

PPP IV in CER; applied CERs using PPP IV in studies utilising routinely-collected health 

datasets; target trial emulation approaches based on benchmarking from a randomised clinical 

trial; and simulation studies to test the performance of PPP IV in multiple CER settings. 

Results 

My literature review provides guidance on the further use of physician’s prescribing 

preference as instrumental variables in comparative effectiveness research. It highlighted that 

practical use of PPP needs to consider the findings from simulation studies in the area. In my 

empirical chapters, I provide strong evidence that PPP is a valid IV approach for conducting 

CERs using non-randomised study designs. I found that constructing PPP using longer 

prescription histories generally produces stronger instruments, which in turn leads to greater 

precision in estimation of treatment effects. In practice, validation of assumptions is crucial 

for the utility of IVs in CER. In my applied research, I found strong real-world evidence that 

supports diazepam is associated with lower risk of rehospitalisation and mortality due to the 

alcohol intoxication and harmful than chlordiazepoxide; that disulfiram is superior to 

acamprosate in terms of preventing alcohol dependence-related hospitalisations; and that 

sulfonylureas (SU) performs better than dipeptidyl peptidase-4 inhibitor (DPP-4 inhibitor) in 

reducing HbA1c levels as the second-line treatment for Type-2 diabetes patients. In my 

simulation studies, I found PPP IV, when unmeasured confounding exists, can produce less 

biased estimates of treatment effects than conventional multivariable regressions that only 

adjust for measured confounding variables, albeit with lower statistical power. The 
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simulations also show PPP IV has potential in alleviating noncollapsibility in non-linear IV 

approaches. 

Implications 

Findings from this thesis indicate that PPP IVs can be valid IVs and reduce unmeasured 

confounding in observational CER studies. However, I have found that there is room for 

improvement in the application of PPP IV in CER studies; researchers need to pay more 

attention on validating IV assumptions and carefully consider how different formulations of 

PPP IVs can be applied in order to improve the quality of statistical inference. Future applied 

PPP IV research should consider findings from relevant simulation studies to inform study 

designs and analysis plans. Conversely, one also needs information on PPP IVs from 

empirical studies to inform future simulation study design and to gain further knowledge 

from triangulation between applied and simulation findings. Many of my thesis findings can 

be generalised to the use of non-PPP IV approaches in CER. 
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Chapter 1. General introduction 

 

1.1 Comparative effectiveness research in observational studies  

 

To make well-informed decisions in the health sector and improve patients’ health, 

comparative effectiveness research (CER) is used in comparing the effectiveness and the 

risks of therapies or medical interventions (National records of Scotland). In CER, 

randomised controlled trials (RCTs) are considered the gold standard in terms of causal 

inference (Greenland, 2000). It is mainly because RCTs randomise the treatment allocation 

which ensures balance in the patients’ characteristics in treated and controlled groups. 

However, RCTs are not always feasible. Ethical and financial problems are common issues. 

Also, possible non-adherence and loss of follow-up make treated and controlled group less 

comparable. Although the intention-to-treat (ITT) estimator is effective in reducing non-

compliance bias in RCTs, the substantial lack of adherence makes ITT estimates less likely to 

provide a consistent estimate of treatment effectiveness (Hernán and Hernández-Díaz, 2012). 

The strict inclusion and exclusion criteria of RCTs ensure the internal validity but it also 

make the study cohort less representative (Booth and Tannock, 2014). Besides, it only 

evaluates the efficacy of treatments (how a treatment works under the ideal situation) but not 

effectiveness (how a treatment works in real-world) (Faraoni and Schaefer, 2016, Nallamothu 

et al., 2008). In order to get unbiased estimates of effectiveness, one can consider using 

observational studies which use data from population-based routinely-collected datasets 

(Faraoni and Schaefer, 2016).  

 

As another type of CER, observational studies do not have pre-defined intervention of 

interest therefore is able to investigate multiple types of interventions (Sørensen et al., 2006). 

The volume of participants in the observational data is usually large which is more likely to 

generalised to whole population resulting strong external validity. This is particularly 

important for vulnerable group and rare conditions which is not feasible or costly to study in 

RCTs (Armstrong, 2012). Also, it makes investigation of chronic conditions possible as the 

data can cover a long time span (Booth and Tannock, 2014). 
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1.2 The unmeasured confounding issue in the observational studies 

 

Observational study has limits. Since observational studies usually involve data that are 

already been collected, it is sometimes not possible to compare the effectiveness of new 

treatments as the data either does not exist or being immature (Armstrong, 2012). More 

importantly, observational study is subject to bias, arguably, concerns about bias are larger 

for observational than randomised studies. The information bias, which is introduced by 

measurement error or misclassification can affect the casual inference in RCTs as well as in 

observational studies. In observational study settings, data are collected for the purpose which 

may not be consistent with the research objective. Therefore, the measurement of treatment 

and outcome variables are not optimal which leads to bias in the treatment effect estimation 

(Faraoni and Schaefer, 2016). Selection bias is another source of bias. It occurs when 

conditioning on colliders or common effects of treatment and outcome. In this case, the 

selection mechanisms are not random. Weighting adjustment methods can be used to 

alleviate selection bias in surveys and cohort analysis (Greenacre, 2016), such as propensity 

score and inverse probability-of-censoring weighted estimation (Howe et al., 2016, 

Thompson and Arah, 2014).  

 

The confounders are the common causes of treatments and outcomes. If these variables 

cannot be controlled or measured or recorded, causal effect between exposure and treatment 

is introduced in error which leads to confounding bias. Confounding bias and selection bias 

can happen simultaneously (Haneuse, 2016). However, unlike selection bias, unmeasured 

confounding bias is more difficult to address. Multivariable regression models and propensity 

score are commonly used analytical tools to control the confounding bias in observational 

studies (Austin, 2011). However, some studies pointed out the drawbacks of these ‘standard’ 

methods. In a review paper that summarises six systematic reviews on the comparison on the 

of treatment effect estimates from propensity score matching and RCT, the disagreement 

between the RCT and propensity score happened in 68 of 127 (54%) comparisons (measured 

by ratio of relative risk from RCT over the relative risk from propensity score larger than 

1.43 or less than 0.7) (Forbes and Dahabreh, 2020). Besides, same as regression adjustment, 

propensity score can only control measured confounding issue (Ali et al., 2015). The 

instrumental variable method is designed to bypass this issue.  
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1.3 Introduction of the use of instrumental variable in CER 

 

Originating from econometrics, instrumental variable (IV) has been widely applied in CER 

using observational data in recent decades (Hernán and Robins, 2006). One of most used IV 

is preference-based IV (Brookhart et al., 2006). Preference-based IV assumes that the 

preference of the treatment provider can strongly affect the treatment assignment. Since it is a 

natural process, it is unlikely be associated with the outcome and the other covariates 

(Brookhart and Schneeweiss, 2007). 

 

There are subtypes of facility-level prescribing preference (e.g., hospital-level prescribing 

preference) and individual-level prescribing preference. For individual-level prescribing 

preference, such as physician’s prescribing preference (PPP), if the prescribing preference is 

strong and homogeneous over a fixed period of time, then PPP can potentially be a valid IV. 

There are studies proved that the hospital-level preference performs better than individual-

level preference in terms of reducing the unmeasured bias (Ionescu-Ittu et al., 2012). 

However, the facility-level preference is more difficult to maintain at a stable pattern 

compared with the individual-level (Potter et al., 2020). 

 

Also exploiting the concept of ‘naturally variation’, calendar time and distance to the facility 

are also commonly used IV in observational CERs (Chen and Briesacher, 2011, Ertefaie et 

al., 2017). In terms of investigating acute conditions, the distance to facility is highly related 

to the treatment received. However, the distance IVs in these cases tend to have direct effect 

on the outcome which violate the exclusion restriction assumption (Baiocchi et al., 2014) . 

Calendar time can be considered as an IV when the policy or guideline changes have direct 

impact on the choice of treatment. Nevertheless, time variables may also be associated with 

the unmeasured cofounders as the time may bring changes in characteristics in the 

participants that enter the cohort (Brookhart et al., 2010). 

 

This thesis will focus on assessing the performance of PPP as instrumental variable in CER 

using empirical as well as simulation studies. 
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1.4 Introduction of the use of physician’s prescribing preference (PPP) as instrumental 

variable and other types of preference-based instrumental variable 

 

Brookhart and colleagues firstly proposed PPP as a potential valid IV (Brookhart et al., 

2006). As it has natural-occurred variation which make the treatment assignment close to that 

in RCT, PPP IV has been increasingly used in observational studies (Brookhart et al., 2010, 

Boef et al., 2016a, Ionescu-Ittu et al., 2012). Since it is a latent variable that cannot be 

measure directly, different forms of surrogate variables are proposed. The most widely used 

one is prescribing history of the physicians with an intuition that the prescribing preference 

can be reflected from past prescribing behaviour (Boef et al., 2016b).They used the previous 

prescriptions of one particular physician as the proxy for the prescribing preference of that 

physician (Davies et al., 2013c, Davies et al., 2013a, Brookhart and Schneeweiss, 2007). 

Examples include the most recent prescription and several prior prescriptions or the 

proportion of one drug (Kollhorst et al., 2016). Like the PPP, other forms of preference-based 

IV also assume that providers have different preference for different types of treatment which 

have direct effect on the treatment assignment (Brookhart and Schneeweiss, 2007).  

 

1.5 Structure of this thesis 

 

This thesis is organised as follows: 

Chapter 2 contains a general review of IV approach and a critical commentary of using PPP 

as IV in CER. Chapter 3 is a literature review contains two parts: 1) review of CERs that use 

routinely-collected data; 2) review of the simulation studies that build hypothetical drug 

comparison studies. The aim is to review the methodology used in current CERs that 

investigate the PPP IV and identify possible methodological advances that simulation studies 

proposed. Chapter 4, Chapter 5 and Chapter 6 are three CERs using three data sources: 

Scottish National Prescribing Information System (PIS), Clinical Practice Research Data 

(CPRD) and Scottish Diabetes Research Network (SDRN) respectively. The aim of these 

chapters is to assess the performance of different forms of proxy for PPP. Chapter 7 and 

Chapter 8 are simulation studies that investigate the performance of IV approaches in 
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different scenarios. I aim to assess the utility of PPP IV in different research settings. Chapter 

9 is the general discussion and conclusion. 

 

1.6 Aims and objectives 

 

This thesis has three major aims: 

1. Critically review the current comparative effectiveness research which use PPP as IV  

2. Implement PPP IV in drug comparison studies using routinely collected data. 

3. Explore the novel use of PPP IV in different settings, using real-world data as well as 

simulated data. 
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Chapter 2. Literature review: An introduction and commentary on the implementation 

of PPP IV in comparative effectiveness research  

 

 2.1 Introduction 

 

For CER, RCT is acknowledged to be the gold standard methodology. It allows the 

characteristics of patients in treatment and control group to be balanced, on average, therefore 

eliminating the confounding issue (Greenland, 1990). However, RCTs are not always 

feasible.  Observational studies that utilise routinely-collected dataset are widely applied in 

CERs (Armstrong, 2012). Observational data do not usually record sufficiently the 

potentially confounding variables which affect both the treatment assignment and the 

outcome(s). Such unrecorded variables, and other confounding variables that are unknown or 

not anticipated, lead to unmeasured confounding bias. As an analytical method, IV method is 

mainly used to alleviate unmeasured confounding bias.  

 

There are a number of articles that provide a general introduction of the IV method in clinical 

epidemiology literature in recent years (Chen and Briesacher, 2011, Baiocchi et al., 2014, 

Lousdal, 2018, Potter et al., 2020, Widding-Havneraas and Zachrisson, 2022). However, 

most of this literature focuses on the general form of IVs rather than PPP IV. PPP is a 

commonly used IV in CER (Brookhart et al., 2006, Davies et al., 2013c, Davies et al., 2020). 

As a latent variable, PPP IV cannot be measured directly and requires a proxy of the ‘true’ 

prescribing preference (see Figure 1). 
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Figure 1. PPP is the unmeasured instrument U*. Z is the proxy of U*. X is the actual 

treatment assigned and Y is the outcome, U represents unmeasured confounding. Arrows 

indicate causal relationships. The directions of the arrows represent the direction of the 

causality. 

 

As it mentioned in Chapter 1, PPP exploits the natural variation to be a substitute for the 

‘flipping coin’ treatment assignment mechanism in RCTs. Despite the advantage from the 

natural variation in PPP, the implementation of PPP IVs brings extra important 

considerations which have not been fully critically evaluated in the literature to date. 

Therefore, the objective of this chapter is to provide an introduction and commentary of PPP 

IVs to assist researchers conducting CER with PPP IV. This chapter is arranged in three 

parts: 1) validation of IV assumptions; 2) treatment effects that IV method estimates; 3) 

estimation methods for IV estimates. In each part, I first provide a general introduction of 

using IV in the setting of CER, then a specific introduction of PPP IVs with the purpose of 

providing a guidance framework for using PPP IV. 

 

2.2 The validation of IV assumptions 

 

Before the introduction of IV assumptions in more detail, a table of notation is presented (see 

Table 1). 
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Notation  Meaning  

𝑌1,𝑌0 Counterfactual outcome if the treatment 

is 1 or 0 

𝐷1, 𝐷0 Treatment received when the IV is 1 or 

0 

Z IV  

L Measured confounders 

U Unmeasured confounders 

i Participants 

Table 1. Table of notation 

 

(1) Stable Unit Treatment Value Assumption (SUTVA) 

 

One general assumption for estimating the treatment effect is the stable unit treatment value 

assumption (SUTVA) which was proposed by Rubin (Rubin, 1986). It states that the 

treatment effect of one individual is not affected by the treatment received by others. One 

possible scenario that SUTVA is violated when the students in treatment group and the 

students in control group stay in the same classroom where they may interact (Stuart, 2010). 

Note that the non-compliance in RCT clearly violates SUTVA as it makes the treatment 

assignment different from the treatment received. Likewise, in observational studies, one 

cannot measure what exposure the patients actually received (Schwartz et al., 2012). 

 

Apart from SUTVA, a valid IV should satisfy three assumptions (Hernán and Robins, 2006): 

1. Relevance assumption: IV is associated with the exposure. 

2.  Exclusion restriction assumption (ER assumption): IV only affects the outcome 

through the exposure.  

3. Independence assumption: IV is not associated with unmeasured confounders. 
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However, to get the treatment parameter effect estimate, one needs further assumptions 

around the relationship between the treatment received and what the instrument indicates. 

Leading to that, consider the notation of compliance classes presented in Table 2. In the 

simple case of a binary IV, there are four types of compliance classes based on participant i: 

 

Compliers 𝐷𝑖
1 = 1; 𝐷𝑖

0 = 0; 

Never takers  𝐷𝑖
1 = 0; 𝐷𝑖

0 = 0; 

Always takers 𝐷𝑖
1 = 1; 𝐷𝑖

0 = 1; 

Defiers 𝐷𝑖
1 = 0; 𝐷𝑖

0 = 1; 

Table 2. Notation of compliance classes for a binary IV 

Combined with a potential binary outcome, there are eight combinations that can be observed 

(see Table 3).  

 

Y Z D Definition  

1 1 1 Compliers or always takers 

1 1 0 Defiers or never takers 

1 0 1 Defiers or always takers 

1 0 0 Compliers or never takers  

0 1 1 Compliers or always takers 

0 1 0 Defiers or never takers 

0 0 1 Defiers or always takers  

0 0 0 Compliers or never takers  

Table 3. Eight combinations of Y, Z, D 

In order to get the parameter estimate of the treatment effect, one needs to know the eleven 

probabilities: Pr(𝑌1=1|Complier); Pr(𝑌0=1|Complier); Pr(𝑌1=1|Always takers); 

Pr(𝑌1=1|Defiers); Pr(𝑌0=1|Defiers); Pr(𝑌0=1|Never takers), and Pr(compliers), Pr(never 

takers), Pr(defiers), Pr(always takers) and Pr(Z=1). Since the sum of the proportions of the 

four compliance groups is 1, the degrees of freedom are reduced to 10. Still, the model is not 

fully defined (10 unknown parameters vs. 8 observed combinations of Y, Z, D). 
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One possible additional assumption to reduce the unknown parameters to estimate is to 

assume treatment effect homogeneity among the four compliance classes (i.e., E[𝑌1 − 𝑌0| 

compliers]=E[𝑌1 − 𝑌0| never takers]=E[𝑌1 − 𝑌0| always takers]=E[𝑌1 − 𝑌0| defiers]) 

(Baiocchi et al., 2014). As it mentioned in the Chapter 1, under this assumption, the IV 

method estimates ATE rather LATE. The validation of treatment homogeneity is difficult, 

since evidence of treatment effect heterogeneity is commonplace in epidemiology (Poole et 

al., 2015, Labrecque and Swanson, 2018). Since one cannot truly observe the proportion of 

defiers, another type of additional assumption is to assume no defiers which is also referred to 

as no marginal effect subjects (Harris and Remler, 1998). 

 

Imbens and Angrist first introduced the monotonicity assumption for IV method (Imbens and 

Angrist, 1994). Angrist proposed that one should rule out the defier group which makes the 

treatment received monotonically related with the IV (Angrist et al., 1996). In never takers 

and always takers groups, the instrument does not affect the treatment assignment. Thus, 

under the monotonicity assumption, IV method only estimates the LATE which is the 

treatment effect in the compliers group (Hernán and Robins, 2006). 

 

2.2.1 Validation of the relevance assumption 

 

The relevance assumption is the only IV assumption that can be validated empirically 

(Hernán and Robins, 2006, Labrecque and Swanson, 2018). F-statistics and R-squared from a 

regression model fitted to the exposure and IV are commonly used in measuring the strength 

of association between the treatment group and the IV. The ‘rule of thumb’ for a strong 

enough instrument is that the F-statistics should be greater than 10, which is based on the 

critical value that makes the relative bias of the 2SLS estimator based on the OLS estimator 

less than 0.1 in a weak instrument test (Stock and Yogo, 2002, Staiger and Stock, 1994). 

When the IV is binary, one can also use odds ratios (OR) and C-statistics to measure the 

strength of association between the exposure and the IV (Pratt et al., 2010).  
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2.2.2 Validation of exclusion restriction 

 

This assumption is not empirically verifiable. One can only use falsification tests to assess it 

indirectly. One straightforward approach is the IV inequality method (Balke and Pearl, 1997) 

which is presented below (see Equation 1). It can be easily implemented when the IV and the 

outcome are binary (Wang et al., 2017b).  

 

Equation 1.  IV inequality. 𝑌0  and 𝑌1 represents the outcome equals 0 and 1; 𝐷0 and  𝐷1  

represents the treatment equals 0 and 1; 𝑍0 and 𝑍1represent the binary IV equals 0 and 1. 

 

If this inequality does not hold, ER assumption and independence assumption are likely to be 

violated (Balke and Pearl, 1997, Wang et al., 2017b). Alternatively, one can find a subgroup 

where the IV does not affect the treatment. Since the effect from exposure has been excluded, 

association between IV and outcome in such subgroups implies the violation of 

exchangeability and ER assumption (Kang et al., 2013, Lipsitch et al., 2010). However, this 

method needs the subject knowledge to identify the possible subgroups (Labrecque and 

Swanson, 2018). Another way is to find a concomitant treatment of the treatment being 

investigated. If the IV is associated with the concomitant treatment, and at the same time the 

concomitant treatment affects the outcome, then the ER assumption is likely to be violated 

(Baiocchi et al., 2014). 

  

 

𝑃 𝑌0, 𝐷0|𝑍0 + 𝑃 𝑌1,𝐷0|𝑍1 ≤ 1, 

𝑃 𝑌0, 𝐷1|𝑍0 + 𝑃 𝑌1,𝐷1|𝑍1 ≤ 1, 

𝑃 𝑌1, 𝐷0|𝑍0 + 𝑃 𝑌0, 𝐷0|𝑍1 ≤ 1, 

𝑃 𝑌1, 𝐷1|𝑍0 + 𝑃 𝑌0, 𝐷1|𝑍1 ≤ 1, 
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2.2.3 Validation of independence assumption 

 

An indirect way to validate the independence assumption is to check the imbalance of 

covariates across the levels of the IV. Imbalance in the observed covariates implies a possible 

association between the IV and unmeasured covariates. A commonly used approach is to 

calculate and describe the mean difference of covariates between levels of the IV (Davies et 

al., 2013c, Davies et al., 2020).  

 

Together with the validation of ER assumption, another way is to validate the independence 

assumption is to find a sub cohort that has similar confounding structure to the study cohort. 

However, this subgroup is not exposed to the treatment under study, so it excludes the 

possibility that the IV affects the outcome via the exposure. If the IV has a direct effect on the 

outcome in this sub cohort, then the ER assumption and the independence assumption are 

unlikely to hold (Davies et al., 2017, Lipsitch et al., 2010).  

 

2.2.4 Validation of treatment homogeneity and monotonicity assumption  

 

The previous section explained two approaches to obtain parameter estimates of the treatment 

effect. One way is to assume treatment homogeneity among compliers, defiers, never takers 

and always takers. Another is to ensure there is no defier group (monotonicity assumption). 

In terms of falsification of the treatment homogeneity assumption, one potential approach is 

to examine the instrument strength across the level of the measured covariates (Rassen et al., 

2009b). Moreover, a similar approach can also be used in the validation of the independence 

assumption (Labrecque and Swanson, 2018). Note that the treatment homogeneity 

assumption cannot be satisfied on both the additive scale and multiplicative scale (Hernán 

and Robins, 2006). Also, in some cases, treatment heterogeneity in epidemiology is 

considered likely (Poole et al., 2015). Alternatively, many researchers steer towards the 

validation of monotonicity assumptions (more details in section 2.2.5).  
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For binary IVs and binary exposures, no violation of monotonicity can be expressed as no 

defiers. However, the compliers groups, never takers and always takers group are impossible 

to be observed in the observational data separately (Swanson et al., 2015a). The monotonicity 

inequality proposed by Balke and Pearl can be used as an indirect empirical approach to 

validate monotonicity assumption when the exposures and outcomes are binary (Balke and 

Pearl, 1997) (see Equation 2). This equation is obtained based on the decomposition of 

conditional probability P(Y,D|Z)= P(Y|D,U)P(D|Z,U)P(U) and monotonicity assumption 

P(D=1|Z=1,U=u)≥ P(D=1|Z=0,U=u), proposed by Angrist and colleagues (Angrist et al., 

1996). 

 

Equation 2. Monotonicity inequality 

 

2.2.5 Specific PPP IV considerations 

 

As the only empirically verifiable assumption, the relevance assumption holds when the PPP 

IV is demonstrated to have a strong association with the treatment assignment. However, PPP 

is a proxy that may not directly reflect the association between the treatment and ‘true’ 

preference from the physicians. Weak associations between exposure and the IV leads to 

extremely biased results for PPP IV (Franklin et al., 2015). Independence assumption is likely 

to be violated in the case where patients with specific conditions may visit certain prescribers 

based on their prescribing preference; also referred to as ‘doctor shopping’(Rassen et al., 

2009a).Therefore, walk-in clinics and emergency room are more ideal for choosing PPP as 

IV (Potter et al., 2020). However, this is likely to be context-specific as not all medical 

treatment delivery outside walk-in clinics and emergency rooms is one homogenous 

grouping. For PPP IV, ER assumption is likely to be violated when physicians who prefer 

one particular type of treatment are more skilled in terms of delivering such treatment than 

physicians who prefer other type of treatment as they are more experienced (Baiocchi et al., 

2014). 
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For PPP IV, monotonicity assumption is likely to be violated due to the reason that the PPP 

IV is defined by multidimensional elements (Swanson and Hernán, 2014). As mentioned 

before, the main obstacle of validating monotonicity assumption lies in the definition of a 

complier group and the defier group. For PPP IV, the definition of compliers from Table 3 is 

insufficient. The reason being one patient can be either a complier or defier under the 

treatment from a different physician. Since the treatment received by the same patients under 

a different physician cannot be observed in real life (counterfactual outcome), Swanson and 

colleagues (Swanson et al., 2015a) conducted a survey with physicians with a hypothesised 

group of patients to observe the counterfactual treatment received by the patients (Swanson et 

al., 2015b). They also undertook a pilot study which included 53 physicians and 20 

hypothetical patients. 17 of 20 patients received the treatment that is the opposite of the 

prescribing preference of the physician which indicates a violation of monotonicity 

assumption. For preference based IV, surveys are an essential tool to validate the 

monotonicity assumption and are straightforward to conduct by asking the treatment provider 

about their decision (Swanson et al., 2015b). Since the deterministic monotonicity 

assumption may not be plausible for PPP IVs, Small and colleagues (Small et al., 2017) 

proposed a stochastic assumption which refers to the monotonicity within stratum formed by 

combinations of levels of covariates. Under the stochastic assumption, the LATE is a 

weighted sum of average treatment effects (Small et al., 2017). Swanson and Hernán 

(Swanson and Hernán, 2018) proposed that one needs to mention the estimated proportion of 

compliers in reporting IV estimates. However, for instruments such as PPP IV, the precise 

estimated proportion is unlikely to be observed. For PPP IV, one needs to establish an 

association between the unmeasured IV (for example, the true prescribing preference) and the 

surrogates for the unmeasured IV. If there is no subject-matter knowledge that can be used 

for building such an association, the proportion of the complier group will be bound between 

the denominator of the IV ratio ((E[Y|Z=1]-E[Y|Z=0])/(E[D|Z=1]-E[D|Z=0])) and 100% in 

the case of a positive association (Swanson and Hernán, 2018). 
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2.3 Type of treatment effects that IV method estimates 

 

Before introducing the concept of the treatment effect, four core types of treatment effect 

need to be outlined. Rubin’s causal model reveals that estimating the individual treatment 

effect is not possible as the counterfactual outcome cannot be observed within the same 

individual (Rubin, 1974). This led to the introduction of the concepts of average treatment 

effect (ATE), average treatment effect of treated group (ATT) and average treatment effect of 

untreated group (ATU). IV method yields the estimate of the local average treatment effect 

(LATE) (Fang et al., 2010) which is the average treatment effect among the patients whose 

treatment assignment is totally determined by the IV.  

 

The potential differences between ATE, ATT and LATE are mainly related to treatment 

effect heterogeneity indicating patients with certain characteristics more likely differ in the 

amount they get benefit from the same treatment. However, if the treatment effect 

heterogeneity does not exist between the treatment group and control group, the estimation of 

ATE, ATT, ATU and LATE will be the same (Brooks and Fang, 2009). Normally, patients 

who tend to get health benefits are more likely to be treated, then ATT > ATU. The 

estimation from LATE falls between ATT and ATU as it estimates the treatment effect of a 

blend of the treated and untreated groups (Angrist, 2004). LATE can only estimate the 

treatment effect of compliers.  

 

2.4 Estimation methods for IV method 

 

In Table 4, I summarise the characteristics of commonly used estimation methods in IV 

method. The simplest estimation method for the IV estimates is the Ratio estimator (RE), also 

known as Wald estimator (Wald, 1940). This approach is suitable for single, binary IV. 

Unlikely RE, the two-stage least square (2SLS) method can adjust for covariates (i.e., 

potential measured confounding variables). 2SLS provides a consistent estimate of LATE 

when IV assumptions are hold. In the case of binary outcome, IV and exposure, the linear 

probability model (LPM) is equivalent to RE and 2SLS and provides estimated treatment 

effect on the risk difference scale. Two-stage predictor substitution (2SPS) is a non-linear 
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extension of 2SLS where the first stage of 2SPS non-linear regression on exposure and IV. 

The second stage regression uses predicted results from the first stage regression as an 

additional covariate. However, 2SPS and 2SLS generate similar results in the case of 

numerical exposures and outcomes (Klungel et al., 2015). Two-stage residual inclusion 

(2SRI) is another two-stage method in which the first stage of 2SRI is the same as 2SPS. In 

the second stage, it uses the residual from the first stage instead of model predictions from the 

first stage as an additional covariate.  

 

Two-stage logistic regression (2SLR) is a two-stage regression model that uses logistic 

regression in both stages. This model is unable to provide a causal OR estimate due to the 

noncollapsibility of OR. This is also the case for 2SRI and 2SPS when the IV estimates are 

ORs. For binary outcomes, another two-stage method, bivariate probit model (BVP), is 

sometimes favoured. It provides the probit coefficients which can be approximated to an OR. 

Structural mean model (SMM) is a semi-parametric model that uses g-estimation to estimate 

causal parameter based on the conditional mean independence (Robins, 1994). Generalised 

method of moments (GMM) is a non-parametric method and can be used in over-identified 

models (i.e., IVs outnumber the endogenous exposures). Since it is not constrained by 

parametric assumptions, GMM is generally more efficient than BVP and 2SLR when the 

outcomes and exposures are binary (Klungel et al., 2015). However, in my review paper that 

includes 18 CERs which used PPP IV from 2005 to 2020, 11 of 18 studies conducted 2SLS. 1 

of 18 studies conducted 2SRI and 2SLR respectively (Zhang et al., 2022). 2SLS is the most 

used estimation method on this topic. 
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Types of IV estimation method Notation 

Ratio estimator (RE)/ Wald 

estimator  

𝐸[𝑌|𝑍 = 1] − 𝐸[𝑌|𝑍 = 0]

𝐸[𝐷|𝑍 = 1] − 𝐸[𝐷|𝑍 = 0]
 

2SLS    Consistently estimate LATE in the case of single IV and linear 

models 

2SLR • Logistic regression in both stages 

• Subject to noncollapsibility 

2SPS • Non-linear extension of 2SLS 

• Subject to noncollapsibility 

2SRI • Non-linear extension of 2SLS 

• Proved to be more consistent than 2SPS 

• Subject to noncollapsibility  

SMM • Semi-parametric modelling 

• Using G-estimation 

BVP • Model the probability of receiving the treatment and the 

outcome 

• Estimate probit coefficients 

• Perform better than 2SLS for binary outcomes and 

treatments 

GMM • Moment based 

• More consistent than 2SLS 

• Suitable for binary outcome 

Table 4. Summary of common IV estimation methods 

  



33 
 

 

2.4.1 Specific PPP IV considerations  

 

In the case of implementation of PPP IV, the choice of estimation methods should depend on 

the treatment effect of interest. Under the treatment effect homogeneity assumption, the 

estimation methods mentioned above provide estimates of ATE. Under the monotonicity 

assumption, all methods except for SMM provide estimates of LATE. While SMM provides 

estimate of ATT with the no effect modification assumption (NEM) holds (Klungel et al., 

2015, Clarke and Windmeijer, 2012). The NEM assumption indicates that the IV does not 

modify the effect of treatment on the outcome (E [Y(1)-Y(0)|X=1,Z=1]=E[Y(1)-

Y(0)|X=1,Z=0]) (Hernán and Robins, 2006). Another nonparametric method is the marginal 

treatment effect (MTE) which is proposed by Heckman and Vytlacil (Heckman and Vytlacil, 

2005). Local IV (LIV) parameter estimation (Heckman and Vytlacil, 1999), integrated with 

propensity scores, is a common way to bound treatment effects within a MTE model. 

 

2.5 Discussion  

 

Although many existing literature suggests cautionary implementations of preference-based 

IVs (Ionescu-Ittu et al., 2009, Garabedian et al., 2014, Franklin et al., 2015), and the need to 

be assessed on the case-by-case basis (Swanson and Hernán, 2018), I still believe in the 

utility of PPP IV for use in CER. The natural variation from PPP can be a close 

approximation to the ‘flipping coin’ assignment mechanism in randomised comparative 

effectiveness studies, which cannot be replicated by other forms of IV, such as distance and 

calendar time. A further strength is that preference-based IVs tend to be strongly associated 

with the treatment assignment. Also, the preference-based IVs are less likely to be associated 

with the outcomes (violating the exclusion restriction assumption) in many scenarios. I have 

pointed out that the relevance assumption is the only assumption that can be validated 

empirically, and in evidence across many applied studies, the PPP IV is shown to reduce 

covariate imbalance, therefore less likely to violate the independence assumption.  
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The pitfalls of using PPP IV mainly lie in the validation of the monotonicity assumption. As 

mentioned earlier, one needs to assume monotonicity assumption hold to achieve parameter 

estimates of LATE.  However, the validation of monotonicity assumption is usually 

overlooked. When the questionnaire survey is not feasible, I recommend researchers validate 

the monotonicity assumption using indirect approaches, such as monotonicity inequality or 

reporting sensitivity analysis of the violation of monotonicity assumption and the estimated 

proportion of compliers/defiers. If the validation of monotonicity is difficult to achieve, while 

other assumptions are believed to hold, one can report the bound of the estimated treatment 

effect from nonparametric approaches, such as Balke and Pearl proposed (Balke and Pearl, 

1997). Another noticeable limitation of IV methods is the weaker statistical power compared 

with the conventional methods, such as multivariable regression, propensity score. For that, 

stronger IV and larger sample size are preferred (Martens et al., 2006). 

  

2.6 Conclusion  

 

This chapter provides an introduction and critical commentary of CERs with emphasis on 

using PPP as an IV. I encourage investigators to access the assumption of IV for their specific 

applications when then use the PPP IV. use PPP as IVs when unmeasured confounding bias is 

likely. However, they should be cautious in terms of the complexities arising from the 

monotonicity assumption and strength of the association between the treatment and the IV. 
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Chapter 3. Physician’s prescribing preference instrumental variables: comparative 

effectiveness research should consider methodological insights from simulation 

studies. 

  

3.1 Authorship, and publication details 

 

This article has been published and is reproduced here under the terms of a Creative 

Commons CC-BY licence: 

Zhang, L., Lewsey, J., & McAllister, D. A. (2022). Comparative effectiveness research 

considered methodological insights from simulation studies in physician's prescribing 

preference. Journal of Clinical Epidemiology, 148, 74-80. 
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3.2 Abstract 

 

Objective:  

To review CER using PPP as IV in pharmacoepidemiology, and to review methodological 

studies that use simulation to evaluate the performance PPP IV in CER. 

Study design and setting 

We conducted a review of CER using PPP IV as well as studies evaluating the use of PPP IV 

by using simulation methods. We searched Ovid, PubMed, and Google Scholar databases 

from 2005 to 2020. 

Results  

We identified 6 simulation studies and 18 CERs. The simulation studies explored the most 

suitable ways for using PPP IV in different settings (outcome types, sample size, the 

prevalence of outcomes) which can be useful guidance for using PPP IV in CER. The CERs 

identified show heterogeneity in terms of validation assumptions, estimation methods and 

sample size. Not all applied studies utilised the methodological insights from the simulation 

studies. However, they all concluded that PPP is a valid instrumental variable.  

Conclusion 

Future CER should consider a range of methodological issues to improve the validity of 

findings when using PPP IV. Specifically, studies should consider the impact of different 

choice of statistical methods, forms of proxy for measuring preference, time-varying 

exposures, and the type of outcome. 

Key words: review, pharmacoepidemiology, instrumental variable, physician’s 

prescribing preference, comparative effectiveness research, simulation studies 
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What is new? 

 

• This article reviews applied and simulation studies that use physician’s prescribing 

preference as instrumental variables in pharmacoepidemiology between 2005 and 2020. 

• In this review, the applied studies that use physician’s prescribing preference as an 

instrumental variable do not always report their results to a standard that systematic 

reviews and simulation studies suggest. 

• Applied studies using physician’s prescribing preference as an instrumental variable 

should consider methodological insights from simulation studies to inform study 

designs. 

  



38 
 

 

3.3 Introduction  

 

In comparative effectiveness research (CER) using observational study designs, residual 

confounding is the one of the most important challenges. There are well-established methods 

that focus on reducing covariate imbalance, such as multivariable-adjusted regression and 

propensity score methods (Rosenbaum and Rubin, 1983).. However, these methods assume 

no unmeasured confounding after such adjustment. Originally from econometrics, the 

instrumental variable (IV) method can be used to address unmeasured confounding (Angrist 

and Imbens, 1995). 

 

Physician’s prescribing preference (PPP) is a commonly used instrument (Brookhart et al., 

2007). It exploits naturally occurring variation which makes the treatment assignment in 

observational studies using heath datasets closer to that in randomised controlled trials. The 

PPP is a latent variable and relies on proxy/surrogate measurement. The most common proxy 

for PPP is the most recent prescription made by the same physician for patients with the same 

symptoms, also referred to as ‘prior one’ prescription (Brookhart et al., 2007). Alternatively, 

PPP can be defined as the proportion of one particular drug under study prescribed among all 

the previous patients of the physician (Ionescu-Ittu et al., 2009). Further, PPP can be 

constructed at higher levels of aggregation, such as general practice (a local grouping of 

doctors which is found in the UK and other similar health systems) or other regional levels 

(Garabedian et al., 2014). 

 

In the past 15 years, there had been research papers which introduce IV methods in general 

and the use of PPP IV specifically (Hernán and Robins, 2006, Lousdal, 2018, Baiocchi et al., 

2014). Chen and colleagues conduct a systematic review to synthesise drug research studies 

using IV to see whether it can be a valid approach for tackling unmeasured confounding bias 

(Chen and Briesacher, 2011). Davies and colleagues also conduct a systematic review of 

using IV methods and reporting of IV results (Davies et al., 2013b). However, these cover 

common types of IV used in epidemiological research and so did not cover some issues of 

particular importance to PPPs. This paper reviewed the scientific literature of CERs using 

PPP IV to compare how methods are employed in applied studies to those studies introducing 

important methodological considerations. 
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3.4 Method  

 

3.4.1 Inclusion and Exclusion Criteria 

 

To identify simulation studies, the inclusion criteria were: 1) Use PPP as IV in a hypothesised 

drug comparison study; 2) Published between 2005 to 2020.  

 

To identify observational CERs using PPP IV, we conducted a literature search using Ovid, 

PubMed, and Google Scholar with the following inclusion criteria: 1) Use prescription drugs 

as exposure; 2) Compare the effectiveness of two drugs; 3) Use PPP as IV; 4) Published 

between 2005 to 2020. The exclusion criteria were: 1) Review paper; 2) Clinical trial; 3) 

Abstract or book.  

 

3.4.2 Search terms 

 

The search terms used in this review were: instrumental variable AND prescribing preference 

OR medication OR treatment for both applied and simulation studies. We distinguished 

between these two types of study according to whether they used simulated data or routinely 

collected data.  

 

3.5 Results  

 

Using the search terms, we found 1192 records in Ovid, PubMed and Google Scholar (see 

Figure 2). We first excluded studies that were not comparing treatment effectiveness. Then 

we excluded studies that are irrelevant to IV methods. Finally, we deleted those studies that 

used the IV method but not specifically PPP IV. The remaining 18 applied and 6 simulation 

studies are included in the subsequent review.  
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Figure 2. Flow chart of literature search 

 

We identified 6 simulation studies and 18 applied studies (see Table S1 and Table S2 in 

supplementary material for Chapter 3).  
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3.5.1 Summary of the simulation studies  

 

All identified simulation studies aimed to get better understanding of using PPP IV as a 

method of reducing unmeasured confounding bias in pharmacoepidemiology (see Table S1 in 

supplementary material). For that, they formed their data to simulate hypothetical studies 

comparing the treatment effectiveness or the risk of adverse event in the context of large 

datasets. The PPP was built on the basis that all three assumptions are met. In general, better 

performance means lower variance (smaller standard deviation) and lower bias. Simulated 

data facilitates the comparison between the IV estimate with the ‘true’ estimate and use 

RMSE, relative bias, and coverage rate to measure the bias quantitatively. Most of these 

studies mention the strength of the association between exposure and the instrument. They 

emphasise the association between instruments and exposures needs to be strong enough to 

implement unbiased instrumental variable analysis. Ionescu-Ittu and colleagues used the 

proportion of exchangeable group to represent the strength of this association (Ionescu-Ittu et 

al., 2009). A further study (Uddin et al., 2014) also focuses on the strength of PPP IV but in a 

more specific way by defining boundaries for weak instruments (e.g., Pearson’s correlation 

coefficient < 0.15 or odds ratio < 2). Also, the limitations of using IV methods, including the 

weak instrument and limited sample size can be shown in a more specific way (Uddin et al., 

2016a). 
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3.5.2 Summary of the applied studies 

3.5.2.1 The Construction of Proxy for Physician’s Prescribing Preference  

 

In terms of constructing PPP IV, there are two major types of variables in the applied studies: 

binary (the most recent prescription made by the same physician – ‘prior one’) and numerical 

(the proportion of patients who were prescribed drug of interest). The variance of binary 

outcomes are more likely to be inflated than continuous outcomes under the same settings 

(Ionescu-Ittu et al., 2009). Unlike the other studies, Koladjio and colleagues compared the 

results of GMM and 2SRI which adds new knowledge on IV analysis using non-linear 

regression models (Koladjo et al., 2018). Most of these studies used the most recent 

prescription, or the prior one prescription of the same physician (Davies et al., 2013a, Taylor 

et al., 2017, Davies et al., 2013c, Schneeweiss et al., 2007, Schneeweiss et al., 2006, Chen et 

al., 2014). However, no study provided a rationale for the choice of form of PPP.  

 

Some papers conducted sensitivity analysis by comparing the estimates from prior one and 

prior n prescriptions, such as prior 7 and prior 20 prescriptions (Davies et al., 2013a, Davies 

et al., 2018, Davies et al., 2020). The other form of PPP IV is the proportion of one drug 

prescribed by the physician among all the previous patients which makes the IV a numerical 

variable (Boef et al., 2016b, Kollhorst et al., 2016). The magnitude of a preference can also 

be defined using the proportion of one drug prescribed by the physician dichotomized at the 

median (Kuo et al., 2012, Secemsky et al., 2017). In higher levels of aggregation, studies do 

not account for the prescribing date but include the proportion of one treatment among all 

prescriptions (Uddin et al., 2016b). 
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3.5.2.2 Estimation method in different settings 

 

Although 2SLS is widely used in pharmacoepidemiology to account for unmeasured 

confounding for different types of outcome variable (Hernán and Robins, 2006). Literature 

shows that using the 2SLS estimator for binary outcomes may lead to a biased estimate 

(Ertefaie et al., 2017). Table 5 is a summary of the most suitable estimation methods in 

different settings. In the review, although all CERs have binary or time-to-event outcomes, 

only 7 of 18 (39%) use non-linear models instead of 2SLS. Regarding time-to-event 

outcomes, two-stage regression models that include the instrumental variable are proposed 

(Tchetgen et al., 2015, Martínez-Camblor et al., 2019). The first stage is linear regression on 

the exposure and instrumental variable with measured covariates adjusted for. The second 

stage is a Cox proportional regression model that adjusts the survival probability from the 

first stage (Boef et al., 2016b). 

Estimation  Suitable scenarios  

Two-stage Linear Regression  Linear model (Hernán and Robins, 2006) 

Generalized method of moment (GMM) 

IV 

Binary outcome (Klungel et al., 2015) 

Two-stage residual inclusion(2SRI) Binary outcome (Terza et al., 2008b) 

Numerical outcome (Zhang et al., 2018) 

Time-to-event outcome (Terza et al., 2008a) 

Two-stage predictor substitution (2SPS) Binary outcome (Terza et al., 2008a), time-to-

event outcome (Cai et al., 2011) 

Local Average Treatment Effects 

(LARF) 

Binary treatment and binary instrument (Zhang 

et al., 2018) 

IV Cox Regression  Time-to-event outcomes (Boef et al., 2016b) 

GLM adaptions on IV (e.g. IV Probit / 

IV logistic Regression)   

Binary outcome (Rassen et al., 2009b)  

Table 5. Summary of estimation methods in different settings 
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3.5.2.3 Validation of assumptions 

 

In terms of validating IV assumptions (see Table 6), most of the applied studies assessed the 

strength of the association between IV and the exposure (the relevance assumption). One of 

the most common ways is to calculate partial F-statistics on the first stage of regression (Kuo 

et al., 2012, Davies et al., 2013c, Davies et al., 2013a, Nelson et al., 2013, VanDyke et al., 

2013, Chen et al., 2014, Boef et al., 2016b, Kollhorst et al., 2016, Davies et al., 2020). The 

rule of thumb for a strong enough instrument is if the F-statistics is greater than 10 (Stock and 

Yogo, 2002). Comparing the percentage of the actual treatment that match the prescribing 

preference is a more intuitive way to see if IV predicts the actual treatment (Brookhart et al., 

2006, Secemsky et al., 2017). There are also studies that fit regression models on exposure 

and IV to examine whether the association is statistically significant (Chen et al., 2014, 

Schneeweiss et al., 2007). Of these different approaches, the F-statistics has the advantage 

that it accounts for the strength of association as well as being sensitive to sample size. Note, 

however, that a large F-statistics only indicates that weak instrument bias is unlikely, it does 

not follow that there will be enough statistical power to adequately test treatment 

effectiveness. 

 

The exclusion restriction and independence assumption cannot be tested empirically (Hernán 

and Robins, 2006). However, many studies compared the covariate imbalance by actual 

treatment and by PPP with an intuition that if PPP is less associated with measured 

confounders then it will also be less associated with unmeasured confounders (Brookhart and 

Schneeweiss, 2007). Likewise, there are studies that reported the reduction of covariate 

imbalance using Mahala Nobis distance (Davies et al., 2013a), bias component plot (Davies 

et al., 2018) and Prevalence difference ratio (PDR) (Davies et al., 2013a, Davies et al., 

2013c). The exclusion restriction assumption which indicates that the IV does not affect the 

outcome directly has been overlooked in the identified studies of the review. Most studies did 

not mention or simply explained it using intuition that the preference of prescribing is not 

likely to influence the outcome (Kuo et al., 2012).Of the studies identified, only one 

(Kollhorst et al., 2016) explored further and constructed an adjusted logistic regression model 

on IV and the outcome to examine whether PPP can affect the outcome. 
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Study Validation of assumptions 

(Brookhart et al., 2006) a. The probability of receiving COX-2 when the prior one prescription is COX-2  

(Schneeweiss et al., 2006) a. Compares the percentage of the same physician prescribed the same drug as the prior 

one and the that of different drug.  

b. The reduction of imbalance in covariates. 

(Schneeweiss, 2007) a. Association between the instrument and the exposure: OR: 6.1, 95% CI (5.8–6.4). 

(Schneeweiss et al., 2008) N/A 

(Davies et al., 2013a) a. Cluster-robust F-statistics  

b. The risk difference of confounders on the level of actual treatment and on the level of 

IV. And the reduction of Mahala nobis distance and the prevalence difference ratio 

(Kuo et al., 2012) a. Partial F statistics 

(Davies et al., 2013c) a. Partial F-statistics and R-square of linear regression on exposure and instrument  

b. Prevalence difference ratio 

(Davies et al., 2018) a. Partial F‐statistic 

b. Bias component plot  

(Davies et al., 2020) a. Partial F-statistics 

(VanDyke et al., 2013) a. Partial F‐statistic and sensitivity analysis. 

(Nelson et al., 2013) a. Partial F‐statistic  

(Taylor et al., 2017) N/A 

(Kollhorst et al., 2016) a. Partial F-statistics and R-square, the square of the partial Spearman correlation 

coefficient, 

b. Partial F-statistics for the regression model on instrument and three forms of IV. 

c. Adjusted logistic regression on IV and outcome 

(Boef et al., 2016b) a. Partial F-statistics and R-squared 

(Chen et al., 2014) a. Partial F-statistics and the first stage linear probability 

(Secemsky et al., 2017) a. The percentage of actual treatment with a high preference for Bivalirudin. 

(Uddin et al., 2016b) a. Point bi‐serial correlation (r) for binary exposure and continuous IV; ORs for binary 

exposure and IV. 

c. Standardized difference and multivariate Mahala nobis distance assess the imbalance 

of covariates  

(Suh et al., 2012) a. F-statistics of the first stage of regression 

b. Reduction of imbalance in covariates. 

(Walker et al., 2020) a. F-statistics of first stage of regression and the mean association between exposure and 

instrument  

b, c. Bonet’s instrumental variable inequality tests.1 

Table 6. Validation of assumptions.   

 

 

 
1 a. The validation of relevance assumption of IV. b: The validation of the exchangeability assumption of IV. c: 

The validation of the exclusion restriction assumption of IV. 
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3.6 Discussion 

 

In this paper we have reviewed both the applied and methodological literature that use PPP 

IVs to address unmeasured confounding in CER. We found that the methodological insights 

from the simulation studies were not always being considering, or at least not reported on, in 

the applied studies. 

 

Although some studies argued that 2SLS can be used as is asymptotically unbiased (Ionescu-

Ittu et al., 2009), researchers should endeavour to compare the results from 2SLS and that 

from other estimation methods to increase the robustness of the study. In terms of different 

forms of proxy for PPP, simulation studies have compared the performance of numerical and 

binary PPP formulations. Although some researchers concluded that the proportion form of 

PPP serves as a good proxy for PPP (Koladjo et al., 2018), others held a view that 

instantaneous preference is better which is consistent with the earlier definition of PPP IV 

(Brookhart and Schneeweiss, 2007). Further, longer prescription histories used in the PPP 

formulation leads to dropping those prescribers with few prescription records and dropping 

long ‘look-back’ periods from the analysis cohort, so a trade-off must be made. Given that 

the performance of PPP IV can depend on multiple elements, such as the rarity of outcome 

(Ionescu-Ittu et al., 2009), sample size (Boef et al., 2014) as well as the estimation methods, a 

proper proxy for PPP needs more exploration than tends to occur in the applied literature to 

date. We suggest that researchers should present their IV estimates using more than one form 

of proxy as sensitivity analyses for possible violation of IV assumptions. Unlike in the 

simulation studies, the identified applied studies in the review did not account for or consider 

time-varying preferences. Abrahamowicz and colleagues (Abrahamowicz et al., 2011) 

assumed the preference would switch (from preferring drug A to drug B) at a certain point in 

time. They include the time factor by using the prescription history as the proxy for PPP.  
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It should be noted that simulation studies cannot provide insight for validation of all IV 

assumptions. Although the exchangeability and exclusion restriction assumptions cannot be 

empirically verified, researchers should consider them in study reporting. Some studies have 

proposed a falsification strategy which may be a possible solution for assumption checking 

(Labrecque and Swanson, 2018). Further research may focus on explicitly how such a 

strategy can be used to help validate independence assumption and exclusion restriction 

assumptions. 

 

Of course, simulation studies can only ‘mimic’ real life data sets. The simulation studies we 

reviewed build hypothetical studies to compare the effectiveness of two drugs. In some 

instances, the models' parameters are set and varied without providing justification which is 

not consistent with the best practice for simulation studies (Morris et al., 2019) which is 

partly due to these simulation studies were conducted before such guidance. Further, the 

results of simulation studies often favour the new method that is being proposed/introduced 

which may be overstating what happens in real life data sets. Although there are no specific 

standards, some review papers have made suggestions on the reporting of IV studies. 

Brookhart (Brookhart et al., 2007) and Davies (Davies et al., 2013b) proposed guidelines for 

reporting IV analyses results. More specifically, Swanson and Hernán  (Swanson and Hernán, 

2013) proposed a flowchart for reporting IV analyses of single binary non time-varying IVs 

including a classification between average treatment effect (ATE) and local average 

treatment effect (LATE). Baiocchi and colleagues (Baiocchi et al., 2014) highlighted the 

exploration of concomitant treatment and sensitivity analyses. Jackson emphasised properly 

demonstrating the confounding bias by bias component plots (Jackson and Swanson, 2015).  
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Additional related issues for PPP IV are those of weighting and matching. The instrumental 

propensity score (IPS) is used which is the conditional probability of an IV given pre-

treatment covariates as weights in the regression models (Tan, 2006). Cheng and colleagues 

further explored the IPS approach by implementing it in subclassifications and semi-

parametric models to gain treatment effects of subgroups (Cheng and Lin, 2018). Matching 

methods have been used to increase the strength of weak IVs. Baiocchi and colleagues 

(Baiocchi et al., 2010, Baiocchi et al., 2012) proposed a near-far approach to create pairs with 

similar covariate distributions and large differences in IV value to mimic randomized trials. 

IPS can also be used in a full matching approach (Kang et al., 2013). Although not central to 

the design of PPP IV studies, we recommend that using these methods should be considered 

in CER, especially when the proportion of the complier group is relatively low. 

 

We evaluated the 18 applied CER papers according to whether they account for insights from 

simulation studies by four criteria: 1) whether they compare different forms of PPP IV; 2) 

whether they compare IV methods with conventional method; 3) whether they compare 

different estimation methods; 4) whether they consider time-varying preferences. In 

summary, 5 of 18 studies (28%) compared different forms of PPP IV, and 18 of 18 studies 

compared the IV methods with conventional methods. However, none of the studies 

considered time-varying preferences or compared different estimation methods which are 

often covered by the simulation studies.  
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3.7 Conclusion 

 

In terms of exploring the suitability of the PPP IV method, simulation studies are flexible, 

easy to use and have potential to make recommendations for good practice in the applied 

setting. We have shown that currently not all applied studies use simulation study results to 

guide their use of the PPP IV method. Applied studies using PPP as an IV should consider 

methodological insights from simulation studies to inform study designs. A brief checklist 

(see Table 7) is presented for researchers who are interested in applying PPP IV. 

 

1. Preregister IV definitions 

2. Report the strength of IV 

3. Check the balance of confounders based on IV 

4. Compare different formulations of PPP instrument. 

5.  Compare the IV method results with those from conventional methods, such as 

multivariable adjusted regression or propensity score approaches. 

6. Use different estimation methods which have different underlying assumptions to 

explore the robustness of the study findings. 

7. Consider accounting for time-varying prescribing preference (or provide a clear 

rationale for assuming that the physician’s prescribing preference is time-fixed across 

the period of study). 

Table 7. Checklist for the researchers who are interested in using PPP in CERs 
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Chapter 4. Using Physician’s prescribing preference as an instrumental variable to 

compare the effectiveness of diazepam and chlordiazepoxide hydrochloride for 

patients diagnosed with alcohol intoxication and harmful use. 

 

4.1 Publication details 

 

 This article had not been submitted for publication. 

 

2.3.1 Specific for PPP IV considerations   

 

For PPP IV, the identification of treatment effect strongly relies on the three core concepts: 1) 

definition of PPP; 2) validation of the monotonicity assumption; 3) strength of the IV. For 

PPP IV in particular, the monotonicity assumption is not plausible in many settings (Swanson 

and Hernán, 2014). Further, even with a strong preference, physicians cannot ensure that 

there are strictly no defiers. In addition, different physicians at the same level of prescribing 

preference will not treat patients in the exact same ways suggesting that the monotonicity 

assumption is likely to be violated (Swanson and Hernán, 2014). Although different 

definitions of PPP IV imply treatment effects from different subsets of compliers, stronger 

IVs are always preferred since they can reduce the variance of IV estimates (Ionescu-Ittu et 

al., 2012). Sensitivity analyses of monotonicity assumptions suggest stronger IVs are more 

robust to the violation of monotonicity (Baiocchi et al., 2014).The validation of the 

monotonicity assumption will be discussed further in the following section. 

 

4.2 Data used in this chapter. 

 

Data used in this chapter was applied for under the application number 1718-0238 to Public 

Health Scotland’s national safe haven (eDRIS). The eDRIS user agreement is attached in the 

appendix. To form the outcome as the rehospitalisation and death, Scottish Morbidity record 

(SMR01) was also linked. 
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Data tables and variables that are included in the regressions are listed in the table below. The 

description of variables can be found at https://www.isdscotland.org/Health-

Topics/Prescribing-and-Medicines/Prescribing-

Datamarts/docs/PIS_fields_for_researchers_v5_eDRIS%20Guidance.pdf 

 

 

 

 

 

 

 

  

https://www.isdscotland.org/Health-Topics/Prescribing-and-Medicines/Prescribing-Datamarts/docs/PIS_fields_for_researchers_v5_eDRIS%20Guidance.pdf
https://www.isdscotland.org/Health-Topics/Prescribing-and-Medicines/Prescribing-Datamarts/docs/PIS_fields_for_researchers_v5_eDRIS%20Guidance.pdf
https://www.isdscotland.org/Health-Topics/Prescribing-and-Medicines/Prescribing-Datamarts/docs/PIS_fields_for_researchers_v5_eDRIS%20Guidance.pdf
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Table Variable Brief explanation of some 

variables 

PIS_2011_.dta 

PIS_2012_.dta 

PIS_2013_.dta 

PIS_2014_.dta 

PIS_2015_.dta 

PIS_2016_.dta 

PIS_2017_.dta 

PIS_2018_.dta 

PIS_2019_.dta 

patientid 

patgendercode 

Age_paid_date 

prescriberprofessionalnoanon  

prescdate 

pibnfrootdrugdescription 

prescriberprofessionalnoanon : 

Prescriber professional 

number, unique for each 

physician. 

SMR01 patiendid 

main_condition 

other_condition_1 

other_condition_2 

other_condition_3 

other_condition_4 

other_condition_5 

admission_date 

discharge_date_ 
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4.3 Abstract 

 

Background  

Alcohol use disorder (AUD) has been one of the major health concerns in Scotland. Multiple 

pharmacological treatments are available for treating AUD, for example benzodiazepines for 

alcohol withdrawal syndrome (AWS). However, there is limited evidence of the effectiveness 

of pharmacological treatments for alcohol intoxication and harmful use (AIH) which are 

outcomes that often precede AWS. In this chapter, I investigated the effectiveness of 

diazepam and chlordiazepoxide hydrochloride in preventing AIH rehospitalisation and AIH 

death from a real-world perspective using an observational study design. This chapter is a 

CER study using unselected data for the whole of Scotland. 

Method 

Data used in this chapter came from Scottish Prescription Information System (PIS) dating 

back from 2010 to 2019 linked to hospitalisation and death records, with an index cohort 

defined by first prescription of diazepam or chlordiazepoxide hydrochloride following a AIH 

hospitalisation (within 1 year time window). The outcome measures under study are AIH 

rehospitalisation and AIH death. Statistical methods consist of conventional statistical 

methods, including OLS and Cox proportional hazards regression, as well as the IV 

approaches, including 2SLS and IV Cox regression and to addressing potential unmeasured 

confounding issue. PPP IV was constructed using the prescription history of the physicians. 

Results 

The estimated hazard ratio comparing diazepam with chlordiazepoxide hydrochloride for 

AIH rehospitalisation from multivariable Cox proportional hazards regression is 0.772 (95% 

CI: 0.656-0.907) and the estimated hazards ratio of AIH death is 0.695 (95% CI: 0.51-0.946).  

The estimated hazard ratio from IV approach is between 0.538 and 0.826 with variation due 

to the different PPP formulations, with 95% CIs crossing the null value in each case. PPP IVs 

constructed with a longer prescription history were more likely to be stronger IVs. 
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Conclusion 

This nationwide CER from Scotland provides evidence to support diazepam performs better 

in reducing the risk of AIH rehospitalisation and AIH death in comparison to 

chlordiazepoxide hydrochloride. This evidence comes from methods that do and do not try to 

address unmeasured confounding. However, the sample size leads to large imprecision in the 

PPP IV estimates. 

 

Keywords: alcohol intoxication harmful use, physician’s prescribing preference, instrumental 

variable, diazepam, chlordiazepoxide hydrochloride  
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4.4 Introduction 

4.4.1 Background 

 

Alcohol use disorder (AUD) is a major health concern worldwide (World Health 

Organisation, 2014). About 13.5% of deaths and disability among people aged 20-39 years 

are due to harmful use of alcohol (WHO, 2022). In Scotland, there were 33,015 AUD-related 

general acute hospital stays and 2,109 admissions in psychiatric hospitals reported from 2020 

to 2021 (Scotland, 2021). Further, there were 1,190 alcohol-related deaths in Scotland in 

2020, the highest rate in the UK at 21.5 per 100,000 people (Office for National Statistics, , 

2021). 

 

4.4.2 Pharmacological treatment of AUD (alcohol withdrawal syndrome) 

 

Benzodiazepine has shown to have protective effects against AUD syndrome, especially for a 

diagnosis of alcohol withdrawal syndrome (AWS) (Amato et al., 2010, Mayo-Smith, 1997, 

Bahji et al., 2022). In a systematic review of benzodiazepines, chlordiazepoxide 

hydrochloride generally had better results but without achieving statistical significance 

(Amato et al., 2010). Among the four most commonly prescribed benzodiazepines 

(lorazepam, chlordiazepoxide hydrochloride, oxazepam, and diazepam), diazepam takes the 

shortest time to peak in its effect (Weintraub, 2017, Lee et al., 2019). After a comprehensive 

review of literature, Weintraub concluded that diazepam should be preferred as treatment for 

patients with mild to severe alcohol withdrawal in most cases (Weintraub, 2017).  
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4.4.3 Pharmacological treatment of AUD (with history of alcohol intoxication and 

harmful use) 

 

Alcohol intoxication, which refers to a large ingestion of alcohol (Vonghia et al., 2008), as 

along with alcohol harmful use, which refers the a drinking pattern that leads to alcohol-

related health problems, are two major syndromes of AUD. However, there is a lack of RCT 

evidence about which benzodiazepine treatments are better in reducing risk of alcohol 

intoxication and harmful use (AIH) events. 
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Normally, the treatment for AIH is more likely to be brief behavioural intervention rather 

than pharmacological treatment. This usually comprises a short counselling session aiming to 

change addictive behaviours (Barnes and Samet, 1997). Such interventions have proven to be 

effective in reducing alcohol consumption in multiple RCTs and observational studies (Reid 

et al., 1999, Harris et al., 2014, Walton et al., 2010). However, when pharmacological 

treatment is provided, diazepam and chlordiazepoxide hydrochloride are often prescribed for 

patients with AIH hospitalisation history. Diazepam and chlordiazepoxide hydrochloride are 

the commonly used benzodiazepines to control AWS (Jauhar and Anderson, 2000). 

Diazepam is more likely to be prescribed to patients with AWS seizures and with quicker 

take effect (Weintraub, 2017, Schmidt et al., 2016). While chlordiazepoxide hydrochloride 

has lower abuse potential (Jauhar and Anderson, 2000). Despite the fact these medications 

are recommended by NICE guidelines as pharmacotherapies for treating alcohol withdrawal 

(National Collaborating Centre for Mental Health, , 2011), there are not many studies except 

for a small scale pilot study that compared the effectiveness of diazepam and 

chlordiazepoxide in treating AWS (Jauhar and Anderson, 2000), with their results favouring 

daily single dosage of diazepam as the treatment for alcohol detoxification. Considering a 

large proportion of patients with severe AIH may develop AWS when they stop drinking 

(Day and Daly, 2022), research is needed to compare the effectiveness of pharmacotherapies 

after a severe AIH event, for example, one that was severe enough to result in hospitalisation.   
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CERs that use routinely-collected health data sets offers the opportunity to provide real-world 

evidence on the effectiveness of pharmacotherapies, however, in such observational studies, 

unmeasured confounding (confounding by indication) is a severe threat to the internal 

validity of findings. Increasingly used in practice, IV method has been shown to be a useful 

approach to directly address unmeasured confounding concerns. Among all the potential 

types of IV, PPP has been shown to be a valid instrument in many settings (Brookhart et al., 

2007).  

 

According to real-world data: Scottish prescribing information system (PIS) (Alvarez-

Madrazo et al., 2016), the two most commonly prescribed medications for patients in 

Scotland with AIH hospitalisation records are diazepam and chlordiazepoxide hydrochloride 

from 2010 to 2019. The aim of this study is to compare the effectiveness of diazepam and 

chlordiazepoxide hydrochloride in terms of preventing AIH related events. Specifically, I 

used PPP as IVs to compare the effectiveness of diazepam and chlordiazepoxide 

hydrochloride in preventing AIH rehospitalisation and AIH death for patients prescribed 

diazepam or chlordiazepoxide hydrochloride after their first-time AIH hospitalisation. The IV 

results are compared to the results from multivariable regression, a method that can only 

account for measured covariates. 

 

4.5 Method 

4.5.1 Physician’s prescribing preference as an instrumental variable 

PPP is a latent variable which cannot be measured directly, but statistics derived from 

prescription history can be used as a proxy (Davies et al., 2013b). The calculation of PPP is 

based on physician and may vary by different physicians. The PPP IV used in this study is 

estimated as the proportion of diazepam prescribed by one particular physician in the 

preceding year after a patient has a first AIH hospitalisation. There are two forms of PPP: 

prior n and proportional (see Equation 3 and Equation 4).  

 

Equation 3. The calculation of prior n IV 
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Equation 4. The calculation of proportional IV. 

The process of calculating the PPP IV is 1) identify the prescriber that issued the 'First AIH 

prescription' for the patients; 2) then, for that physician’s ID, calculate the PPP IV. See 

Figure 3 for the details. 

 

Figure 3. Construction of PPP IV 
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4.5.2 Validation of assumptions 

 

I validated the relevance assumption using F-statistics of the first stage regression calculated 

in the diagnostic function inside the ‘ivreg’ function in ‘AER’ R package (Kleiber and 

Zeileis, 2008). The rule of thumb for identifying a weak instrument is F-statistics less than 10 

(Stock and Yogo, 2002). Since the F-statistic is highly related to the sample size (see 

Equation 5), and sometimes misleading (Martens et al., 2006),  I regressed the treatment on 

the PPP IV in logistic regression and used ‘area under curve’ (AUC) to measure the strength 

of the association between the treatment and the PPP IV. 

 

Equation 5. F statistics; 𝜎𝑋
2: The variance of the treatment; 𝜌𝑍,𝑋

2 : The correlation between the 

treatment(X) and the instrumental variable (Z). 

 

In order to make the validation of assumptions easier, many studies suggest dichotomising 

numerical IV (Uddin et al., 2016b, Secemsky et al., 2017). In this chapter, the numerical PPP 

IVs (which are bounded between 0 and 1) are dichotomised at their median values, thus 

creating a binary variable IV.  

 

The IV inequalities can jointly validate the ER and the independence assumptions (Balke and 

Pearl, 1997). For a binary instrumental variable and a binary outcome, an IV needs to meet 

IV inequalities (see Equation 1 in chapter 2). If these inequalities do not hold, ER and 

independence assumption are likely to be violated. Standardised mean difference (SMD) is 

used to examine balance in observed covariates (see Equation 6 and Equation 7). SMD less 

than 0.1 is considered insignificant imbalance (Austin, 2009).  
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Equation 6. 𝑋1
̅̅ ̅ , 𝑋2

̅̅ ̅: sample mean of treated and controlled group(defined by the treatment or 

the IV ).S1, S2: sample variance of the two treatment groups (Flury and Riedwyl, 1986). 

 

If the variable is dichotomous, the SMD is expressed as Equation 7. 

 

Equation 7. 𝑝1 and 𝑝2 are prevalence of treated and control groups respectively (Austin, 

2009)  

Monotonicity assumption is validated using the monotonicity inequality proposed by Balke 

and Pearl (Balke and Pearl, 1997) (see Equation 2). 

 

4.5.3 Study population  

 

The Scottish national prescribing system (PIS) is a national individual-level routine data set 

which contains prescribing records for the 5.3 million residents in Scotland (Alvarez-

Madrazo et al., 2016). In Scottish Morbidity record (SMR01), alcohol intoxication and 

harmful use (AIH) hospitalised patients are defined using International Classification of 

Diseases 10th Revision (ICD-10) coding of F10.0 or F10.1. There are six diagnosis fields in 

SMR01 for reason of hospitalisation and death, including one primary diagnosis and five 

secondary diagnoses. The follow-up time starts on 1st January 2010, ends on 31st December 

2019; a period of 10 years. Patients with an AIH hospitalisation within 1 year prior to the first 

prescription of diazepam or chlordiazepoxide hydrochloride represent the cohort under study.  
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The covariates in this study are sex, age, Scottish Index of Multiple Deprivation (SIMD 

2016), defined daily dosage (ddd), length of stay of incident AIH hospitalisation prior to the 

prescription, year of prescription. Considering the patients comorbidity may have changed 

across time, Charlson Comorbidity Index (CCI) within 1 year and 10 years are included as 

covariates in the regression models. Patients with missing data for the SIMD variable were 

removed (7.3%). The outcomes, measured from 1st January 2010 to 31st December 2019 are: 

1) AIH rehospitalisation within 1 year (binary outcome); 2) time to AIH rehospitalisation 

(time-to-event outcome); 3) AIH death (binary outcome); and 4) time to AIH death (time-to-

event outcome). The AIH rehospitalisation was defined as F10.0 or F10.1 in main condition 

field. The AIH related death is defined as F10.0 or F10.1 in main condition field or in the five 

other condition fields.  

 

4.5.4 Statistical methods 

 

The most commonly used IV estimation method is two-stage least squares (2SLS) where the 

first stage is an ordinary least square regression model built on the treatment and instrumental 

variable. The second stage of regression uses the predicted results from the first stage as well 

as the covariates included in the first stage regression to predict the outcome (Angrist and 

Imbens, 1995). When the outcome is binary, using 2SLS means treating the binary variable 

as if it is a numerical variable which may cause inconsistent estimates (Kuo et al., 2012). 

However, many researchers have compared the 2SLS with other estimation models which are 

more suitable for binary variables and concluded that 2SLS is generally unbiased (Ionescu-

Ittu et al., 2009, Chapman and Brooks, 2016, Zhang et al., 2018). OLS and propensity score 

are selected as the conventional multivariable regression methods to compare with IV 

inference using 2SLS. 
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For the outcomes of time until AIH rehospitalisation or AIH death, I conducted conventional 

multivariable adjusted Cox proportional hazards regression and IV-based Cox proportional 

hazards regression (Tchetgen et al., 2015). The conventional Cox proportional hazards 

regressions are conducted by ‘coxph’ function from ‘survival’ package in R and include 

modelling of the covariates: sex, age, Scottish Index of Multiple Deprivation (simd 2016), 

defined daily dosage (ddd), length of stay of incident AIH hospitalisation prior to the 

prescription, year of prescription, comorbidity (CCI). The same group of covariates are 

included in the both stages of IV-based Cox regression model. The IV-based Cox 

proportional hazards regression is conducted using control function approach by including 

the residual from the first stage of regression as an additional covariate in the second stage 

regression (Terza et al., 2008a, Tchetgen et al., 2015). The statistical significance level was 

set at 5%. All statistical analysis was done inside the R studio (version 4.1.1). 

 

4.5.5 Sensitivity analysis for unmeasured confounding  

 

Sensitivity analysis for potential unmeasured confounding was conducted. This approach 

utilises a measured covariate as a benchmark covariate to quantify the magnitude of 

unmeasured confounding effect and shows the corresponding treatment effect under those 

times of the effect of benchmark covariates. If the estimation of treatment effect is not 

affected to a substantive extent, then the population under study is unlikely to be sensitive to 

unmeasured confounding (Cinelli and Hazlett, 2020). This approach was carried out using the 

R function ‘sensemakr’(Cinelli et al., 2021). A corresponding sensitivity analysis was also 

applied for survival data using the R function ‘survSens’ (Huang et al., 2020). This approach 

assumes the unmeasured confounder is a 50/50 distributed binary variable and uses two 

sensitivity parameters to measure, 1) the association between unmeasured confounder and 

treatment; and 2) the association between unmeasured confounder and time-to-event outcome 

(Huang et al., 2020). The Wu-Hausman test was also conducted. If the null hypothesis is 

rejected indicating possible unmeasured confounding or treatment effect heterogeneity 

(Hausman, 1978). 
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4.6 Results 

4.6.1 Descriptive statistics 

 

It can be seen from Table 8, that diazepam is prescribed at a level more than twice than that 

for chlordiazepoxide hydrochloride in this AIH hospitalisation cohort. Patients from the most 

socio-economically deprived group (SIMD=1), based on grouping into ‘tenths’ using decile 

cut-points, account for the highest proportion (almost 24%). Note that there is a smaller 

percentage of female patients than male patients, especially for chlordiazepoxide 

hydrochloride prescription. On average, the length of hospitalisation for the diazepam group 

is longer than for the chlordiazepoxide hydrochloride group.  
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2 

Table 8. Descriptive statistics of the study population 

  

 
2  Since about 64% of patients with CCI equals 0, I divided the CCI into binary variable to avoid small sample 

sizes in other values of CCI. Since there are less than 1% missing value of the SIMD value, I dropped the missing 

value in the statistical analysis section. 



66 
 

 

4.6.2 Validation of IV assumptions  

4.6.2.1 Validation of the relevance assumption 

 

As it shows in Table 9, the F-statistics of the numerical  instruments built using the different 

formulations can be considered as strong as they exceed the rule-of-thumb F-statistics of 10 

(Stock et al., 2002). When using dichotomised PPP IVs formulations (based on medians), the 

F-statistics and AUC were similar. AUC over 0.70 indicates a relatively strong association 

between IV and treatment (Vanagas, 2004). 

Proxies for the physician’s 

prescribing preference 

(Definition of prior n IV 

see Figure 3 above) 

F-statistics of 

numerical PPP IV 

AUC of 

numerical 

PPP IV 

F-statistics of 

dichotomised PPP 

IV 

AUC of 

dichotomised PPP 

IV  

Prior 1 10.531 0.667 10.531 0.667 

Prior 2 36.064 0.673 35.289 0.673 

Prior 3 32.726 0.673 35.793 0.673 

Prior 4 44.257 0.674 43.463 0.673 

Prior 5 54.528 0.677 61.266 0.677 

Prior 6 66.338 0.680 73.385 0.681 

Prior 7 76.813 0.683 86.304 0.684 

Prior 8 90.482 0.687 96.018 0.687 

Prior 9 88.466 0.688 93.238 0.687 

Prior 10 91.134 0.688 97.695 0.688 

Prior 11 93.332 0.689 99.679 0.689 

Prior 12 102.771 0.690 105.653 0.691 

Prior 13 113.420 0.691 122.918 0.696 

Prior 14 122.605 0.694 129.949 0.698 

Prior 15 128.292 0.697 133.131 0.698 

Prior 16 134.546 0.699 147.946 0.702 

Prior 17 137.443 0.701 150.065 0.703 

Prior 18 142.563 0.702 142.967 0.702 

Prior 19 150.261 0.703 142.089 0.702 

Prior 20 144.631 0.702 144.183 0.702 

Proportion  150.876 0.706 158.128 0.705 

Table 9. Validation of the relevance assumption using F-statistics and AUC. 
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4.6.2.2 Validation of monotonicity assumption 

 

The results from validation of the monotonicity assumption using the monotonicity inequality 

are shown in Table S3 in supplementary material. The details of monotonicity inequality had 

been described in Chapter 2. When the outcome is death, the monotonicity assumption is 

likely to be violated. However, the proportional IV is shown as valid IV for both types of 

outcomes. For exploration, I still include the other types of PPP IV in further analysis.  
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4.6.2.3 Validation of exclusion inclusion and independence assumptions 

 

SMD for covariates based on IV are less than 0.1 indicating IV is valid in balancing 

covariates. There are noticeable deductions of SMD in terms of gender and dosage when they 

are more than 0.1 based on treatment and less than 0.1 based on IV. However, apart from 

that, the reduction of covariate balance is not visible as the SMD on the treatment level are 

naturally less than 0.1 (see Figure S1 and Figure S2 in supplementary material for Chapter 4). 

 

4.6.3 Comparison of estimates of the treatment effect  

 

Shown in Figure 4, diazepam is associated with lower risk of rehospitalisation and death than 

chlordiazepoxide hydrochloride. Further, the 2SLS estimates are further away from the null 

hypothesis compared with the OLS estimates and PS estimate which suggests an association 

(potentially causal) is detected using IV methods. Almost all the 2SLS estimates are not 

statistically significant due to large imprecision in comparison to multivariable regression and 

propensity score results. It also indicates that the estimated treatment effect of dichotomised 

PPP IV is quite different from that of non-dichotomised PPP IV. Generally, the 2SLS 

estimates from dichotomised PPP IV are closer to the null estimates.  
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Figure 4. OLS, propensity score and 2SLS estimates.  

 

4.3.3.1 Sensitivity analysis for unmeasured confounding  

 

Figure S3 and Figure S4 in supplementary material shows that the potential unmeasured 

confounder needs to explain at least 4.78% and 4.53% of residual variance of treatment and 

outcome to make the estimated treatment effect across the null hypothesis.  
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4.6.4 Survival analysis  

 

As can be seen in Figure 5, results from conventional Cox proportional regression indicate 

that diazepam is associated with lower relative risk of AIH rehospitalization and AIH death. 

IV results also show a protective effect from diazepam but is not statistically significant due 

to much wider confidence intervals indicating a lack of precision. When the outcome is 

rehospitalisation, IV results generate similar estimates of HR. However, in the case of death 

as outcome, the effect sizes of IV estimates are larger than that from conventional Cox 

proportional regression (explanation in section 4.6). There is no noticeable difference 

between the numerical IV (non-dichotomised) results and dichotomised IV results as all of 

them are statistically insignificant.  

 

 

Figure 5. Conventional Cox regression and IV-based Cox regression results 
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4.3.4.1 Sensitivity analysis for unmeasured confounding (survival analysis) 

 

It can be seen from Figure 6, a relatively strong association between outcome and treatment 

(for example, (-0.5, 1)) can lead to nonsignificant estimated treatment effect (inside the red 

curve area) when AIH rehospitalisation being the outcome. In terms of AIH death being the 

outcome, this association can be weaker, for example, (-0.5.0.2) in the upper left corner can 

make the estimated treatment effect be inside of the red curve area. The unmeasured 

confounding is more likely in this case. The results from the Wu-Hausman test were 

presented in the Table S3. The rejection of null hypothesis indicates the possibility of 

unmeasured confounding.  

3 

Figure 6. Sensitivity analysis results for death as outcome, the blue contour shows that 

sensitivity parameters corresponding estimated treatment effect. 

  

 
3 The red curve is the t-statistics equals 1.96. U on the axis represent the assumed unmeasured confounders. 

Area that surrounded by the red curve indicate insignificant treatment effects. Value at the centre is the value of 

estimated treatment effect ignoring any confounding. 
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4.7 Discussion 

 

The main objective of this study is to investigate the performance of IV method with PPP as a 

potential IV. Before conducting IV approach, a sensitivity analysis of unmeasured 

confounding indicates that there is a possibility that the unmeasured confounding exists as a 

potential issue. The results from Figure S3 and Figure S4 from supplementary material the 

sensitivity analysis indicate that the unmeasured confounding is more likely to occur when 

the outcome is rehospitalisation in the OLS, and for outcome being AIH death in the Cox 

regression model. When unmeasured confounding is likely and the IV is valid, the IV 

approach results tend to be different with the conventional multivariable regression as IV is 

meant to solve the unmeasured confounding issue. This is reflected in Figure 4 and Figure 5. 

In Figure 4, the difference in estimated treatment effect from OLS and 2SLS is larger for the 

AIH rehospitalisation as the outcome. While in Figure 5, Cox regression and IV Cox 

regression model shows a greater difference in the estimated HRs of AIH death than that in 

the AIH rehospitalisation.  

 

However, none of the IV results is statistically significant. This is partly because the sample 

size is moderate and the nature of two-stage methods (Ionescu-Ittu et al., 2009).This can be 

explained by Equation 8 below. The smaller sample size, the larger variance of 2SLS 

estimate. In Figure 4, it is noticeable that the confidence interval shrinks as the strength of IV 

increases which can also be explained by the Equation 8 in which the size of variance of 

2SLS estimate will decrease as the association between the treatment and IV gets stronger 

(Martens et al., 2006).   

4 

Equation 8. Variance of 2SLS estimate.   

 

 
4 𝜎𝑌,𝑋

2 : The residual variance of the outcome after adjusting the treatment (X); 𝜎𝑋
2: The variance of the treatment; 

𝜌𝑋,𝑍
2 : The correlation between the treatment(X) and the instrumental variable (Z). n: sample size. 
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In my results, the proportional IV turns out to be the strongest IV and generates the smallest 

parameter estimate.  Since the IV estimand can be nonparametrically presented as 

𝐶𝑜𝑣 𝑌, 𝑍 /𝐶𝑜𝑣 𝑋, 𝑍   or (E[Y=1|Z=1]-E[Y=0|Z=0])/E[X=1|Z=1]-E[X=1|Z=0] as I 

mentioned in Chapter 2, I estimated the values of IV estimand by using such formula (See 

Table S4 in supplementary material). The values of estimated IV estimand shows that the 

proportion IV has the lowest value of estimated IV estimand which indicate the proportion IV 

generates the smallest estimated treatment effect.  

 

Given the monotonicity assumption and independence assumption are validated using 

dichotomised PPP IV, IV results from dichotomised PPP IV and non-dichotomised PPP IV 

are compared. The dichotomised PPP IV is preferred in many CERs because it is easier to 

validate IV assumptions (Baiocchi et al., 2014) and more straightforward to understand the 

estimated LATE. Ideally, one should present the results from both forms of PPP IV. Angrist 

and colleagues indicate that stronger IVs suffer less from the bias caused by the violation of 

monotonicity so as the bias from violation of other assumptions (Angrist et al., 1996). By 

applying stronger IV, one can reduce the harm from violating the monotonicity assumption. 

In general, this chapter provides evidence for favouring stronger IVs.   

 

There are major differences observed in the absolute risk (see Figure 4) and relative risks (see 

Figure 5). In Figure 4, OLS and 2SLS generate small size of treatment effect on the absolute 

scale. However, in Figure 5, Cox proportional regression indicates diazepam users were 22% 

less relative risk of AIH rehospitalisation and 30% less relative risk of AIH death in 

comparison with chlordiazepoxide. In these cases, I tend to agree with the survival analysis 

approach as it taking censoring into account. However, care has to be taken in not 

overinterpreting HR results far from the null when the absolute risk of the outcome under 

study is small.  
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In the Cox regression and OLS regression results, my findings support that diazepam is a 

better choice for treating AIH patients than chlordiazepoxide hydrochloride in terms of 

preventing AIH rehospitalisation and AIH death. This conclusion echoes with the results 

from Jauhar et al. that diazepam is superior to chlordiazepoxide hydrochloride (Jauhar and 

Anderson, 2000) and adds real-world evidence of the treatment effects on AIH. Compared 

with AWS, AIH is normally overlooked, and not having a specific recommended 

pharmacological treatment (Jung and Namkoong, 2014). At the same time, acute alcohol 

intoxication may predict AWS as the treatment for AIH can also influence AWS outcomes 

(Mirijello et al., 2015). AIH and AWS have overlaps and need to be more investigated in 

unison.  In this observational study, I chose to investigate AIH over AWS due to the small 

sample sizes of AWS patient cohorts (and consequent events). Despite the potential caveat 

about the unmeasured confounding, there is no detectable difference between the treatment 

estimates between the approaches. In this chapter, the IV results tend to be statistically 

insignificant and the results from the conventional approaches should be preferred.  
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4.8 Strengths and Limitations 

 

Findings from this chapter suggest a gap between the NICE guideline and the commonly 

prescribed prescription in real-life settings. I discovered that many patients with AIH 

hospitalisation history were prescribed with diazepam and chlordiazepoxide hydrochloride 

and found significant difference in their effect on outcomes. Besides, findings also indicate 

that the disease severity is a potential source of unmeasured confounding. Although I have 

added CCI which draw from the hospitalisation history of the patients, I do not know how 

‘sick’ a patient is relative to each other. From the descriptive statistics (see Table 8), the 

average of length of staying in hospital is longer for patients who have been prescribed with 

diazepam than patients with chlordiazepoxide. IV results tend to be more away from null 

indicating patients with higher expected benefits (possibly be sicker patients) tend not get 

diazepam.  

 

The characteristics of the preference-based IV is a source of limitation as it cannot be 

measured directly and needs proxies. The proxy for the IV is treated as non-causal IV which 

is hard to identify and leads to issues in the validation of the monotonicity assumption 

(Labrecque and Swanson, 2018). Another limitation of this study is that some assumptions 

cannot be validated empirically. For example, if one wants to validate the monotonicity 

assumption, one can design a questionnaire survey for the physicians and ask them about 

their prescribing preference between two medications and their treatment for groups of 

patients with specific set of characteristics. If the prescribing preference and the prescriptions 

they prescribe to the patients match, one can assume the monotonicity assumption holds.  

According to our results, PPP IV that accounts for longer length of prescription history tends 

to reflect the prescribing preference in a more precise way. The F-statistics, OR and AUC 

from the regression on exposure and IV show that the strength of IV increases as longer 

prescription history being accounted. The strength of instrument variable is essential for the 

performance of IV methods. With a strong enough IV and other assumptions hold, the IV 

estimates are reliable to be compared with the conventional results. 
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4.9 Conclusion  

 

In large real-world health data sets, diazepam has a stronger protective effect against AIH re-

hospitalisation and AIH death than chlordiazepoxide hydrochloride. Where possible, the 

instrumental variable method should be a complementary analysis in comparative 

effectiveness research using observational data when unmeasured confounding is of major 

concern (which it usually is). 
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Chapter 5. Epidemiology of pharmacological treatments for alcohol dependence in the 

UK: evidence from primary and secondary healthcare data 

 

5.1 Publication and author contribution details 

 

This manuscript had been submitted to Drug and Alcohol Review for publication and 

currently under peer review. 

 

I jointly contributed with Francesco Manca and Jim Lewsey in drafting overall manuscript. I 

contributed independently to trends and rates using CPRD data (section 5.6.1.1), inequality 

analysis using CPRD data (section 5.6.2.1), IV analysis using CPRD data and PIS data 

(section 5.6.3), and the interpretation of IV results. Francesco Manca contributed 

independently to trends and rates using PIS data (section 5.6.1.2), inequality analysis from 

PIS data (section 5.6.2.2), non-IV statistical analysis using PIS data (section 5.6.3), and most 

of the initial drafting of this manuscript.  

 

5.2 Data used in this chapter. 

 

CPRD data used in this chapter was applied to CRPD under the application number 

#20_000126. The application document is attached in supplementary material for Chapter 5. 

PIS data (Scottish cohort) in this chapter was applied under the same application procedure as 

Chapter 4. The research objective covered in this chapter requires the prescription record (for 

alcohol use disorder, both CRPD AURUM and CPRD GOLD), and the outcome variables 

including hospitalisation records and death records. For that reason, HES Admitted Patient 

Care was applied. The CPRD linkage request form is attached in the supplementary material. 
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The alcohol dependence cohort is identified using the read codes according to Thompson’s 

work (Thompson et al., 2017) from the primary care data in the CPRD GOLD and AURUM. 

The read code list is attached in Table S8 in supplementary material for Chapter 5. Data 

tables and variables that are included in statistical analysis are listed below. The description 

of the variables can be found on the website of CPRD 

(https://cprd.com/sites/default/files/2022-02/Data_Dictionary_HES_APC.pdf). 

Tables Variables 

GOLD/Patient 

 

patid 

gender 

Yob 

frd 

crd 

Gold/Staff Staffid 

Role 

Gold/ therapy  patid 

eventdate 

prodcode 

staffed 

 

Gold/clinical patid 

eventdate 

Medcode 

 

Aurum/ Patient patid 

gender 

yob 

 

Aurum/ staff staffid 

jobcatid 

 

Aurum /Observation 

 

patid 

enterdate 

Medcodeid 

 

Aurum/DrugIssue patid 

Issuedate 

Staffid 

Prodcodeid 

hes_diagnosis_hosp in Gold and Aurum  patid 

admidate 

dischargedate 

ICD 

ICDx 

practice_imd  pracid 

country  

imd 

Linkage Source (linkage_eligibility.txt) patid 

pracid 
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5.3 Abstract 

Background 

Effective pharmacological treatments for alcohol-dependence are under-prescribed in the UK. 

We assessed, for both primary and secondary healthcare, the prevalence of such prescribing 

and the extent of any inequalities. Further, we compared the effectiveness of the two most 

prescribed drugs (acamprosate and disulfiram) and assessed whether there is inequality in 

prescribing either of them.  

Methods  

We used two healthcare databases: general practice (Clinical Practice Research Datalink) for 

England and hospitalisations and dispensed prescriptions for Scotland. Logistic regression 

was used to assess the odds of receiving any alcohol-dependence prescription in both primary 

and secondary healthcare, and the comparative odds of receiving acamprosate or disulfiram. 

Comparative effectiveness was assessed using time-to-event modelling.  

Results 

Only 2-4% of patients with alcohol-dependent diagnoses in primary healthcare received 

alcohol-dependence prescriptions within 60 days after diagnosis. Inequalities in prescribing 

existed, especially across sex and age, with differences between healthcare setting. For 

example, being male had 36% lower odds of prescription (OR: 0.64, 95% CI: 0.60-0.68) in 

primary care and 12% (OR: 0.88, 95% CI:0.81-0.96) in secondary healthcare. Prescribing 

was similar by socio-economic deprivation in primary care, but lower among the most 

deprived after an incident secondary healthcare event. Disulfiram was superior to 

acamprosate in preventing alcohol-related hospitalisations (hazard ratio point estimates 

between 0.54-0.77). Acamprosate was more often prescribed for those residing in more 

deprived areas.  

Conclusions 

Prescribing of alcohol-dependence medications is low in the UK, with greater under-

prescribing among men and less effective medications used more for those living in more 

socioeconomically deprived areas.   

Key words: Alcohol dependence, comparative effectiveness, prescription inequality, routine 

health data, primary healthcare, secondary healthcare, physician prescribing preferences.   
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5.4 Introduction 

 

Excessive alcohol use is related to a range of adverse health outcomes and causes societal as 

well as individual harm. Alcohol dependence, as defined by the National Institute for Health 

and Care Excellence (NICE), is “characterised by craving, tolerance, a preoccupation with 

alcohol and continued drinking in spite of harmful consequences” (National Collaborating 

Centre for Mental, 2011). Globally, in 2016, the estimated age-standardised prevalence of 

alcohol dependence was 1320.8 cases per 100,000 people (Collaborators, 2018). In the UK, 

between 1990 and 2013, the estimated rate of presentation to general practice with alcohol 

dependence was 171 and 76 per 100,000 male and female patients, respectively (Thompson 

et al., 2017). 
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Guidelines worldwide suggest pharmacological treatments for alcohol-dependent patients  

subsequent to detox and alongside psychosocial support, with specific drugs suggested based 

on patients’ goals (reduction in consumption or total abstinence), comorbidities and the 

capability with potential side effects (Haber et al., 2009). In particular, concerning the UK, 

NICE clinical guidelines (CG115) recommend that for people with mild alcohol dependence 

a psychological intervention is offered, and for those with moderate/severe alcohol 

dependence these psychological interventions can be used in combination with the 

pharmacological intervention (National Collaborating Centre for Mental, 2011). In the UK, 

the two main medications prescribed for treating alcohol dependence are acamprosate and 

disulfiram. Acamprosate helps to maintain abstinence by restoring neurotransmitters affected 

by excessive alcohol use and can also contribute to managing alcohol cravings, but it is 

generally effective only in someone already sober (Mason and Heyser, 2010, Patel and 

Balasanova, 2021). In contrast, disulfiram causes unpleasant symptoms if alcohol is 

consumed, functioning as a deterrent to alcohol drinking. Due to its strong effects, 

manufacturers suggest that patients and their carers are counselled on the disulfiram-alcohol 

reaction and NICE advices monitoring patients in the initial phases of treatment (Excellence). 

In a small high-quality evidence base, two open label randomised trials compared disulfiram 

to acamprosate and showed disulfiram to be more effective in reducing alcohol intake, 

increasing the number of abstinence days and reducing risks of relapse (Laaksonen et al., 

2008), and in increasing the percentage of abstinent patients and reducing risk of relapse (de 

Sousa and de Sousa, 2005). The pure use of clinical trials to inform guidelines may cause 

some criticism as they do not usually look at long-term outcomes which are relevant 

especially regarding addiction. Therefore, stronger evidence from real-world effectiveness 

based on larger populations and with less time constraint is crucial. To date, only a small 

observational study that directly compared the two drugs, showing that disulfiram has a 

longer duration of time to alcohol relapse and higher cumulative abstinence compared to 

acamprosate (Diehl et al., 2010). 
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Despite evidence on the effectiveness and their inclusion in clinical guidelines, 

pharmacological intervention for treating alcohol dependence is underutilised in clinical 

practice with many patients not getting prescribed the specialised treatment (Antonelli et al., 

2022). When there is evidence of underutilisation, it is important to understand whether this 

is caused, at least in part, by some groups less likely to get prescribed than others. If this 

happens, inequalities in health outcomes can be exacerbated if those less likely to get 

prescribed are those the most in need (i.e., more likely to experience severe alcohol 

dependence). Further, current evidence of under-prescriptions regards primary healthcare 

(Thompson et al., 2017), however, it is not clear whether other healthcare levels have similar 

characteristics. 

 

Using two large routinely-collect healthcare datasets from the UK regarding primary and 

secondary healthcare, we aimed to assess the prescription levels of pharmacological treatment 

for alcohol dependence in different levels of healthcare and whether inequalities exist in 

prescribing levels by age, sex, and socio-economic deprivation. Further, we compare the real-

world effectiveness of acamprosate and disulfiram to time to first alcohol-related 

hospitalisation, including using an instrumental variable approach to account for unobserved 

confounding. Lastly, we assess whether there is inequality in prescribing between these two 

medications. 
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5.5 Methods 

5.5.1 Data sources 

 

For all the analyses we used two separate datasets both referring to the UK. The first focusing 

on primary healthcare and the second on secondary healthcare. For the primary healthcare 

dataset, we utilised the English subset of the Clinical Practice Research Datalink (CPRD) 

(Herrett et al., 2015, Wolf et al., 2019), a UK wide dataset collecting data from a network of 

over 2,000 primary healthcare practices and broadly representative at the country level. The 

dataset identified patients in primary healthcare and linked them with prescriptions and future 

hospitalisations. For the secondary healthcare dataset, we utilised a Scottish dataset linking 

three nationwide administrative healthcare databases containing data from 2009 to 2019 

regarding dispensed prescriptions from Scottish National Prescribing Information System 

(PIS), hospitalisations (SMR01) and deaths (National Records of Scotland). From this point 

when referring to the English primary healthcare dataset we will use 'Eng-CPRD’, while for 

the Scottish secondary healthcare dataset we will use 'Scot-PIS'. 

 

5.5.2 Pharmacological treatments 

 

We evaluated the trend and inequalities in prescriptions for all medications in the guidelines 

with an exclusive indication for the treatment of moderate or severe alcohol dependence 

(National Collaborating Centre for Mental, 2011): acamprosate, disulfiram and nalmefene. 

However, nalmefene was rarely prescribed to individuals in our datasets and so we compared 

the effectiveness of the two most common prescriptions: acamprosate and disulfiram. We 

then ran a further analysis assessing inequality in prescriptions between these two drugs.   
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5.5.3 Statistical analyses 

5.5.3.1 Trends and rates 

 

For both levels of care, we assessed the trends of alcohol dependence prescriptions over time.  

 

Primary healthcare Eng-CPRD 

 

In Eng-CPRD, we checked the rate of first diagnosis for alcohol dependence defined by Read 

codes (Chisholm, 1990) ‘alcohol dependence and consequences of alcohol dependence' 

(Thompson et al., 2017) over time. We then observed the percentage of patients receiving 

prescriptions within 60 days after their diagnosis (looking at potential differences across 

socio-economic deprivation levels). The 60 days window had the purpose of associating the 

prescription with the diagnosis episode. 

 

Secondary healthcare Scot-PIS 

 

Similarly, in Scot-PIS we checked the rate of patients with a first hospitalisation of ‘mental 

and behavioural disorders due to alcohol’ (ICD F10.x, main diagnostic position) within the 

national population and then the percentage of individuals receiving alcohol dependence 

prescriptions within 60 days after discharge. 
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5.5.3.2 Inequality  

 

Primary healthcare Eng-CPRD 

The cohort was defined between January 2010 and December 2019 and identified all patients 

with a first diagnosis of alcohol dependence in primary healthcare (see above for inclusion 

criteria in Eng-CPRD), we excluded patients with previous hospitalisation for AUD. We 

determined whether patients received prescriptions within 60 days from their diagnosis. We 

repeated the same analysis on prescriptions received any time after the diagnosis. Logistic 

regression was used to assess whether age, sex and socio-economic deprivation of the 

practice were associated with the odds of prescriptions for alcohol dependence. We adjusted 

the regression by year as every calendar year the dataset changes the overall population at 

risk with new patients and practices subscribing. Whenever the relationship between 

covariates and the dependent variable was not linear (e.g., for age), restricted cubic splines 

(Gauthier et al., 2020) were used. The same analysis was run for the two most prescribed 

drugs to explore whether different patient characteristics might lead to different drug 

prescribing. 

 

Secondary healthcare Scot-PIS 

We identified a cohort between January 2010 and March 2019 with a first hospitalisation of 

alcohol use disorder (AUD) diagnoses in the main diagnostic position (see above for 

inclusion criteria in Scot-PIS) screening back for 10 years to avoid previous alcohol-related 

hospitalisation. We ran a similar analysis to Eng-CPRD, determining inequality in 

prescriptions for alcohol dependence within 60 days of hospital discharge and repeating the 

analysis with medications received at any time after AUD hospitalisations. The main 

differences between the two datasets were that in Scot-PIS we were able to adjust the model 

for comorbidities (measured through Charlson comorbidity score (D'Hoore et al., 1996) and 

previous hospitalisation related to mental health) and for alcohol dependence prescriptions 

taken before hospitalisation. Further, the socio-economic deprivation in Scot-PIS was 

rereferred to the patient. Using the same Scot-PIS cohort, we also did an additional analysis 

using as the dependent variable obtaining a prescription before the hospitalisation, aimed to 

assess imbalances of prescriptions in preventing patients to be hospitalised (see Table S5 in 

supplementary material for Chapter 5).   
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5.5.3.3 Comparative effectiveness 

 

In both datasets, we defined the cohort for this analysis in the same fashion. We identified 

patients with a first prescription of acamprosate or disulfiram without any previous 

hospitalisation for F10.x in the previous 5 years (the reduced time compared to the previous 

analyses was due to the mismatch in backwards data between datasets). The outcome under 

study was time to first hospitalisation for F10.x after prescription. We assessed time to first 

hospitalisation using three different approaches: Cox regression adjusted for covariates (age, 

sex, socio-economic deprivation), covariates used n propensity scores (inverse probability 

weight using the same covariates) and an PPP IV (Brookhart et al., 2006).  

 

For PPP IV, we implemented 2SRI which provide consistent estimators in non-linear models 

(Terza et al., 2008a). The instrument we used in our 2SRI-Cox model is the proportion of 

acamprosate prescribed by a particular physician in the last 10 prescriptions. Given the high 

number of new practices added every year in Eng-CPRD, 60% of general practitioners with 

at least one prescription with an indication for alcohol dependence did not have a history of 

10 previous prescriptions for alcohol dependence recorded in the dataset. For this reason, we 

used multiple imputation by chained equation to build the PPP instrument (Janssen et al., 

2010). While the first two approaches controlled for measured confounding by indication, the 

IV approach accounted for potential unmeasured confounding assuming all the assumptions 

are met. The baseline demographics of the cohorts identified for the inequality and 

comparative effectiveness analyses are presented in Table 10. 
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N. Age, 
years 

mean (sd) 

Sex 
(male) 

Charlson 
Comorbidity Index 

Previous 
hospitalis

ations for 

mental 
health 

Socio-economic multiple deprivation in quintiles 

0 >=1 1st  

(most 

deprived) 

2nd 3rd 4th 5th 

(least 

deprived) 

Primary 

Care 

Eng-
CPRD 

Total 

(%) 

69114 46.3 

(13.2) 

47834 

(69%) 

- - - 23839 

(34%) 

17995 

(26%) 

11138 

(16%) 

8551 

(12%) 

7591 

(11%) 

Individua

ls 
receiving 

prescripti

ons 

4581 43.8 

(10.9) 

2738 

(60%) 

- - - 1525 

(33%) 

1200 

(26%) 

764 

(17%) 

617 

(13%) 

475 

(10%) 

    

  

Acampro
sate*  

3864 44.1 

(10.9) 

2298 

(59%) 

- - - 1313 

(34%) 

1028 

(27%) 

639 

(17%) 

511 

(13%) 

373 

(10%) 

   

Disulfira

m*  

691 42.1 

(10.5) 

428 

(62%) 

- - - 203 

(29%) 

169 

(24%) 

122 

(18%) 

100 

(14%) 

97 

(14%) 

Not 

receiving 

prescripti
ons  

64533 46.5 

(13.4) 

45096 

(70%) 

- - - 22314 

(35%) 

16795 

(26%) 

10374 

(16%) 

7934 

(12%) 

7116 

(11%) 

Secondar

y Care 
Scot-PIS 

Total 

(%) 

19748 

 

44.8 (18) 

 

13463 

(68%) 

14049 

(71%) 

5699 

(29) 

6086 

(31%) 

5853 

(30%) 

4896 

25%) 

3925 

(20%) 

2964 

(15%) 

2110 

(11%) 

Individua
ls 

receiving 

prescripti
ons 

1240 
 

46.1 (11) 
 

841 
(68%) 

888 
(72%) 

352 
(28%) 

408 
(33%) 

275 
(22%) 

340 
(27%) 

278 
(22%) 

205 
(17%) 

142 
(11%) 

    

  

Acampro

sate* 

 

840 

 

46.5 (11) 

 

541 

(64%) 

584 

(70%) 

256 

(30%) 

267 

(32%) 

197 

(23%) 

236 

(28%) 

183 

(22%) 

136 

(16%) 

88 

(10%) 

   
Disulfira

m* 

 

349 
 

45.3 (11) 
 

222 
(64%) 

262 
(75%) 

87 
(25%) 

120 
(34%) 

67 
(19%) 

92 
(26%) 

80 
(23%) 

61 
(17%) 

49 
(14%) 

Not 

receiving 

prescripti
ons 

 

18508 

 

44.2 (18) 

 

12662 

(68%) 

13161 

(71%) 

5347 

(29%) 

5678 

(31%) 

5578 

(30%) 

4556 

(25%) 

3647 

(20%) 

2759 

(15%) 

1968 

(11%) 

Primary 

Care 
Eng-

CPRD 

Acampro

sate  

7033  45.4 (11)  4159 

(59%) 

- - - 706 

(10%) 

952 

(14%) 

1195 

(17%) 

1862 

(26%) 

2321 

(33%) 

 Disulfira
m  

1801  44.9 (11)  1100 
(61%) 

- - - 260 
(14%) 

315 
(17%) 

331 
(18%) 

423 
(23%) 

472 
(26%) 

Secondar

y Care 
Scot-PIS 

Acampro

sate 

8016  44.9 (12)  4911 

(61%) 

- - - 2874 

(36%) 

1969 

(25%) 

1451 

(18%) 

1030 

(13%) 

692 

(9%) 

 Disulfira

m  

3223  43.2 (11)  2088 

(65%) 

- - - 964 

(30%) 

814 

(25%) 

626 

(19%) 

473 

(15%) 

346 

(11%) 

 
* The number of patients receiving acamprosate and disulfiram prescriptions does not equate to total number of patients as Nalmefene was 

also prescribed 

 
 

Table 10. Characteristics of cohorts used in inequality and comparative effectiveness 

analyses. 
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5.6 Results 

5.6.1 Trends and rates 

5.6.1.1 Primary healthcare. Eng-CPRD 

 

While the rate of alcohol dependence diagnosis decreased over the years in Eng-CPRD, there 

were not major differences in receiving prescriptions between most and least deprived groups 

(Figure 7,a).  

 

5.6.1.2 Secondary healthcare. Scot-PIS 

 

In contrast, in secondary healthcare the rate of AUD hospitalisation slightly increased over 

the years. The percentage of individuals with medications dispensed within 60 days after their 

first hospitalisations varied across socio-economic groups, with the least deprived groups 

receiving always more prescriptions after hospital discharge compared to the most deprived, 

except for the year 2016 (see Figure 7, b). In contrast, the relative difference in sex and age 

did not change between primary and secondary care over the years (see Figure S5, S6, S7, S8 

in supplementary material for Chapter 5). Further, the percentage of prescriptions after 

hospitalisation is higher than in primary healthcare.  

 

Figure 7. Trends and rates of alcohol dependence diagnosis (a) and alcohol use disorders 

hospitalisation (b) and percentage of such individuals receiving alcohol dependence 

prescriptions within 60 days of their diagnosis (a) or discharge date (b). In panel b 2019 was 

removed as data were only until March.  
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5.6.2 Inequality 

5.6.2.1 Primary healthcare Eng-CPRD 

 

Receiving prescriptions with indications for alcohol dependence after the first diagnosis of 

alcohol dependence in primary care was associated with sex (male less odds of receiving a 

prescription OR: 0.65, 95% CI: 0.60-0.71) and age (odds increasing until 41 years of age and 

then decreasing in older individuals (see Table S6 in supplementary materials for graphs 

showing modelled curvi-linear association with age). There were no substantial variations 

across deprivation groups. Comparing the two most prescribed drugs for alcohol dependence, 

odds of prescribing disulfiram decreased with age and increased in the least deprived group 

(OR: 1.55, 95%CI: 1.02-2.35). In both evaluations, odds of receiving prescriptions did not 

considerably vary by changing the time from diagnosis to prescription (Table 11. Inequality 

models of prescriptions after hospitalisation, before hospitalisation and inequality in 

prescriptions between the two most used alcohol dependence drugs 

, model 1 vs 2 and model 3 vs 4).  
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Data Primary care - Eng-CPRD - Secondary care - Scot-PIS - 

Model5 

(results in 

odds ratio)  

(1) (2) (3) (4) (5) (6) (7) (8) 

Sex 

(female 

reference) 

0.654 

(0.596-0.717) 

0.643 

(0.604-0.684) 

1.087 

(0.844-1.402) 

1.102 

(0.935-1.299) 

0.877 

(0.768-1.003) 

0.878 

(0.806-0.956) 

1.002 

(0.758-1.324) 

1.095 

(0.927-1.292) 

Charlson 

Comorbidity 

Index 

(0 reference) 

        

>=1     0.922 

(0.798-1.066) 

0.914 

(0.834-1.003) 

0.840 

(0.616-1.146) 

0.768 

(0.638-0.925) 

Mental health 

comorbidity 

    0.919 

(.801-1.054) 

0.899 

(0.824-0.981) 

1.110 

(0.832-1.481) 

1.137 

(0.960-1.346) 

Simd= 

1 as reference 

        

2 1.079 

(0.959-.1.216) 

1.069 

(0.987-1.157) 

0.965 

(0.692-1.345) 

1.096 

(0.885-1.356) 

1.407 

(1.177-1.683) 

1.046 

(0.938-1.166) 

1.198 

(0.808-1.775) 

1.419 

(1.140-1.766) 

3 1.227 

(1.074-1.401) 

1.102 

(1.006-1.207) 

0.990 

(0.687-1.425) 

1.231 

(0.970-1.564) 

1.624 

(1.347-1.958) 

1.110 

(0.989-1.246) 

1.414 

(0.941-2.125) 

1.286 

(1.017-1.626) 

4 1.222 

(1.057-1.414) 

1.169 

(1.058-1.290) 

1.174 

(0.794-1.739) 

1.193 

(0.921-1.545) 

1.540 

(1.254-1.890) 

1.068 

(0.939-1.214) 

1.411 

(0.909-2.189) 

1.469 

(1.138-1.896) 

5 0.992 

(0.842-1.169) 

0.993 

(0.891-1.108) 

1.550 

(1.024-2.348) 

1.659 

(1.269-2.168) 

1.454 

(1.155-1.830) 

1.115 

(0.967-1.286) 

1.917 

(1.186-3.100) 

1.782 

(1.354-2.347) 

Previous 

prescription in 

the previous 

60 days† 

        

Any     23.42 (19.630-

27.942) 

   

Acamprosate        0.510 (0.373-

0.695) 

Disulfiram        6.478 (4.818-

8.712) 

Previous 

prescription 

ever† 

        

Any      5.122 

(4.664-5.625) 

  

Acamprosate       0.454 (0.300-

0.687) 

 

Disulfiram       6.081 (4.067-

9.072) 

 

Year  

2020 as 

reference 

        

 

2011 

0.975 

(0.818-1.162) 

 

1.017 

(0.915-1.130) 

 

0.719 (0.468-

1.104) 

 

0.808 (.629-

1.039) 

 

    

2012 0.930 

(0.774-1.117) 

1.014 

(0.909-1.131) 

0.654 

(0.413-1.037) 

0.602 

(0.455-0.794) 

    

2013 

 

1.351 

(1.143-1.608) 

1.053 

(0.942-1.176) 

0.603 

(0.391-0.930) 

0.666 

(0.505-0.878) 

    

2014 

 

 

1.483 

(1.258-1.775) 

 

0.999 

(0.889-1.122) 

 

0.606 

(0.391-0.942) 

 

0.689 

(0.514-0.924) 

 

    

2015 

 

1.355 

(1.129-1.627 

) 

0.899 

(0.794-1.109) 

 

0.533 

(0.329-0.861) 

 

0.631 

(0.458-0.869) 

 

    

2016 

 

1.137 

(0.931-1.391) 

0.706 

(0.613-0.813) 

0.481 

(0.276-0.841) 

0.508 

(0.343-0.752) 

    

2017 

 

0.997 

(0.808-1.231) 

 

0.610 

(0.526-0.709) 

 

0.565 

(0.323-0.990) 

 

0.509 

(0.393-0.883) 

 

    

2018 

 

0.813 

(0.648-1.020) 

 

0.505 

(0.431-0.593) 

 

0.302 

(0.144-0.631) 

 

0.252 

(0.140-0.453) 

 

    

2019 0.858 

(0.690-1.066) 

0.394 

(0.332-0.467) 

0.266 

(0.128-0.556) 

0.341 

(0.192-0.604) 

    

As the relationship with age was not linear, we applied spline, see graph for interpretation of spline in Table S6 in the supplementary material.  

†’Any’ stands for ‘any kind of prescription for alcohol dependence’ and it is used in models referring to the overall inequality in secondary care (5) &(6), the variable is a 

dichotomous (0=no prescriptions and 1=prescriptions). Models (7) & (8), comparing acamprosate and disulfiram, specify the kind of prescription received before 

hospitalisation in a trichotomous variable (0= no previous prescriptions, 1=previous acamprosate prescriptions, 2=previous disulfiram prescriptions) where the reference 

is ‘no previous prescriptions. 

Table 11. Inequality models of prescriptions after hospitalisation, before hospitalisation and 

inequality in prescriptions between the two most used alcohol dependence drugs 

 
5 Model (1) Any alcohol dependence prescription after 60 days from diagnosis ; (2) Any alcohol dependence prescription ever from 

diagnosis;(3)Acamprosate vs disulfiram prescriptions within 60 days of diagnosis-acamprosate as the reference; (4) Acamprosate vs 

disulfiram prescriptions ever after diagnosis -acamprosate as the reference; (5) Any alcohol dependence  prescription after 60 days from 

hospitalisation; (6) Any alcohol dependence prescription ever from hospitalisation ; (7) Acamprosate vs disulfiram prescriptions within 60 
days of hospitalisation-acamprosate as reference; (8) Acamprosate vs disulfiram prescriptions ever after hospitalisation -acamprosate as 

reference- 
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5.6.2.2 Secondary healthcare Scot-PIS 

 

Similarly, receiving prescriptions for alcohol dependence after 60 days from an AUD 

hospitalisation was associated with age. Socio-economic deprivation was also a factor 

associated with odds of receiving prescriptions after a secondary healthcare episode: living in 

least deprived areas was significantly associated with an increase in odds of receiving 

prescriptions of at least 41% (OR: 1.41, 95% CI:1.18-1.68 -values for the second most 

deprived quintile-) (see Table 11. Inequality models of prescriptions after hospitalisation, 

before hospitalisation and inequality in prescriptions between the two most used alcohol 

dependence drugs 

, column 5). Lastly, receiving prescriptions prior to hospitalisation was associated with a 23-

fold increase (OR: 23.42, 95% CI: 19.63-27.94) in the odds of receiving prescriptions later. 

Other factors such as mental health comorbidities and sex did not have strong associations 

with prescriptions just after being discharged but became more precise (and statistically 

significant, p<0.01) when we did not include the 60 days constraint after hospitalisation (see 

Table 11. Inequality models of prescriptions after hospitalisation, before hospitalisation and 

inequality in prescriptions between the two most used alcohol dependence drugs 

 in sum, column 6). When we analysed odds of getting prescriptions before hospitalisations 

(see Table 7 in supplementary material), comorbidities (and in particular mental health 

comorbidities) were associated with an increment in the odds (OR=1.32, 95%CI:1.20-1.44), 

in contrast they were associated with reduction in the odds of getting prescriptions after 

hospitalisation in the long term (OR=0.90, 95%CI: 0.82-0.98). Similarly, to Eng-CPRD, we 

found that the odds of receiving disulfiram instead of acamprosate were associated with 

deprivation but also with the kind of medication received before hospitalisation (see Table 11. 

Inequality models of prescriptions after hospitalisation, before hospitalisation and inequality 

in prescriptions between the two most used alcohol dependence drugs 

 column 7,8). Receiving disulfiram prior to hospitalisation was associated with an increase in 

odds of receiving disulfiram after hospitalisation compared to not having prescriptions. 

Conversely, receiving acamprosate before hospitalisation was associated with a decrease in 

the odds of getting prescriptions for disulfiram after. 

  



92 
 

 

5.6.3 Comparative effectiveness 

 

The comparative effectiveness modelling shows that prescribing disulfiram, compared to 

acomprosate, was associated with a reduced risk of first alcohol related hospitalisation. All 

three methods were consistent in their findings (see Figure 8). In both Scot PIS and Eng 

CPRD, instrumental variable modelling produced point estimates showing larger associations 

but with wider confidence intervals. Point estimates across the two datasets varied from 

HR=0.54 (95% CI: 0.33-0.88) for PPP IV in Scot-PIS to HR=0.77 (95% CI: 0.66-0.89) for 

propensity score in Eng CPRD, signifying that disulfiram was associated with a reduction in 

the risk of alcohol related hopitalistation between 46.3% and 23.1% comapred to 

acamprosate. The validation of IV assumption can be seen from Table S7 in supplementary 

material. 

 6 

Figure 8. Point estimate of hazards ratio for AUD hospitalisation and confidence intervals of 

the models measuring comparative effectiveness research of disulfiram and acamprosate 

(using acamprosate as reference).  

 
6 Acamprosate was the reference variable. Circles are for point estimate related to models on 

Scot-PIS, squares for Eng-CPRD.  
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5.6.4 Sensitivity analysis for the unmeasured confounding 

 

It can be seen from Figure S9 in supplementary material for Chapter 5, the potential 

unmeasured confounder does not need to be strongly associated (for example (0.2, 0.2)) with 

the treatment to make the estimated treatment effect across the null hypothesis (within the red 

curve). The model is sensitive to the unmeasured confounding in this case.  

 

5.7 Discussion 

 

We found the prescription rate of alcohol dependence medications was limited to only 2-4% 

in primary healthcare and 6-7% in secondary healthcare. Our analyses highlighted that 

several demographic factors were associated with inequalities in prescribing for alcohol 

dependence. While some factors such as sex and age were associated with inequality 

similarly after primary and secondary healthcare events, others were drivers for inequality 

only after a secondary healthcare episode. For example, living in the most socio-

economically deprived areas was associated with lower odds of receiving prescriptions within 

60 days after the first AUD secondary healthcare episode, but similar results were not 

observed after a primary healthcare visit. The comparative effectiveness modelling found that 

disulfiram has reduced risk in preventing the first alcohol related secondary healthcare 

episode compared to acamprosate. Further, we showed that those living in the least socio-

economic deprived areas were associated with an increase in odds of being prescribed the 

most effective drug (disulfiram) after both primary and secondary healthcare visits. We 

believe that these findings have important implications for socio-economic health inequalities 

for the alcohol dependent population. 
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Our findings are in line with other UK studies, showing a low percentage of pharmacotherapy 

for patients diagnosed in primary healthcare (Thompson et al., 2017). While the percentage of 

prescriptions after AUD hospitalisations is generally higher (between 5% and 7% in the 

overall population), this can still be considered limited as hospitalised patients are likely to 

have more severe alcohol dependence. It is worth noting that our rates (see Figure 7) are 

lower than official statistics on alcohol dependence in England (1.37% prevalence in 2018-19 

(England, 2021). This is mainly because by using read codes specific for alcohol dependence 

in CPRD we may have selected only patients with moderate/severe dependence (Thompson 

et al., 2017) within  primary healthcare, which are already a subsample of all the alcohol 

dependent people estimated in the overall population of England. In addition, under-

recording of diagnostic read codes from some practitioners (Tulloch et al., 2020) may have 

reduced our rates further. While there have been falls in the numbers of people in treatment 

for alcohol problems in England in recent years (analysis, 2018), they may not fully explain 

the variation in  primary healthcare diagnosis over time we observed (Figure 7). Indeed, it is 

more likely to be related to the dataset having important variations over the years (new 

practices added every year, which may have different procedures and attitudes in using Read 

codes). This hypothesis is supported by the variations in annual presentation rates also found 

in previous studies utilising CPRD for alcohol dependence analyses (Thompson et al., 2017) 

and by the contrast with a more linear trend of rates of secondary healthcare AUD episodes 

built on a nationwide dataset (Figure 7). 
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Regarding prescription inequality in primary healthcare, Thompson et al. (Thompson et al., 

2017) in a similar study utilising CPRD between 1990 and 2013, found comparable 

inequality patterns for sex and age in determining imbalances in odds in receiving alcohol 

dependence prescriptions. When we ran the same analysis in secondary healthcare, we found 

also that socio-economic deprivation status was associated with disparities in receiving 

prescriptions within 60 days from discharge. However, in contrast, the extent of such 

disparities decreased for prescribing any time in the future. This could suggest that distinct 

deprived groups can have different ease and access to care in the initial phase after hospital 

discharge, which is the most critical period in avoiding relapses (Hunt et al., 1971). Indeed, 

individuals with alcohol dependence requiring hospitalisation often require specialist alcohol 

treatment in hospitals or in community settings. Studies describing a lower utilisation of 

specialist care in groups with lower levels of educational attainment (Stirbu et al., 2011), can 

explain why we found lower prescription rates in the most deprived areas. We cannot assume 

that the overall inequality we found in prescriptions concerning sex and age, which are 

consistent across primary and secondary health care, can be attributed to practitioners or to 

services prescribing the medications. On the contrary, we believe that a combination of 

factors such as the lower propensity to seek help of certain patient groups (e.g., males less 

likely to seek consultation (Wang et al., 2013), especially regarding psychological matters 

(Liddon et al., 2018) can be responsible for this. 

 

We also found other factors such as comorbidities and previous alcohol dependence 

medications associated with the odds of receiving prescriptions. Having a history of mental 

health comorbidities was associated with an increase in the odds of being issued prescriptions 

before the hospitalisation (see Table S6 in supplementary material) and with a reduction in 

the odds of getting prescriptions afterwards. This could suggest that patients with certain 

comorbidities are also more likely to be in contact for mental health assistance and more 

likely to be treated with alcohol dependence pharmacotherapies aimed to prevent a future 

hospitalisation. Similarly, our results show that having already received alcohol dependence 

prescriptions in the past, increased the odds of receiving such prescriptions after 

hospitalisation. This might indicate that individuals who have already received treatment for 

alcohol use in the past were more likely to receive it again after hospitalisation compared to 

those who never had it. 
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Our analysis of real-world data on a nationwide cohort in Scotland showed that disulfiram is 

superior to acamprosate in avoiding a first alcohol-related hospitalisation, which was also 

observed in a representative cohort from England. Our results are in accordance with 

previous evidence from small randomised control trials (Laaksonen et al., 2008, de Sousa and 

de Sousa, 2005) and a small observational study (Diehl et al., 2010) that reported disulfiram 

to be more effective in maintaining abstinence, craving, days until relapse and consumption 

and abstinence, respectively. Our instrumental variable analysis showing similar results to 

methods that adjust for measured confounders by indication only, strengthens the internal 

validity of our study. The wider confidence intervals of the PPP IV models can be ascribed to 

the nature of IV can only explains a small fraction of the variation in the exposure, so that the 

standard error of 2SLS will naturally be larger than of OLS (Wooldridge, 2010). The point 

estimates of the propensity score and covariate adjustment models being closer to the null 

may be due to a positive correlation between unmeasured confounders (captured by PPP IV) 

and probability of being prescribed disulfiram, as well as a negative correlation between the 

unmeasured confounder and outcome. It is worth reminding that we do not link this effect to 

the pharmacological substances in the drugs only, but it could be generated by a mixture of 

other factors such as the close monitoring suggested for disulfiram administration. One 

potential reason is that the severity of alcohol addiction is not properly measured and 

recorded in the data used in this chapter. Diehl et al. also suggested that the patients who had 

been prescribed with disulfiram were at more severe situation of alcohol addiction than 

patients who had been prescribed with acamprosate. Patients with higher expected health 

benefit (generally healthier) tend to receive acamprosate (Diehl et al., 2010). 
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In our final inequality analysis (see Table 11. Inequality models of prescriptions after 

hospitalisation, before hospitalisation and inequality in prescriptions between the two most 

used alcohol dependence drugs 

, models 3, 4 and 7, 8), we showed how living in the most deprived areas decreased the odds 

of being prescribed the most effective medication to avoid alcohol related hospitalisation 

compared to living in the least deprived areas. This remained the only driver of prescription 

imbalances between the two drugs, and it was consistent between primary and secondary 

healthcare. We believe this has important implications for health inequality. Again, we do not 

attribute this to hypothetical prescribers’ bias, but more likely due to unmeasured factors such 

as less available assistance, supervision or close clinical monitoring (recommended for 

disulfiram (Excellence)) in individuals living in more deprived areas. The general inequality 

of prescriptions for alcohol dependence combined with the inequality of the most effective 

medications in favour of the least deprived groups can partially explain the social imbalance 

of the burden of alcohol. To address this, we believe that improving patient access to 

specialist services after being hospitalised for alcohol related reasons and developing new 

integrated care pathways are essential especially for hard-to-reach patients. 
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5.8 Strengths and Limitations  

 

We found new findings regarding inequality especially related to the prescriptions between 

acamprosate and disulfiram, with relevance for care and support plans of alcohol dependent 

patients in both primary and secondary healthcare. In our opinion, we also provided the best 

comparative effectiveness evidence to date based on real-world data. We utilised two datasets 

referring to nationwide (Scot-PIS) and highly representative (Eng-CPRD) populations. 

Results between datasets and across methods were consistent. In essence, this triangulation 

internally cross-validated our comparative effectiveness study. Previous real-world studies 

had lower power (Diehl et al., 2010) and were not supported by any such triangulation 

strategy. Related to this, when we built in two different datasets an analogous cohort (for the 

comparative effectiveness analysis) our results were consistent. In contrast, when we built 

different cohorts between datasets (for the inequality analysis), we found diverse results that 

we interpreted as differences between primary and secondary healthcare. We believe that this 

accordance between cohorts and results across datasets corroborates the reliability of our 

results and interpretations. 
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Whilst both Scot-PIS and Eng-CPRD are two datasets referring to the same country (UK), 

they reflect two different nations which, even if similar, identify different populations. 

Having both datasets on primary and secondary healthcare referring to the same population 

would have been ideal, but unfortunately primary healthcare data are not available in 

Scotland, and we did not have access to nationwide secondary healthcare data for England. 

Despite the minor differences across populations in general and in particular regarding 

individuals with AUD (Office for national statistics 2022) , we believe that our triangulation 

offering similar results for same cohorts between datasets as well as multiple models for both 

primary and secondary healthcare confer robustness to our results and interpretations. 

Moreover, additional practices added every year into the Eng-CPRD dataset did not allow a 

full look-back period for every patient, guaranteeing the certainty of measuring ‘the first 

diagnosis for alcohol dependence in primary healthcare’ only for a restricted number of 

patients. However, stable outcomes over the years such as the percentage of patients 

receiving prescriptions despite variations in the number of practices introduced in the dataset 

should not make this a major source of concern. Another potential limitation was that for 

Scot-PIS we looked at all the ICD-10 codes identifying AUD hospitalisations rather than 

limiting our analysis only to alcohol dependence like we did for Eng-CPRD where we 

utilised read codes for alcohol dependence only. We included all AUD diagnoses in Scot-PIS 

mainly to correct for possible errors in recording data across different alcohol related 

diagnostic codes which are possible in general/acute hospital records. Indeed, in Scot-PIS 

some of the people not hospitalised for alcohol dependence but for other AUD conditions 

(e.g., withdrawal or intoxication) received alcohol dependence prescriptions, while this did 

not happen in English primary healthcare for patients without an alcohol dependence 

diagnosis. We are also aware that some potentially key variables were not always considered 

across our analyses (e.g., comorbidities in primary care data), but we did not have access to 

read codes for conditions not related to alcohol. Finally, as already mentioned, utilising 

alcohol dependence read codes may have selected our population to more severe patients, 

with a potential minor generalisation of our conclusions to mild alcohol dependence 

individuals.  
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5.9 Conclusion 

 

Alcohol dependence medications are not extensively prescribed in the UK. Inequalities in 

prescribing alcohol dependence medications exist, especially across sex, age and socio-

economic deprivation groups. The extent of such inequality is different in primary and 

secondary health care settings. Disulfiram is superior to acamprosate in avoiding alcohol 

related hospitalisations in large, unselected observational datasets. Further, there is inequality 

within alcohol dependence prescriptions, with individuals living in the most deprived areas 

having lower odds of being prescribed the most effective drug. This has implications for 

health inequality highlighting the need of building new strategies to reduce the societal 

imbalance in the burden of alcohol. 
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Chapter 6. Comparing DPP-4 inhibitor and sulfonylurea as second-line treatment for 

T2DM patients: a target trial emulation  

 

6.1 Publication details  

 

This article has not been submitted for publication. 

 

6.2 Data used in this chapter. 

 

The concept of this chapter is built from the NIHR-funded PERMIT study (see PERMIT | 

LSHTM on https://www.lshtm.ac.uk/research/centres-projects-groups/permit) which aims to 

assess the long-term effectiveness and budget impact of alternative second-line drug 

treatments for patients with type 2 Diabetes Mellitus. The application form for the access of 

Scottish Diabetes Research Network (SDRN) is attached in supplementary material for 

Chapter 6. Data tables and variables used in this chapter are listed below. 
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Data tables Variable  Variable Description 

s_prescription 

 

serialno Unique identifiers of the patients 

 drugname_clean Name of drugs 

 pseudonymised_populationid Pseudonymized data source identifier refers to 

the location 

 startdate Prescription date 

 concept_id Concept id for matching with UID of 

o_concept_drugs 

 bnfcode BNF code of the drugs (BNF codes used in this 

chapter is 6.1 :) 

o_concept_drugs UID The unique record identifier for this table 

 bnfcode The British National Formulary 

for the product selected by GP 

 drugname Name of the drug 

 strength The strength field provides the dosage of the 

drug per item 

o_person serialno Unique patient identifier  

 gender Patient’s gender 

 date_of_birth Date the birth 

 ethnic Patient’s ethnicity  

 serialno Unique patient identif 

o_observation concept_id This is the id number of the concept in 

o_concept_observation that describes the 

observation being recored. 

 

 

 

 num_value Observation values (e.g., HbA1c level)  

O_concept_observation date Date of the records 

 UID Identifier for this observation concept to be 

matched with concept_id in the o_observation 

table. 

 

HbA1c:  1001,8002  

BMI: 1123 

Derived eGFR: 

(4012,4013,4014,4015,4016,4017,4020,4021) 
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6.3 Abstract 

Background  

There are variations in the choice of second-line treatment, namely DPP-4 inhibitor or SU, 

after metformin monotherapy fails to reduce the HbA1c level for type 2 diabetes patients. 

This chapter aims to provide real-world evidence on the comparative effectiveness of SU and 

DPP-4 inhibitor in reducing HbA1c level for type 2 diabetes patients. 

Method 

This study is a target trial emulation where the cohort is designed based on the inclusion and 

exclusion criteria from existing RCTs. The target trial emulation study was conducted using a 

nationwide dataset, Scottish Diabetes Research Network (SDRN), with a study period 

between 2014 and 2019. The multivariable regression approaches as well as IV approach is 

conducted to estimate the short-term effectiveness of DPP-4 inhibitor and SU in reducing the 

HbA1c level. Outcomes include reduction of HbA1c level (numerical outcome), and whether 

the HbA1c level is reduced to less than 42 mmol/mol or between 42 mmol/mol to 47 

mmol/mol (binary outcomes). 

Result 

The mean difference from multivariable regression models indicates that SU is associated 

with 2.56 units more reduction in HbA1c levels than DPP-4 inhibitor (2.56, 95% CI: 1.07-

4.04). For the IV approach, the result from 2SLS is not statistically significant. SU is 

associated with higher probability of reducing HbA1c level to less than 42 mmol/mol in 

multivariable logistic regression (OR: 1.98, 95% CI:1.50-3.73) and 2SRI approach (OR: 8.17, 

95% CI:1.02-68.48). 

Conclusion 

I found real-world evidence supporting SU as a superior treatment to DPP-4 inhibitor in 

reducing HbA1c levels, which supports that SU should remain in the treatment portfolio as 

the second-line treatment for T2DM patients. PPP performs as a valid IV and give 

statistically significant results for a binary representation of the outcome but not for a 

numerical representation.  

Keywords: target trial emulation, instrumental variable, prescribing preference, type2 

diabetes, DPP-4 inhibitor, sulfonylurea, second-line treatment  
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6.4 Introduction  

 

In decision-making in health service research, RCT is considered as a reliable source of 

evidence (Greenland, 1990). However, RCTs are not always feasible or ethical. 

Observational comparative effectiveness studies which use real-world data are an alternative 

to RCTs. However, such studies need to overcome unmeasured confounding (confounding by 

indication) otherwise they will have poor internal validity. Many analytical methods can be 

used, including instrumental variable (IV) approaches which directly account for unmeasured 

confounding. However, investigators of observational studies tend to pay more attention on 

analysis, rather than design, including eligibility criteria, start of follow-up, etc. This may 

cause severe bias in the estimation of treatment effect (Gomes et al., 2022). On grounds of 

that, target trial emulation has been proposed to mimic RCT eligibility criteria using real-

world data which can improve the design of non-randomised studies (Hernán and Robins, 

2016). A target trial emulation applies the principles from RCT on observational data so that 

it can emulate the RCT in an observational data setting, usually with larger sample sizes 

(Labrecque and Swanson, 2017). 

 

According to NICE guidelines, metformin monotherapy is usually the first-line treatment for 

the type 2 diabetes mellitus (T2DM) patients. If the HbA1c level is inadequately controlled 

by metformin monotherapy, second-line treatments can be added after it. Commonly 

prescribed second-line antidiabetics drugs are dipeptidyl peptidase-4 inhibitor (DPP-4 

inhibitor) and sulfonylureas (SU), and sodium/glucose cotransporter 2 (SGLT2).  

 

Recent meta-analyses of RCTs suggest that DPP-4 inhibitor is not statistically different with 

SU in terms of clinical efficacy. While DPP-4 inhibitor users are less risky in developing 

hypoglycaemic events (Esposito et al., 2011, Foroutan et al., 2016). However, another meta-

analysis of RCT conclude that the DPP-4 performs better in maintaining the durability of 

controlling HbA1c level than SU (Chen et al., 2018). 
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In terms of the effectiveness, recent observational studies using large scale electronic health 

data (Tan et al., 2021, Lee et al., 2022) that compared the effectiveness and safety of second-

line treatments for T2DM. Besides, observational study evidence based target trial emulation 

approach has been published (Bidulka et al., 2021). This study compared the effectiveness of 

DPP-4 inhibitor, SU and SGLT-2 inhibitor. It also conducted IV methods to attempt to 

eliminate the potential unmeasured confounding. However, this study utilised the data from 

clinical practice research datalink (CPRD) which although is deemed a representative 

routinely-collected dataset it is not nationwide, so selection bias is a concern. Despite the fact 

that the latest NICE guideline recommends SGLT-2 inhibitor for patients with higher risk of 

cardiovascular diseases (CVD) (NICE guideline 2022) , SGLT-2 inhibitor prescriptions are 

less than DPP-4 inhibitor and SU in routine health data set. Therefore, this chapter is 

conducted from a pragmatic perspective and focused on the comparison between SU and 

DPP-4 inhibitor in a nationwide cohort. 

 

The primary objective of this chapter is to implement the IV method in observational 

comparative effectiveness research based on a nationwide health dataset from Scotland. The 

secondary objective is to add observational evidence regarding the effectiveness of DPP-4 

inhibitors and SU. It is arranged by two approaches: 

 

 1. In a target trial emulation, compare the short-term effectiveness of two second-line 

treatments, DPP-4 inhibitors and SU, as second-line treatment after metformin monotherapy 

for T2DM patients. 

2. Using the data defined from scenario 1, compare the short-term effectiveness of DPP-4 

inhibitors and SU by defining binary outcomes using whether or not the treatment reduces the 

HbA1c level. 
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6.5 Approach 1 

6.5.1 Method 

 

The data is from a Scottish national population-based register (https://www.sci-

diabetes.scot.nhs.uk/), called the Scottish Diabetes Research Network (SDRN). This is a 

dynamic clinical information system which contains detailed clinical records, including BMI, 

eGFR, HbA1c, for all the patients in Scotland who have been diagnosed with diabetes 

(McGurnaghan et al., 2022). This target trial emulation study is designed following the 

guideline provided by Hernán and Robins in 2016 (Hernán and Robins, 2016). This protocol 

is based on the Nauck et al’s research (Nauck et al., 2007) which is a double-blind, non-

inferiority randomised clinical trial. I replicated their selection strategy but made some 

adjustments due to availability of data in SDRN (see Table 12).   

  

https://www.sci-diabetes.scot.nhs.uk/
https://www.sci-diabetes.scot.nhs.uk/
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Inclusion criteria • Adults aged from 18 to 78, with type 2 diabetes mellitus on 

metformin monotherapy.  

• First prescription of second-line treatment between 1 January 2014 

to 31st  December 2021. 

• First prescription of second-line treatment is within 60 days after 

metformin monotherapy. 

• Earliest date mentioned is before 31 Dec 2018 (make sure follow-up 

time is longer than 1 year). 

Exclusion criteria • History of type 1 diabetes 

• eGFR <30  

• pregnancy within 12 months of second-line treatment initiation 

• Prescribed with insulin within 8 weeks 

Treatment strategies  • SU includes glibenclamide, gliclazide, glimepiride, glipizide, 

tolbutamide.  

• DPP-4 inhibitor includes linagliptin, saxagliptin, sitagliptin, 

vildagliptin. 

Assignment procedure • Prescription of the second-line treatment on SDRN data. 

• Accounting for confounding: Adjusted OLS; propensity score, two-

stage least square using last year prescribing preference of hospital 

or GP practice etc. as instrumental variable. 

Day zero  • Date of the first prescription of DPP-4 inhibitor or SU 

Follow-up period • Start at the date of the first prescription of DPP-4 inhibitor or SU 

and ends at 365 days after the first prescription. With 3-month time-

window on both sides. We selected the HbA1C records which is 

closest to the prescribing date as the baseline value if there are 

multiple records for one patient. 

Outcome • Change of HbA1c 1 year after the first prescription. Time-window 

is 3 months (from 40 weeks to 64 weeks). 

Causal contrast of 

interest  

• Intention-to-treatment effect.  

• Ignore switching  

Table 12. Protocol for target emulation trial  
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The flow chart of cohort definition is shown in Figure 9. As can be seen, there is 

approximately a 60 % reduction from the original cohort defined by the T2DM patients who 

had second-line treatment as adds-on for the metformin from 1st January 2014 to 31st 

December 2021 (N=9532). The total number of the study population is 3789. 

 

 

Figure 9. Flow chart of defining study cohort 
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I conducted OLS, 2SLS and propensity score matching, using inverse propensity score 

weighting (IPSW) as conventional multivariable adjusted models. In term of IV method, 

2SLS is the most commonly used estimation method for IVs and is well suited for numerical 

outcome variables (such as change in HbA1c). As I mentioned in Chapter 2, 2SLS can only 

estimate the local average treatment effect (LATE) when the monotonicity assumption hold. 

For that reason, I also estimated marginal treatment effect (MTE) for the whole population. 

MTE considers the probability of receiving certain treatment (D=1) given a value of 

numerical instrumental variable (Z) and covariates (X) the as the propensity score: P(z)=Pr 

(D=1|Z=z, X=x). Then the outcome given the treatment received can be depicted as a 

function of X and P(z): E (Y|X=x, P(Z)=p). MTE can be obtained nonparametrically using 

local instrumental variable estimator by calculating the partial derivate of E (Y|X=x, P(z)=p) 

with respect to the propensity score.  

 

In SDRN, the identifiers for physicians are not recorded. Therefore, the proxy for the PPP 

cannot be identified. Alternatively, I exploited one-year prescription history at the level of 

general practice or hospital as the proxy of prescribing preference. The proxy was calculated 

as the proportion of SU prescriptions among one-year prescriptions prior to the first 

prescription date of second-line treatment. 

 

Covariates 

Covariates include the baseline HbA1c level, age at the first prescription of second-line 

treatment, gender, body mass index (BMI) before the first prescription of second-line 

treatment and comorbidity (in the form of CCI and in quintiles). The hospitalisation record 

was obtained from SMR01. The reason for the hospitalisation was recorded in the form of 

ICD-10. I conducted multiple imputation (MI) for the missing values in BMI which was 

implemented by classification and regression trees with 20 imputations (Tierney et al., 2015), 

conducted by ‘mice’ package in R (Van Buuren and Groothuis-Oudshoorn, 2011).  
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Validation of assumptions 

The PPP IV was dichotomised at the median (0.75). The relevance assumption was validated 

using the F-statistics. The monotonicity assumption was verified using the monotonicity 

inequality which were proposed by Balke and Pearl (Balke and Pearl, 1997) . The 

independence assumption was validated using covariate balance presented by standardised 

mean difference (SMD). Variables with the SMD less than 0.1 are considered as balanced 

variables (Austin, 2009).  
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6.5.2 Results   

6.5.2.1 Validation of IV assumptions 

 

The F-statistics of the instrumental variable is 101.765 (see Table), far exceeding the 10 

threshold and indicating a strong instrumental variable (Stock and Yogo, 2002). Figure S10 

in supplementary material indicates that the dichotomised PPP IV reduced the SMD of all 

covariates to under 0.1 which can be treated as the IV reduces the imbalance among 

covariates indicating the independence assumption is likely to hold. 

 

6.5.2.2 Descriptive statistics of the study population. 

 

After applying the inclusion and exclusion criteria in the protocol, there are 3789 individuals 

in Scotland who have been diagnosed with T2DM and received second-line treatment of 

DPP-4 inhibitor or SU between 2014 and 2019. SU was much more prescribed that DPP-4 

inhibitor (four times more). Patients treated with SU had on average, higher levels of baseline 

HbA1c than patients treated with DPP-4 inhibitor. This may be because SU is a more 

traditional choice than DPP-4 inhibitor. Besides, SU group is more comorbid than the DPP-4 

inhibitors group which is consistent with the baseline characteristics found in other studies 

(Chung et al., 2019, Eriksson et al., 2016). There are 2.7% of missing values in BMI (see 

Table 13). 
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Table 13. Descriptive statistics of the study population 

 

6.5.2.3 OLS and 2SLS estimates 

 

Although I followed the current observational studies to decide the covariates used in the 

models, Tennant argued that adjusting the baseline value is source of biased causal inference, 

except for in the RCT or the baseline value is not mediating the exposure, or being the 

competing risks (Tennant et al., 2021). While Glymour argued that this conclusion cannot be 

generalised (Glymour, 2022). Therefore, I presented results with or without adjusting 

baseline HbA1c in Table 14.  
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7 

Table 14. OLS, propensity score and 2SLS estimates.  

 

In Table 14, the OLS inferential results show that those prescribed SU have, on average, 

more HbA1c reduction compared to those prescribed DPP-4 inhibitors (2.56, 95% CI: 1.07-

4.04). The baseline HbA1c value is highly associated with the change of HbA1c. Patients 

with one unit higher in baseline HbA1c level is more likely to have 0.84 more unit in the 

reduction of HbA1c (95% CI: 0.81-0.87). In the case of not adjusting the baseline value, the 

treatment effect from SU is statistically significant with a level of HbA1c 8.89 units higher on 

average in the reduction of HbA1c than DPP-4 inhibitors. This trend is also seen in the 

propensity score results. 2SLS show the opposite results indicating DPP-4 inhibitors is 

associated with more reduction in HbA1c, but with wide confidence intervals. Note that, for 

the estimates from 2SLS, adjusting or not adjusting baseline HbA1c value does not show 

strong evidence of difference, as they are statistically insignificant with wide confidence 

intervals. 

 

  

 
7 OLS_1 and 2SLS_1 are the models adjusting baseline HbA1c. While OLS_2 and 2SLS_2 are models without adjusting 

baseline HbA1c. 
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6.5.2.4 Marginal treatment effect 

 

The marginal treatment effect results are shown in Table 15. Note that 2SLS estimates the 

LATE for the complier group where the treatments received are determined by the 

instruments. I conducted MTE methods to extrapolate LATE nonparametrically using the 

same dichotomised PP IV. The IV estimates show that the patients who were given SU had 

less reduction in HbA1c. Neither ATE nor LATE is statistically significant. The difference 

between LATE and ATE is due to heterogeneity of treatment effects that affects the treatment 

decision (Fang et al., 2012). For example, patients with higher expected benefits tend to get 

the medication. It can be seen from Table 15 after adjusting for baseline HbA1c, the 

estimated LATE became larger than the estimated ATE. One possible reason is that the 

decision of the treatment changed after taking the baseline HbA1c level into account. The 

noticeable difference between the LATE without adjusting baseline HbA1c and LATE 

adjusting baseline HbA1c may suggest violations of IV assumptions. Note that the estimates 

from LATE and ATE are not statistically significant, there is no strong evidence of 

differences between these two approaches. 

 

Model LATE (95% CI) ATE (95% CI) 

Without adjusting baseline 

HbA1c 

 

-5.862  

(-28.913- 18.773) 

p value: 0.649 

-16.880  

(-55.009-23.107) 

p value :0.353 

Adjusting baseline HbA1c 

 

-26.207  

(-56.514- 3.197) 

p value: 0.094 

-16.205  

(-38.241-4.050) 

p value: 0.144 

Table 15. Average treatment effect and local treatment effect estimated by MTE methods. 95% 

CI was bootstrapped by 1000 times. 
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6.5.2.5 Sensitivity analysis for the unmeasured confounding 

 

A sensitivity analysis for the unmeasured confounding was conducted. The sensitivity 

analysis was conducted using R function ‘sensemakr’(Cinelli et al., 2021). As it shows in 

Figure 11 in supplementary material, the potential unmeasured confounder needs to explain 

at least 5.2% of the residual variance of treatment and outcome to make the estimated 

treatment cross the null hypothesis. The result from Wu-Hausman test is presented in Table 

S9. It shows that null hypothesis cannot be rejected. There is no significant difference 

between OLS estimate and 2SLS estimate. 
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6.6 Approach 2  

6.6.1 Method 

 

Two binary outcomes are defined to measure the effectiveness of SU and DPP-4 inhibitors in 

reducing HbA1c level (Canivell et al., 2019). One binary outcome is defined based on 

whether the HbA1c level had been reduced to less than 42mmol/mol at which point non-

pregnant patients can be considered free of T2DM. Another binary outcome is defined as 

whether HbA1c level had been reduced to less than 47 mmol/mol which is considered as at 

high risk of T2DM or prediabetes (NICE Guideline 2022). The statistical methods are logistic 

regression and 2SRI. As one of the nonlinear extensions of the two-stage approaches, 2SRI is 

used to estimate the treatment effect for the binary outcomes. The first stage of 2SRI is the 

same as in the 2SLS, while the second stage adds the residual from the first stage as an 

additional covariate instead of using the predicted treatment from the first stage. Because of 

the noncollapsibility of OR, the stratified ORs may not be the weighted average sum of 

unadjusted OR (Pang et al., 2016), the results from unadjusted logistic regression are also 

presented (Schuster et al., 2021). 

 

6.6.2 Results 

6.6.2.1 Validation of IV assumptions 

 

In terms of the binary outcomes, I conducted the validation of monotonicity assumption and 

independence assumption using the monotonicity inequality and IV inequality described in 

section 2.2.4. As it shows in Table S9 in supplementary material, using 1-year prescription 

history as IV may violate the monotonicity assumption when HbA1c less than 42 mmol/mol 

as outcome. I conducted the same test for different forms of IV and found out that using prior 

200 days prescription as IV make both IV equality and monotonicity inequality hold. 
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6.6.2.1 non-IV results from logistic regression  

 

As it can be seen from Table 16, SU is associated with higher odds compared to DPP-4 

inhibitor of being reduced to less than 42 mmol/mol (OR= 1.98). The unadjusted logistic 

regression shows similar estimated OR. Note that SU is not shown effective in reducing the 

HbA1c to prediabetic state.  

 

Outcome  Unadjusted logistic 

regression  

(95% CI) 

Adjusted logistic 

regression. 

(95% CI) 

HbA1c level less than 42 

mmol/mol 

2.42 (1.42-4.53) 

p value ：0.003 

1.98 (1.15-3.73) 

p value: 0.022 

HbA1c level between 42 to 

47 mmol/mol. 

1.38 (1.05-1.86) 

p value:  0.027 

1.22 (0.91-1.65) 

p value: 0.188 

Table 16. Estimated OR from logistic regression. 
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6.6.2.2 2SRI results 

 

As I previously mentioned, given that 1-year prescription may not be valid IV in the 

validation of monotonicity assumption, I conducted 2SRI for multiple forms of IV by taking 

different lengths of prescription history into account. It can be seen from Table 17, the 

estimated OR using prior 200 days as PPP IV is not much different from that using 1-year 

prescription as IV. 2SRI estimates show that SU is associated with higher odds of reducing 

HbA1c to less than 42 mmol/mol. At the same time, the SU is associated with lower odds of 

reducing HbA1c to 42 to 47 mmol/mol.  



The proportion of 

SU prescribed 

during N days before 

the first prescription 

of second-line 

treatment (IV) 

Strength of IVs (in F-

statistics) 

2SRI estimate (OR) 

for reducing HbA1c 

level less than 42 

mmol/mol. 

(95% CI) 

2SRI estimate (OR) 

for reducing HbA1c 

level to between 42 

to 47 mmol/mol. 

(95% CI) 

N=120 52.964 2.943  

(0.215-40.808) 

p value: 0.417  

0.333  

(0.0785-1.372) 

p value:  0.131 

N=200 74.193 5.289  

(0.533-45.540) 

p value: 0.136 

0.245  

(0.0581-0.967) 

p value: 0.0499 

N=365 101.765 5.097  

(0.570-45.679) 

p value:0.142 

0.288  

(0.0800-0.994) 

p value: 0.0524 

N=480 92.817 6.189  

(0.787-45.610) 

p value: 0.0743 

0.223  

(0.0597-0.789) 

p value:  0.0228 

N=600 110.970 8.185  

(1.023- 68.478) 

p value:  0.0476 

0.190  

(0.0534-0.648) 

p value:  0.00906 

Table 17. 2SRI estimates of binary outcomes. 
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6.7 Discussion  

 

The results from 2SRI and logistic regression provide real-world evidence that there is a 

difference in effectiveness of SU and DPP-4 inhibitors in reducing HbA1c level as second-

line treatments for T2DM in Scotland from 2014 to 2021. It is inconsistent with the 

conclusion from the benchmark RCT used in this chapter (RD: 0.20, 95% CI: -0.90-1.30) 

which indicate that there is no statistical difference in the effectiveness of SU and DPP-4 

inhibitor (Nauck et al., 2007). There are also inconsistencies in the wider evidence base 

where DPP-4 inhibitor is proven not superior (Esposito et al., 2011, Foroutan et al., 2016). 

Besides, there are also studies suggesting that DPP-4 inhibitor is superior to SU in controlling 

the glycaemic level (Fadini et al., 2018). DPP-4 inhibitor may be more cost-effective than SU 

(Ruan et al., 2022) and decreases more BMI (Gottlieb et al., 2017). 

 

In some studies, SU is considered riskier in terms of causing hypoglycaemia (Khunti et al., 

2021, Foroutan et al., 2016). However, there are researchers that hold the opposite view 

(Mohan et al., 2020). Despite SU being shown to be associated with higher risk of CVD 

(Khunti et al., 2021, Wang et al., 2022), a more recent cohort study from Scottish National 

data proved that SU is not associated with higher risk of cardiovascular death or all-cause 

death than the DPP 4-inhibitor and SGLT2-inhibitor (Wang et al., 2023). They tend to agree 

SU should remain inside the treatment portfolio. Besides, results from a nationwide cohort 

from Korea indicated the DPP-4 inhibitor does not show statistical difference in the risk CVD 

death and renal outcome and associated with higher risk of hospitalisation of heart failure in 

comparison with SU (Kim et al., 2019).  
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In terms of the difference in effect sizes in Nauck’s study and this chapter, I critically 

appraise it from two different aspects. First, the study cohort is not totally comparable with 

Nauck’s study. I included Charlson Comorbidity Index (CCI) in the dataset to adjust for more 

potential confounders (Hernán et al., 2016). Additionally, I included four types of DPP-4 

inhibitor and five types of SU which are available in SDRN to enlarge the cohort sample size 

(listed in the Table 12). I did not consider whether the patients switched back to metformin 

monotherapy after second-line treatment within a short period of time for the same purpose 

(i.e., adhered to intention to treat principle). I also relaxed several criteria to increase sample 

sizes. I set a three-month time-window for the one-year follow-up HbA1c. Secondly, there 

are essential differences between RCT and target trial emulation. I cannot emulate ‘double 

blindness’ of RCTs in observational studies (Labrecque and Swanson, 2017). Another 

important difference between RCT and target trial emulation is that eligibility assessment and 

treatment assignment happen at the same time (at time zero) in RCT but not in target trial 

emulation. When interpreting the discrepancy between the results from RCT and target trial 

emulation, one need to consider the inconsistency between time zero and time of eligibility 

assessment which is a cause of bias, including immortal time bias (Hernán et al., 2016).   

 

In terms of whether or not to adjust for the baseline HbA1c as a covariate, I presented results 

in both ways and the results were sensitive to this choice. Since the baseline HbA1c level is 

highly associated with the change of follow-up HbA1c (Scheen, 2020), I tend to agree with 

the results with the baseline HbA1c need to be adjusted for in the regression model.  
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In this chapter, I conducted 2SLS and 2SRI for the numerical outcome and binary outcome 

respectively. There are discussions on the comparison between 2SLS and 2SRI in multiple 

settings where 2SLS is widely proven consistent in the estimation of LATE but tend to be 

inconsistent in the estimation of ATE (Chapman and Brooks, 2016, Basu et al., 2018, Terza, 

2018). They pointed out non-linear 2SRI are more likely to be biased in terms of estimating 

LATE (Chapman and Brooks, 2016). However, this can be improved by choosing the right 

forms of residuals (Terza, 2018, Garrido et al., 2012). It shows a great difference in terms of 

estimation of treatment effect between 2SLS and 2SRI. The estimation from 2SRI is 

statistically significant and comparable with results from logistic regression. 2SLS does not 

show any effectiveness differences while 2SRI reveals noticeable difference. This 

inconsistency indicates that investigators may need to consider different forms of outcome 

when implementing IV approaches. However, they also need to take the limitations of non-

linear 2SRI into account, for example the functional assumption which is hard to validate in 

terms of using binary IVs (Terza, 2018).  
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6.8 Strengths and Limitations   

 

One strength of this study is that SDRN is a national data including all patients with T2DM in 

Scotland, therefore no selection bias exists due to, for example, location or socioeconomic 

status. Another strength is that this study implemented target trial emulation to make the 

study cohort closer to RCT. Besides, I considered a stronger list of covariates by adding 

baseline HbA1c and CCI. I also considered different forms of the outcomes which gave both 

relative risk and absolute risk difference representations.   

 

One limitation of this study is that I only investigated two types of second-line treatments. A 

relatively new type of second-line treatment, SGLT-2 inhibitor, has been shown to be more 

effective than DPP-4 inhibits and SU in some studies (Wilding et al., 2018). In the routine 

data set used in this study (follow-up from 2014 to 2019), SGLT-2 inhibitor had not been 

prescribed much in Scotland until 2021. A further limitation is that I focused on the intention-

to-treat estimator without considering the cases of switching treatments. According to a 

recent cohort study in the US, the discontinuation rate for SU is high while DPP-4 inhibitors 

have better persistence rate (Tan et al., 2021). Apart from the consideration of the strength of 

the CER, there are studies indicate that the reduction of HbA1c level should not be a 

measurement of clinical efficacy of add-ons to metformin (Scheen, 2020). 

 

6.9 Conclusion 

 

This target trial emulation concludes that SU is statistically significant superior to DPP-4 

inhibitors in controlling HbA1c level after adjustment for measured potential confounding. 

SU has been shown to be more effective in reducing HbA1c level to less than 42 mmol/mol 

level than DPP-4 inhibitors in logistic regression and 2SRI for the binary outcome. The 

faculty-level prescribing preference can be a valid instrument, however, 2SLS and MTE did 

not give statistically significant results due to the sample size not being large enough to 

accommodate the IV approach.  
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Chapter 7. Assessing the performance of Physician’s Prescribing Preference as an 

instrumental variable in Comparative Effectiveness Research with moderate and small 

sample sizes: a simulation study 

 

7.1 Publication details  

 

• This chapter had been submitted for publication in Journal of comparative 

effectiveness (under review) 

• Abstract of this work has been presented at the 13th Asian Conference on 

Pharmacoepidemiology (ACPE 2021). Record can be found on the website: 

https://www.asianpharmacoepi.org/wp-content/uploads/2022/12/ACPE13-ePoster-

abstracts.pdf. 
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7.2 Abstract 

Background 

Instrumental variable (IV) analyses are used to account for unmeasured confounding in 

Comparative Effectiveness Research (CER) in pharmacoepidemiology. To date, simulation 

studies assessing the performance of IV analyses have been based on large samples. 

However, in many settings, sample sizes are not large. 

Objective  

In this simulation study, we assess the utility of PPP as an IV for moderate and smaller 

sample sizes. 

Methods 

We designed a simulation study in a CER setting with moderate (around 2500) and small 

(around 600) sample sizes. The outcome and treatment variables were binary, and three 

variables were used to represent confounding (a binary and a continuous variable 

representing measured confounding, and a further continuous variable representing 

unmeasured confounding). We compare the performance of IV and non-IV approaches using 

two-stage least squares (2SLS) and ordinary least squares (OLS) methods, respectively. 

Further, we test the performance of different forms of proxies for PPP as an IV. 

Results 

The PPP IV approach results in a percent bias of approximately 20%, while the percent bias 

of OLS is close to 60%. The sample size is not associated with the level of bias for the PPP 

IV approach. However, smaller sample sizes led to lower statistical power for the PPP IV. 

Using proxies for PPP based on longer prescription histories result in stronger IVs, partly 

offsetting the effect on power of smaller sample sizes. 

Conclusion  

Irrespective of sample size, the PPP IV approach leads to less biased estimates of treatment 

effectiveness than conventional multivariable regression adjusting for known confounding 

only. Particularly for smaller sample sizes, we recommend constructing PPP from long 

prescribing histories to improve statistical power.  

Keywords:  simulation study, comparative effectiveness research, instrumental 

variables, Physician’s prescribing preference 
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7.3 Introduction 

 

As a source of natural variation, PPP has been increasingly used as an IV in CERs (Brookhart 

and Schneeweiss, 2007). Multiple simulation and applied studies have discussed the use of 

PPP in comparing the effectiveness of two drug classes. In many recent applied papers about 

PPP IV, they have large sample sizes of around 30,000 (Kuo et al., 2012, Davies et al., 2020, 

Kollhorst et al., 2016, Taylor et al., 2017). However, in many contexts the sample size will be 

smaller, for example, Nelson and colleagues conducted a PPP study of HIV using a sample 

size of less than 2000 (Nelson et al., 2013). Smaller sample sizes are likely to occur in studies 

of rare outcomes or where drugs have only recently become available (e.g., in a single 

administrative area). 

 

Boef and colleagues argued that the sample size put limits on the performance of IVs (Boef et 

al., 2014). Further, they concluded that the bias in IV estimates relative to conventional 

approaches (e.g., OLS) is determined both by the strength of the IV as well as the strength of 

unmeasured confounders.  With an aim to widen the applicability of PPP IV, we test the 

performance of the method in moderate and small sample sizes using a simulation study. 
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7.4 Method 

7.4.1 Statistical analysis approaches 

 

In order to be comparable with OLS, we use 2SLS as the main statistical method to generate 

the IV estimates of treatment effectiveness. Despite the fact that 2SLS may cause model 

misspecification for binary outcomes and treatment, the 2SLS is the most common method 

and a common starting point for the IV method (Zhang et al., 2018). In addition, in many 

settings, when the outcome is not rare, 2SLS generates similar estimates to non-linear two 

stage regression (prevalence between 1.5% to 50%) (Ionescu-Ittu et al., 2009). 

 

A summary of how performance was assessed is shown below (See Table 18). We use 

percent bias to assess the performance of PPP IVs for different levels of unmeasured 

confounding. The strength of IV is calculated as the F-statistics of the first stage. We use the 

coverage rate to compare the stability of OLS and 2SLS at the different levels of unmeasured 

confounding. 

 

Measurement  Calculation   

Percent bias   𝑡𝑟𝑢𝑒 𝑅𝑖𝑠𝑘 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑖𝑠𝑘 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑡𝑟𝑢𝑒 𝑅𝑖𝑠𝑘 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
*100% 

Coverage rate   % of iterations when 95% CI includes the true risk difference 

across 1000 simulations  

F-statistics of the 

first stage regression 

F-statistics =
𝑆𝑢𝑚 𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝑀𝑜𝑑𝑒𝑙/𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝐹𝑜𝑟 𝑀𝑜𝑑𝑒𝑙

𝑆𝑢𝑚  𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟/   𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟
        

=
𝑀𝑒𝑎𝑛  𝑜𝑓  𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝑀𝑜𝑑𝑒𝑙

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟𝑠
 

Table 18. Measurement of performance. 
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7.4.2 Simulation design 

7.4.2.1 Study population 

 

For the moderate sample size study, we set the number of physicians to 80, the lower bound 

of the number of patients/physicians was 10 and the upper bound of patients/physician was 

50. The overall sample size in this case is 2453. For small sample size study, the number of 

physicians is set to 20. The sample size is 620. The prevalence of outcomes varies between 

20% to 60%.  

 

7.4.2.2 Treatment and outcome  

 

In this paper, we focus on scenarios where the treatment and outcome are both binary.  

The formula for the probability of being prescribed a certain treatment (X = 1) and the 

probability of the outcome of interest (Y = 1) are listed below: 

 

𝑃𝑟𝑜𝑏 𝑋 = 1 = 𝛼0 + 𝛼𝑧𝑃𝑃𝑃 + 𝛼1𝑋1 + 𝛾𝑥𝑋2 + 𝛼3𝑋3 

𝑃𝑟𝑜𝑏 𝑌 = 1 = 𝛽0 + 𝛽𝑥 ∗ 𝑃𝑟𝑜𝑏 𝑋 = 1 + 𝛽1𝑋1 + 𝛾𝑦𝑋2 + 𝛽3𝑋3 

 

PPP stands for IV. We set PPP 70% of chance equals to 1, 30% of chance equals to 0. This 

imbalance reflects a common situation that treatment providers tend to prefer one type of 

treatment than another (perhaps based on following clinical guidelines). 𝑋1 is a binary 

covariate, and 𝑋2, 𝑋3  are continuous covariates. We assume 𝑋1 and 𝑋3 are measured 

covariates and 𝑋2 is an unmeasured covariate. In the data generation process, 𝑋1 follows 

binominal distribution, 𝑋2 and 𝑋3 follows the normal distribution. These are implemented 

using R functions rbinom and rnorm (please see the R code in supplementary material for full 

details). 𝛼𝑧 controls the strength of association between the instrumental variable and 

exposure. The PPP is the ‘true’ prescribing preference that in practice is a latent variable and 

is a binary variable. The parameter values for the data generation process are listed in 

equation (1) and (2). 
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The focus of this study is to investigate the impact of unmeasured confounding. Therefore, 

we keep 𝛼𝑧=0.4 to ensure the IV strength is fixed. The parameter value for treatment in 

equation (2) is 0.1 and this represents the ‘true’ risk difference between the two treatments. 

𝛽𝑥 is the observed estimate of this risk difference.  

 

[𝑃𝑟𝑜𝑏 𝑋 = 1 ] = 𝛼𝑧𝑃𝑃𝑃 + 0.053𝑋1  + 0.1 𝑋2  + 0.02𝑋3                                              1  

[𝑃𝑟𝑜𝑏 𝑌 = 1 ] = 0.10 ∗ 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 0.04𝑋1  + 𝛾2𝑋2  + 0.01𝑋3  − 0.01                2  

 

Drawn from the existing literature (Davies et al., 2013a, Davies et al., 2020, Brookhart and 

Schneeweiss, 2007, Taylor et al., 2017), we constructed the proxies for PPP mainly based on 

the prescription history. The prior 1 to prior 4 prescriptions are investigated in this study. The 

prior 1 prescription is the most recent prescription made by the same physician. Likewise, the 

prior 2 prescription is prior 2 prescriptions from the same physician and the same for prior 3 

and prior 4 prescriptions. For example, possible values for prior 4 prescriptions are 0,1,2,3,4. 

The proportional PPP is the number of certain treatment (X=1) divided by the number of all 

prescriptions made by this physician (See Equation 9).  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑃𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑟𝑢𝑔 𝐴 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑜𝑛𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛
 

Equation 9. Calculation of the proportional PPP 

 

All analysis is done in R studio using R version 3.6.1. The R code that generates the 

simulated datasets and the regression models can be seen in GitHub link provided in 

supplementary material.  
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7.5 Results 

 

Figure 10 presents the percent bias of the 2SLS and OLS in moderate and small sample sizes.  

OLS is subject to unmeasured confounding bias. In the case of a lower unmeasured 

confounding level, the 2SLS is more biased than OLS. The advantage of 2SLS appears after 

the level of the unmeasured confounding increases. The sample size does not influence the 

percent bias in general. 

 

 

Figure 10. Percent bias of 2SLS and OLS. 
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The coverage rate shows that that the 2SLS covers nominal 95% while the coverage rate of 

OLS drops dramatically in both sample sizes (see Figure 11).  This can be explained by 

Equation 10 where the difference between the variances of OLS estimates and variances of 

IV estimates is defined by the value of the correlation between the treatment and the IV (𝜌X,Z) 

(Martens et al., 2006). The value of correlation between the treatment and IV are no larger 

than 1 which make the variance of IV larger than that of the OLS.  

 

Equation 10. Variance of IV estimate (2SLS) and OLS estimate.𝜎𝑌,𝑋
2 :The residual variance of 

the outcome after adjusting the treatment (X); 𝜎𝑋
2: The variance of the treatment; 𝜌𝑋,𝑍

2 : The 

correlation between the treatment(X) and the instrumental variable (Z). 



131 
 

 

 

Figure 11. Coverage rate across 1000 times simulation. The blue intercept line represents the 

nominal 95% 

The strength of the IV increases, and the p value of the 2SLS estimate decreases, as the 

number of previous prescriptions used in the PPP construction increases (See Figure 12). The 

level of unmeasured confounding does not influence these results. However, the strength of 

IV decreases noticeably when the sample size decreases. The relation between the F-

statistics, sample size and the correlation between the treatment and the IV is shown in 

Equation 11. From the simulated data,  𝜌𝑧𝑥  does not change much in these two cases (around 

0.14 to 0.15) indicating that the strength of the association between the exposure and IV does 

change. Rather, it is the sample size that decreases the F-statistics and makes the IV weaker 

(Martens et al., 2006). The p values of 2SLS in N=620 sample are consistently larger than 

that of N=2,452 which means the statistical power of 2SLS is limited by the sample size. 
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Equation 11. 𝜎𝑋
2: The variance of the treatment; 𝜌𝑍,𝑋

2 : The correlation between the 

treatment(X) and the instrumental variable (Z). 

 

Figure 12. p values of OLS and 2SLS estimates. 
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As an IV, the true preference (PPP in the model (1)) also shows a strong ability to reduce the 

unmeasured confounding bias. The F-statistics of true preference reaches 500 which is much 

higher than all proxies mentioned above which align with the finding from Ionescu‐Ittu et al. 

(Ionescu-Ittu et al., 2009) that the true preference has the smallest variance. The p values for 

2SLS estimates are close to conventional statistical significance (p value <0.05). The bias-

variance trade-off for IV methods also exist for the ‘true preference’ but not as critical as for 

the proxy PPP indicating stronger instrument reduces the variance of instrumental variable 

estimates (Ionescu-Ittu et al., 2012).  For the reason that time cannot be simulated, we test the 

time-fixed proxy for PPP (proportional preference).  It turns out that the proportional 

preference is the strongest IV among these proxies. It is associated with the smallest p value 

which leads to the 2SLS estimates having small p values. 
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Figure 13. 95% Confidence intervals of OLS and 2SLS estimates (95% CIs are calculated using 

cluster robust standard errors). The red line represents the null hypothesis.  

 

As summarised in Figure 13, 95% CIs of IV estimates narrow as the strength of instruments 

increases (from prior 1 prescription to the proportional preference). As discussed above, the 

95% CIs of OLS estimates are narrower than for 2SLS, and this is also shown in Figure 4. It 

can also be seen that the OLS estimates are severely biased when the unmeasured confounder 

covariate parameter (𝛾2) is set at a high level. Although the IV estimates are generally less 

precise, it is feasible when the IV is strong enough that an IV estimate can achieve statistical 

significance while at the same time reducing the influence of unmeasured confounding bias. 
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7.6 Discussion  

 

The sample size limits the performance of IVs (Boef et al., 2014, Martens et al., 2006). A 

straightforward explanation for this is that smaller sample sizes make it harder for the IV to 

meet the relevance assumption. In real life CERs, sample sizes are often large enough which 

can avoid such pitfalls, but when the outcome of interest is rare, or a drug has only recently 

become available the corresponding CERs will have smaller sample sizes. This simulation 

aimed to test the performance PPP IV on the different level of unmeasured confounding level 

and generate supporting evidence that the PPP IV can perform well in reducing bias in 

studies of moderate or small sample sizes. 

 

Our results show that 2SLS does reduce the unmeasured confounding to a considerable extent 

compared to conventional analyses even in a small sample size. At the same time, the 

standard deviation of 2SLS estimates is generally many times larger than OLS and the 

confidence interval wide and crossing the null hypothesis. However, if the instrumental 

variable is strong enough, 2SLS estimates could be statistically significant.  In terms of 

reducing bias, the sample size is not the determinant as it does not impact percent bias. 

Nevertheless, the sample size does limit the statistical power.  In a smaller sample size, the 

difference of percent bias from 2SLS and OLS can still be an indicator to see if an 

unmeasured confounding is a major problem although the weak statistical power makes the 

2SLS estimate less useful. 

 

The results of this simulation study show that using PPP as an IV is effective at minimising 

bias caused by unmeasured confounding relative to only adjusting for measured confounding 

in CER. The PPP is a latent variable that cannot be measured directly using routinely 

collected data (Brookhart and Schneeweiss, 2007). Our results show that increasing the 

number of previous prescriptions used in constructing the PPP leads to power gains which 

could be particularly important for studies with small or moderate sample sizes. It is worth 

noting that using PPP with only one previous prescription is a popular strategy in the applied 

literature. According to our results, prior 2, prior 3, prior 4 and the proportional IV performs 

better than prior one since the IV strength increases as we account for longer prescription 

history. It is worth pointing out that by using a larger history in calculating PPP, this 

implicitly assumes that a physician’s preference does not change over time. This can be 

empirically tested using study data.    
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Baiocchi and colleagues suggest that researchers should consider the necessity for using IV 

method to account for unmeasured confounding. If the unmeasured confounding is small, IV 

methods may not be necessary (Baiocchi et al., 2014). I support this conclusion with my 

simulation results. According to the figures, it is quite noticeable that there a threshold where 

the per cent bias of conventional methods become larger than that of IV methods. If we 

conduct IV methods at those points, the IV estimates may not be reliable, especially when we 

use 2SLS (see the 2SLS vs. OLS figure when the 𝛾2 equals 0) to compare with the OLS.  

 

The limitation of this study mainly rests on the simplicity of the design. By moderate sample 

size, we used approximately 2500 which is derived from a research study the authors led on 

investigating prescribing for alcohol dependence in Scotland. Also, I reviewed the sample 

sizes that in the current CERs papers that focus on the PPP IV and found that most of them 

are above 10,000.  I did not consider survival analysis including censored outcomes 

(Tchetgen et al., 2015) or non-linear two-stage approaches, like two-stage predictor 

substitution and two-stage residual inclusion, in the simulation design. Finally, I need to 

emphasise that an essential limitation of studying the time-based proxies for IVs is that the 

time cannot be truly simulated as all data generated at the same time. The prior 1,2,3,4 

prescription proxy estimates are based on real time in applied studies. Strictly speaking, this 

simulation demonstrates valid proxies for PPP IV, rather than the “true” prior 1,2,3,4 

prescriptions as proxies.  

 

7.7 Conclusion 

 

Using PPP as an IV for CER is less biased than conventional approaches and can achieve 

adequate statistical power in smaller sample sizes if the IV strength is high enough. If it can 

be assumed that a physician’s prescribing preference does not change over time, we 

recommend constructing PPP using entire prescribing history to gain power. 
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Chapter 8. Comparing the performance of two-stage prediction substitution and two-

stage residual inclusion methods when using physician’s prescribing preference as an 

instrumental variable in comparative effectiveness research. 

 

8.1 Publication details 

 

This chapter had been submitted for publication in Journal of comparative effectiveness 

(under review). 

 

8.2 Abstract 

 

Background 

Instrumental variable (IV) methods are widely used to address unmeasured confounding 

concerns in comparative effectiveness research (CER). When the outcome variable is binary, 

two-stage residual inclusion (2SRI) and two-stage prediction substitution (2SPS) are the most 

commonly used two-stage non-linear IV methods. To date, CER studies focus on the 

comparison between conventional methods (e.g., multivariable regression, propensity scores) 

and IV methods in terms of their capability of reducing unmeasured confounding bias. 

However, the concern of noncollapsibility effects in non-linear settings has been overlooked. 

Objective 

The first objective is to compare the performance of 2SRI, 2SPS with the multivariable 

generalised linear model (GLM) in terms of the reducing unmeasured confounding bias. The 

second objective is to demonstrate the ability of 2SRI and 2SPS in alleviating unmeasured 

confounding when noncollapsibility exists. 

Methods 

This study comprises a simulation study and an empirical example from a real-world UK 

population health data set (Clinical Practice Research Datalink). The IV used is based on 

physicians’ prescribing preferences (defined by prescribing history).  
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Results 

We found the percent bias of 2SRI in terms of treatment effect estimates to be lower than 

GLM and 2SPS and was less than 15% in most scenarios. Further, 2SRI was found to be 

robust to mild non collapsibility with the percent bias less than 50%. As the level of 

unmeasured confounding increased, the ability to alleviate the noncollapsibility decreased. 

Strong IVs tended to be more robust to noncollapsibility than weak IVs. 

 

Keywords: noncollapsibility, unmeasured confounding, instrumental variables, Physician’s 

prescribing preferences, two-stage prediction substitution, two-stage residual inclusion.  

 

 

 

  



139 
 

 

8.3 Introduction  

 

In order to address unmeasured confounding bias concerns in observational CERs, the IV 

approach is widely used. In this approach, the most commonly used estimation method is the 

2SLS which consists of two stage linear regression. The 2SLS estimator is normally 

consistent when the outcome measure is represented as a numerical variable (Palmer et al., 

2017). However, if one requires to estimate the treatment effect using an OR for a binary 

outcome, the method needs to be adapted to the non-linear setting. One such approach is two-

stage predictor substitution (2SPS). The first stage regression of 2SPS is treatment regressed 

upon the covariates; the second stage is the outcome regressed upon predicted results from 

the first stage together with covariates. 

 

Another non-linear method, two-stage residual inclusion (2SRI), has the same first stage 

regression as 2SPS, but use the residuals from the first stage as an additional covariate in the 

second stage. It was firstly introduced by Hausman (Hausman, 1978) in order to test 

endogeneity in the linear context. Currently, there are simulation studies (Terza et al., 2008a, 

Terza, 2018, Cai et al., 2011) as well as real-world studies that provide evidence for the 2SRI 

being generally less biased than 2SPS when estimating a treatment effect in the presence of 

unmeasured confounding. However, unlike risk difference, odds ratio, is not collapsible 

which means that it cannot always be expressed as the weighted average of stratum-specific 

OR. This characteristic also refers to noncollapsibility (Schuster et al., 2021, Pang et al., 

2016, Greenland et al., 1999). For example, if one adjusts for covariates that are not 

associated with both outcome and treatment in a logistic regression model (i.e., not a true 

confounder), the adjusted OR may differ from the unadjusted OR. Therefore, in such contexts 

the difference between adjusted and unadjusted logistic regression consists of is made of two 

parts: confounding effect and noncollapsibility effect.  
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In terms of using PPP as an IV and applying the 2SRI method, Koladjo et al. concluded that 

2SRI is less biased than IV based GMM (Koladjo et al., 2018) in estimation of treatment 

effect. It is widely acknowledged that 2SPS is not superior to 2SRI in terms of dealing with 

endogeneity in health research (Cai et al., 2011, Terza et al., 2008a). However, there are also 

studies indicating that 2SRI produces biased estimates of average treatment effect (ATE) and 

local average treatment effect (LATE), compared with 2SLS (Basu et al., 2018). In this study, 

I focused on the non-linear settings. For the conventional approaches which do not account 

for the unmeasured confounding issue, I chose the generalised linear model (GLM) as it is a 

one of the most intuitive approaches in non-linear settings. There are two objectives in this 

study: 1) Compare 2SRI and 2SPS with the generalised linear models (GLMs), which can 

only adjust for measured confounders, in a drug comparison simulation study using 

physician’s prescribing preference as instrumental variable in the presence of unmeasured 

confounding bias; 2) Test the robustness of 2SRI to noncollapsibility, using simulated data 

and real-life data from a real-world UK population health data set (CPRD). 

 

8.4 Method 

8.4.1 Data generating process. 

 

In order to construct an observational CER, I set the total number of physicians as 80. The 

patients per physicians is in range from 10 to 50. The simulated data consists of 2,442 records 

(n=2,442). 𝑋1 and 𝑋2  are the measured confounders. ‘un’ is the unmeasured confounder. The 

R code for constructing the treatment (X) and the outcome (Y) is listed in Box 1 (for the 

details see GitHub link provided in supplementary material). 
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 Research objective 1 

      𝑋1   <- rbinom(n, 1, 0.6) 

      𝑋2  <- rnorm(n,13,2) 

      un<- rnorm(n, 1,2)         

      x<- 4*PPP+0.2* 𝑋1 + 0.53*𝑋2-3.5+1.1*un 

      ptxA= exp(x)/(1+exp(x)) 

      txA <- rbinom(n, 1,ptxA) 

      y<- -0.9*txA-0.02*𝑋1 -0.6*𝑋2 - 𝛾2*un 

      pout <- exp(y)/(1+exp(y)) 

      out <- rbinom(n, 1,pout) 

Research objective 2 

     𝑋3  <- rnorm(n,10,1) 

     x<- 4*PPP+0.2*𝑋1  + 0.53*𝑋2  -3.5+1.1*un+0*𝑋3   

      ptxA= exp(x)/(1+exp(x)) 

      txA <- rbinom(n), 1,ptxA) 

      y<- -0.9*txA-0.02*𝑋1  -0.6*𝑋2  -𝛾2*un +𝛾3*𝑋3   

Box 1. R code for the data generation 

𝑋3  in research objective 2 is the variable that induces the noncollapsibility effect which is 

based on a scenario that the variable is associated with the outcome but not associated with 

the treatment (Schuster et al., 2021). 𝑋3 is formed with a mean value of 10 and 1 as standard 

deviation to ensure an adequate non-collapsibility effect. I used the 𝛾2 (ranges from 0 to 1.9) 

to control the unmeasured confounding level and 𝛾3 (ranges from 0 to 0.95) to control the 

level of noncollapsibility effect. The PPP IV is formed by the prior n prescription of drug A 

and divided by n prescribed by the same physician. The strength of IV is tested using the F-

statistics. All assumptions of a valid IV are assumed to be met in this simulated dataset.  
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8.4.2 Study design 

 

According to recent studies, 2SRI is sensitive to the choice of residuals (Basu et al., 2018). In 

this study, I selected Pearson residuals to be used in the second stage of regression after 

initial analysis using raw residuals (results from raw residuals are extremely biased and not 

shown in this thesis). Percent bias and coverage rate are used to measure the performance of 

the estimation methods (See Table 19). In order to obtain more precise estimates, each 

simulation is run for 1000 times. All simulations and statistical analyses are conducted using 

R version 4.1.1. 

Measurement  Calculation   

Percent bias (in 

GLM, 2SRI, 

2SPS) 

𝑡𝑟𝑢𝑒 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜 𝑓𝑟𝑜𝑚 𝐺𝐿𝑀,   2𝑆𝑅𝐼 𝑎𝑛𝑑 2𝑆𝑃𝑆 

𝑡𝑟𝑢𝑒 𝑜𝑑𝑑𝑠 𝑟𝑎𝑡𝑖𝑜
*100% 

Coverage rate   % of iterations when 95% CI includes the true OR across 1000 

simulations  

F-statistics of the 

first stage 

regression 

F-statistics =
𝑆𝑢𝑚 𝑜𝑓  𝑠𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝑀𝑜𝑑𝑒𝑙/𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝐹𝑜𝑟 𝑀𝑜𝑑𝑒𝑙

𝑆𝑢𝑚  𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟/   𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟
        

=
𝑀𝑒𝑎𝑛  𝑜𝑓  𝑆𝑞𝑢𝑎𝑟𝑒𝑠  𝑓𝑜𝑟 𝑀𝑜𝑑𝑒𝑙

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑓𝑜𝑟 𝐸𝑟𝑟𝑜𝑟𝑠
 

Table 19. Measurement of performance 
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8.4.3 Design of the empirical illustration 

 

An empirical example is presented in this section to demonstrate the ability performance of 

2SRI in dealing with the accounting for a noncollapsibility effect. The data used in this 

section is the study cohort in the comparative effectiveness research section in Chapter 5 (see 

section 5.5.3.3). It is a CER which compares the effectiveness of acamprosate and disulfiram 

in reducing the risk of alcohol use disorder (AUD) hospitalisations in England using data 

from CPRD. Unlike adjusted logistic regression, the inverse propensity score weighting 

(IPSW) method using stabilised weights is considered to estimate the marginal treatment 

effect (MTE) and is free from the impact from noncollapsibility. Therefore, the 

noncollapsibility is usually quantified as the difference between multivariable logistic 

regression and IPSW adjusted results, while the confounding bias is quantified using the 

difference between the univariable logistic regression and the IPSW adjusted results (Pang et 

al., 2016, Schuster et al., 2021). The IV used in this case is the proportion of acamprosate 

among the last year prescriptions. 
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8.5 Results 

 

8.5.1 Research objective 1: Assessing the ability of 2SRI and 2SPS of alleviating the 

unmeasured confounding bias.  

 

Figure 14. Estimates from GLM, 2SRI and 2SPS. 

Figure 14 shows that 2SPS is consistently more biased than 2SRI (𝛾2 more than 0.75). When 

𝛾2 is less than 0.75, the 2SRI estimates are not always less biased than 2SPS, but the percent 

bias is consistently at a low level (below 12.5%). The percent bias from 2SRI does not always 

inflate as the unmeasured confounding level rises; in the case of prior 1 and prior 2 as IV, I 

observed a rather low percent bias (less than 12.5%) for 2SRI throughout the range of 𝛾2 

values from 0 to 1.9. The estimates from GLM are only at a low level when the unmeasured 

confounding level is small. 
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Despite the point estimate deviating from the ‘true’ OR, the coverage rates of 2SPS are 

around 95% most of cases. When the IV strength increases (F-statistics from 105 to 250), the 

coverage rates from 2SRI are more likely to achieve 95% (see Figure 15).  

 

 

Figure 15. Coverage rates from 2SRI, 2SPS, GLM. Red dash line represents the 95% 

nominal. 
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8.5.2 Research objective 2: Assessing the ability of 2SPS and 2SRI of alleviating 

noncollapsibility. 

 

This simulation tested whether the 2SRI or 2SPS estimates are able to reduce unmeasured 

confounding bias. However, the percent bias from the research objective 1 is free from the 

noncollapsibility effect. Research objective 2 is to assess the performance of 2SRI and 2SPS 

with the existence of unmeasured confounding as well as the noncollapsibility effect. I 

minimised the unmeasured confounding effect by selecting two scenarios where 𝛾2 equals 1.0 

and 1.5 where 2SRI is generally unbiased (percent bias less than 10%) against the 

unmeasured confounding according to the results from the research objective 1. The results 

are shown in Figure 16. 

 

Figure 16. Percent bias of 2SRI, 2SPS, GLM when there is noncollapsibility. Percent bias (a) 

represents percent bias of the estimate when  𝛾2 equals 1.0. Percent bias (b) represents 

percent bias of the estimate when  𝛾2 equals 1.5.                       
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It can be seen from Figure 16 that the 2SRI is generally less biased than 2SPS and GLM 

when the noncollapsibility effect is not severe. When the 𝛾2 equals 1.0, the percent bias of 

2SRI is at a low level at the beginning but rise dramatically when the noncollapsibility effect 

increases. Same trend is found in GLM and 2SPS. When the 𝛾2 equals 1.5 (the unmeasured 

confounding effect at higher level), the percent bias of 2SRI fluctuated below 50% and hits a 

high level as 𝛾3  increases. The threshold of 𝛾3 where the percent bias (b) of 2SRI becomes 

extremely biased is smaller than percent bias (a) of 2SRI. The percent bias of 2SPS and GLM 

exceeds 100% when 𝛾3 is at low level in both scenarios indicating they are less robust to 

noncollapsibility. Note that for 2SPS and GLM, the percent bias is high even when 𝛾3 equals 

0. The coverage rates are presented in Figure 17. The coverage rates of 2SRI are around 95% 

when the 𝛾3 equals 1.0 and drop when the noncollapsibility effect increases. Note that, the 

coverage rate (b) increases after a certain point because the confident interval of 2SRI 

estimate is extremely wide, where the estimates of 2SRI become biased. 

 

Figure 17. Coverage rate of GLM, 2SRI and 2SPS. Coverage rate (a) represents coverage 

rate of the estimate when 𝛾2 equals 1.0. Coverage rate (b) represents coverage rate of the 

estimate when 𝛾2 equals 1.5.  
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Empirical illustration using CPRD Data 

Model  𝛽′  𝛽  

 

𝛽𝐼𝑃𝑆𝑊 

 

𝛽2𝑆𝑅𝐼 𝛽∗ = 𝛽 −  𝛽 − 𝛽𝐼𝑃𝑆𝑊   Percent difference 

= 
|𝛽2𝑆𝑅𝐼−𝛽∗ |

𝛽∗ 
∗ 100% 

Model 1  0.168 0.211 0.184 0.152 0.238 33.9% 

Model 2 0.168  0.439 0.420 0.326 0.458 28.8% 

Model 3  0.439 0.452 0.379 0.608 0.525 13.6% 

Table 20. Results from empirical case study. 𝛽′represents the estimate from unadjusted 

logistic regression. 𝛽  represents the estimate from adjusted logistic regression. 

𝛽𝐼𝑃𝑆𝑊represents the estimate from the IPSW using stabilised weight. 𝛽2𝑆𝑅𝐼represents the 

estimate from adjusted 2SRI.  
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As it mentioned in the section 8.4.3, the empirical illustration of research objective is based 

on a CER that compares the effectiveness of acamprosate and disulfiram in preventing AUD 

hospitalisation. The confounders adjusted in the models are Charlson Comorbidity Index 

(CCI), and ‘prescription year’. CCI is associated with the outcome, but not associated with 

the treatment. ‘Prescription year’ is associated with both treatment and outcome. The 

presence of confounding bias and/or noncollapsibility is defined by adjusting or not adjusting 

these confounders. Model 1 is a logistic regression with or without adjusting CCI. Model 2 is 

a logistic regression with or without adjusting ‘prescription year’. Model 3 is a logistic 

regression adjusts ‘prescription year’, with or without adjusting CCI. The results of the case 

study are shown in Table 20. Since the CCI is associated with outcome but not associated 

with the treatment, the difference between the coefficient from 𝛽′ and 𝛽 should be totally 

due to the noncollapsibility. According to the difference between the 𝛽𝐼𝑃𝑆𝑊and 𝛽 (0.184-

0.211= -0.027) and the difference between 𝛽′ and 𝛽𝐼𝑃𝑆𝑊 (0.168-0.184=-0.016), the 

confounding effect is less significant. Excluding the noncollapsibility from 𝛽  is calculated 

as: 0.211- (0.184-0.211) =0.238. But In Model 2, the estimates that excludes the 

noncollapsbility should be around 𝛽 : 0.439- (0.420-0.439) =0.458. In Model 3, the 

noncollapsibility is calculated as 0.379-0.452=-0.073. The estimate of treatment from the 

adjusted model that excludes the noncollapsibility is calculated as 0.452- (-0.073) =0.525. 

𝛽2𝑆𝑅𝐼 is close to 0.525 and with a smallest percent difference compared with Model 1 and 

Model 2. In Model 1 and Model 2, 2SRI does not show much ability to remove the 

noncollapsibility from the adjusted model. However, results from the Model 3 echoes the 

simulation in the research objective 2 that the 2SRI can alleviate noncollapsibility when true 

confounders are adjusted for in the model. Note the percent difference in Table 20 may be 

partly due to the residual unmeasured confounding in the observational studies. 
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8.7 Strengths and Limitations  

 

To my knowledge, this study is the first simulation study to discuss the 2SRI’s robustness to 

the noncollapsibility effect. In addition to the simulated data, I demonstrated an empirical 

example from CPRD to illustrate the noncollapsibility effect is common in logistic regression 

and can cause misleading results in causal inferential studies. One limitation of this study is 

the simplicity of the design. I did not consider more covariates, or more than one IV, or 

another forms of residuals that used in 2SRI. Another limitation I assumed the IV 

assumptions are met in all simulated scenarios. 

  

8.6 Discussion 

 

Results from the simulation study show that the percent bias of 2SRI is less than 15% in most 

scenarios while the percent bias of 2SPS reaches 50%. This echoes the findings from Cai et 

al.(Cai et al., 2011), who found that two-stage logistic regression 2SRI is asymptotically 

unbiased when the unmeasured confounding effect is not severe. However, my results are 

inconsistent with their conclusion that percent bias of 2SRI tends to rise as the unmeasured 

confounding level increases. My findings indicate that the percent bias of 2SRI fluctuates 

when the unmeasured confounding is moderate but does not increase monotonically 

following the increase of an unmeasured confounding effect. According to the results, the IV 

strength does not affect the consistency of 2SRI estimates.  
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I discussed the potential bias from the noncollapsibility on the 2SRI estimate using a 

simulated scenario where a covariate is associated with outcome but not associated with the 

treatment. The results indicate that percent bias of 2SRI has potential to be robust with minor 

or moderate noncollapsibility effect, and robustness is associated with the level of 

unmeasured confounding effect. I can see from Figure 16 that robustness is shown to be more 

resilient when the unmeasured confounding is smaller in magnitude (𝛾2 equals 1.0). It is also 

reflected in the case study that 2SRI provides a close estimate to the unadjusted logistic 

regression when a variable that should not be adjusted appears in a model and brings 

noncollapsibility. However, for 2SPS and 2SRI, the noncollapsibility leads to major 

distortions on the estimates. 

 

In this study, 2SRI is shown to be superior to 2SPS. There are studies that argue the 

consistency of 2SRI estimate is associated with the collapsibility of the model. Normally, the 

2SRI estimator is consistent when the model is collapsible, for example in the addictive 

hazards models (Wang et al., 2017a). However, my results show that the 2SRI estimate is not 

certainly biased with noncollapsibility effect. Despite my results supporting the preference of 

2SRI, the non-linear extension of 2SRI and 2SPS in the binary exposure are not studied 

adequately. Wan et al. proved the consistency of 2SRI estimates as the same time pointed out 

that the original framework proposed by Terza is used for the continuous treatment variable 

(Wan et al., 2018). Further theoretical and methodological research is needed for 2SRI used 

for binary treatment.  



152 
 

 

8.8 Conclusion 

 

The findings of this simulation study show that 2SRI performs unbiasedly in non-linear 

models when conducting comparative effectiveness research. Further, the results show that 

2SRI is more likely to alleviate noncollapsibility when unmeasured confounding effects are at 

lower levels.  
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Chapter 9. General discussion 

 

In this chapter, I start by restating the research objectives of the thesis before providing a 

summary of the previous chapters and how they addressed the research objectives. Then, I 

summarise the key contributions I have made in context to the existing literature, before 

going on to discuss the strengths and limitations of my thesis. I conclude by considering the 

implications for future research.  

 

9.1 Research objectives of this thesis 

 

Before the summary of the chapters, I first restate the three research objectives presented in 

Chapter 1: 

1. Critically review the current comparative effectiveness research which use PPP as IV  

2. Implement PPP IV in drug comparison studies using routinely collected data. 

3. Explore the novel use of PPP IV in different settings, using real-world data as well as 

simulated data. 

 

9.2 Summary of thesis chapters 

 

To provide a structure for this discussion, I divided the chapters into three parts： 

• Part 1: Introduction and the literature reviews: Chapter 1, Chapter 2, and Chapter 3 

• Part 2: CER using real-life studies: Chapter 4, Chapter 5, Chapter 6  

• Part 3: CER using simulation studies: Chapter 7, Chapter 8 
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9.2.1 Part 1 

 

In Chapter 1, I provided a general introduction of IV methods, and specifically, PPP as IVs in 

CER. I also stated the main objectives of this thesis. In Chapter 2, I firstly summarised the 

literature focused on implementing IV in comparative effectiveness research, then provide 

guidance on implementing PPP IV. In Chapter 3, I reviewed the current comparative 

effectiveness research and simulation studies of which focus is on the using PPP as IV in 

CER (using real-life data and hypothesised).  It covers the research objective 1 and also shed 

lights on research objective 3 by bring simulation studies into discussion. Both chapters 

conclude that PPP can be a valid instrumental variable. 

 

9.2.2 Part 2 

 

In part 2, I conducted observational CER using routinely collected health datasets. In Chapter 

4, I focused on comparing the effectiveness between diazepam and chlordiazepoxide 

hydrochloride in preventing AIH rehospitalisation. I did not compare disulfiram and 

acamprosate as the medications for the alcohol dependence, due to small sample sizes. I 

found statistical evidence that diazepam is more effective in preventing AIH rehospitalisation 

than chlordiazepoxide hydrochloride. Due to the limitation of sample size from Chapter 4, I 

further conducted a CER that compare the disulfiram and acamprosate using a larger study 

population from CPRD and PIS in Chapter 5. I found evidence in England and Scotland that 

disulfiram is a better medication than acamprosate in preventing alcohol dependence 

hospitalisation. In Chapter 6, I conducted a target trial emulation by applying a stricter 

entrance criterion in the construction of study cohort from a benchmark RCT. Results show 

that SU is more likely to reduce the HbA1c level to less than 42 mmol/mol in comparison 

with DPP-4 inhibitor. In Chapter 6, I implemented GP-level prescribing preference as IV 

because SDRN does not contain the identifier of physicians. Part 2 covers research objective 

2 by implementing PPP IV in observational studies.  Chapter 4 and Chapter 5 concluded that 

PPP can be valid IVs in CER. Chapter 6 revealed that the hospital-based prescribing 

preference can also be a valid IV. However, the IV results in part 2 tend to have lower 

statistical power compared to the results from conventional approaches. 
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9.2.3 Part 3 

 

Following the findings from Chapter 3 showing that there is a gap between the simulation 

studies and applied studies (CER), I conducted simulation studies as an extension for the 

applied studies. Chapter 7 is inspired by the Chapter 4 where the sample size is moderate 

(around 2500), and the distribution of treatment assignment is uneven. Chapter 7 revisited 

research objective 3, with an emphasis on the potential limitation from sample size of the 

performance of 2SLS. The main finding from Chapter 7 is that 2SLS has potential to 

reducing the unmeasured confounding bias in nonlinear settings which is consistent with 

current studies, despite the fact that 2SLS should be used under strict linear assumptions. It 

also provides evidence that the longer prescription history can better reflect the ‘true’ 

prescribing preference of the physicians. I found the proportion of one particular drug 

prescribed by the physician, which accounts for the ‘whole’ prescribing history of a 

physician, tends to be the strongest IV. Chapter 8 is a simulation study that considers both 

unmeasured confounding bias and noncollapsibility effect in the setting of binary outcome 

and treatment. Chapter 8 addresses the research objective 3 by accounting for the 

noncollapsibility effect which has been overlooked in current simulation studies to date on 

this topic. I explored the performance of 2SRI in the existence of noncollapsibility and found 

that 2SRI has potential to alleviate the unmeasured confounding bias effect when 

noncollapsibility effect is not severe. Both Chapter 7 and Chapter 8 are built on the most 

common scenario in drug comparison studies: binary outcome and binary treatment. Chapter 

8 can be viewed as a non-linear extension of Chapter 7. 

 

9.3 Gaps identified in this thesis. 

 

In Table 21,  I summarise the evidence gaps I identified in the literature and how I has 

addressed these. 
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Inadequate reporting 

of assumptions in 

CER IV literature  

validation of IV  

The validation of IV assumptions is often inadequately report in 

CERs, except for the relevance assumption. Despite the fact that 

there are multiple approaches to verify the independence 

assumptions indirectly, there are also studies not reporting it. 

Reporting on the validation of exclusion restriction assumption is 

very rare (findings from Chapter 3). This maybe because the 

prescribing preference of physicians’ is believed to be less likely 

directly associated with the treatment effect on patients. From the 

findings of Chapter 2, I underscored the necessity of reporting 

monotonicity assumptions and pointed out the validation of such 

assumptions are overlooked in most CER using PPP IV.   

Gaps between the 

simulation studies and 

applied studies 

The main finding from Chapter 3 indicates that there is a 

noticeable methodological gap between the simulation studies and 

applied studies on this topic. The characteristics of PPP IV lead to 

extra complexity in the implementation. Therefore, there are many 

simulation studies focus on exploring the pitfalls of using PPP IV 

but without empirical examples from real-life studies. Many 

applied studies tend to simplify the implementation and not 

consider findings from the simulation studies. I would recommend 

combining the findings from simulation studies in designing and 

conducting real-life CER studies. It should also be operated in the 

other way too – real-life studies informing the simulation studies. 

For example, the design of the simulation study in Chapter 7 is 

inspired by the real-life data used in Chapter 4 and in Chapter 8, 

an empirical case study is presented to verify the findings from 

simulated studies. 

Arbitrary choice of 

the form of PPP IV 

From my findings in Chapter 3, not many studies have attempted 

different ways of formulating and constructing PPP IVs. They 

tend to use the most recent prescription or the proportion – these 

are the ‘conventional’ ways in the literature. However, my 

findings from Chapter 3 shows that the strength of IV is strongly 

influenced by PPP IV formulation. For example, my findings 

shown in Chapter 4 and Chapter 7 show that different length of 
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prescription history tend to be positively associated with the 

strength of IV; longer prescribing history tends to lead to stronger 

IVs. Although the numerical PPP IV may bring extra complication 

to the validation of assumptions, some studies tend to use the 

numerical PPP IV without presenting validation. 

Not enough 

exploration of PPP IV 

used in non-linear 

settings. 

 

Chapter 8 is inspired by the fact that many existing studies ignored 

the difference between noncollapsibility and confounding where 

treatment and outcome variables are binary. Whether they 

implemented 2SRI arbitrarily without considering the non-

collapsibility effect may impact the causal inference, or they tend 

to avoid using IV methods in the non-linear settings due to the 

complexity. I show that 2SRI is effective in reducing measured 

confounding but has not been studied extensively from the 

theoretical perspective. 

Table 21. Gaps identified in this thesis.  
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9.4 Strengths and Limitations  

 

The main strengths of this thesis include: 1) new findings on PPP IV from routinely-collected 

health data sets; 2) exploration of use of PPP IV in different settings; 3) overview of current 

CER using PPP IV and providing recommendations for further research in this area; 4) 

combining IV approach with conventional statistical methods that can only adjust for 

measured confounding (such as OLS, logistic regression, Cox proportional hazard regression) 

allowing triangulation between results that do and do not directly address unmeasured 

confounding. Findings from Chapter 4, Chapter 5 and Chapter 6 provide new high-quality 

real-world evidence on the comparison of effectiveness of pharmacological treatments. 

Chapter 7 and Chapter 8 implemented simulation studies based on two scenarios that are 

rarely investigated on this topic: 1). The performance of 2SLS in reducing unmeasured 

confounding in moderate and small sample sizes; 2). The ability of 2SRI in alleviating 

noncollapsibility in non-linear settings. In Chapter 3, I provided a literature review of recent 

CER that use PPP IV which is the most recent literature review and the only one that also 

consider the simulation studies so far. I tend to agree with that IV approach can play an 

important role in the estimating treatment effect. I include IV method as one of statistical 

approaches to address potential unmeasured confounding as well as other types of statistical 

methods in Chapter 4, Chapter 5, Chapter 6, Chapter 7, and Chapter 8. The difference 

between the estimated treatment effect from these approaches can be interpreted as the 

treatment heterogeneity among the treated and control group and/or potential indirection of 

unmeasured confounding bias.  

 

One major limitation comes from the IV method itself. Despite the fact that IV methods are 

proven to be effective in addressing the unmeasured confounding issue in comparative 

effectiveness research, they can only produce valid estimation when the assumptions hold. 

However, the validation of assumptions has limitations in that only the relevance assumption 

can be validated empirically. Besides, PPP IV is a latent variable that require a surrogate or 

proxy variable; the construction of proxy of PPP IV is highly associated with the performance 

of the IV methods and estimation of treatment effect. Like other forms of IV, preference 

based IV comes with the complexity and difficulty in the validation of assumptions.   
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Another source of limitation is the usual nature of observational studies, in particular the 

availability of and the composition of data. Data in this thesis comes from routinely-collected 

datasets. There are cases where the variables in the datasets cannot meet the requirements of 

constructing PPP, for example, in Chapter 6, where SDRN only includes the identifier for 

general practice and health boards rather than at the physician level. Further, if data cannot be 

dated back to a long enough period, it may not capture a prescribing preference to be a valid 

IV. For some of the analyses in this thesis, this is a cause of missing data. 

 

There were also limitations in terms of setting. The main background of this thesis is CER. 

The main objective of Chapter 4, Chapter 5, and Chapter 6 is to compare the effectiveness of 

certain medical treatments. Like many CERs on this topic, IV methods are often used as a 

supplementary for conventional statistical methods but not a major way to compare the 

effectiveness. The IV methods conducted in this thesis are mainly two-stage approaches. I did 

not consider other approaches that can be used for IV methods, such as propensity score 

calibration, and two-stage calibration statistical approaches. Also, I did not conduct IV 

methods in CER which compare more than two treatments. 

 

9.5 Implications for further research 

 

Despite the fact that PPP had been shown to be a valid IV in this thesis as well as in other 

studies, it is still the case in the empirical literature that not many CERs considered using PPP 

as an IV. I conducted literature research in Google Scholar using key words: ‘physician’s 

prescribing preference ‘AND ‘instrumental variable’. After 2020, there is no noticeable 

increase since I conducted the literature review after Chapter 3 (see Figure 18). 
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Figure 18. Published CER using PPP as IV from 2005 to 2023  

 

It is important to note that this trend does not cover the CER that use facility-level/hospital-

level prescribing preference. In fact, there are multiple CER that implemented other forms of 

prescribing preference from 2020 to 2023 (for example, hospital-level prescribing preference, 

centre-level prescribing preference) (Okubo et al., 2021, Littau et al., 2022, Amini et al., 

2022, O'Byrne et al., 2023, Wang et al., 2023, Larney et al., 2023). It may be that researchers 

are cautious when using PPP as IV, and this may be due the limitation of using PPP as IV that 

had been critically discussed in this chapter and throughout my thesis. The absence of 

physician level data can be another reason (such as in Chapter 6). This finding is consistent 

with a recent review on which indicated that there are limited use of IV approach in oncology 

(Lu et al., 2023). 

 

I agree with conclusions from the current review studies that the PPP IV need to be used with 

caution. Therefore, I summarise key considerations that one should consider during the 

implementation of PPP IV in CER in Table 22. 
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Key considerations Explanations 

Consider the possibility of 

unmeasured confounding.  

The utilisation of IV method should begin with caution and by doing a 

sensitivity analysis of unmeasured confounding.  

Beware of the additional 

complexity from CER that 

focus on the medical 

treatment for rare conditions 

CERs that focus on the medical treatments for rare conditions are more 

likely to involve smaller sample sizes. This will likely cause weaker IVs and 

weaker statistical power. The physicians may have less prescribing history 

and it will be difficult to identify a clear prescribing preference. Besides, this 

may case the large proportion of missing values in the PPP IV as the 

physicians are less likely to prescribe enough number of prescriptions during 

a relatively short time, for example six-month or one-year time. For small 

sample sizes, I recommend pooling data from different countries, or areas to 

increase the statistical power of the IV results.  

IV strength should be a 

priority in the case of CER 

with small and moderate 

sample sizes. 

 

The estimates from strong enough PPP IV are proven consistent when the 

sample sizes are large. However, when the sample sizes are smaller, for 

example, in CER of the medications treating rare conditions, the trade-off 

between variance and bias reduction is more of a consideration as the 

variance becomes large. In order to maximise the effectiveness of using IV 

methods, I suggest researchers strive to find stronger PPP IVs in all cases. 

The way PPP IVs are 

constructed (i.e., proxies) 

allows for flexibility. 

One needs to explore different ways of constructing PPP IVs and capture the 

strongest one as well as the one that satisfy other assumptions.  

The importance of reporting 

validation of IV assumptions 

 

 

Try to report the validation of all assumptions, including the relevance 

assumption, exclusion restriction assumption, independence assumption, and 

monotonicity assumption. Especially for the monotonicity assumption which 

is often overlooked and strongly associated with the interpretation of IV 

estimators. Details are presented in Chapter 2. 

The importance of 

triangulating across different 

approaches  

One needs to combine IV methods and conventional approaches in statistical 

analysis, such as multivariable regression or propensity scores approaches, to 

provide richer evidence regarding the estimation of treatment effects.    

Table 22. Guidance and key considerations for the further research 
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9.6 Overall conclusion of the thesis 

 

Prescribing preferences estimated from prescribing history can be used as valid instruments 

in IV CER analyses. I conclude that PPP IV can, with caution applied, be included in 

observational CERs to complement and potentially enhance non-IV CER approaches.  
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Supplementary material for Chapter 3 

 

Two tables can be found on https://www.jclinepi.com/article/S0895-4356(22)00103-

2/fulltext#supplementaryMaterial. 

 

Table S1.  Summarises of the 6 simulation studies that were identified. 

Table S2.   Summaries of the CERs that were identified. 

 

 

  

https://www.jclinepi.com/article/S0895-4356(22)00103-2/fulltext#supplementaryMaterial
https://www.jclinepi.com/article/S0895-4356(22)00103-2/fulltext#supplementaryMaterial
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Supplementary material for Chapter 4 

 

 

Figure S1. SMD based on the treatment. 

 

Figure S2. SMD based on the dichotomised IV (prior 20) 
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IV Outcome: AIH rehospitalisation Outcome: AIH death 

IV IV 

inequality 

hold 

Monotonicity 

inequality 

hold 

Wu-

Hausman 

test  

(p value) 

IV 

inequality 

hold 

Monotonicity 

inequality 

hold 

Wu-

Hausman 

test  

(p value) 

Prior 1 TRUE FALSE 0.034 TRUE FALSE 0.39 

Prior 2 TRUE FALSE 0.016 TRUE FALSE 0.048 

Prior 3 TRUE FALSE 0.122 TRUE  FALSE 0.159 

Prior 4 TRUE TRUE 0.695 TRUE FALSE 0.196 

Prior 5 TRUE TRUE 0.383 TRUE FALSE 0.221 

Prior 6 TRUE TRUE 0.471 TRUE FALSE 0.018 

Prior 7 TRUE TRUE 0.730 TRUE FALSE 0.041 

Prior 8 TRUE TRUE 0.526 TRUE FALSE 0.106 

Prior 9 TRUE TRUE 0.801 TRUE FALSE 0.060 

Prior 10 TRUE TRUE 0.764 TRUE FALSE 0.106 

Prior 11 TRUE TRUE 0.806 TRUE FALSE 0.061 

Prior 12 TRUE TRUE 0.986 TRUE FALSE 0.049 

Prior 13 TRUE TRUE 0.640 TRUE FALSE 0.055 

Prior 14 TRUE TRUE 0.774 TRUE FALSE 0.032 

Prior 15 TRUE TRUE 0.758 TRUE FALSE 0.030 

Prior 16 TRUE TRUE 0.801 TRUE FALSE 0.025 

Prior 17 TRUE TRUE 0.745 TRUE FALSE 0.019 

Prior 18 TRUE TRUE 0.577 TRUE FALSE 0.016 

Prior 19 TRUE TRUE 0.566 TRUE FALSE 0.019 

Prior 20 TRUE TRUE 0.688 TRUE FALSE 0.028 

Proportion 

IV 

TRUE TRUE 0.002 TRUE TRUE 0.066 

Table S3.  Validation of monotonicity assumption 
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Figure S3. Sensitivity analysis to unmeasured confounding. Outcome is the AIH 

rehospitalisation. Result from the R function ‘sensemarkr’. More detailed explanation of the 

results can be found in  https://cran.r-

project.org/web/packages/sensemakr/vignettes/sensemakr.html 

 

 

Figure S4. sensitivity analysis to unmeasured confounding. Outcome is the AIH death. Results 

from the R function ‘sensemakr’. 

 

  

https://cran.r-project.org/web/packages/sensemakr/vignettes/sensemakr.html
https://cran.r-project.org/web/packages/sensemakr/vignettes/sensemakr.html
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IV Non-

dichotomised 

PPP IV 

Dichotomised 

PPP IV 

Non-

dichotomised 

PPP IV 

Dichotomised 

PPP IV 

 AIH rehospitalisation as outcome AIH Death as outcome 

Prior 1 -0.922 -0.922 -0.170 -0.170 

Prior 2 -0.558 -0.567 -0.203 -0.220 

Prior 3 -0.547 -0.426 -0.161 -0.166 

Prior 4 -0.405 -0.337 -0.134 -0.139 

Prior 5 -0.445 -0.373 -0.121 -0.126 

Prior 6 -0.452 -0.351 -0.183 -0.166 

Prior 7 -0.447 -0.328 -0.154 -0.136 

Prior 8 -0.455 -0.367 -0.123 -0.114 

Prior 9 -0.467 -0.350 -0.138 -0.094 

Prior 10 -0.469 -0.379 -0.122 -0.0796 

Prior 11 -0.504 -0.363 -0.135 -0.101 

Prior 12 -0.491 -0.331 -0.135 -0.105 

Prior 13 -0.490 -0.324 -0.128 -0.101 

Prior 14 -0.447 -0.300 -0.134 -0.110 

Prior 15 -0.434 -0.288 -0.134 -0.102 

Prior 16 -0.425 -0.274 -0.134 -0.109 

Prior 17 -0.421 -0.263 -0.138 -0.0994 

Prior 18 -0.416 -0.270 -0.139 -0.104 

Prior 19 -0.421 -0.296 -0.133 -0.111 

Prior 20 -0.430 -0.284 -0.129 -0.0985 

Proportion IV -0.332 -0.261 -0.112 -0.059 

Table S4. Values of the IV estimands 
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Data request form for Chapter 4 

Public Benefit and Privacy Panel for Health and Social Care  

PBPP Amendment Request Form – to be completed for changes to an approved PBPP 

application 

Application Control  - please complete all sections below 

Application Coordinator Johanna Bruce 

Application Number 1718-0238 Approval date  

Applicant name Prof James Lewsey 

Applicant email address James.lewsey@glasgow.ac.uk 

Proposal name TRends and Inequalities in Prescribing for Alcohol 

Dependence in Scotland (TRIPADS) 

Amendment  submission date 01/10/2019 

 

Summary of amendment 

(including justification 

/explanation of changes) 

 

We request that a PhD student, Lisong Zhang, who is 

working on a key methodology is added to be able to 

access the TRIPADS data sets. Lisong will collaborate 

with us to ensure that the last research question of 

TRIPADS is answered using cutting-edge techniques. 

We also request that Jill Pell is removed access as she will 

not be analysing the data. 

  

Supporting Documents 

(please ensure that the original 

approval letter is attached with 

all submissions) 

            

    

 Original Approval letter 

 Updated application with version number 

 IG certificates (if applicable)  

  Other (please detail) 
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Please tick below to indicate which sections of the application have been amended and 

note that all changes should be highlighted within the form and an indication of the 

change noted below: 

 

 

x  Section 1 (People) 

 

Lisong Zhang to be added 

 

 

Jill Pell to be removed 
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 Section 2 (Organisations) 

 

 

 Section 3 (Overview)  

 Section 4 (Data and Data 

Subjects) 

 

 Section 5 (Data Processing)  

 

Please signify below confirming that other than the changes requested all other 

information on the original application has not changed.     

 

To be signified by the APPLICANT 

Name (in Capitals): JAMES LEWSEY Date: 01/10/2019 
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Supplementary material for Chapter 5 

 

 

Figure S5. Trends in percentage of prescriptions by sex (primary care) 

 

  

Figure S6. Trends in percentage of prescriptions by sex (secondary care) 
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Figure S7. Trends in percentage of prescriptions by age (primary care) 

 

  

Figure S8. Trends in percentage of prescriptions by age (secondary care) 
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Any alcohol dependence 
prescriptions 60 days prior first 
hospitalisation 
 

Any alcohol dependence 
prescription ever before 
first hospitalisation 
 

Sex 
(female reference) 

0.794 
(.673-.937) 

0.716 
(.654-.783) 

Charlson Comorbidity Index 
(0 reference) 

 

>=1 1.039 
(.870-1.242) 

1.092 
(.991-1.202) 

Mental health comorbidity 1.281 
(1.085-1.512) 

1.317 
(1.203-1.442) 

socioeconomic deprivation 
(1-most deprived- reference) 

    

2 1.565 
(1.254-1.953) 

1.275 
(1.132-1.437) 

3 1.329 
(1.040-1.698) 

1.318 
(1.160-1.498) 

4 1.517 
(1.172-1.964) 

1.372 
(1.194-1.576) 

5 1.628 
(1.229-2.157) 

1.502 
(1.290-1.750) 

Table S5. Inequality models on prescriptions before first AUD hospitalisation 
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model 1 model 2 

model 3 model 4 

 model 5 model 6 

model 7 
 model 8 

Table S6. Spline age graphs 
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The strength of IV is validated using F-statistics. We used the standard mean difference (SMD) 

to assess the covariate balance on the level of IV. The SMD based on the IV are generally less 

than 0.1 which can be treated as balanced covariate indicating IV is less likely to be associated 

with the unmeasured confounders.  

Data PIS CPRD 

F-statistics  857.01 449.973 

SMD Based on IV Based on IV 

 Age 0.0073 0.0451 

Gender: female -0.0128 0.0059 

Charlson comorbidity index _0 -0.0055 0.0836 

Charlson comorbidity index _1 0.0081 -0.0289 

Charlson comorbidity index _2 0.0012 -0.0506 

Charlson comorbidity index _3 -0.0100 -0.0648 

Charlson comorbidity index _4 -0.0014 -0.0396 

socio-economic deprivation. 1 0.0512 0.0019 

socio-economic deprivation. -2 -0.0059 0.003 

socio-economic deprivation. -3 -0.0350 -0.0775 

socio-economic deprivation. -4 -0.0025 -0.0328 

socio-economic deprivation. -5 -0.0264 0.0884 

Whether the monotonicity inequality hold  TRUE TRUE 

Table S7. Validation of IV assumptions. IVs are dichotomised at mean value. 
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Figure S9. Sensitivity analysis to the unmeasured confounding. Results from the R function: 

survSensivity 
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Read Code 

Description  

Frequency of 

incident cases (%) 

Eu10211 [X]Alcohol addiction 0.63 

Eu10800 [X]Alcohol withdrawal-induced seizure 0.79 

Eu10712 [X]Chronic alcoholic brain syndrome 0.04 

Eu10212 [X]Chronic alcoholism 0.43 

Eu10411 [X]Delirium tremens, alcohol induced 0.34 

Eu10213 [X]Dipsomania 0.00 

Eu10200 

 

[X]Mental and behavioural disorders due to use of alcohol: 

dependence syndrome 0.26 

Eu10300 

 

[X]Mental and behavioural disorders due to use of alcohol: 

withdrawal state 0.03 

Eu10400 

 

[X]Mental and behavioural disorders due to use of alcohol: 

withdrawal state with delirium 0.02 

E230.00 Acute alcoholic intoxication in alcoholism 1.63 

E230z00 Acute alcoholic intoxication in alcoholism NOS 0.07 

E230300 Acute alcoholic intoxication in remission, in alcoholism 0.02 

E230000 Acute alcoholic intoxication, unspecified, in alcoholism 0.04 

8H35.00 admitted to alcohol detoxification centre 0.16 

E23..00 Alcohol dependence syndrome 52.51 

E23z.00 Alcohol dependence syndrome NOS 1.23 

E230.11 Alcohol dependence with acute alcoholic intoxication 0.03 

Z191.00 alcohol detoxification 10.79 

8BA8.00 alcohol detoxification 0.05 

E010.00 Alcohol withdrawal delirium 0.21 

E013.00 Alcohol withdrawal hallucinosis 0.07 

E01y000 Alcohol withdrawal syndrome 8.02 

G555.00 Alcoholic cardiomyopathy 0.52 

J612.00 Alcoholic cirrhosis of liver 4.25 

F11x011 Alcoholic encephalopathy 0.15 

F394100 Alcoholic myopathy 0.06 

F375.00 Alcoholic polyneuropathy 0.33 

J671000 Alcohol-induced chronic pancreatitis 0.26 

E23..11 Alcoholism 13.74 

F11x000 Cerebral degeneration due to alcoholism 0.01 

E012000 Chronic alcoholic brain syndrome 0.01 

J617000 Chronic alcoholic hepatitis 0.05 

E231.00 Chronic alcoholism 0.94 

E231300 Chronic alcoholism in remission 0.02 

E231z00 Chronic alcoholism NOS 0.65 

E230100 Continuous acute alcoholic intoxication in alcoholism 0.00 

E231100 Continuous chronic alcoholism 0.09 

E010.12 Delirium tremens 0.43 

E231.11 Dipsomania 0.02 

E010.11 DTs – Delirium tremens 0.22 

E230200 Episodic acute alcoholic intoxication in alcoholism 0.03 

E231200 Episodic chronic alcoholism 0.11 

E011000 Korsakov's alcoholic psychosis 0.28 

E011100 Korsakov's alcoholic psychosis with peripheral neuritis 0.04 

G852300 Oesophageal varices in alcoholic cirrhosis of the liver 0.18 

E231000 Unspecified chronic alcoholism 0.10 

C253.00 Wernicke’s encephalopathy 0.18 

Table S8. Read codes included for defining alcohol dependence. 
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Data request form for Chapter 5 (CPRD) 

 

Administrator comments  

 

2020-10-12 16:27: Study feedback: Amendments required 

Comments: 

Your application requires amendments to a section (or sections) before it may be approved. 

When amending these sections, please ensure you re-write the WHOLE section in the box, 

taking into account the reviewer/s comments. Please do not directly respond to reviewer/s 

comments in the box. Applications which do not re-write the whole section will be returned 

for further amendments. 

 

2020-11-20 16:50: Amendments by Professor Jim Lewsey 

 

General information  

Study title Effectiveness and cost-effectiveness of alcohol use screening tests and treatments 

for alcohol-use disorders  

Research area Drug Effectiveness, Economics, Pharmacoeconomics, Pharmacoepidemiology  

Does this protocol describe an observational study using purely CPRD data? Yes  

Does this protocol involve requesting any additional information from GPs, or contact with 

patients? No  

Research team  

Applicant's role Role: Chief investigator and corresponding applicant 

Email: jim.lewsey@glasgow.ac.uk 

Name: Professor Jim Lewsey 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

mailto:jim.lewsey@glasgow.ac.uk


194 

Will the applicant be analysing the data? (Laaksonen et al.) 

Error:This field is required for submission. 

Collaborators  

Collaborator's email: bhautesh.jani@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Dr Bhautesh Jani 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: Yes 

Collaborator's email: francesco.manca@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Mr Francesco Manca 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: xxxxxxxx@student.gla.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Miss Lisong Zhang 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: claudia.geue@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Dr Claudia Geue 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

mailto:bhautesh.jani@glasgow.ac.uk
mailto:francesco.manca@glasgow.ac.uk
mailto:2491381Z@student.gla.ac.uk
mailto:claudia.geue@glasgow.ac.uk
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Collaborator's email: linsay.gray@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Dr Linsay Gray 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: Elise.Whitley@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Dr Elise Whitley 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: Janet.Bouttell@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Mrs Janet Bouttell 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: Vittal.Katikireddi@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Professor Srinivasa Vittal Katikireddi 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Collaborator's email: eileen.kaner@newcastle.ac.uk 

Will this person be analysing the data?: No 

Status: Confirmed 

Name: Professor Eileen Kaner 

mailto:linsay.gray@glasgow.ac.uk
mailto:Elise.Whitley@glasgow.ac.uk
mailto:Janet.Bouttell@glasgow.ac.uk
mailto:Vittal.Katikireddi@glasgow.ac.uk
mailto:eileen.kaner@newcastle.ac.uk
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Statistical experience: No 

Experience of handling large datasets: No 

Experience of practicing in UK primary care: No 

Collaborator's email: Frederick.Ho@glasgow.ac.uk 

Will this person be analysing the data?: Yes 

Status: Confirmed 

Name: Dr Frederick Ho 

Statistical experience: Yes 

Experience of handling large datasets: Yes 

Experience of practicing in UK primary care: No 

Access to data  

Sponsor 

Sponsor: University of Glasgow 

(Sponsor information is retrieved automatically as the chief investigator's affiliation) 

Funding source for the study 

Is the funding source for the study the same as Chief Investigator's affiliation? Yes  

Institution conducting the research 

Is the institution conducting the research the same as Chief Investigator's affiliation? Yes 

Method to access the data 

Indicate the method that will be used to access the data Institutional multi-study licence  

Is the institution the same as Chief Investigator's affiliation? Yes  

Extraction by CPRD 

Will the dataset be extracted by CPRD No  

Data processors  

Data processor is: Same as the chief investigator's affiliation 

Processing: Yes 

mailto:Frederick.Ho@glasgow.ac.uk
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Accessing: Yes 

Storing: Yes 

Processing area: UK 

Information on data  

Primary care data CPRD GOLD, CPRD Aurum  

Do you require data linkages Yes - I do require data linkages 

Patient level data HES Admitted Patient Care, Mental Health Services Data Set (MHSDS), 

ONS Death Registration Data  

Area level data 

Do you require area level data? Yes  

Practice level (UK) Practice Level Index of Multiple Deprivation  

Patient level (England only) Patient Level Index of Multiple Deprivation 

Withheld concepts 

Are withheld concepts required? No  

Linkage to a dataset not listed 

Are you requesting a linkage to a dataset not listed? No  

Patient data privacy 

Does any person named in this application already have access to any of these data in a 

patient identifiable form, or associated with an identifiable patient index? No  

Protocol information 

Lay summary In general practices, there are various tests GPs use to assess whether their 

patients are at high risk of health harms because of the amount of alcohol they drink. If an 

individual’s health starts to deteriorate because of their alcohol use the two major approaches 

to treatment available to GPs (or other health professionals) are to prescribe medications 

and/or to provide brief advice. However, evidence on what works is conflicting. The overall 

aim of this project is to examine how well do tests and treatments for risky drinking of 

alcohol work in a general practice setting and whether they provide value for money. 
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Analysing large datasets like CPRD provides an opportunity for finding out what 

interventions and treatments work and has some specific benefits, such as finding out how 

well things work in real-world circumstances. In this research we will study the effects of 

different tests and treatments for risky drinking by taking advantage of GPs tendencies to use 

the same testing tools or to prescribe the same treatment to their patients who have similar 

problems. For example, when there are a few options available for medicines to help reduce 

risky drinking, one GP may tend to prescribe a particular medicine more often than another. 

We will calculate how much it costs to provide these tests and treatments and compare these 

costs against the likely health benefits over the short- and long-term. This will allow us to see 

which tests and treatments provide the best value for money. 

Technical summary In this cohort study we will ascertain two cohorts of individuals and 

follow them up to quantify risk of future outcomes (primary care visits, hospitalisations and 

deaths) and to estimate remaining (quality adjusted) life expectancy. 

Cohorts: 

Cohort 1 (secondary prevention population): individuals at risk of alcohol harm (defined by 

screening tests such as AUDIT and FAST; self-reported ‘high’ level of alcohol consumption; 

other alcohol consumption related Read/Snomed codes) 

Cohort 2 (tertiary prevention population): individuals hospitalised for any alcohol related 

condition (defined by ICD codes) 

Screening test / treatment variables: 

Alcohol use screening tests; Alcohol brief interventions; Pharmacological interventions (e.g. 

Acamprosate, Disulfiram, Nalmefene, Naltroxone) 

Outcome variables: 

Primary care record of alcohol use disorder; hospitalisations (alcohol intoxication / harmful 

use; alcohol dependency; alcoholic liver disease; liver disease (all)) and deaths (same 

categories as hospitalisations and all cause deaths) 
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Other variables (not mentioned above): 

Patient’s age, patient’s sex, socio-economic deprivation (area-based), lab test results, 

comorbidity measured by Read/Snomed/ICD codes (e.g Charlson index) 

Statistical methods: 

Comparative effectiveness analyses for head-to-head comparisons of screening tests, alcohol 

brief interventions and pharmacological interventions will be carried out using multivariable 

logistic/Cox regressions, propensity score adjusted logistic/Cox regressions and instrumental 

variables adjusted logistic/Cox regressions. The latter will use physician’s prescribing 

preferences and general practice preferences as instruments. 

Decision analytic model / economic evaluation tool: 

The outcomes from the statistical analyses will be used to populate a decision analytic model 

which will extrapolate the outcomes for the cohorts ascertained above using parametric 

survival modelling, validating against external data sources (e.g. national life tables). The 

different cohorts will allow economic evaluation of ‘secondary’ and ‘tertiary’ prevention 

strategies. 

Sensitivity analyses: 

As uncertainty exists in all aspects above, pre-specified sensitivity analyses will be 

undertaken.  

Outcomes to be measured • Primary care record of alcohol use disorder (a. identified by 

AUDIT PC > 4; b. identified by AUDIT C > 4; c. identified by AUDIT C > 10; d. identified 

by FAST > 2; e. identified by ‘Single question alcohol use test’ (M-SASQ) > 1) 

• Hospitalisation for alcohol intoxication / harmful use (AIH)

• Hospitalisation for alcohol dependency (AD)

• Hospitalisation for alcoholic liver disease

• Hospitalisation for liver disease (all)

• Death (caused by AIH)

• Death (caused by AD)

• Death (caused by alcoholic liver disease)

• Death (caused by liver disease – all)

• Death (all cause)
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Note: the rationale for using alcohol use disorders (intoxication / harmful use / dependency) 

and alcoholic liver disease is that they make up a quarter of alcohol-attributable mortality, 

and are 100% alcohol attributable [1] 

For developing the decision analytic model, we require linked data to all hospitalisation 

records. 

Objectives, specific aims and rationale The overall objective of this research is to assess the 

effectiveness and cost-effectiveness of screening tests for alcohol harm and treatments for 

alcohol use disorders. To achieve this, we will carry out these specific aims: 

1. calculate the comparative effectiveness of screening tests in primary care for alcohol harm

and treatments for alcohol use disorders / alcohol-related outcomes using instrumental 

variables, propensity score matching and traditional observational approaches and compare 

the results from each method. 

2. estimate the cost-effectiveness of screening tests in primary care and treatments for

alcohol-use disorders using a decision analytic model developed using CPRD data sources. 

Study background Drinking excessively is a major risk factor that affects health in the UK. 

• NICE recommend alcohol screening to prevent alcohol-related outcomes. Five such

screening tests are listed in current Public Health Guidance [2]. Little is known about the 

comparative effectiveness of these tests (e.g. AUDIT vs. FAST). 

• Recent systematic reviews on pharmacologically controlled drinking [3] and

pharmacotherapy for AUDs in outpatient settings [4] that conclude no high-grade evidence 

exists and reveal a lack of head-to-head comparisons in the literature. 

• Alcohol brief interventions (ABIs) are structured conversations about alcohol consumption

carried out between GP and patients. There is research suggesting that ABIs play an 

important role in reducing alcohol consumption among people who drink in harmful way, but 

not for alcohol dependent people, and is cost-effective [5]. However, recent trial evidence 

does not support effectiveness [6] 
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The above shows there is an evidence gap for (comparative) effectiveness of screening tests 

for alcohol harm and treatments (pharmacological and ABIs) for alcohol use disorders. Using 

CPRD data sources for our planned study provides a large ‘real world population’. This 

addresses the well-known limitation of representativeness of clinical trials, and the large 

sample sizes are required to conduct high-quality instrumental variable analyses for 

addressing unmeasured confounding / confounding by indication.  

Study type Hypothesis testing study 

Study design Cohort study  

Feasibility counts Epidemiology of alcohol dependence using CPRD has been previously 

carried out and published [7]. Comparative effectiveness and economic evaluation is feasible 

using this data source. As outlined in section J, we expect to be using health records from 

millions of patients (approximately 6.4 and 17.0 million from GOLD and Aurum, 

respectively). This will ensure counts of outcome events will be sufficiently large to support 

the multivariable regression models we will run (i.e. very confident that models with many 

covariates, ‘using up’ many degrees of freedom, will reach convergence when fitted).  

Sample size considerations The large data set will support multivariable regression models 

with large number of covariates for all cohorts and for all outcomes described, as well as the 

instrumental variable analysis. The power for each pairwise treatment comparison will vary 

by how prevalent screening tests and treatments are, type of outcome, etc. However, given 

the large sample sizes in this study (exposure based on Read codes from [8] is approximately 

6.4 and 17.0 million patients in GOLD and Aurum, respectively) we are confident that power 

will be very high for all pairwise comparisons. To further illustrate this, in a recent systematic 

review of randomised trials that compared the effectiveness of ABIs with no intervention for 

a quantity of alcohol drinking at 12 months outcome, the combined sample size from 34 trials 

was 15,197 [5].  

Planned use of linked data and/or withheld concepts We plan to link CPRD to prescribing 

records, inpatient hospitalisations, mental health records and deaths. This is required to: 

a) estimate comorbidities with as much relevant information as possible. The richer the

information to construct models covariates, the better quality our comparative effectiveness 

research will be. 
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b) fully capture relevant health economic outcomes and resource use costs that are related to

alcohol consumption to create a high-quality decision analytic model. 

For our comparative effectiveness and decision analytic modelling, after we have identified 

the CPRD individuals in cohorts 1 and 2 we request all their HES inpatient records 

(regardless of ICD codes), primary care records, and mental health records (MHDS) before 

and after the index date when the individuals enter cohort 1 or cohort 2. 

We feel this is justified because we will add high-quality evidence on effectiveness and cost-

effectiveness of alcohol screening tests and treatments which will inform public health 

decision-making, clinical guidelines and ultimately the health of the UK population. 

We are aware that as we are requesting a large amount of data, it will be be important to 

complete the data minimisation spreadsheet in due course so we only request the variables 

that we need. Here we provide an overview of the type of variables we require (and for what 

reason): 

CPRD (GOLD and Aurum): patient variables (patient identifier for identifying linked 

records; age and sex will be covariates; registration deatils for cohort identification), practice 

variables (practice identifier and region will be needed to construct instrumental variables), 

consultation variables (dates, type of consultation needed for costing to inform decision 

analytic modelling), clinical variables (dates, type of event needed for costing to inform 

decision analytic modelling), referral variables (dates, type of referral needed for costing to 

inform decision analytic modelling), test variables (dates, category of event needed for 

costing to inform decision analytic modelling), all therapy variables (needed to identify 

treatment variables and also for costing to inform decision analytic modelling). 

HES APC: patient variables (patient identifier for identifying linked records), all 

hospitalisation variables (exact dates needed for survival analysis modelling; method and 

source of admission needed for costing to inform decision analytic modelling), all episodes 

variables (exact dates needed for survival analysis modelling; method and source of 

admission needed for costing to inform decision analytic modelling), procedures variables 

(date of admission and date of discharge needed to calculate length of stay for costing to 

inform decision analytic modelling; OPCS codes needed for costing to inform decision 
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analytic modelling), all augmented care variables (for costing to inform decision analytic 

modelling), all critical care variables (for costing to inform decision analytic modelling), all 

health resource group variables (for costing to inform decision analytic modelling). 

MHDS: we intend to use this data set only for calculating resource use and associated costs to 

inform decision analytic modelling. The types of variables we require are accommodation 

details, diagnsoses, specialty codings, occupation codes, services codings, consultation 

medium, admission method, discharge method, source of referral, status of service request. 

The comparative effectiveness testing of screening tools and treatments for alcohol use 

disorders will benefit patients in England and Wales as it will increase the evidence base for 

clinical decision making. At present, there is unclear evidence on what screening tools and 

what treatments work best in community settings and our research will inform that. The 

findings on the appropriateness of using instrumental variables, propensity score matching 

and traditional regression approaches in CPRD data will benefit patients indirectly or over the 

longer term as it will facilitate (if findings favourable) further research. The cost-

effectiveness findings will inform clinicians and policy-makers about the relative cost-

effectiveness of screening tools and treatments and may influence future guidelines or 

investment in treatments. Better use of finite resources will improve patient care as the most 

effective care will be provided to patients.  

Definition of the study population Our first cohort are those at risk of alcohol harm and 

subsequent disease and are potential targets for secondary prevention [9], whereas the second 

cohort have been hospitalised for an alcohol related condition and are potential targets for 

tertiary prevention [9]. 

Cohorts: 

Cohort 1: : individuals at risk of alcohol harm (identified by screening tests such as AUDIT 

and FAST; self-reported ‘high’ level of alcohol consumption; other alcohol consumption 

related Read/Snomed codes) between 01/01/2004 and 31/12/2020 (or last available extraction 

time point). The index date for entry into the cohort will be earliest date from: screening test / 

high level of alcohol consumption / other alcohol consumption related Read/Snomed codes. 

Patients who are and who are not eligible for linked data to be included into cohort. The 

earliest of CPRD death date, transfer out date, and the end of study date will be used in 
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defining the end of follow-up. Only up-to-standard follow-up to be considered. 

Provisional code list for inclusion into Cohort 1 (based on Read codes): see list in 

Supplementary Table 1.  

Cohort 2: individuals hospitalised for any alcohol related condition (identified by ICD codes 

for alcohol intoxication / harmful use, alcohol dependency, liver disease (all)) between 

01/01/2004 and 31/12/2020 (or last available extraction time point). The earliest of ONS 

linked death date, transfer out date, and the end of study date will be used in defining the end 

of follow-up. First/index hospitalisations will be coded by using a ‘look-back’ / screening 

period of 10 years (same fixed duration of 10 years look-back applied for each 

hospitalization). Cohort 2 will be a subset of Cohort 1.  

Selection of comparison group(s) or controls The comparison groups for alcohol use 

screening tests will be, in turn, the most common tests, such as AUDIT and FAST. 

The comparison groups for pharmacological treatments will be, in turn, the most common 

prescriptions for AUD, such as Acamprosate and Disulfiram. 

The comparison group for ABIs will be no ABI administered. 

Exposures, outcomes and covariates Exposures, outcomes and covariates 

Screening test / treatment variables (Exposures): 

Alcohol use screening tests (identified by Read codes [8]); pharmacological interventions 

(e.g. Acamprosate, Disulfiram, Nalmefene, Naltroxone); alcohol consumption (identified by 

Read codes [8], alcohol brief interventions (identified by Read/Snomed codes [8]). Notes: the 

comparisons in screening test, alcohol consumption and alcohol brief intervention exposures 

will be between different levels of these variables (including 'none'); the comparisons in 

pharmacological interventions will be head-to-head comparisons (e.g. Acamprosate vs. 

Disulfiram); screening tools will not be exposures for Cohort 2. 

Note: the Read codes from [8] are available in ‘Supplementary Table 1’ and available for 

download from https://doi.org/10.17037/data.00001071. We have reproduced them in the 

Appendix of this application. 
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Instrumental variables: these will be determined by measuring the percentage of time specific 

GPs / GP practices (depending on level of aggregation of analysis) have prescribed / 

administered screening tools / treatments for patients with similar characteristics to the 

current one. The performance/validity of different instruments based on different lengths of 

‘history’ (e.g. last 1/5/10/20 patients) will be tested. 

Outcomes: 

Primary care record of alcohol use disorder, hospitalisation for AIH, hospitalisation for AD, 

hospitalisation for alcoholic liver disease, hospitalisation for liver disease (all), death (caused 

by AIH), death (caused by AD), death (caused by alcoholic liver disease), death (caused by 

liver disease – all), death (all cause). 

Covariates: 

Age, sex, socio-economic deprivation, comorbidities (e.g. Charlson score) 

Data/statistical analysis Statistical analysis plan: 

1. Identify cohort 1 and cohort 2 by data science-type skills/coding (merging/ reshaping data,

creating new variables needed for analysis) 

2. Identify most common tests/treatments in data

3. Identify the two-way comparisons for statistical inference

4. Run comparative effectiveness analyses (a: unadjusted, b: adjusted (multivariable

regression), c: adjusted (time-varying propensity score [10]), d: instrumental variable (e.g. 

physicians’ prescribing preferences [11]) 

5. Develop decision analytic model for conducing economic evaluation of (causal) treatment

effects identified in 4. We will undertake probabilistic sensitivity analysis (PSA) as part of 

this modelling. PSA involves specifying a distribution for each parameter included in the 

model. In order to characterise the uncertainty around the estimates of cost-effectiveness, the 

model will be run repeatedly to produce a range of estimates of cost and effectiveness. Each 

time the model is run, a different random value for each parameter will be selected from the 

distribution. This means that the uncertainty in every parameter is simultaneously taken into 

account. 

We will develop an a priori modelling plan protocol before getting sight of the CPRD data. 

This will be subject to change after we become familiar with the exact nature of the CPRD 
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data set (we will version control this protocol). 

Expanding on step 4 above, we will use Cox regression to model time to event of our 

outcome variables. Multivariable regression and time-varying propensity scores will be used 

to adjust for confounding variables that are measured in the data set (e.g. age, sex, socio-

economic deprivation, comorbidities). A candidate propensity score technique will be inverse 

probability weighting based on pre-exposure characteristics (age, sex, socio-economic 

deprivation, comorbidities), building a score reflecting the probability of an individual being 

in the treatment group. This probability is then used in every regression as a weight for every 

individual. To address unmeasured confounding, we will implement multivariable 

instrumental variable Cox regression model, incorporating two-stage regression. First stage: 

using logistic regression of treatment on instrument to estimate the probability of receiving 

treatment A including all potential covariates (age, sex, socio-economic deprivation, 

comorbidities). Second stage: use Cox regression to estimate the risk of outcome using the 

probability from the first stage as exposure with the same list of covariates. The latent 

variable physician's prescribing preference (an example of an instrumental variable for the 

pharmacological interventions exposure) will be measured using the proxy of the most recent 

prescription made by the same physician. In terms of sensitivity analysis, we will run the 

same model using prior 2 to prior 20 prescriptions made by the same physician as 

instrumental variables. The results from instrumental variable models will be triangulated 

with the multivariable Cox regression and propensity score results. 

The data sets for this project will be very large (many millions of patient records). We will 

develop our statistical code using a random subset of patients before submitting final code 

utilising high performance computer clusters at the University of Glasgow. 

We will use both GOLD and Aurum in the above statistical analysis plan. Where we identify 

duplicate practices we will remove them from the GOLD data set. We will build our models 

using GOLD and use Aurum for validation purposes. 

Plan for addressing confounding In this study, we use instrumental variable methods to tackle 

bias caused by unmeasured confounding. We will use the Durbin-Wu-Hausman approach to 

test the validity (H0: no endogeneity) of our constructed instruments by comparing ordinary 

least squares and instrument variable estimates.  
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Plans for addressing missing data We plan to use multiple imputation with chained equations 

procedures to address missing data under a missing at random (MAR) assumption. We will 

assume MAR rather than missing completely at random (MCAR) because in our experience 

of analysing similar routine healthcare data sets to CPRD (e.g. PIS and SMR in Scotland), 

MCAR is extremely unlikely as missing data is usually related to observed covariates. 

Although we cannot test missing not at random (MNAR) empirically, we will also consider 

the plausible mechanisms of any missing data in key variables.  

Patient or user group involvement We have identified and are engaging with a patient group 

from another alcohol epidemiology/comparative effectiveness project - TRends and 

Inequalities in Prescribing for Alcohol use Disorders in Scotland (TRIPADS) – funded by 

Alcohol Change UK. We will explore the possibility of using this group for PPI in this 

project.  

Plans for disseminating and communicating study results The study results will be published 

in peer-reviewed journals. No restriction on the extent and timing of publication.  

Conflict of interest statement None. 

Limitations of the study design, data sources, and analytic methods The main limitation is 

that there is a possibility that we will not identify valid instruments and if this happens our 

comparative effectiveness results could be biased due to unmeasured confounding.  
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Supplementary material for Chapter 6 

Figure S10. SMD of covariates based on the level of treatment (left), SMD of covariates based 

on the level of IV (right). The dash line represents represent SMD equals 0.1. 

Weak instrument test (IV: the proportion of SU prescribed during last 1 year prescriptions, 

dichotomised at median) 

F-statistics 101.765 p value: <0.05 

Wu-Hausman test 1.581 p value: 0.209 

Validation of monotonicity assumption 

Outcome: HbA1c reduced to 

between 42 mmol/mol and 48 

mmol/mol 

Outcome: HbA1cc reduced to 

less than 42 mmol/mol 

IV IV 

inequality 

hold 

Monotonicity 

inequality hold 

IV 

inequality 

hold 

Monotonicity 

inequality hold 

The proportion of SU 

prescribed during the 

last 200 days 

prescriptions 

(dichotomised at 

median) 

TRUE TRUE TRUE TRUE 

The proportion of SU 

prescribed during the 

last 1  year prescriptions 

(dichotomised at 

median ) 

TRUE TRUE TRUE FALSE 
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Table S9. Validation of monotonicity assumption 

Figure S11. Sensitivity analysis to unmeasured confounding. Results from the R function 

‘sensemakr’. 
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Data request form for Chapter 6 

Request for access to Scottish Diabetes Registry to predict long-term events and budget 

impact of alternative choices of drug treatments for patients with type 2 Diabetes 

Mellitus (T2DM) 

Richard Grieve (LSHTM), Jim Lewsey and David McAllister (University of Glasgow) 

Background 

The proposed research will build from the NIHR-funded PERMIT study (see PERMIT | 

LSHTM) which aims to assess the long-term effectiveness and budget impact of alternative 

second-line drug treatments for patients with Type 2 Diabetes Mellitus. The study applies an 

instrumental variable (IV) design to Clinical Practice Research Datalink (CPRD) data to 

estimate the relative effectiveness and cost of alternative second-line treatments. These 

estimates are for the purpose of populating a microsimulation model (RAPIDS), to predict the 

rate of long-term complications, and accompanying budget impact.   

The study’s objectives are: 

1. To assess short-term relative effectiveness according to individual risk factor profiles.

2. To calibrate and extend a microsimulation model developed in the US, for patients

with T2DM in the UK (RAPIDS-UK).

3. To use the findings from objective 1, together with the model developed in objective

2, to estimate long-term effectiveness according to individual risk factor profiles, and

project the NHS budget impact of personalising drug choice.

Rationale for request to Scottish Diabetes Registry 

To fully address Objective 1 requires that the instrumental variable approach is replicated on 

an external dataset. Objective 2 of the PERMIT requires that the RAPIDS model is calibrated 

to relevant UK populations. Our request is therefore to calibrate the RAPIDS model using 

information from the Scottish diabetes register. We would then use this calibrated model to 

predict the budget impact to Scotland of alternative second line drug treatments for patients 

with T2DM (Objective 3).  

https://www.lshtm.ac.uk/research/centres-projects-groups/permit#:~:text=PERMIT%20is%20a%2030-month%20NIHR-funded%20project%20aiming%20to,treatments%20for%20individual%20patients.%20Learn%20about%20the%20project
https://www.lshtm.ac.uk/research/centres-projects-groups/permit#:~:text=PERMIT%20is%20a%2030-month%20NIHR-funded%20project%20aiming%20to,treatments%20for%20individual%20patients.%20Learn%20about%20the%20project
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The research would be undertaken by Lisong Zhang, a PhD student at the University of 

Glasgow, supervised by Jim Lewsey and David McAllister and if desired a member of the 

Edinburgh team. Lisong’s PhD research is on using physician’s prescribing preferences as an 

IV to adjust for unmeasured confounding in comparative effectiveness studies using 

observational data.  

In extending objective 1 of the PERMIT study, Lisong will explore deriving instruments at 

different levels of aggregation (e.g. prescriber versus primary-care practice). In extending 

objective 2, Lisong would use information from the Scottish Diabetes Registry on for 

example, baseline characteristics (e.g. age, HbA1C prior to second-line treatment), to predict 

long-term events (e.g hospitalisations related to micro- and macro-vascular complications). 

Once calibrated, the model would be used to predict the costs of long-term events as well as 

medication costs.  The resulting predictions of budget impact will be compared to those from 

a state transition cohort model that was developed using SCI-DC data. 

Anticipated outputs 

We anticipate that the proposed research would lead to two chapters of Lisong’s PhD thesis 

and to subsequent publications. The usual approach of the Scottish Diabetes Research 

Network will be used to identify potential collaborators/co-authors. 

About the PhD student 

Lisong Zhang is a PhD student at the University of Glasgow supervised by Jim Lewsey and 

David McAllister. Lisong’s PhD research is on using physician’s prescribing preferences as 

instrumental variables to adjust for unmeasured confounding in comparative effectiveness 

studies using observational data. As well as replicating the instrumental variable analyses 

undertaken in CPRD, for the purposes of her PhD Lisong will explore deriving instruments at 

different levels of aggregation (e.g. at GP practice level) and using different time windows 

for calculating instruments (e.g. prior two years and prior 6 months as well as 1 year window 

that is used in our research). 
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OUTLINE PROPOSAL FORM:  Research in collaboration with or as part of the 

Scottish Diabetes Research Network epidemiology group  

1. Applicants: Principal applicant:

Name:  Lisong Zhang  

Affiliation: University of Glasgow 

Email: xxxxxxxx@student. gla.ac.uk 

Telephone: xxxxxxxxxxx 

Address:  1 Lilybank Gardens Glasgow G12 8RZ 

Co-applicants and institutions:  

David McAllister, Jim Lewsey (University of Glasgow) 

Richard Grieve, Patrick Bidulka, David Lugo-Palacios (London School of Hygiene and 

Tropical Medicine) 

2.Project title (no more than 120 characters with spaces)

Predict long-term events and budget impact of alternative choices of drug treatments 

for patients with type 2 Diabetes Mellitus (T2DM) 

Start date:  06/2021 

End date:   06/2022 

3.Funding:

Has the project been or will it be peer reviewed? Yes ☐ No ☐ 

If so, by what organisation? 
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NIHR  

Funding: (If not specified above) 

Has funding been sought? * Yes ☐ No ☐ 

What is the deadline for application to the funder? 

*Please note that applications for funding must be reviewed PRIOR to submission to a

funding body and should be received AT LEAST two weeks before the deadline for 

submission. 

4. Data sources:

Please check the data sources that are requested for this proposal & give full details in your 

scientific outline: 

Scottish Diabetes register data: ☐ 

Linkage to other data sources (specify) : ☐ 

5. Ethical approval:

Does the study have ethical approval from a recognised Institutional Review Board/Ethics 

Committee? Yes ☐ No ☐  

If Yes, please append a copy of the approval. 

If No, please specify arrangements for obtaining appropriate approvals: 

Yes, this study which is led by London School of Hygiene and Tropical Medicine (LSHTM) 

and also uses Clinical Practice Research Datalink (CPRD) data has been approved by 

LSHTM Internal Ethics Committee (ID 21395) and the MHRA Independent Scientific 

Advisory Committee (ID 20_064). 
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6. 

Scientific outline: Please provide a 1-2 page outline of your proposal, highlighting the 

specific requirements of the project for Scottish Diabetes Register data specified above.  

Please include:  

1) Lay summary (up to 250 words)

The proposed research will build from the NIHR-funded PERMIT study (see PERMIT | 

LSHTM) which aims to assess the long-term effectiveness and budget impact of alternative 

second-line drug treatments for patients with Type 2 Diabetes Mellitus. The study applies an 

instrumental variable (IV) design to Clinical Practice Research Datalink (CPRD) data to 

estimate the relative effectiveness and cost of alternative second-line treatments.  These 

estimates are for the purpose of populating a microsimulation model (RAPIDS), to predict the 

rate of long-term complications, and accompanying budget impact.  The main objectives of 

these research are: 

4. assess short-term relative effectiveness according to individual risk factor profiles.

5. To calibrate and extend a microsimulation model developed in the US, for patients

with T2DM in the UK (RAPIDS-UK).

6. To use the findings from objective 1, together with the model developed in objective

2, to estimate long-term effectiveness according to individual risk factor profiles, and

project the NHS budget impact of personalising drug choice.

2) List of investigators

Lisong Zhang 

3) Short background/ introduction

The study applies an instrumental variable (IV) design to estimate the relative effectiveness 

and cost of alternative second-line treatments.  

4) Hypothesis

https://www.lshtm.ac.uk/research/centres-projects-groups/permit#:~:text=PERMIT%20is%20a%2030-month%20NIHR-funded%20project%20aiming%20to,treatments%20for%20individual%20patients.%20Learn%20about%20the%20project
https://www.lshtm.ac.uk/research/centres-projects-groups/permit#:~:text=PERMIT%20is%20a%2030-month%20NIHR-funded%20project%20aiming%20to,treatments%20for%20individual%20patients.%20Learn%20about%20the%20project
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The instrumental variable (IV) design reduce the possible unmeasured confounding bias in 

this observational study. 

 

 

5) Data requested  

            Scottish Diabetes Registry 

 

6) Details of data handling and procedures for linkage 

 

The data handling and data linkage will comply with Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) and Reporting of studies 

Conducted using Observational Routinely-collected Data (RECORD) guidelines. 

 

7) Analysis Plan 

 

To fully address Objective 1 requires that the instrumental variable approach is replicated on 

an external dataset. Objective 2 of the PERMIT requires that the RAPIDS model is calibrated 

to relevant UK populations. Our request is therefore to calibrate the RAPIDS model using 

information from the Scottish diabetes register. We would then use this calibrated model to 

predict the budget impact to Scotland of alternative second line drug treatments for patients 

with T2DM (Objective 3).  

 

The research would be undertaken by Lisong Zhang, a PhD student at the University of 

Glasgow, supervised by Jim Lewsey and David McAllister and if desired a member of the 

Edinburgh team. Lisong’s PhD research is on using physician’s prescribing preferences as an 

IV to adjust for unmeasured confounding in comparative effectiveness studies using 

observational data.  

 

In extending objective 1 of the PERMIT study, Lisong will explore deriving instruments at 

different levels of aggregation (e.g. prescriber versus primary-care practice). In extending 
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objective 2, Lisong would use information from the Scottish Diabetes Registry on for 

example, baseline characteristics (e.g. age, HbA1C prior to second-line treatment), to predict 

long-term events (e.g hospitalisations related to micro- and macro-vascular complications). 

Once calibrated, the model would be used to predict the costs of long-term events as well as 

medication costs.  The resulting predictions of budget impact will be compared to those from 

a state transition cohort model that was developed using SCI-DC data. 

 

8) Details of authorship and collaboration agreement  

 

7. 

Agreement: 

Signature: Lisong Zhang 
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GitHub link for the R code used in this thesis 

 

https://github.com/zhanglisong810-ls/PhD-thesis-R-

code/blob/1b0ba45571cadb53308234ad00bbfa0152706288/R_code 

 

 

https://github.com/zhanglisong810-ls/PhD-thesis-R-code/blob/1b0ba45571cadb53308234ad00bbfa0152706288/R_code
https://github.com/zhanglisong810-ls/PhD-thesis-R-code/blob/1b0ba45571cadb53308234ad00bbfa0152706288/R_code
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