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Abstract—Amazon rainforest deforestation severely impacts
the environment in many ways, including biodiversity reduction,
climate change, and so on. A key indicator of deforestation is the
sudden appearance of rural/unofficial roads, usually exploited to
transport raw materials extracted from the forest. To early detect
such roads and prevent deforestation, remote sensing images
have been widely employed. Precisely, some researchers have
focused on tackling this task by using low-resolution imagery,
mainly due to their public availability and long time series.
However, performing road extracting using low-resolution images
poses several challenges, most of which are not addressed by
existing works, including high inter-class similarity, complex
structure, etc. Motivated by this, in this paper, we propose a novel
approach to perform road extraction on low-resolution satellite
images based on contextual and pixel-level decision fusion. We
conducted a systematic evaluation of the proposed method using
a new dataset proposed in this work. The experiments show that
the proposed method outperforms state-of-the-art algorithms in
terms of intersection over union and F1-score.

I. INTRODUCTION

Road extraction (or mapping) aims at detecting and seg-
menting roads, usually by means of remote sensing images,
mainly due to their wide coverage. As can be seen in Figure 1,
such a task (and its developments and outcomes) can be
directly linked to deforestation in the Amazon rainforest [1]
which, in turn, is related to several environmental problems,
such as biodiversity reduction and climate change. An impor-
tant issue is that this type of road (presented in Figure 1) is
usually opened illegally, without the knowledge or authoriza-
tion of the responsible bodies.

Manual road extraction from images is a laborious and
time-consuming process, particularly when considering the
extension and sheer quantity of roads. Due to this, it is
of paramount importance to develop automatic approaches
capable of promptly identifying/extracting especially ru-
ral/unofficial roads in the Amazon forest ,and, consequently,
predicting possible deforestation zones, thus assisting in the
prevention. Towards this, several works have been proposed
for automatic road mapping [2]–[6]. Most of these studies
use high-resolution aerial images, mainly because of their fine
level of detail. However, despite the advantages, such images
are generally not publicly available and, since these sensors are
relatively new technologies, they may not provide information
over a long time series, crucial properties for understanding
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Fig. 1: Transamazônica highway near Jatuarana River in
Amazon Rainforest. Note that there is no deforestation in
the area in 2014. It is possible to observe the opening of
rural roads in 2016. Many areas close to the roads have been
deforested as observed in 2022.

patterns and temporal dynamics of deforestation. Motivated by
this, some researchers [4], [7] have focused on performing road
mapping using low-resolution imagery, such as those from the
Landsat and Sentinel constellations. In spite of the benefits,
performing road extracting using low-resolution images poses
several challenges, most of which are not addressed by existing
works, including: (i) complex structure, given that these roads
are very winding and close to each other, and (ii) high inter-
class similarity, given that the roads can resemble other objects
such as river banks.

In this paper, we propose a novel approach to perform road
extraction using low-resolution satellite images that consists of
a Context-to-Pixel fusion based on the results from a contex-
tual module (classification backbone) and a pixel-wise module
(segmentation backbone). Additionally, we also propose a new
dataset for road extraction in the Amazon rainforest.

In practice, these are the contributions of this work:
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• a novel method to identify roads in low-resolution re-
mote sensing images (i.e., 10–20m pixel size) based on
contextual and pixel-level decision fusion1,

• a new dataset for road extraction in Amazon rainforest2.

II. RELATED WORK

Due to its importance, several approaches have been pro-
posed for road mapping using remote sensing images [4], [8]–
[11]. Most methods tackling road mapping use high-resolution
remote sensing images [2], [3], [8]–[10]. Mosinska et al. [8]
trained a U-net to perform road extraction using a new loss
function that considers the street topology. They also employed
an iterative procedure to recursively refine the predictions.
Zhou et al. [9] proposed a new Convolutional Network, called
D-LinkNet, capable of extracting roads in high-resolution im-
ages in a time-efficient manner. Such a network has additional
dilated layers to help add more context [12]. In [10], the
authors introduced a new Recurrent U-net to efficiently and
effectively detect roads and centerlines. In [13], the authors
proposed a novel encoder-decoder architecture. This network
is then trained using a combination of the cross-entropy and
dice losses in order to learn both local and global information.
Wan et al. [2] designed a new dual-attention network that em-
ploys an attention mechanism on low and high-level features
to aggregate more information and reduce discontinuous and
incomplete results. Yang et al. [3] introduced a new network
that combines an encoder-decoder convolutional architecture
with Swin transformers [14] in order to aggregate more
contextual information and reduce discontinuities.

As introduced, despite the advantages of high-resolution
data, such images are generally not publicly available and may
not provide information over a long time series. Therefore, due
to its wide availability (mainly temporal), some studies have
used low-resolution data to perform road extraction [4]–[6],
[15]. In [15], the authors proposed a new U-net architecture
that gradually incorporates all available Sentinel image bands
into the network to generate better-quality results. Ayala et
al. [6] combined super-resolution techniques with segmenta-
tion networks in order to be able to receive low-resolution
remote sensing images but generate high-resolution road maps.
Dixit et al. [5], the authors proposed a new architecture that
combines Residual Networks, U-Net, and dilated convolutions
to perform low-resolution road segmentation. Botelho et al. [4]
trained a modified U-net architecture to detect rural roads in
the Brazilian Amazon. They also employed a post-processing
technique to refine and generate the final segmentation map.

In this work, we perform road extraction by combining
contextual and pixel-level information. Different from previous
approaches, the proposed method leverages contextual infor-
mation to effectively identify regions likely to contain roads,
thus reducing the number of false positives.

1https://github.com/lucascsfaria/ContextualPixelLevelRoadExtractionAmazon
2https://github.com/lucascsfaria/amazonwildroadsdataset

III. THE AMAZONWILDROADS (AWR) DATASET

In this work, we proposed a novel dataset, called Ama-
zonWildRoads, that focuses on (rural) roads in the Amazon
rainforest. Precisely, this dataset is composed of 28 Sentinel
2 satellite images, obtained from the Google Earth Engine,
covering various areas of the Amazon rainforest throughout
several Brazilian states, as presented in Figure 2. In order to
enhance the diversity of the dataset, distinct types of areas
were selected and collected, including some with rivers, cities,
vegetation, and so on. This process ensures that the dataset
encompasses different environmental and urban elements,
increasing its difficulty, but making it more appropriate to
evaluate the task at hand.

In the Amazon region, there is a high incidence of clouds
throughout the year. When acquiring the images, we selected
all images from the year 2020, filtered the images that have
cloud cover above 30% of the pixels of the total image area,
and then applied the median to the set of all remaining images
with Google Earth Engine tools [16].

Fig. 2: Map of collected areas around the Amazon rainforest.
In green, we have highlighted the states belonging to the
Brazilian Legal Amazon. In red and blue, we can see all
collected 28 areas.

The images in this dataset are composed of RGB bands,
thus having a Ground Sampling Distance (GDS) of 10 meters
per pixel. Furthermore, the images have an average resolution
of 2, 794× 1, 059 pixels, providing area coverage of approxi-
mately 290 km2 each. Overall, the dataset covers an extensive
area of approximately 8, 120 km2 in total. Finally, the roads
in these images were manually annotated by specialists.

IV. PROPOSED APPROACH

In this section, we describe the proposed approach to road
extraction that combines contextual and pixel-level informa-
tion, as presented in Figure 3. Section IV-A discusses the
Contextual Road Indicator module, whereas the Pixel-wise
Road Extraction module is presented in Section IV-B. Finally,
Section IV-C introduces the Context-to-Pixel fusion strategy.
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Fig. 3: Overview of the proposed approach for extracting roads from low-resolution remote sensing images.

A. Contextual Road Indicator (CRI) module

The Amazon rainforest region has many areas of difficult
access with no roads that may contain objects that, because of
the context, could cause confusion in road extraction models,
resulting in incorrect predictions (i.e., false positives). Due
to this, it is vital that road extraction methods use strategies
capable of discarding these regions in order to reduce false
positives and improve general performance. Towards this, we
propose a module, called Contextual Road Indicator (CRI),
that exploits the contextual information to identify regions that
are likely to contain roads. Such a module is based on neural
networks, which are trained using overlapping patches/crops,
generated from the original images. These patches are assigned
one of two classes, road or non-road, depending on whether
they have at least one pixel of road. By analyzing the context
and extracting key features, the model learns to classify such
patches into one of these two classes, enabling effective
identification and differentiation of road and non-road areas.

During the inference, all patches of an image are classified
by the trained model, which outputs a probability for each
crop. These predictions (and corresponding probabilities) are
then used to create a probability map for this entire image. To
accomplish this, we: (i) consider that the likelihood predicted
for an area is, in fact, associated with all its pixels, and (ii) add
up the probabilities of overlapping regions. As a result, certain
areas may have a probability greater than 1. To address this
issue, the non-normalized probability map is further processed
using the following function: P (i, j) = X(i,j)

max(X) ∀i, j ∈ X ,
where X and max(X) are the input non-normalized image
and its maximum value, and P is the final normalized probabil-
ity map. After this procedure, the context indicator image can
finally be generated by binarizing the normalized probability
map using a threshold of 0.5 for each pixel. This results in a
map that highlights regions within the original image that are
deemed highly likely to contain roads.

B. Pixel-wise Road Extraction (PRE) module

Besides the CRI, we also propose another module to gener-
ate a pixel-level segmentation of the input images. This mod-
ule, called Pixel-wise Road Extraction (PRE), works similarly
to the Contextual Road Indicator one, but instead of generating

patch-level predictions, it generates pixel-level outcomes by
using semantic segmentation networks.

Specifically, this module’s networks are trained to segment
input patches, i.e., to produce a dense prediction in which
each pixel is associated with a probability of being a road.
During the inference phase, the input patches are processed by
the trained model, which generates dense predictions that are
subsequently utilized to create a probability map for the entire
image, following a procedure similar to that employed in the
CRI module. Precisely, the only difference in this part between
these modules is the normalization, which is carried out in the
current component using the following function: P (i, j) =
X(i,j)−min(X)

max(X)−min(X) ∀i, j ∈ X , where P is the final normalized
probability map, and X , min(X), and max(X) are the input
non-normalized image, its minimum, and maximum values,
respectively. After this, the final prediction map is generated
by binarizing the normalized probability map using a threshold
of 0.2 for each pixel that was defined experimentally.

C. Context-to-Pixel Fusion

As introduced, most of the area of the Amazon rainforest
has no roads. However, because of similarity and other con-
textual characteristics, extraction methods tend to erroneously
predict roads in such regions. Motivated by this, we propose a
new module, called Context-to-Pixel Fusion, that merges the
outcomes generated by the CRI and PRE components in order
to better identify regions likely to have roads, thus reducing
false positives and improving general performance.

Technically, the context indicator image generated by the
CRI module and the final prediction map created by the PRE
component are combined using an AND operator. By perform-
ing this combination, the method is capable of exploiting the
contextual information extracted by the CRI module and the
detailed pixel-level features captured by the PRE component
to effectively identify regions likely to contain roads, thus
reducing the number of false positives.

V. EXPERIMENTAL SETUP

Experimental Protocol. Our approach was trained and eval-
uated using the AmazonWildRoads dataset, presented in Sec-
tion III. We divided this dataset into training and testing sets,



as depicted in Figure 2, by using 20 images for training and 8
for testing. It is important to note that we selected samples with
very different properties for the test set, varying considerably
in relation to road density (some do not even have a road), the
presence of similar objects (such as rivers), etc. The main idea
was to create a test set that would allow us to better understand
the behavior of the methods in the most diverse scenarios
found in the Amazon forest region. Results are presented using
four distinct and complementary metrics, i.e., Intersection over
Union (IoU), Precision, Recall, and F1 score.
Implementation. For the CRI module, we evaluated 4 clas-
sification networks: Resnet18 [17], VisionTransformer [18],
ConvNext [19], and SwinTransformer [14]. All models were
trained using the Binary Cross Entropy loss and the following
hyper-parameters: patch size of 128 × 128 pixels (with an
overlap of 64 pixels), 50 epochs, batch size equal to 64, SGD
as optimizer, learning rate of 0.0001, and momentum of 0.9.
For the PRE module, 3 different architectures were tested: U-
net [20], U-net++ [21], and DeepLabv3+ [22]. For each one of
these, 3 distinct encoders, pre-trained on the ImageNet dataset,
were assessed: EficcientNet-b0 and EficcientNet-b7 [23], and
ResNext101 [24]. All models were trained using a combination
of the Jaccard and Focal losses [25], patch size of 128× 128
pixels (with overlap of 64 pixels), 50 epochs, batch size equal
to 64, Adam optimizer, and learning rate of 0.0003.
Baselines. We compared the proposed method with two state-
of-the-art baselines: (i) D-LinkNet [9], a Convolutional Net-
work that exploits dilated layers to help add more context to
the learning process, and (ii) U-net road model [4], which
combines a larger U-net architecture with post-processing
techniques to refine and generate the final segmentation map.

VI. RESULTS AND DISCUSSIONS

In Section VI-A, we evaluate the proposed method using
different configurations and backbones. In Section VI-B we
compare our results with state-of-the-art approaches.

A. Proposed approach evaluation

1) Architecture Analysis: Table I shows the results obtained
for the proposed approach with different configurations for
the pixel-wise and the contextual modules. We have analyzed
and tested 36 configurations – 4 different backbones for the
CRI module and 9 distinct architectures (3 networks times 3
backbones) for the PRE module. For comparison purposes, we
also report the results of the PRE module (i.e., segmentation
networks), but without any contextual information (i.e., with-
out the CRI module). Note also that, for simplicity and clarity,
only the most relevant results in terms of the F1-score metric
were reported in this paper. Furthermore, since all the best
results were produced using the EficcientNet-b7 [23] backbone
for the PRE module, only these have been reported.

A first observation that we can elucidate from these results
is that the Context-to-Pixel fusion we propose in this paper
tends to bring effective gains, which can be observed when
comparing the values of IoU, Precision, and F1-Score of the
models exploiting contextual information with those without

TABLE I: Results for the proposed approach with different backbone combi-
nations for the pixelwise and the contextual modules.

Pixelwise Contextual IoU Precision Recall F1-Score

U-net++ [21]

- 0.539 0.624 0.799 0.701
ConvNext 0.559 0.656 0.790 0.717

ResNet 0.533 0.638 0.763 0.695
SwinT 0.549 0.668 0.755 0.709

ViT 0.571 0.690 0.768 0.727

U-net [20]

- 0.483 0.543 0.814 0.652
ConvNext 0.522 0.596 0.808 0.686

ResNet 0.489 0.569 0.776 0.657
SwinT 0.517 0.613 0.769 0.682

ViT 0.547 0.645 0.782 0.707

DeepLabv3+ [22]

- 0.483 0.533 0.836 0.651
ConvNext 0.513 0.574 0.827 0.678

ResNet 0.483 0.550 0.799 0.652
SwinT 0.507 0.588 0.787 0.673

ViT 0.528 0.608 0.802 0.692

this component. However, this leads to an increase in the
false negative rates, which is evidenced by the overall drop in
Recall values. In summary, the use of context helps to remove
incorrectly identified disconnected sections (false positives)
from the main roads present in the images but, in contrast,
small sections correctly detected are also lost.

Considering the performance of the evaluated architectures
for the PRE module, U-net++ [21] presented leading outcomes
among all combinations, with the best results being achieved
with the Vision Transformers (ViT) backbone for contextual
analysis, yielded 0.727 in terms of F1-Score. Note that Recall
loss is also more pronounced. The best result in terms of Recall
(0.836) was generated by the DeepLabV3+ architecture [22]
without any contextual information. Such a model tends to
identify a higher number of roads but, at the same time,
generates a significant amount of noise or false positives (as
can be seen by the Precision).

2) Qualitative Analysis: In Figure 4, we show visual results
for three areas. Note that these results were generated using
the best obtained model, i.e., a U-net++ [21] with EfficientNet-
b7 [23] in the PRE module and ViT [18] in the CRI module.

The first image (PA2 – please, refer to Figure 2), has several
roads and is quite degraded by deforestation. Few areas are
discarded by our contextual fusion. At the same time, small
road segments are improperly removed (false negatives). The
second image (AM6) has some roads and a lot of degradation
on the east half, but on the other side (west) just a few rivers.
It is worth remembering that flooded areas and narrow rivers
are easily confused with stretches of rural roads [1], [4]. In
this case, the pixel-wise approach detected several segments
of rivers and sandbanks as rural roads (false positive). Context
played a key role in removing many of these segments in the
final result. Finally, the third image (AC2) has a large east-
west road and another, less obvious road, that follows part of a
river running north-south. The rest of the image is of preserved
forest. In this case, the proposed fusion is also quite effective,
as it is able to remove several segments incorrectly detected
as rural roads along the river.
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Fig. 4: Results of the proposed approach for distinct areas of the AmazonWildRoads dataset. For the ground-truth, segmentation
and final results: white areas represent roads, while the black regions are non-road.

B. Comparison with baselines

In Table II we present results obtained by the proposed
approach in comparison with state-of-the-art methods for road
detection. For the D-LinkNet [9], we have tested ResNet-
101 and ResNet-34 (original) and reported the best results.
For the U-net road model [4], we used the same architecture
presented in the original work. Considering the F1-score, IoU,
and Precision values, our method achieved better results than
the baselines. The proposed method achieved a slightly higher
rate of false negatives compared to the U-net road model [4],
as can be seen by the difference in Recall (0.823 versus 0.768).

In Figure 5, we show some results of obtained results of the
proposed method in comparison with the baselines. Note how
the proposed method is quite effective in removing sections of
incorrectly identified roads compared to the other approaches.

VII. CONCLUSION

In this paper, we propose a novel approach for road ex-
traction that combines contextual and pixel-level information.
Experimental results, performed using the proposed Amazon
Wild Roads (AWR) dataset, show that the method is robust to

TABLE II: Comparison with state-of-the-art baselines.

Method IoU Precision Recall F1-Score

D-LinkNet [9] 0.465 0.585 0.693 0.635
U-net road model [4] 0.454 0.503 0.823 0.625

Ours 0.571 0.690 0.768 0.727

false positives and very effective in identifying road areas. This
was reflected in the final results, where the proposed method
generated the best outcomes in terms of IoU, Precision, and
F1-score, outperforming other state-of-the-art baselines.

The contributions of this paper open new opportunities for
mapping roads in the Amazon region. In future work, we
intend to investigate large-scale aspects of unofficial road
detection in the Amazon and carry out an analysis of the
impact of these roads on deforestation.
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