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ABSTRACT: For decades, the literature on the estimation of production functions has focused 

on the elimination of endogeneity biases through different estimation procedures to obtain the 

correct factor elasticities and other relevant parameters. Theoretical discussions of the problem 

correctly assume that production functions are relationships among physical inputs and output. 

However, in practice, they are most often estimated using deflated monetary values for output 

(value added or gross output) and capital. This introduces two additional problems—an errors-in-

variables problem, and a tendency to recover the factor shares in value added instead of their 

elasticities.  The latter problem derives from the fact that the series used are linked through the 

accounting identity that links value added to the sum of the wage bill and profits. Using 

simulated data from a cross-sectional Cobb-Douglas production function in physical terms from 

which we generate the corresponding series in monetary values, we show that the coefficients of 

labor and capital derived from the monetary series will be (a) biased relative to the elasticities by 

simultaneity and by the error that results from proxying physical output and capital with their 

monetary values; and (b) biased relative to the factor shares in value added as a result of a 

peculiar form of omitted variables bias. We show what these biases are and conclude that 

estimates of production functions obtained using monetary values are likely to be closer to the 

factor shares than to the factor elasticities. An alternative simulation that does not assume the 

existence of a physical production function confirms that estimates from the value data series 

will converge to the factor shares when cross-sectional variation in the factor prices is small. 

This is, again, the result of the fact that the estimated relationship is an approximation to the 

distributional accounting identity. 

 

KEYWORDS: Endogeneity; Monetary Values; Physical Quantities; Production Functions  

 

JEL CLASSIFICATIONS: C18; C81; C82 
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1. INTRODUCTION 

 

Economists have estimated production functions for almost a century. The main objective therein 

is to obtain estimates of the factors’ output elasticities, and of their elasticities of substitution. 

The estimates are used to test a wide variety of hypotheses, calculate total factor productivity, 

build economic models (growth), and inform policy. And yet, the profession has long been 

concerned with the possibility that estimates of OLS regressions may be possibly biased by 

endogeneity problems. Such problems arise because producers decide their factor inputs in 

response to information—not available to the econometrician—about their production 

possibilities (Marschak and Andrews 1944).  

 

This has led to a plethora of techniques attempting to solve the endogeneity problem using 

different estimators.1 Given that different estimators produce different parameter estimates, a key 

question is: which of these estimates are the correct ones? 

 

In attempting to decide, researchers often settle for the estimates that make the most sense. Van 

Beveren (2012, 99) argues that, “in practice evaluation of factor elasticities is more problematic 

due to the absence of a definite prior on how high (or low) factor elasticities should be [italics in 

the original].” However, guided by neoclassical theory, researchers often prefer estimates that 

closely resemble the shares of value added received by each factor, as these can be easily 

interpreted. In the words of Solow (1974, 121, emphasis added), “when someone claims that 

production functions work, he means (a) that they give a good fit to input-output data without the 

intervention of the factor shares and (b) that the function so fitted has partial derivatives that 

closely mimic the observed factor shares.” This assessment continues to describe common 

practice today. Indeed, estimated factor elasticities that deviate significantly from the factor 

 
1 Some examples are as follows (this is far from an exhaustive review of methods): Mundlack (1961), panel data 
with fixed effects; Hall (1988), use of firms’ first-order conditions; Olley and Pakes (1996), allow for input 
endogeneity with respect to a time-varying unobservable: invert an input demand function to control for unobserved 
productivity shock; Blundell and Bond (2000), a GMM estimator (a lagged-input instrumental variables); Levinsohn 
and Petrin (2003) (a variant of Olley and Pakes’ approach), invert an intermediate input demand function to control 
for unobserved productivity shock; Ackerberg, Caves, and Frazer (2015), similar to Olley and Pakes and Levinshon 
and Petrin but inverting instead “conditional” rather than “unconditional” input demand functions to control for 
unobserved productivity; Gandhi, Navarro, and Rivers (2020), nonparametric identification strategy for gross 
output. The latest papers offer useful reviews of estimation methods, and Van Beveren (2012) provides a 
comprehensive survey in the context of the estimation of total factor productivity. 
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shares are quickly dubbed as unreasonable and biased, and are attributed to regressors’ 

endogeneity or to using the wrong estimator. 

 

Endogeneity is a legitimate concern that arises in the context of a production function specified 

as a relationship between the physical quantities of output (widgets) and inputs (labor, machines, 

intermediate material inputs). Indeed, it has been generally accepted since Cobb and Douglas 

(1928) that a production function is a technological relationship between physical inputs and 

physical output. Cobb and Douglas (ibid., 139) explicitly referred to the volume of physical 

production. 

 

Yet, the reality is that, due to the lack of physical data, researchers use value (or monetary) data 

for output, the capital stock and intermediate inputs (employment is the only variable expressed 

as a physical quantity). The recent literature using firm-level data has started to acknowledge that 

some measure of deflated monetary values is used because physical data are not available. 

 

Levinsohn and Petrin (2003, footnote 17) acknowledged that applied work uses monetary values, 

even plant-level data. The measures of output, capital, materials, electricity, and fuels, in their 

empirical exercise, are real monetary values (of the base year). Yet, they sidestepped the issue 

and proceeded as if all variables were physical quantities. Katayama, Lu, and Tybout (2009) and 

Van Beveren (2012) were also clear that the series used are in value terms, deflated values, rather 

than physical quantities. Ackerberg, Caves, and Frazer (2015, Section 4.3.4) provided a useful 

review of methods to deal with the endogeneity problem. They added a section on “units of 

measurement” where they stated that, the other series, aside from labor, used to estimate 

production functions are expressed in monetary units. Yet, their view seemed to be that the 

endogeneity problem could be dealt with under some conditions, e.g., when firms’ prices are 

observed, one can certainly retrieve the physical units. This corresponds to our discussion of the 

errors-in-variables problem (see below). This is certainly true but these prices are generally not 

available, and the solution is valid only for firm-level data in physical quantities and their 

corresponding prices (which hardly exist), not for aggregate data (deflated monetary values and 

price deflators).  
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In empirical applications with value data, discussions of endogeneity have proceeded for decades 

as if the input and output data were physical quantities. The approach of the recent literature is to 

devise estimators that can address the endogeneity problem despite using monetary values. 

 

In this paper, we show that the use of monetary values raises two additional problems in 

empirical exercises, independent of endogeneity. One is an errors-in-variables issue. This arises 

because the monetary values of capital and output are imperfect proxies for physical quantities. It 

leads to coefficient estimates that are biased relative to the factor elasticities. This is 

acknowledged but perhaps underappreciated in the literature (De Loecker 2011; Van Beveren 

2012; Collard-Wexler and De Loecker 2016).  

 

The other problem is that the inputs and output used are related through the distributional 

accounting identity of output (in monetary terms) that has to hold in any properly collected 

dataset. This identity can be rewritten in a form that resembles a production function, even 

though it is not a production function because it is not a relationship in physical units. The 

identity argument is that the regression of output on inputs in monetary values will simply 

estimate the transformed accounting identity. As a consequence, the estimated coefficients of the 

factors will gravitate toward the average shares of each factor in the value of output. This would 

lead the researcher to conclude that production is subject to constant returns to scale and that 

factor prices equal their marginal-value products, no matter what the underlying production 

relations are (Phelps-Brown 1957; Samuelson, 1979; Simon 1979a, 1979b). This problem is not 

widely recognized in the profession. 

 

In practice, these three problems appear together and obscure the discussion of endogeneity. The 

objective of this paper is to separate and clarify the three problems, and to understand the 

relationship between them. We will explain when and why estimation of a regression of output 

on inputs using series expressed in monetary values will yield coefficients biased relative to the 

elasticities of output with respect to labor and capital, and when and why those same estimates 

will be biased relative to the factor shares. The coefficient estimates will capture production 

relations when the endogeneity and errors in variable biases are small relative to the elasticities, 

and will capture distributional relations when the biases relative to the shares are small. We 
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illustrate these arguments by simulating datasets that assume a physical production function of 

known form exists, and attempting to recover its parameters using the corresponding value data. 

To our knowledge, this paper is the first to offer a unified treatment of the three problems and 

explain their relation to the use of monetary data. 

 

Though not identical, our simulations are in the spirit of those of Fisher (1971) and Fisher, 

Solow, and Kearl (1977), whose objectives were to understand why and when aggregate 

production functions work. The difference with respect to our simulations is that they focused on 

the aggregation problem, specifically why aggregate production functions appear to work despite 

that the aggregation conditions were violated. By being specific about the fact that aggregate 

series must be monetary values linked through the identity, our results complement theirs and 

clarify some issues. 

 

Our simulations show that using data in monetary values to extract the true elasticities implicit in 

the relationship with physical data (i.e., the production function), works only under unrealistic 

scenarios. One such scenario assumes that there is no endogeneity problem and that the prices of 

output and machinery vary very little across firms. In this case, OLS works. Another scenario 

assumes that the variation in these prices is negligible, but there is endogeneity, and in this case, 

OLS is biased but IV still works in theory. In the far likelier scenario of even modest unobserved 

variation in input prices, IV can only work if the instruments (which must now solve both the 

errors in variables and endogeneity problems) are independent of these price variations. It is hard 

to see how this condition could be met unless one had instruments measured in physical units—

in which case, one would bypass the errors in variables problem by using the physical instead of 

the monetary series.  Each of these scenarios assumes that a physical production function of 

known form between inputs and outputs exists. As this is questionable, we also show that, when 

such stable physical production relationships do not exist, the estimates get closer to the factor 

shares as factor prices vary less and less. Finally, we show that these problems do not exist if the 

data are in physical units. The problem, in short, is not about the choice of estimator, but the 

nature of the data. 
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The rest of the paper is structured as follows. Section 2 describes the three problems—

regressors’ endogeneity, errors in variables, and the accounting identity—and places them in the 

context of the use of physical quantities and value data. Section 3 explains the structure of the 

simulations. Section 4 discusses the results. Section 5 concludes. Appendix A shows that the 

transformed value-added accounting identity resembles a Cobb-Douglas production function.  

Appendix B explains why the identity critique does not arise with quantity data. Appendix C 

provides the summary statistics. Appendices D and E provide our simulation code. 

 

 

2. STATEMENT OF THE THREE PROBLEMS AND THE USE OF MONETARY 

VALUES 

 

Following the discussion in the introduction and to avoid confusion, we will use the term 

“production function” only when referring to a relationship in physical terms. We assume that 

physical production is actually governed by a standard Cobb-Douglas function: 

 

𝑄! = 𝐴𝐿!"𝐾!
#𝑒$!      (1) 

 

where 𝑄 is the quantity of homogeneous physical output (in widgets), 𝐿 is homogeneous labor 

(in workers or hours), 𝐾 is homogeneous physical capital (in number of machines), and 𝑢 

captures unmeasured productivity differences across observations. The subscript 𝑖 indexes firms. 

This formulation ignores materials for simplicity, although these are, of course, necessary to 

produce output 𝑄. 

 

As is standard in the literature, this error term (𝑢) is composed of two parts, both unobservable to 

the econometrician. One represents shocks to production or productivity not observable by the 

firm before makes its input decisions. It represents, for example, deviations from expected 

breakdown, defect, or rainfall amounts in a given year. The second part of 𝑢 represents 

“productivity” shocks that are potentially observed or predictable by firms when they make input 

decisions. Intuitively, it represents variables such as the managerial ability of a firm, expected 

down-time due to machine breakdown, expected defect rates in a manufacturing process, soil 



7 
 

quality, or the expected rainfall at a particular farm’s location. It is this second part that gives rise 

to the endogeneity problem. 

 

Regression (1) is typically estimated in logarithmic form. Denoting 𝑙𝑛𝐿 = 𝑙 and 𝑙𝑛𝐾 = 𝑘, the 

expected values of the estimates are: 

 

 

 

 𝐸[𝛼/%&'] = 𝛼 + 𝐸[("
#($,&)($,"(",&
($
#("

#)*($,"+
# ]     (2a) 

 

  𝐸2𝛽4%&'5 = 𝛽 + 𝐸[($
#(",&)($,"($,&
($
#("

#)*($,"+
# ]     (2b) 

 

 

 

The OLS estimator will be unbiased relative to the elasticities if log-labor (𝑙)	and log-capital (𝑘) 

are exogenous with respect to output (𝐸[𝑙, 𝑢] = 𝐸[𝑘, 𝑢] = 0), and biased otherwise.2  This bias 

could undoubtedly be eliminated by using the correct estimation method, if the researcher had 

data on physical quantities of output (𝑄), labor (𝐿), and capital (𝐾), and knowledge of the 

production function (assume it is Cobb-Douglas). 

 

It is worth noting that most researchers do not specify the units of the series used, and they 

simply refer to “output,” “capital,” and “labor.” This point is important because, unlike in 

equation (1), the reality is that they have to use monetary values for output (denoted 𝑉 —value 

added) and capital (denoted 𝐽 —typically generated through the perpetual inventory method by 

adding investment) because there are no data on physical quantities. This means that, instead of 

equation (1), they effectively estimate: 

 
2 The general finding is that the elasticity of employment will be biased upward by endogeneity and that of capital 
downward. Van Beveren (2012) provides a comprehensive review of the literature of problems that affect the 
estimation of production functions (as well as of different estimators to deal with endogeneity in production 
functions). These problems include the bias due to the entry and exit of firms, the use of price deflators to proxy for 
firm-level prices, and the pervasiveness of multi-product firms in manufacturing. 
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𝑉 = 𝐴𝐿,𝐽-𝑒.      (3) 

 

What happens then? How does the endogeneity problem come into play now? Is the solution to 

the potential endogeneity problem the same as with physical quantities in equation (1)? And 

what other problems beyond endogeneity are introduced? Stated differently, under what 

circumstances can the use of monetary values generate unbiased estimates for the correct 

elasticities: 𝐸[𝛾/] = 𝛼 and 𝐸[𝛿4] = 𝛽?  

 

The use of monetary values for output (𝑉 instead of 𝑄) and capital (𝐽 instead of 𝐾 ) introduces 

two problems. Both problems exist whether or not input levels are endogenously selected, so for 

clarity, the rest of this section assumes that there is no endogeneity bias. 

 

The first problem involves errors in variables. The links (errors) between 𝑉 and 𝑄 and between 𝐽 

and 𝐾, are the prices of output (𝑃) and capital (𝑃/). For a single (homogenous) output and 

capital, these variables in physical units and in monetary values are linked by 𝑉 = 𝑃𝑄, and 𝐽 =

𝑃/𝐾. The production function (1) in physical terms can therefore be written in terms of monetary 

value variables as: 

 

𝑉 = 𝐴𝐿"𝐽#( 0
0'
()𝑒$      (4) 

 

If one had knowledge of 𝑃 and 𝑃/, and so of 𝑄 and 𝐾, it would make no difference whether the 

researcher estimated equation (1) or equation (4).3 Both would yield the correct elasticities 𝛼 and 

𝛽. Therefore, so long as 𝑃 and 𝑃/ are included as regressors, the use of monetary values would 

not pose problems. 

 

The errors-in-variables problem appears when 𝑃 and 𝑃/ are unknown or excluded. The 

researcher estimates equation (4), with the ratio of the two prices lumped into the error term. 

 
3 In the standard treatment of the errors-in-variables problem, as long as the error in the dependent variable (in our 
case, 𝑃, the result of using 𝑉 instead of 𝑄) and the regressors are uncorrelated, the OLS parameters are unbiased and 
consistent. However, the error in the dependent variable (in our case, 𝑃! , the result of using 𝐽 instead of 𝐾) leads to 
biased and inconsistent OLS estimates. 
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This creates an errors-in-variables bias if machine and widget prices are correlated with labor 

and value capital—as they will be, most obviously because firms using more expensive machines 

will obviously have a more valuable capital stock. If, for simplicity, we assume that 𝐸[𝑙𝑛	𝑃	, 𝜀] =

0, then using 𝜌 = −𝛽	𝑙𝑛	(𝑃1)	 to simplify notation, the errors-in-variables bias is: 

 

𝐸[𝛾/%&'] = 𝛼 + 𝐻 = 	𝛼 + 𝐸[
()
#($,*)(),*($,)

($
#()

#)*($,)+
# ]    (5a) 

 

𝐸2𝛿4%&'5 = 𝛽 + 𝛺 = 𝛽 + 𝐸[($
#(),*)($,*($,)
($
#()

#)*($,)+
# ]    (5b) 

 

Three points about the errors-in-variables biases warrant emphasis. First, they are derived 

assuming there is no endogeneity bias.  In reality, the total bias relative to the elasticities 

combines the effects picked up in equations (5a)–(5b) and (2a)–(2b).4 We exclude an equation 

for this total bias for simplicity, tackling each of the three problems one at a time. Second, the 

errors in variables biases can be signed depending upon one’s priors regarding the correlations 

that drive them, per equations (5a)–(5b). Finally, the errors-in-variables problem in this case is 

akin to one of omitted variables, except that, unlike in the standard omitted-variables problem, 

we know exactly which variables need to be included in order to recover the elasticities: 𝑙𝑛	𝑃	 

and 𝑙𝑛	𝑃1 	.  

 

The endogeneity and errors in variables problems are, in reality, compounded by the fact that the 

researcher might not know the true production function, and the fact that the data available might 

refer to some aggregates of output and capital, so there is no 𝑄 (single output, number of 

widgets) and 𝐾 (single capital stock, number of homogeneous machines) in the statistics. All the 

researcher has is 𝑉 and 𝐽, both aggregates in monetary values. The situation is worse if we think 

that different firms use different production processes with different production functions.  

 

We move now to the third problem. Phelps-Brown (1957), Simon and Levy (1963), Simon 

(1979a, b), Samuelson (1979), and Shaikh (1980), among others, argued that the problem with 

 
4 For an expression of endogeneity bias in a value terms regression, simply replace 𝑘 with 𝑗	in (3). 
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estimations of equations like (3), is that the estimated coefficients of labor and capital will 

gravitate toward the factor shares in total value added.5 The reason, they showed, is that the 

series used to estimate them, output, labor, and capital, are related through the accounting 

identity: 

 

𝑉 ≡ 𝑊 +𝛱 ≡ 𝑤𝐿 + 𝑟𝐽      (6) 

 

where  𝑉 is constant-price value added, 𝑊 is the total wage bill, 𝛱 denotes all profits, 𝑤 is the 

wage rate, and 𝑟 is the profit rate. Note that the series 𝑉, 𝑊, 𝛱 are monetary values (and so are 

the products 𝑤𝐿 and 𝑟𝐽). Also note that identity (6) holds at any level of aggregation, firm level, 

sector of the economy, and the total economy (in this case, 𝑉 would be 𝐺𝐷𝑃). 6 

 

Identity (6) can be rewritten as 𝑉 = 𝐴𝑓(𝐿, 𝐽). For example, for a cross-section of 𝑖 firms with 

fairly constant factor shares, Appendix A shows that the identity (6) can be approximated by: 

 

𝑉! ≃ 𝑒𝑥𝑝(𝐵)𝑤!23𝑟!4)23𝐿!23𝐽!4)23      (7) 

 

 

 

 

where 𝐵 = (𝑙𝑛𝑉Q − 𝑎Q𝑙𝑛𝑤S − (1 − 𝑎Q)𝑙𝑛𝑟̅ − 𝑎Q𝑙𝑛𝐿Q − (1 − 𝑎Q)𝑙𝑛𝐽)̅, and 𝑎Q ≃ (𝑤S𝐿Q)/𝑉Q  and	(1 − 𝑎Q) ≃

(𝑟̅𝐽)̅/𝑉Q   are the average (denoted by a bar over the variable) labor and capital shares, 

 
5 Econometricians like Cramer (1969, 234–37), Intriligator (1978, 270), and Wallis (1979, 62–63), also went over 
algebra of the identity. Felipe and McCombie (2013) offer an extensive and unified treatment of the identity 
problem. 
 
6 A clarification: in the standard neoclassical set up total costs (𝑇𝐶) are 𝑇𝐶 = 𝑤𝐿 +𝜛𝐽, where 𝜛 is the rental price, 
or user cost, of capital. The relation between this definition and the value-added identity equation (4) is 𝑉 ≡ 𝑇𝐶 + Γ, 
where Γ denotes extra profits, which are part of total profits (𝛱) accrued to the owners of capital. These could also 
be written as the product of a profit rate (𝑟+) times the capital stock, i.e., Γ = 𝑟+𝐽. This implies, logically, that 𝛱 =
𝑟𝐽 = 𝜛𝐽 + Γ = (𝜛 + 𝑟+)𝐽; and so 𝑟 = 𝜛 + 𝑟+. In the words of Samuelson (1979, 932; using our notation): “No one 
can stop us from labeling this last vector [residually computed profit returns to ‘property’ or to the nonlabor factor] 
as (𝑟𝐽), as J. B. Clark’s model would permit -even though we have no warrant for believing that noncompetitive 
industries have a common profit rate 𝑟 and use leets capital (𝐽) in proportion to the (𝑉 − 𝑤𝐿) elements!” He also 
remarked that the accounting identity (6) is not the result of Euler’s theorem (Samuelson 1979, 933). In other words, 
the identity must hold. 
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respectively. The weighted average of the factor prices 𝑀! = 𝑤!23𝑟!4)23  plays a very important role 

in the discussion of the identity argument. There are two important points about expression (7). 

First, it is no more than an approximation to the identity (not a true equation). It will have a high 

fit and its coefficients will approximate the factor shares if the variation in factor prices within 

the cross section is not great, which is often the case in empirical applications. In this case, 𝑀! 

and 𝑒𝑥𝑝(𝐵)𝑤!23𝑟!4)23  will be fairly constant. Therefore, 𝑉! ≃ 𝐴X𝐿!23𝐽!4)23  (where 𝐴X =

𝑒𝑥𝑝(𝐵)𝑤!23𝑟!4)23   will still be an approximation to the accounting identity (6). The obvious point 

is that when this is estimated as 𝑉! = 𝐴𝐿!
,𝐽!-𝑒!. it is indistinguishable from equation (3). The 

second important point is that it resembles the Cobb-Douglas function. It is indeed the same 

functional form, but here in monetary values.7 Other transformations of the accounting identity 

are certainly possible. They would look like CES or translog functions, for example. 

 

As above, the question is: when a researcher estimates this equation, is he/she estimating a 

production function or the accounting identity?8 

 

Equations (5a)–(5b) show that the estimates will be biased relative to the elasticities by the 

omission of 𝑃 and 𝑃1 from equation (4).  An analogous derivation shows that the same estimates 

will also be biased relative to the average factor shares by the omission of 𝑀 from equation (7): 

 

𝐸[𝛾/%&'] = 𝑎Q + 𝛹 = 𝑎Q + 𝐸 Z
()
#($,,)(),,($,)

($
#()

#)*($,)+
# [    (ma) 

 

𝐸2𝛿4%&'5 = (\ − 𝑎Q) + 𝛷 = (\ − 𝑎Q) + 𝐸 Z($
#(),,)($,,($,)
($
#()

#)*($,)+
# [  (mb) 

 

where 𝜇 = ln𝑀 = 𝑎Q𝑙𝑛𝑤 + (1 − 𝑎Q)𝑙𝑛𝑟. These arise due to covariation between 𝑙𝑛	𝐿	, 𝑙𝑛	𝐽	, and 

the omitted but known term 𝑙𝑛	𝑀	.  The bias is smaller when 𝑙𝑛	𝑀	 varies less. 

 
7 Douglas (1976) did not seem to be aware of the Phelps-Brown (1957) and Simon and Levy (1963) papers, as he 
was still convinced at the time that the results he presented (estimates of the labor and capital coefficients equal to 
the factor shares, hence adding up to one. See Tables 1–5 in the paper) were meaningful.   
 
8 This argument applies equally to regressions estimated in growth rates as the identity holds also in growth rates. 
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The important point to note is that the first terms of the two expected values are the average 

corresponding factor shar. Moreover, because 𝛹 and 𝛷 are merely the outcome of omitting 𝑀, 

they would disappear if the researcher estimated equation (3) by correcting for ln𝑀. In this case, 

the parameter estimates would be unbiased for the average factor shares.  This would also be the 

case if ln𝑀 were omitted but was constant across the observations, or if the researcher corrected 

for both ln𝑤 and ln 𝑟 rather than ln𝑀.  

 

Equations (8a)–(8b) capture a peculiar form of omitted-variable bias. We label it “peculiar” 

because we know what the omitted variable is, namely 𝑀! = 𝑤!23𝑟!4)23 . Of course, researchers do 

not typically estimate a production function including 𝑤 and 𝑟. However, in practice, they do add 

variables such as human capital. As should be obvious (and we will show), the better such 

variables proxy for 𝑤 and 𝑟, the closer the results would get to those predicted by the identity 

argument—that is, the estimated coefficients would approximate the factor shares and the fit (R-

squared) would approach one. 

 

Note that implicit in this derivation is the recognition that the data are (must be) monetary units, 

not physical quantities. This problem, neglected in discussions of production function 

estimations, is fundamental. Moreover, the difference between 𝑄 and 𝑉 is not simply the units 

but the fact that while the former (𝑄) is generated through the production process (under the 

assumption that there is a production function for 𝑄), the latter (𝑉) is generated by the 

accountants or the statisticians exactly as 𝑊 +𝛱, which is also equal to 𝑤𝐿 + 𝑟𝐽. The same 

argument applies if the measure of output were gross output instead of value added. 9 

Consequently, equation (3) relates output to inputs but it does so in monetary terms through the 

accounting identity, not the production process. 

 

Getting back to where we started, it ought to be clear by now that when a researcher estimates 

equation (3), 𝑉 = 𝐴𝐿,𝐽-𝑒., he/she faces a combination of three problems (endogeneity, errors in 

 
9 The identity would be 𝑌 = 𝑤𝐿 + 𝑟𝐽 + 𝑝-𝑥: where 𝐽, 𝐿, and 𝑥 are capital (in value terms), labor, and the quantity of 
materials, respectively; 𝑟, 𝑤, and 𝑝- are their respective prices, and 𝑌 is gross sales. 
 



13 
 

variables, the identity problem) that can lead to coefficient estimates that are biased relative to 

the elasticities. Endogeneity bias is conceived in the literature as a problem with the use of data 

in physical units. Yet, it could equally arise with output and capital measured in monetary units. 

The errors-in-variables bias arises because monetary values are used to proxy physical capital 

and output. The identity problem is present always but its consequences are more subtle and, for 

this reason, the issue has not been clearly understood by the profession. Moreover, the bias in the 

estimated coefficients that results from the data being related through an accounting identity is of 

very different nature. In reality, all three issues—endogeneity, errors in variables and the 

identity—appear together, with the consequence that it is difficult to ascertain what causes the 

bias in the estimation of the elasticities. So, what exactly do estimates of equation (3) capture?10 

 

The foregoing discussions set up a simple point, not previously noted in the literature: a single 

set of coefficient estimates on value data is simultaneously biased relative to the elasticities (by 

endogeneity or errors in variables) and relative to the average factor shares (by the omissions of 

𝑤 and 𝑟). It is possible to assess whether these estimates will better approximate the factors’ 

shares in value added or the elasticities by understanding the likely size of these biases. If the 

endogeneity or errors-in-variables biases relative to the elasticities (equations [2] and [5]) are 

large and the omitted variables bias relative to the shares (equation [8]) is small, the estimates 

will be closer to the shares. If the converse is true, then they will be closer to the elasticities. This 

insight structures the thought experiments in the rest of this paper. 

 

As the biases are not credibly measurable in real-world data, we estimate the biases in simulated 

datasets. We generate series in physical terms, as well as prices of output and capital that allow 

us to create the corresponding series in value terms. The average factor shares differ significantly 

from the elasticities in our datasets, allowing us to demonstrate which of the two the estimates 

capture under different conditions. Our analysis explains why, in most real-world settings, the 

 
10 It is of course possible that researchers believe the relationship among deflated monetary values is correct (i.e., it 
is a production function), and they are effectively interested in knowing such data as “the dollar increase in output 
when the capital stock increases by one dollar.” If the objective is stated this way, then the errors-in-variables 
problem with production functions in value terms, is bypassed. However, the identity problem clearly remains.  
Moreover, if the object of interest really were the elasticity of an additional dollar of capital, then measurement 
errors due to unobserved variation in prices of capital could not be a problem—and the mainstream literature on the 
consequences of “unobserved errors in the prices, for both inputs and outputs” (Collard-Wexler and De Loecker 
2016, 4) would have no reason to exist.   
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biases relative to the elasticities are likely to be large and those relative to the shares may be 

small. As a result, the estimates are more likely to reflect the distribution of value added among 

the factors, rather than production relations.  

 

It is important to note that the problem appears much more simplified here than it would in 

reality. This is because of our choice of functional form, the Cobb-Douglas, which simplifies the 

simulations, and which has allowed us to conceptualize the errors-in-variables as one of omitted-

variables biases. With a CES production function, firms using different production processes, or 

aggregation issues concerning output, inputs, and production functions (Felipe and Fisher 2003), 

the problem would become much more complex to deal with. 

 

 

3. SIMULATED DATA 

 

We simulate data for a cross-section of 100,000 hypothetical firms. Appendix C provides a table 

of summary statistics, while Appendix D provides our main simulation code, which proceeds as 

follows: 

 

- The firms (indexed by 𝑖) share a Cobb-Douglas production function in physical quantities 

with firm-specific technical efficiency (𝑑𝑖). The econometrician cannot observe 𝑑!. All 

firms produce the same homogenous product, and, for simplicity, there are no 

intermediate materials.11 Output in physical terms is determined by 𝑄! = 𝑑!𝐿!"𝐾!
#, where 

𝑑 = 𝐴𝑒$. Our benchmark parameterization assumes constant returns to scale, with 𝛼 =

2/3 and 𝛽 = 1/3. We also simulate an increasing-returns-to-scale production function 

with	𝛼 = 4/3 and 𝛽 = 2/3. 

 
11 Not adding intermediate materials, while conceptually very important (a production process requires materials to 
produce physical output), does not affect the essence of our simulations. With monetary values, equation (6) for 
gross output (instead of value added) would include the value of materials. The latter’s share would appear when the 
expression is written in multiplicative form (like equation (7)) and the three shares (in gross output) would add up to 
one. Conceptually, adding materials to our simulations would help reinforce the point that researchers do not use 
physical quantities because these are not available, or because at any level of aggregation, all we have is values. 
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- Labor (𝐿!) and technical efficiency (𝑑!) are drawn from independent log-normal 

distributions ln(𝐿) ~𝑁(ln(20) , 0.1) and ln(𝑑)~𝑁(ln	(50), 𝜎6), respectively. 

- Physical capital, 𝐾!, measures the number of machines of a homogenous type utilized by 

firm 𝑖. We generate two alternative series of physical capital and output. The first one 

assumes that firms select the machinery level without observing 𝑑! and this physical 

capital series is generated as: 𝐾!∗ = exp(ln𝑅! + 𝑙𝑛𝐿!), where ln 𝑅 ~𝑁(0, 𝜎8) is the log of 

the capital–labor ratio.  This setup allows for some limited variation in the choice of 

technique (to allow for identification of the individual factor elasticities), with firms 

averaging one machine per worker. The second series, which is endogeneity-

contaminated, is 𝐾!9 = exp(𝑙𝑛𝐾!∗ + ln 𝑠!), where ln 𝑠! = [ln 𝑑! − ln(50)] + 𝑣! 

and	𝑣!~𝑁(0, 𝜎:). This captures a scenario in which firms observe 𝑠!—a mean-zero signal 

of 𝑑! that is distorted by noise (𝑣!). Firms decide to use more machines if the signal is 

large. Two physical quantity output series (in widgets) are then generated, one 

exogenous, 𝑄!∗ = 𝑑!𝐿!"𝐾!∗
(, and another one contaminated by endogeneity, 𝑄!9 =

𝑑!𝐿!"𝐾!9
#. 

- Under our baseline parameterization (𝜎6 = 0.1, 𝜎; = 0.05, 𝜎: = 0.07), the physical 

capital and output series are highly correlated across the datasets [𝐶𝑜𝑟𝑟(𝑙𝑛𝐾∗, 𝑙𝑛𝐾9) =

0.675, 𝐶𝑜𝑟𝑟(𝑙𝑛𝑄∗, ln 𝑄9) = 0.980]. Also, the endogeneity-uncontaminated capital and 

technical efficiency series are uncorrelated by construction (𝐶𝑜𝑟𝑟(𝑙𝑛𝑑, 𝑙𝑛𝐾∗) = 0.003). 

These conditions ensure that 𝑙𝑛𝐾∗ will be a suitable instrument for 𝑙𝑛𝐾9. 

 

These physical quantity series will suffice to explore simultaneity biases, and solutions to them. 

We will also use them to demonstrate that the identity argument does not apply when estimating 

production functions from data in physical units (This is shown in Appendix B). To explore the 

problems that arise from working with data in monetary values, and what it would take to 

overcome them, we transform physical-quantity data into value terms:  
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- The purchase price per machine varies across firms with a dollar value 𝑃/,!~𝑈[𝑃/∗ −

Δ1 , 𝑃/∗ + Δ1], so that the values of the capital stocks with and without simultaneity are 

given by 𝐽!∗ = 𝑃/,!𝐾!∗ and 𝐽!9 = 𝑃/,!𝐾!9, respectively.12 

- The price of widgets is distributed across firms as 𝑃!~𝑈[𝑃∗ − 𝛥0 , 𝑃∗ + 𝛥0], so that the 

corresponding value-added series (value added equals revenue given the assumed 

absence of raw materials) are 𝑉!∗ = 𝑃!𝑄!∗  and  𝑉!9 = 𝑃!𝑄!9.   

- These value terms output and capital series are imperfect proxies for their physical-

quantities counterparts. We assume that (𝑃/∗ , 𝑃∗) = ($200,000/𝑚𝑎𝑐ℎ𝑖𝑛𝑒, $1,333/

𝑤𝑖𝑑𝑔𝑒𝑡). 

- To show what happens as we change the correlations between the data series in physical 

and value terms (𝜌/𝐾∗, 𝐽∗0 and 𝜌/𝑄∗, 𝑉∗0), we run our simulations under four sets of 

values for (𝛥1 , 𝛥0): “very high” ($1,000, $13.3), “high” ($10,000, $133), “moderate” 

($30,000, $200), and “low” correlation ($50,000, $1,000). Under these assumptions, the 

average capital–output ratio �=
>
� works out to roughly three, a fairly common figure in 

value-terms datasets.  

- Finally, to complete the series in monetary values, we simulate the factor incomes. No 

optimization condition is imposed. Our factor input series consciously violate the first-

order condition that the value of each factor’s marginal product equals its price. This 

condition is equivalent to assuming that the factor output elasticities are equal to their 

respective shares in output. Since a central objective of our simulations is to clarify when 

and why the regression coefficients provide biased estimates of the factor shares and the 

elasticities, this objective cannot be met if the two have the same value. 

 

We assume that firm 𝑖	 rents labor for an annual wage rate 𝑤!, where 𝑤~𝑈[𝑤∗ − Δ? , 𝑤∗ + Δ?], 

with(𝑤∗, Δ?) = ($16,667/worker, $10,000/worker), and that it earns an annual return on 

 
12 The price of capital is conceptualized differently in theory and in practice. In theory, 𝐾 is a stock but output is a 
flow. Therefore, the assumption is made that the stock is a good proxy for the flow of capital services during the 
time period in physical units (e.g., square meters of office), while its price is measured as a rental rate (dollar per 
square meter per year). However, the datasets actually used to estimate production functions calculate capital as a 
stock in monetary values using the perpetual inventory method (i.e., they measure J in dollars of office space). Thus, 
𝑃. is the purchase price of a unit of physical capital (dollars per square meter), not the rental price per unit of time. 
As value capital is measured as a stock, not a flow, 𝑟 must be an annual rate of return in order for 𝑟𝐽 = 𝑟𝑃/𝐾 to be 
measured in the correct units (dollars/year). 
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capital that is determined residually by the accounting identity, 𝑟! ≡ (𝑉! −𝑤!𝐿!)/𝐽!. This set up 

ensures that the accounting identity always holds in value terms, as it must in any properly 

collected dataset.  It will suffice, for our purposes, to generate the return on capital only in the 

exogenous capital case, so that  𝑟! ≡ (𝑉!∗ −𝑤!𝐿!)/𝐽!∗. 

 

Having these factor incomes permits us to demonstrate the identity problem. As shown in 

equations (5a)–(5b) and Appendix A in detail, the coefficients of 𝑙𝑛𝑉∗ on 𝑙𝑛𝐿 and 𝑙𝑛𝐽∗ should 

approximate the factor shares if these are relatively constant in the cross section, and the 

regression corrects for 𝑙𝑛𝑀! = 𝑎Q𝑙𝑛𝑤! + (1 − 𝑎Q)𝑙𝑛𝑟! (this would not be needed if 𝑙𝑛𝑀! is 

constant). To show that this works, we first create a normally distributed noise variable, 𝑧, with 

the same mean and standard deviation as 𝑙𝑛	𝑀! 	, and then use this to construct a series of proxies, 

indexed by 𝜙 ∈ [0,1], defined as 𝑙𝑛	𝑊@ 	= 𝜙 ∗ 𝑙𝑛	𝑀	+ (1 − 𝜙)𝑧. We will show that, as 𝜙 → 1, 

the coefficients of a regression of 𝑙𝑛𝑉∗ on 𝑙𝑛	𝑊@ 	, 𝑙𝑛	𝐿	, and 𝑙𝑛𝐾∗, approach the factor shares. 

 

Most importantly, irrespective of whether endogeneity is present or not, these parameter values 

ensure that the average capital share (1 − 𝑎Q) ≡ 1 − (𝑤S𝐿Q)/𝑉Q  is roughly 0.75, which is starkly 

different from the benchmark output elasticity of capital, 𝛽 =0.333. Thus, errors in variables will 

drive the estimated capital coefficient below its true elasticity of 0.333, while the identity 

problem will move the coefficient upwards from the elasticity of 0.333 toward the capital share 

of 0.75. Moreover, these simulated datasets can be used to populate equations (2), (5), and (8), in 

order to demonstrate why a given set of OLS coefficients estimated with value data provides 

biased estimates of both the elasticities and the shares.   

 

Setting up the simulations this way will permit us to isolate each of the three estimation 

problems. We can turn the simultaneity bias on (off) by working with the endogeneity-

contaminated (uncontaminated) physical quantities dataset. We can turn the classical errors in 

variables problem up and down by increasing and reducing  𝛥1. And, finally, we can create an 

identity problem by increasing 𝜙 toward 1. 
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4. RESULTS 

 

We now use these simulated data to analyze sequentially each of the three problems. We 

estimate OLS and 2SLS regressions of equations (1) and (3) as follows: 

 

   𝑙𝑛𝑄∗ = 𝑙𝑛 𝐴 + 𝛼𝑙𝑛𝐿 + 𝛽𝑙𝑛𝐾∗ + 𝝉′𝑿 + 	𝑢  (9a) 

  𝑙𝑛 𝑄9 = 𝑙𝑛 𝐴 + 𝜃𝑙𝑛𝐿 + 𝜋 𝑙𝑛 𝐾9 + 𝝉′𝑿 + 	𝑢  (9b) 

     𝑙𝑛 𝑉 = 𝑙𝑛 𝐴X + 𝛾𝑙𝑛𝐿 + 𝛿𝑙𝑛𝐽 + 𝝉�′𝑿 + 	𝜀  (9c) 

 

The regressions differ by whether or not they use exogenous-physical, endogenous-physical, or 

(exogenous) money-value, measures of output and capital; and by whether or not they include 

controls for ln 𝑃, ln 𝑃1 and ln𝑊@, notated here simply as 𝐗. We will review the properties of the 

endogeneity-contaminated estimates (𝜃�, 𝜋/), but then focus on the conditions under which the 

value-terms estimates �𝛾/, 𝛿4� approximate the output elasticities 

(0.667	𝑓𝑜𝑟	𝑙𝑎𝑏𝑜𝑟, 0.333	𝑓𝑜𝑟	𝑐𝑎𝑝𝑖𝑡𝑎𝑙) and the shares (roughly 0.25 for labor, 0.75 for capital). 

 

A. The Endogeneity Problem: Estimation in Physical Units 

Table 1 shows the results of the production function estimated with data in physical units, 

corresponding to equations (9a) and (9b). The results confirm the standard understanding of the 

simultaneity problem and its solution when working with data in physical units (and an idealized 

production process whose functional form is known a priori). Panel (a) shows that OLS recovers 

the elasticities when all data are measured in physical units and capital is exogenously 

determined. Panel (b) shows, as expected, that OLS overestimates the output elasticity of capital 

and underestimates the output elasticity of labor when more productive firms choose to employ 

more machines. Panel (c) shows that 2SLS solves this problem, so long as a suitable physical-

units instrument for endogenous physical capital exists.  This confirms that the endogeneity 

problem is solvable, at least in principle, when working with data in physical units.13  

 
13 Griliches and Mairesse (1998, Section 6) consider the possibility of using factor prices to instrument for 
endogenous factors. This does not work in our simulated dataset because our need to ensure that a≠α guarantees that 
factor prices would be weak instruments for factor quantities. This is shown by our code in Appendix D. 
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Table 1: Estimation with Data in Physical Units 
Dependent Variable Coefficient on R-Squared 
 
(A) OLS: Capital and Output are not contaminated by endogeneity (9a) 
 
 𝑙𝑛𝐾∗	 𝑙𝑛𝐿	 Constant  

𝑙𝑛𝑄∗	 0.344 (0.006) 0.656 (0.007) 3.911 (0.009) 0.5079 
     
(B) OLS: Capital and Output are contaminated by endogeneity (9b) 
 

𝑙𝑛𝑄1	 	𝑙𝑛𝐾1	 𝑙𝑛𝐿	 Constant  
 0.905 (0.002) 0.098 (0.003) 3.903 (0.006) 0.8516 
     
(C) 2SLS: 𝑙𝑛𝐾∗instrument for 𝑙𝑛 𝑙𝑛	𝐾𝑒	 (9b) 
 
First Stage 𝑙𝑛𝐾∗	 𝑙𝑛𝐿	 Constant  

𝑙𝑛	𝐾1	 -0.020 (0.008) 1.015 (0.008) 0.013 (0.012) 0.4556 
     
Second Stage Predicted 𝑙𝑛𝐾1 𝑙𝑛𝐿	 Constant  

𝑙𝑛	𝑄1	 0.344 (0.006) 0.656 (0.007) 3.910 (0.009) 0.6585 
Source: Authors 
 

Table 2 implements equation (2) to decompose the endogeneity bias of the OLS estimates from 

Table 1, Panel (B). As expected, given that 𝑙𝑛	𝐿	 is uncorrelated with 𝑢 in our data, these results 

indicate that the biases arise due to the correlation between 𝑙𝑛	𝐾9 	 and 𝑢 (𝜎1,$). 

 

Table 2: Decomposition of the Simultaneity Bias (Data in Physical Quantities) 

 Elasticity 
OLS 
Estimates Bias Decomposition of the Expected Bias 

       
    𝜎/3𝜎4,5

𝜎43𝜎/3 − =𝜎4,/>
3	

−𝜎/,5𝜎4,/
𝜎43𝜎/3 − =𝜎4,/>

3	 𝑇𝑜𝑡𝑎𝑙	

       
Labor 0.667 0.098 -0.569             0.0008           -0.5700    -0.569 
       
       
    𝜎43𝜎/,5

𝜎43𝜎/3 − =𝜎4,/>
3	

−𝜎4,5𝜎4,/
𝜎43𝜎/3 − =𝜎4,/>

3	 𝑇𝑜𝑡𝑎𝑙	

       
Capital 0.333 0.905 0.572             0.5727           -0.0003     -0.572 
       

Note: The empirical decomposition is calculated using the actual variances and covariances in the physical-
quantities dataset. The OLS estimates are those in Table 1, Panel (B). 
Source: Authors 
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B. Estimation in Value Terms 1: Errors in Variables 

Table 3 provides coefficients from several versions of the regression when output and capital are 

value measures, equation (9c). To focus on the errors-in-variables problem introduced by the use 

of value data to proxy for physical quantities, we shut down all possibility of simultaneity by 

using the endogeneity-uncontaminated datasets. The errors-in-variables bias arises due to the use 

of a noisy value-terms proxy for 𝑙𝑛𝐾∗(i.e., due to estimation of [9c] instead of [9a]). 

 

Notice that, just as (1) can be rewritten as (4), (9a) can be rewritten as: 

 

  𝑙𝑛𝑉!∗ = (𝑙𝑛𝑑! + 𝑙𝑛	𝑃! 	) + 𝛼𝑙𝑛	𝐿! 	+ 𝛽 − 𝑙𝑛	𝑃1,! 	) + 𝑢! 	  (10) 

 

If the series for 𝑙𝑛 𝑙𝑛	𝑃	 and 𝑙𝑛 𝑙𝑛	𝑃𝑘	 are available, the OLS estimator will yield unbiased 

estimates of 𝛼 and 𝛽. 

 

We have assumed, for simplicity, that 𝑐𝑜𝑟𝑟(ln 𝑃, ln 𝑑) = 0, so that the error introduced by 

replacing 𝑙𝑛𝑄!∗ with 𝑙𝑛𝑉!∗, is classical and its omission introduces no bias.  In this case, the errors 

in variable biases due to replacing ln𝐾∗ with ln 𝐽∗ are given by (5a) and (5b), and those 

equations permit us to predict the expected direction of the bias. Note that, by construction, 

−𝛽ln	(𝑃1)  is negatively correlated with ln 𝐽 ̅ (i.e., 𝜎B,C < 0), but uncorrelated with ln 𝐿 (i.e., 

𝜎D,C = 0). We therefore expect from (5a) and (5b) a negative bias in the capital coefficient (Ω <

0), and a positive bias in the labor coefficient (𝐻 > 0).14 

 

This understanding of the effects of using a value proxy for physical capital has four corollaries: 

 

C1. The estimated OLS coefficient of capital will be smaller than 𝛽 = 0.333, and that of 

labor will be larger than 𝛼 = 0.667.   

 

 
14 It is also the case that 𝜎4,6 ≈ 𝜎43	in our simulated datasets, so that the scale elasticity is unbiased by the errors-in-
variables problem (𝐻 + Ω ≈ 0). This need not be the case in general. 
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C2. The bias (relative to the elasticity) in the capital coefficient will become more negative as 

machine prices become more variable. This is expected because the negative covariance 

between machine values and prices (𝜎B,C) becomes more pronounced the more machine 

prices vary (i.e., as 𝛥1 increases). 

 
C3. When the regression is estimated in values correcting for both ln 𝑃 and ln 𝑃1, the 

coefficient of ln 𝑃 will be one, while the coefficient of ln 𝑃1 will be −𝛽 = −0.333.  

Moreover, the coefficients of labor and value capital will match the elasticities 𝛼 and 𝛽. 

This is apparent from an examination of equation (10). Moreover, dropping ln 𝑃 from the 

regression will not change this outcome.  

 

C4. The IV regression in values, using ln𝐾∗ as an instrument for 𝑙𝑛𝐽∗ , will recover the 

elasticities. This is obvious, and relies on the imposed assumption that ln𝐾∗ is orthogonal 

to ln 𝑃1, the “error” in the independent variable ln 𝐽∗. 

 

 

Table 3 provides results that confirm these four corollaries. It presents the results of four value-

terms regressions. Each is estimated on a sequence of four datasets, characterized by 

progressively lower correlations between the physical- and value-terms data (Panel A). The very 

high correlation case results are indistinguishable from those in physical units. C1 is apparent 

from every coefficient in Panel B other than the very high correlation case—the OLS-estimated 

capital coefficients are less than 0.333 and the labor coefficients exceed 0.667.  C2 is confirmed 

by comparison across the columns of Panel B. All elements of C3 are confirmed by Panels C and 

D—all of the coefficients on 𝑙𝑛	𝑃	 are insignificantly different from 1; the coefficients on 𝑙𝑛𝑃1 

all approximate –0.333, those on 𝑙𝑛𝐽 and 𝑙𝑛𝐿 approximate the elasticities regardless of whether 

we control for 𝑙𝑛𝑃! or not. Finally, the 2SLS estimates in Panel D approximate the elasticities, 

confirming C4.   

 

 

 

 



22 
 

Table 3: Errors in Variables Bias Relative to the Elasticities 

  Very high 
correlation 

High 
Correlation 

Moderate 
Correlation Low Correlation 

  (1) (2) (3) (4) 
(A) Correlations between physical and value series  
 𝐶𝑜𝑟𝑟(𝐾∗, 𝐽∗)	 0.9997 0.9683 0.7896 0.6073 
 𝐶𝑜𝑟𝑟(𝑄∗, 𝑉∗)	 0.9992 0.9268 0.8534 0.2683 
      
(B) OLS Regression of Value Added on Labor and Value Capital  
 Coefficients     
   log Labor 0.657 (0.007) 0.743 (0.007) 0.918 (0.006) 0.967 (0.020) 
   log Value Capital 0..343 (0.006) 0.257 (0.006) 0.083 (0.004) 0.031 (0.011) 
 R-squared 0.507 0.433 0.361 0.035 
      
(C) OLS Regressions correcting for Machine and Output Prices  
 Coefficients     
   log Labor 0.656 (0.007) 0.656 (0.007)) 0.656 (0.007) 0.656 (0.007) 
   log Value Capital 0.344 (0.006) 0.344 (0.006) 0.344 (0.006) 0.344 (0.006) 
   log Machine Price -0.475 (0.110) -0.357 (0.013) -0.349 (0.007) -0.347 (0.007) 
   log Output Price 1.027 (0.055) 1.003 (0.005) 1.002 (0.004) 1.000 (0.001) 
 R-squared 0.509 0.578 0.642 0.965 
      
(D) OLS Regressions correcting for Machine Prices  
 Coefficients     
   log Labor 0.656 (0.007) 0.652 (0.008) 0.650 (0.009) 0.621 (0.037) 
   log Value Capital 0.345 (0.006) 0.348 (0.007) 0.351 (0.008) 0.377 (0.033) 
   log Machine Price -0.479(0.110) -0.365 (0.015) -0.357 (0.010) -0.387 (0.035) 
 R-squared 0.507 0.436 0.370 0.0363 
      
(E) 2SLS Regressions: Exogenous Physical Capital (𝑙𝑛	𝐾∗	); Instruments for Exogenous Value Capital (𝑙𝑛	𝐽∗	) 
 First stage Regression     
 Coefficients     
   log Labor -0.000 (0.0002) -0.002 (0.002) -0.001 (0.006) -0.001 (0.010) 
   log Physical Capital  1.000 (0.0002) 1.000 (0.002) 1.001 (0.005) 1.001 (0.009) 
 F (2, 99,9997) 7.53 x 10^7 752,371 82,783 29,221 
 P-value 0.0000 0.0000 0.0000 0.000 
 R-squared 0.9993 0.938 0.624 0.369 
      
 Second Stage 

Regression 
    

 Coefficients     
   log Labor 0.656 (0.007) 0.652 (0.008) 0.651 (0.010) 0.621 (0.037) 
   log Value Capital 0.345 (0.006) 0.348 (0.007) 0.350 (0.009) 0.377 (0.033) 
 R-squared 0.507 0.432 0.335 0.025 

Note: Regressions produced from data generated by the code appearing as Appendix D. 

Source: Authors 
 

The preceding results provide a framework to understand the errors in variables bias. While this 

bias is sometimes acknowledged in the literature (e.g., Ackerberg. Caves, and Frazer 2015), its 

importance is not widely reflected in applied work. Scholars who take this problem seriously 
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suggest various partial solutions involving instruments for value capital based on past 

investments, trade shocks, or imperfect competition in output markets (De Loecker 2011; Van 

Beveren 2012; Collard-Wexler and De Loecker 2016). The availability of such partial fixes 

would provide comfort if the biases introduced by errors in variables were small. However, Panel 

A of Table 3 shows them to be extremely large. Even if 𝑐𝑜𝑟𝑟(ln 𝐽 , ln𝐾) = 0.97,	the estimated 

capital coefficient, 0.258, is 23 percent smaller than the elasticity (0.333). And with 

𝑐𝑜𝑟𝑟(ln 𝐽 , ln𝐾) = 0.79, the estimate, 0.082 is only a quarter of the elasticity.  

 

Table 4 provides the decomposition of the expected EIV bias relative to the elasticities using 

equations (5a) and (5b). It shows that the bias is large because of the high covariance between 

the value of the capital stock and the price of machinery. It should be clear that this covariance 

will tend to be large in any dataset with somewhat variable machine prices, simply because 

ln 𝐽∗ = ln𝑃1 + ln𝐾∗. 15  

 

Table 4: Decomposition of the Errors in Variables Bias Relative to the Elasticities (High 
Correlation Dataset) 

 Elasticity 
OLS 
Estimates Bias Decomposition of the Expected Biasa 

       
    𝜎63𝜎4,7

𝜎43𝜎63 − =𝜎4,6>
3	

−𝜎6,7𝜎4,6
𝜎43𝜎63 − =𝜎4,6>

3	 𝐻	

       
Labor 0.667 0.739 0.076            -0.0001         0.0827     0.082 
       
       
    𝜎43𝜎6,7

𝜎43𝜎63 − =𝜎4,6>
3	

−𝜎4,7𝜎4,6
𝜎43𝜎63 − =𝜎4,6>

3	 𝛺	

       
Capital 0.333 0.258 -0.075             -0.0827          0.0001    -0.082 
       

Note: The empirical decomposition is calculated using the actual variances and covariances in the High Correlation 
dataset to proxy for their expected values. OLS estimates are from Column (2) of Table 3, Panel B. 
 
Source: Authors 
 

 

 
15 Formally, 𝐶𝑜𝑣(ln 𝐽 , ln 𝑃/) = 𝐶𝑜𝑣(ln𝑃/ + ln𝐾∗, ln 𝑃/) = 𝑉(𝑃/) + 𝐶𝑜𝑣(ln𝐾∗, ln 𝑃/),  which will be large when 
machine prices vary greatly across firms (as they do), unless firms using many machines tend to buy them for 
substantially lower prices. 
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C. Estimation in Value Terms 2: The Identity Problem 

We will now study the case in which the researcher estimates an approximation to equation (5), 

the accounting identity in multiplicative form. To do so, we shut down the errors-in-variables 

problem by focusing on the very high-correlation case, in which physical and value outputs are 

almost perfectly correlated.  

 

Table 5 presents a series of estimates from regressions in value terms that correct for 𝑙𝑛𝑊@. As 

expected, the baseline regression (Column 1), with 𝜙 = 0, returns the elasticities, and not the 

shares. Columns (2)–(5) show clearly that the coefficient estimates converge on the factor shares 

as 𝑙𝑛𝑊@  converges to 𝑙𝑛𝑀. Column (6) confirms that, when 𝑙𝑛𝑊4 = 𝑙𝑛𝑀 is replaced with 

𝑙𝑛 𝑤 and 𝑙𝑛 𝑟, the coefficients on these factor prices also return the factor shares. 16 

 

These results demonstrate that an econometrician using value data and hoping to recover the 

factor elasticities must take pains to exclude any control variables that could proxy for 𝑙𝑛𝑀.  

Including proxies for the factor prices (𝑙𝑛𝑀), shifts the estimates toward the shares.17 

 

 

 

 

 

 

 

 
16 The reader will notice that the expression 𝑀8 = 𝑒𝑥𝑝(𝐵)𝑤89:𝑟8;<9:  has to be identical to what the standard literature 
calls total factor productivity (𝑇𝐹𝑃), typically calculated as 𝑇𝐹𝑃8 = 𝑉8/(𝐿89:𝐽8;<9:). This observation has two 
important corollaries: (i) 𝑀 ≡ 𝑇𝐹𝑃 is always true, regardless of any theoretical restriction on producer behavior, 
cost functions, or whether the shares equal the elasticities, or not. While it is true that 𝑇𝐹𝑃 is a weighted average of 
the factor prices, this is tautologically correct; and (ii) 𝑇𝐹𝑃 derived from monetary values cannot be considered a 
measure of true productivity (in physical terms). As Appendix C shows, true 𝑇𝐹𝑃 calculated with physical quantities 
(𝑙𝑛𝑑) has a mean of 3.91 (or 49.89 for 𝑑), with a range of 3.51–4.33; while 𝑇𝐹𝑃 calculated with monetary values 
(𝑙𝑚𝑀∗) has a mean of 1.388 (or 4.00 for 𝑀∗), with a range of 0.701–1.891. 
 
17 We have used the Levinsohn and Petrin (2003) method with an actual data set (panel) that contains materials 
(required by this method). This data set is of course consistent with the gross-output accounting identity. As an 
experiment, we added the wage and profit rates as regressors in the first step. The coefficients estimated are the 
factor shares. Moreover, it makes no difference which variable, capital or labor, is the state variable. The estimated 
coefficients in both cases are the factor shares. See Felipe et al. (2021). 
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Table 5: Omitted Variables Bias Relative to the Shares (0.25 for labor, 0.75 for Capital)  
OLS regressions that increasingly approximate the accounting identity 
 (1) (2) (3) (4) (5) (6) 
 Baseline 

(𝜙 = 0) 
𝜙 = 0.25	 𝜙 = 0.5	 𝜙 = 0.9	 𝜙 = 1	 Full 

Accounting 
identity 

Coefficients       
𝑙𝑛	𝐿	 0.743 

(0.0073) 
0.698 
(0.0070) 

0.519 
(0.0054) 

0.293 
(0.0018) 

0.287 
(0.0016) 

0.284 
(0.0015) 

𝑙𝑛	𝐽∗	 0.258 
(0.0063) 

0.303 
(0.0060) 

0.481 
(0.0047) 

0.707 
(0.0016) 

0.713 
(0.0014) 

0.716 
(0.0013) 

𝑙𝑛	𝑊=	 0.003 
(0.0030) 

0.360 
(0.0036) 

0.912 
(0.0031) 

1.026 
(0.0008) 

0.936 
(0.0007) 

 

𝑙𝑛	𝑤	      0.213 
(0.0002) 

𝑙𝑛	𝑟	      0.704 
(0.0005) 

R-squared 0.433 0.485 0.696 0.966 0.973 0.976 
Source: Authors 

 

Table 6 returns to the case with no controls (equivalent to 𝜙 = 0), but a high correlation between 

the physical- and value-terms series, and decomposes the omitted-variables bias relative to the 

shares, as in (8a) and (8b). 

 

Table 6: Decomposition of the Omitted Variables Bias Relative to the Shares (High 

Correlation Dataset) 

 

Average 
Factor 
 
Share 

OLS 
Estimates Bias Decomposition of the Expected Biasa 

       
    𝜎63𝜎4,>

𝜎43𝜎63 − =𝜎4,6>
3	

−𝜎6,>𝜎4,6
𝜎43𝜎63 − =𝜎4,6>

3	 𝛹	

       
Labor 0.252 0.743 0.491             0.0035          0.4836    0.4871 
       
       
    𝜎43𝜎6,>

𝜎43𝜎63 − =𝜎4,6>
3	

−𝜎4,>𝜎4,6
𝜎43𝜎63 − =𝜎4,6>

3	 𝛷	

       
Capital 0.748 0.258 -0.490            -0.4838            -0.0026   -0.4864 
       

Note: The empirical decomposition is calculated using the actual variances and covariances in the high correlation 
dataset to proxy for their expected values. OLS estimates are from Column (2) of Table 3, Panel B. 
 
Source: Authors 
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A comparison of Tables 4 and 6, and equations (12a) and (12b) to equations (11a) and (11b) 

clarifies that the same set of OLS estimates on value data can suffer from two types of bias at the 

same time: errors in variables bias relative to the elasticities, and omitted variables bias relative 

to the shares. Whereas Table 4 showed that the errors in variables bias arises due to the 

covariance between  ln 𝑃1 and ln 𝐽, Table 6 shows that the omitted variables bias is driven 

principally by the covariance between ln𝑀 and ln 𝐽.   

 

Table 7 puts the problem in the starkest possible terms, showing that approximating the identity 

preempts estimates of the returns to scale, biasing the sum of the coefficients toward 1 (i.e., to 

the sum of the factor shares). Like Table 5, this table presents a series of OLS regressions that do 

an increasingly good job at correcting for 𝑙𝑛𝑀,	but the underlying physical quantities dataset is 

regenerated with a scale-elasticity of 2 (𝛼 = 1.333, 𝛽 = 0.667). This does result in an 

unrealistically low average labor share (𝑎Q= 0.012), but saves on further and unnecessary 

recalibration of parameters. We present results for the high correlation case (𝛥1 =

$10,000, 𝛥0 = $133). The closer one gets to estimating the accounting identity, the closer the 

estimates become to the shares, and the closer the sum of the coefficients on labor and capital 

becomes to 1, despite a scale elasticity of 2. This explains why empirical estimates of 

“production functions” tend not to demonstrate evidence supporting the increasing returns to 

scale central to theories of endogenous growth and of trade. We find evidence of significant 

increasing returns to scale in columns (1), (2), and (3) (and only in the first two cases in the 

proximity of 2, corresponding to the case where value and physical terms are poorly correlated) 

but with estimates of coefficients of labor and capital that researchers would surely question. 
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Table 7: Omitted-Variable Bias Relative to the Shares (0.012 for labor, 0.988 for capital) 
when 𝛼 + 𝛽 = 2 

OLS regressions that increasingly approximate the accounting identity 
 (1) (2) (3) (4) (5) (6) 
 Baseline 

(𝜙 = 0) 
𝜙 = 0.25	 𝜙 = 0.5	 𝜙 = 0.9	 𝜙 = 1	 Full 

Accounting 
identity 

Coefficients       
𝑙𝑛 𝐿	 1.492 

(0.0074) 
1.404 
(0.0072) 

0.959 
(0.0063) 

0.045 
(0.0012) 

0.013 
(0.0001) 

0.013 
(0.0001) 

𝑙𝑛 𝐽 0.509 
(0.0064) 

0.538 
(0.0067) 

0.683 
(0.0052) 

0.977 
(0.0009) 

0.987 
(0.0001) 

0.987 
(0.0001) 

𝑙𝑛𝑊𝜙	 0.002 
(0.0024) 

0.236 
(0.0030) 

0..718 
(0.0030) 

1.087 
(0.0005) 

1.000 
(0.0000) 

 

𝑙𝑛 𝑤	      0.011 
(0.0000) 

𝑙𝑛 𝑟	      0.987 
(0.0000) 

R-squared 0.750 0.765 0.840 0.995 1.000 1.000 
Estimated 
“returns to 
scale” 

2.000 
(0.004) 

1.942 
(0.004) 

1.641 
(0.003) 

1.022 
(0.001) 

1.000 
(0.0000) 

1.000 
(0.0000) 

Note: Data are from the High Correlation case. 
Source: Authors 
 

The takeaway from these three sets of results is that even if there is a well-defined production 

function with a known form (here Cobb-Douglas), econometricians hoping to estimate its 

parameters when using value-terms data must (i) solve the endogeneity problem, (ii) include 

controls for firm-specific machine prices, and (iii) exclude any control variables that proxy for 

the wage rate and the rate of return on value-capital. Instrumental variables can solve the 

endogeneity problem if the instruments for physical capital are uncorrelated with machine prices 

and productivity, but the most commonly used instruments (e.g., money values of lagged 

investment levels and trade shocks) are not likely to be so. Moreover, including variables that 

could proxy for firm-specific productivity or machine prices in order to solve problems (i) and 

(ii) will exacerbate problem (iii) to the extent that these proxies are correlated with ln𝑤 and ln 𝑟. 

 

D. Estimation in Monetary Terms if There Is No Production Function 

This refers to the case when no properly specified production function between the observable 

physical variables exists. This may arise when there is more than one output, labor, or type of 

machine, and so the only way to express output and capital is in value terms. As is well known, 

an aggregate production function with neoclassical properties does not exist, in the sense that the 
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conditions to aggregate output and inputs, as well as the production functions, are very hard to be 

satisfied by actual economies, and so its parameters cannot exist either (Felipe and Fisher 2003).  

 

What might we expect in this case that the coefficients from regression of 𝑙𝑛	𝑉	 on 𝑙𝑛	𝐿	 and 𝑙𝑛 𝐽	 

will capture? We argue that they would capture the only conceptual relationship that does exist 

between the observed variables: the transformed accounting identity (7). This argument is the 

same for firm-level data and for aggregate data. In this latter case, identity (6) would be the result 

of arithmetically summing up the identities for each firm or sector.18 

 

To examine this possibility, we next generate a series of datasets that only exist in terms of 

money values and quantities of labor. There are no machines or widgets, and so no production 

function, but value added is distributed between labor and capital (equation [6]). Each dataset 

includes 100,000 firms, and contain labor (𝐿), distributed as before, the labor share 

(𝑎~𝑈[0.7,0.8]), wages (𝑤~𝑈[$16,667 − Δ? , $16,667 + Δ?]), and returns to value capital 

(𝑟~𝑈[0.10 − ΔE , 0.10 + ΔE]).  Each firm’s value added is generated as 𝑉 = 𝑤𝐿/𝑎, and its value 

capital as 𝐽 = (𝑉 − 𝑤𝐿)/𝑟.  The datasets are ordered by Δ? and ΔE, and therefore by the 

variation in 𝑙𝑛𝑀, permitting us to see what happens as this variation get smaller. The code is 

provided as Appendix E. 

 

Unsurprisingly, in a regression of 𝑙𝑛𝑉 on ln 𝐽 and ln 𝐿, the recovered coefficients begin far from 

the average factor shares (respectively, 0.25 and 0.75) when the variation in factor prices is large, 

and approach the average factor shares as that variation shrinks. For example, when (Δ? , ΔE) =

($1,000, 0.05) the estimated coefficients are 0.94 (on ln 𝐿) and 0.06 (on ln 𝐽), but they fall to 

0.752 and 0.248 when (Δ? , ΔE) = ($100, 0.001). 

 

It follows that when the functional form being estimated with value terms data corresponds 

closely to the transformed accounting identity, the regression will estimate the factor shares.19 

 
18 In this case, the aggregation of the corresponding identities yields: Σ𝑉8 = 𝑤YΣ𝐿8 + 𝑟̅Σ𝐽8 = 𝑤Y𝐿 + 𝑟̅𝐽, where 𝑤Y  and 𝑟̅ 
are the average wage and profit rates, Σ𝐿8 = 𝐿, and Σ𝐽8 = 𝐽. 
19 These simulations complement those of Fisher (1971) using time series data (his concern was the aggregation 
problem). He generated the (aggregate) series of output, labor, and capital, by ensuring that the accounting identity 
held. Though Fisher did not state it, it is obvious that his aggregate series had to be monetary values, as it could not 
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There is no solution to this problem, and therefore it is not a matter of finding the correct 

estimator. 

 

 

5. CONCLUSIONS 

 

This paper has discussed three problems that econometricians face when they estimate 

production functions. Our departure point was the well-known problem caused by regressors’ 

endogeneity, which leads to biased OLS estimates. For decades, the profession has proposed 

different estimators to solve this problem. The treatment of this problem assumes that output and 

capital stock are physical quantities (as they should be). We have shown that because, in 

practice, researchers use monetary values for output and capital, they face two additional 

problems that blur the treatment of endogeneity. One is a problem of errors in variables caused 

by the approximation of physical output and physical capital through monetary values. The other 

results from the fact that the series of output and inputs used (in monetary terms) are related 

though an accounting identity. The use of monetary (value) data is at the center of the problem. 

 

We used simulation analyses to study if and when the coefficients obtained with the functions 

estimated with monetary data are in fact the true elasticities (corresponding to those of the 

production function, i.e., with physical quantities). We have assumed for our baseline 

discussions that there is an underlying Cobb-Douglas production function linking inputs and 

output, with constant returns to scale. This is an extremely important point as, in general, the 

researcher does not know what the functional form is. 

 

Our simulations yield the following findings: 

 

1. Estimation in physical units:  

 
be otherwise. Fisher concluded that the Cobb-Douglas form works well (i.e., coefficients are close to the factor 
shares and the regression has a high fit) as long as factor shares are constant. Fisher stressed this last point and 
remarked that the constancy of the factor shares is not due to the fact that the underlying production function (of the 
economy) is Cobb-Douglas -it is the other way around: the Cobb-Douglas works if factor shares happen to be 
constant. Our results show that it is the variation in the weighted (by the factor shares) average of the wage and 
profit rate that determines how well the regression will estimate the factor shares. 
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a. We corroborate that the estimation of production functions using physical data 

yields the correct factor elasticities if there is no endogeneity problem. If there is 

an endogeneity problem, an appropriate estimation method can solve it, but 

requires knowledge of the form of the production function and having the correct 

instruments. 

2. Estimation using monetary values: 

a. Errors-in-variables problem: If the researcher controls for the prices of output 

and capital, estimation using value data is equivalent to the estimation using 

physical quantities. In case the regression does not control for these prices but the 

researcher has an appropriate instrument for the value of machines, instrumental-

variable estimation will also recover the factor elasticities. However, such an 

instrument must be exogenous to the omitted machine prices, and so most 

probably cannot itself be in value terms. If such an instrument is not available, the 

use of value data will lead to biased coefficients with respect to the elasticities. 

b. Accounting identity problem: Including variables that correctly proxy for the 

weighted average of the factor prices in the regression will push the estimates 

toward the factor shares. If the value data are very highly correlated with the 

physical data (and so the previous finding on errors in variables is irrelevant), the 

regression can produce coefficients equal to the elasticities when there are no 

controls that proxy for the weighted average of the factor prices. 

c. Accounting identity problem 2: The use of value data will yield estimates of the 

elasticity of scale that are biased toward 1 (the sum of the factor shares) when the 

regression controls proxy for the weighted average of the factor prices. Tests of 

constant versus increasing returns to scale are therefore unreliable when using 

value data. 

3. If there is no production function in physical quantities, all researchers can estimate with 

monetary data is an approximation to the distributional accounting identity. Coefficients 

will tend to approximate the factor shares if the weighted average of the wage and profit 

rate is correctly approximated, or if it varies little (in which case it is part of the constant 

term). If this weighted average varies substantially and it is not approximated through 

another variable, the estimated coefficients of labor and capital will deviate significantly 
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from the factor shares. This is most likely the problem many researchers face when they 

use aggregate data, and the problem the profession at large has tried to deal with for 

decades, without realizing. It has no econometric solution. 

 

These results have implications for the significant body of applied literature that has been 

published during the last eight decades. They affect both aggregate exercises on growth and 

productivity and also exercises using firm-level data, to the extent that they all use monetary 

values.  

 

Fisher, Solow, and Kearl (1977, 319) concluded that (aggregate) production functions should be 

used with extreme caution, “the way the old garbage man tells the young garbage man to handle 

garbage wrapped in plastic bags of unknown provenance: ‘Gingerly, Hector, gingerly.’” Our 

simulations allow us to go one step further and advise that production function estimates from 

value data (at all levels of aggregation) should be left untouched. 
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APPENDIX A: THE ACCOUNTING IDENTITY AND CROSS-SECTIONAL DATA 

 

Factor shares in value added in a cross section can be written as 𝑎! = (𝑤! 	𝐿!)/𝑉! 	 (labor) and 

(1 − 𝑎!) = (𝑟! 	𝐽!)/𝑉! 	 (capital), where the subscript 𝑖 refers to the cross-sectional unit. These 

expressions, when added up, lead to the accounting identity (for a cross section) 𝑉! ≡ 𝑊! + 𝑃! ≡

𝑤!𝐿! + 𝑟!𝐽!. For a low dispersion of the factor shares, 𝑎Q ≃ (𝑤S𝐿Q)/𝑉Q	, where a bar denotes the 

average value of a variable. Then, the following also holds: 

 

𝑎!/𝑎Q 	≃ [(𝑤!𝐿!)/𝑉!]/[(𝑤S𝐿Q)/𝑉Q	]   (A1) 

 

and 

 

(1 − 𝑎!)/(1 − 𝑎Q) 	≃ [(𝑟!𝐽!)/𝑉!]/[(𝑟̅𝐽)̅/𝑉Q	]  (A2) 

 

For small deviations of a variable 𝑋! from its mean 𝑋Q, it follows that 𝑙𝑛	(𝑋!/𝑋Q	) ≃ (𝑋!/𝑋Q) − 1. 

Taking logarithms of the previous two equations and using this approximation, it follows that: 

 

𝑙𝑛	[𝑤!/𝑤S	] + 𝑙𝑛	[𝐿!/𝐿Q	] − 𝑙𝑛	[𝑉!/𝑉Q	] 	≃ (𝑎!/𝑎Q) 	− 1  (A3) 

 

and  

 

𝑙𝑛	[𝑟!/𝑟̅	] + 𝑙𝑛	[𝐽!/𝐽	̅] − 𝑙𝑛	[𝑉!/𝑉Q	] ≃ [(1 − 𝑎!)/(1 − 𝑎Q)] 	− 1 (A4) 

 

Multiplying equations (A3) and (A4) by 𝑎Q and (1 − 𝑎Q), respectively, adding them, and 

rearranging the result yields:  

 

𝑙𝑛𝑉! ≃ 𝐵 + 𝑎Q𝑙𝑛𝑤! + (1 − 𝑎Q)𝑙𝑛𝑟! + 𝑎Q𝑙𝑛𝐿! + (1 − 𝑎Q)𝑙𝑛𝐽! = 

= 𝐵 + 𝑙𝑛𝑀! + 𝑎Q𝑙𝑛𝐿! + (1 − 𝑎Q)𝑙𝑛𝐽!     (A5) 
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where 𝐵 = (𝑙𝑛𝑉Q − 𝑎Q𝑙𝑛𝑤S − (1 − 𝑎Q)𝑙𝑛𝑟̅ − 𝑎Q𝑙𝑛𝐿Q − (1 − 𝑎Q)𝑙𝑛𝐽)̅ and 𝑙𝑛𝑀! = 𝑎Q𝑙𝑛𝑤! +

(1 − 𝑎Q)𝑙𝑛𝑟!. The weighted average of the factor prices 𝑙𝑛𝑀! plays a very important role in the 

discussion of the identity argument. Taking anti-logs in (A5): 

 

    𝑉! ≃ 𝑒𝑥𝑝(𝐵)𝑤!23𝑟!4)23𝐿!23𝐽!4)23     (A6) 

 

Equation (A6) is an approximation to the accounting identity, and it will work well if the 

variation in factor prices within the cross section is not great, which is often the case in many 

empirical applications. 

 

 

APPENDIX B: PRODUCTION FUNCTIONS WITH PHYSICAL QUANTITIES 

 

The identity problem does not hold with physical data (𝑄, 𝐿, 𝐾) because these series are not 

linked through an accounting identity like the one with value (monetary) data. For simplification, 

we continue without adding materials, although the production function has to include the 

quantity of materials. With physical quantities, it would be possible to estimate the production 

function and obtain the true elasticities, which may differ from the factor shares.  

 

Suppose there exists a production process that converts L (number of workers), K (number of 

identical machines) into 𝑄 (widgets). Assume that this production process is given by 𝑄 =

𝐴𝐿"𝐾#𝑒$. This specific form is not essential to the argument. As this is an “engineering” or 

physical production function, output must be determined by the correctly measured flow of 

services from labor and capital. 

 

Now a researcher estimates 𝑙𝑛𝑄 = 𝑑 + 𝑏4𝑙𝑛𝐿 + 𝑏F𝑙𝑛𝐾 + 𝑢. What would the estimates of 𝑏4 and 

𝑏F pick up? We argue that she would obtain the true technological relationship, i.e., 𝛼 and 𝛽 

(with an appropriate estimator, as discussed in the main text). In this case, the series 𝑄, 𝐿, 𝐾 are 

not definitionally related through an actual accounting identity.  
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Notice, though, that one could construct an infinite number of accounting identities with an 

arbitrarily chosen weight, 𝑏, that would determine the distribution of factor rewards in physical 

terms, e.g., 𝑣 = 𝑏(𝑄/𝐿), 𝑥 = (1 − 𝑏)(𝑄/ 𝐾) with 0 < 𝑏 < 1, and then construct 𝑄 ≡ 𝑣𝐿 + 𝑥𝐾, 

i.e., the identity in physical terms. As above, this expression could then be transformed into one 

in multiplicative form, the Cobb-Douglas production function. Note that 𝑣 and 𝑥 are measured in 

widgets per worker and widgets per machine, respectively. The important point now is that there 

is no actual identity relating 𝑄, 𝐿, 𝐾. It is for this reason that the regression will pick up the true 

elasticities and not the factor shares—an infinite number, depending on the values of	𝑏.  

 

However, with value data, the series for output (𝑉), inputs (𝐿, 𝐽), and the factor shares 𝑎 = 𝑤𝐿/𝑉 

and (1 − 𝑎) = 𝑟𝐽/𝑉, are related through only one identity. This is the identity that the monetary 

data regression will undoubtedly pick up. 

 

Finally, it must be noted that, with physical quantities, researchers face two problems. First, is 

that one would need to know what functional form to estimate. The second problem is that, in 

practice, estimating a production function for manufacturing (or services) with physical 

quantities is next to impossible. This is due to the data requirements needed (e.g., individual 

capital stocks for an oil refinery). If these two issues were addressed, then the endogeneity of the 

regressors would be a correct concern because there is no identity directly linking 𝑄, 𝐿, and 𝐾, 

and the regression would contain a true econometric error.  
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Appendix C: Summary Statistics 

The following table summarizes our main dataset, with figures for value-terms variables drawn 

from the “high correlation” case. 

Variable Mean Std. Dev. Min Max 

     

(A) Variables in physical quantities 

ln 𝑑 3.91 0.10 3.51 4.33 

ln 𝐿 3.00 0.10 2.57 3.42 

ln𝐾∗ 3.00 0.11 2.48 3.51 

ln𝐾1 3.00 0.17 2.33 3.72 

ln 𝑠 0.00 0.12 -0.50 0.53 

ln𝑄∗ 6.91 0.14 6.32 7.60 

ln𝑄1 6.91 0.17 6.20 7.73 

(B) Variables in Value Terms 

𝑃 1,333 77 1,200 1,466 

𝑃/ 199,996 5,768 190,000 210,000 

𝑤 16,665 5,754 6,667 26,666 

𝑟∗ 0.252 0.050 0.083 0.498 

𝐽∗ 4,023,648 466,527 243,813 6,762,812 

𝑉∗ 1,346,956 208,403 685,466 2,508,228 

𝑎∗ 0.252 0.093 0.070 0.618 

ln𝑀∗ 1.388 0.124 0.701 1.891 
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Appendix D: Stata Code for Sections 4.A-4.C 

** NOTE TO USER: This code will create all the datasets and numerical results reported in this 

paper, other than those in Section 4.D (which are generated in Appendix E). To display the 

specific results you would like to verify, reset the relevant block of code from "quietly" to 

"noisily,” check the assumed elasticities in lines 13–14, and set the relevant scenario in line 59. 

 

clear all 

set obs 100000 

set seed 18 

 

** Generate the data in physical units. 

{ 

** We will use five global parameters to control the generation of physical quantities data. 

global SD_lnR 0.05  /*Standard deviation of ln(machines per worker).*/ 

global SD_v 0.07 /*The standard deviation of the z in the technical efficiency signal. When it is 

zero, endogeneity bias is worst.*/ 

global SD_lnd = 0.1 /*Standard deviation of technical efficiency.*/ 

gen alpha = 0.667 /*Replace with 1.333 for IRS.*/ 

gen beta = 0.333 /*Replace with 0.667 for IRS.*/ 

** Generate the data. 

gen lnL = rnormal(ln(20),0.1) /*Random labor input. */ 

gen L = exp(lnL) 

gen lnd = rnormal(ln(50),$SD_lnd) /*Random technical efficiency parameter. */ 

gen d = exp(lnd) 

gen lnR = rnormal(0,$SD_lnR) /*Random K/L ratio, centered on 1.*/ 

gen lnK_star = lnR + lnL /*Random capital level chosen by firm with no knowledge of its 

productivity parameter. */ 

gen K_star = exp(lnK_star) 

gen lns = lnd - ln(50)+rnormal(0,$SD_v) /*Firms have a noisy signal of their technical 

efficiency. */ 

sum lnd lns /*Check the properties of the signal.*/ 
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pwcorr lnd lns /*Check the properties of the signal.*/ 

gen lnK_end = lnK_star + lns /*Firms choose capital in response to this signal.*/ 

gen K_end = exp(lnK_end) 

gen lnQ_star = lnd+alpha*lnL+beta*lnK_star /*ln(Output), if machines are determined 

exogenously.*/ 

gen lnQ_end = lnd+alpha*lnL+beta*lnK_end /*ln(Output) if machines are determined 

endogenously. */ 

gen Q_star = exp(lnQ_star) 

gen Q_end = exp(lnQ_end) 

 

** Examine the data.  

pwcorr lnd lnL lnK_star lnK_end lnQ_star lnQ_end  

sum 

} 

 

** RUN THE REGRESSIONS IN PHYSICAL QUANTITIES [Table 1] 

{ 

** OLS recovers the elasticities when the data are not endogeneity-contaminated. [Panel (a)] 

regress lnQ_star lnK_star lnL  

lincom lnK_star + lnL 

 

** OLS overestimates the capital elasticity when the data are contaminated by endogeneity. 

[Panel (b)] 

regress lnQ_end lnK_end lnL  

lincom lnK_end + lnL 

 

** K_star is a valid instrument for K_end, and 2SLS returns the elasticities. [Panel (c)] 

pwcorr lnK_star lnK_end, sig 

ivregress 2sls lnQ_end (lnK_end=lnK_star) lnL , first 

lincom lnK_end + lnL 
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** Produce the stats used to calculate the decomposition of endogeneity bias [Table 2] 

corr lnL lnK_end lnd, covariance 

} 

 

** MAKE THE VALUE-TERMS DATASETS AND RUN THE VALUE REGRESSIONS 

** The prices of widgets and machines are uniformly distributed around means of $1,333 per 

widget and $200,000 per machine. Here we set their half ranges to yield different levels of 

correlation between physical and value capital/output.  

foreach Correlations in High {/* Pick the relevant scenario to create each table, from among: 

VeryHigh High  Moderate Low*/ 

 set seed 18 

 ** Set up the Parameters 

 { 

 if "`Correlations'"=="VeryHigh" { 

  global Delta_Pk 1000  

  global Delta_P 13.3  

 } 

 else if "`Correlations'"=="High" { 

  global Delta_Pk 10000  

  global Delta_P 133  

 }  

 else if "`Correlations'"=="Moderate" { 

  global Delta_Pk 30000  

  global Delta_P 200  

 }  

 else if "`Correlations'"=="Low" { 

  global Delta_Pk 50000  

  global Delta_P 1000  

 }  

 noisily display "`Correlations' correlations, Delta_Pk: $Delta_Pk Delta_P: $Delta_P"    

 } 
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 ** Make the datasets 

 quietly { 

  ** Genderate prices and wages 

  gen P = runiform(1333-$Delta_P, 1333+$Delta_P) 

  gen Pk = runiform(200000-$Delta_Pk, 200000+$Delta_Pk) 

  gen lP = ln(P) 

  gen lPk = ln(Pk) 

  global Delta_w 10000 /*Half the Delta of wages. Default = $10,000/worker-

year.*/ 

  gen w = runiform(16667-$Delta_w, 16667+$Delta_w) /* Default: Mean = 

$50,000/worker-year.*/ 

  gen lnw = ln(w) 

  gen WageBill = L*w  

  foreach series in star end { /*Caculate V, J, r etc. for each series.*/ 

   gen J_`series' = Pk*K_`series' 

   gen V_`series' = P*Q_`series' 

   gen Profit_`series'=V_`series'-WageBill 

   gen r_`series'=Profit_`series'/J_`series' 

   gen a_`series' = WageBill/V_`series' 

   gen JV_ratio_`series' =J_`series'/V_`series' 

   gen lnV_`series'=ln(V_`series') 

   gen lnJ_`series'=ln(J_`series') 

   gen lnr_`series'=ln(r_`series') 

   gen VMPL`series' = alpha*P*Q_`series'/L 

   gen QoL`series' = Q_`series'/L 

   gen VoL`series' = V_`series'/L 

   gen lnTFP_factorprices`series'=a_`series'*lnw+(1-a_`series')*ln(r_`series') 

  } 

  format V* w P* WageBill Profit* J_* %9.0fc 

  sum /*These provide the shares appearing in Table 6. */    

  sum a_star  
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   local a_bar = r(mean)  

  gen lnM_star = `a_bar'*lnw+(1-`a_bar')*lnr_star 

  sum lnM_star 

   local mean = r(mean) 

   local sd = r(sd)  

  gen z = rnormal(`mean',`sd') 

  gen W_phi0 = z 

  gen W_phi25 = 0.25*lnM_star + 0.75*z 

  gen W_phi50 = 0.5*lnM_star + 0.5*z 

  gen W_phi90 = 0.9*lnM_star + 0.1*z 

 } 

 ** Examine the data, expecially the correlations 

 quietly { 

  summarize w P Pk r* L K* J* Q* V* WageBill a* Profit* J_* JV* lnM* z 

lnTFP* /*J/V is approximately 3. */ 

  noisily summarize lnd lnL lnK_star lnK_end lns lnQ_star lnQ_end P Pk w r_star 

J_star V_star a_star lnM_star 

  sum r_*, det  

  count if r_star<0 /*We have some loss-making firms, but only in the low-

correlation case. This does not matter for any result presented in the paper.*/ 

  ** Pull out the correlations between physical and value terms (Table 3, Panel A) 

  pwcorr lnK_star lnJ_star 

  pwcorr lnQ_star lnV_star 

  pwcorr lnd lnM_star lnTFP_factorpricesstar 

} 

  

 ** REGRESSIONS: 

 display "HERE ARE THE REGRESSIONS. CORRELATION IS `Correlations'." 

     

 ** 1. OLS, no endogeneity bias.  Table 3, Panels B-D. 

 quietly { 



44 
 

  display "1. OLS, no endogeneity.  Table 3, Panels B-D." 

  regress lnV_star lnL lnJ_star /*Panel B.*/ 

  regress lnV_star lnL lnJ_star lPk lP /*Panel C.*/  

  regress lnV_star lnL lnJ_star lPk /*Panel D.*/ 

 } 

  

 ** 2. IV. Table 3, Panel E. 

 quietly { 

  display "2. Instrumental Variables. Table 3, Panel E." 

  ivregress 2sls lnV_star lnL (lnJ_star=lnK_star), first 

 } 

 

 ** 2b. IV - the Griliches and Mairesse (1998) way 

 quietly { 

  gen lnrental=lnr_end+lPk`' 

  display "2b. IV - the Griliches and Mairesse way" 

   ivregress 2sls lnV_star (lnL lnJ_star= lnw lnr_star), first   

   ivregress 2sls lnV_star lnL (lnJ_star= lnw lnr_star), first   

   ivregress 2sls lnV_end lnL (lnJ_end= lnw lnrental), first   

   ivregress 2sls lnQ_end lnL (lnK_end= lnw lnrental), first   

 } 

  

 ** 3. OLS as we approximate the accounting identity. Tables 5 (and 7). 

 quietly { 

  pwcorr lnM_star W_phi* 

  display "3. Full Accounting Identity, no endogeneity" 

  quietly foreach n in 0 25 50 90 { 

   regress lnV_star W_phi`n' lnJ_star lnL 

    est store est`n' 

  } 

  quietly regress lnV_star lnM_star lnJ_star lnL  
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   est store estM 

  quietly regress lnV_star lnJ_star lnr_star lnL lnw 

   est store estID 

  est table est*, keep(lnL lnJ_star W_* lnM lnw lnr_star) b(%4.3f) se(%5.4f) 

stats(r2 N) /*Estimates for Table 5 (and 7).*/ 

  foreach est in 0 25 50 90 M ID { 

   est restore est`est' 

   display "Estimated returns to scale for est`est'" 

   lincom lnJ_star+lnL 

  } 

 }  

 ** Display the numbers needed to calculate the EiV and OVB biases (Tables 4 and 6). 

 quietly { 

  gen rho_to_Beta = -beta*lPk 

  sum a_star alpha lnL rho_to_Beta /*Provides the shares needed for table 6.*/ 

  quietly corr lnL lnJ_star lnM_star rho_to_Beta if r_star>0, c 

  matlist r(C), format(%10.8f) /*covariance matrix for the OVB and EiV 

Calculations (for those with r>=0, a stipulation which only matters in the low-correlation case 

because r>0 otherwise).*/ 

 } 

 drop P - ln 

} 

Appendix E: Stata Code for Section 4.D. 

clear all 

set obs 100000 

set seed 19 

 

global SD_L 0.1 

gen lnL = rnormal(ln(20),$SD_L) /*Random labor input. */ 
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 gen L = exp(lnL) 

quietly foreach Case in High Medium Low Negligible { 

 if "`Case'"=="High" { 

  global Range_w = 1000 

  global Range_r = 0.05  

 } 

 else if "`Case'"=="Medium" { 

  global Range_w = 500  

  global Range_r = 0.02 

 } 

 else if "`Case'"=="Low" { 

  global Range_w = 200  

  global Range_r = 0.01 

 } 

 else { 

  global Range_w = 100  

  global Range_r = 0.001 

 } 

 global Range_a = 0.05 

 gen a = runiform(0.75-$Range_a,0.75+$Range_a) 

 gen w = runiform(16667-$Range_w, 16667+$Range_w) /* Default: Mean = 

$16,667/worker-year.*/ 

 gen r = runiform(0.1-$Range_r, 0.1+$Range_r) 
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 gen V = (w*L/a) 

 gen Profit = V - w*L 

 gen lnProfit = ln(Profit) 

 gen J = Profit/r 

 gen lnJ = ln(J) 

 gen lnV = ln(V) 

 gen lnM_bar = 0.75*ln(w)+0.25*ln(r) 

 display "Case is `Case'" 

 sum w r a lnM_bar 

 

 noisily regress lnV lnL lnJ 

 drop a-lnM_bar 

} 
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