
1. Introduction
Wetlands have been widely acknowledged as vital elements of the landscape due to the ecosystem services they 
provide through the storage and slow release of water resources that also sustains rich biodiversity and signif-
icant carbon sequestration (Aumen & Keddy, 2001). From a hydrological perspective, wetlands can buffer the 
water cycle by regulating water flow paths (infiltration, percolation, overland flow, groundwater (GW) flow, 
etc.), often attenuating flood peaks through internal storage dynamics, and subsequently sustaining dry-weather 
baseflows. Consequently, they have long been identified as a “hot-spot” and focus for hydrological research 
(Acreman et  al.,  2007). However, the underlying processes that govern the hydrological function of specific 
wetlands are generally characterized by marked spatio-temporal heterogeneity with numerous local factors inter-
acting in complex ways (e.g., climate, topography, soils, etc.) (Musolff et al., 2015). This complexity is further 
exacerbated in riparian wetlands due to highly diverse vegetation communities along hydrological gradients and 
active exchange between different water sources (soil water, GW, streamflow, etc.) (Acreman et al., 2007; Zedler 
& Kercher, 2005). Therefore, substantial knowledge gaps still exist regarding how to quantify hydrological path-
ways in wetlands despite decades of efforts in geographically diverse systems (e.g., Bam & Ireson, 2019; Hayashi 
et al., 2016).

Distributed hydrological modeling is one way to further investigate these dynamic patterns and processes due 
to its capacity to leverage spatial information in the forcing data, via regional parameterization and thus better 
identify dynamic flow paths in space and time (Wellen et al., 2015). However, while spatial disaggregation of a 
model domain brings extra information, it poses additional challenges. Equifinality, one of the most common and 
intractable issues in lumped modeling, is exacerbated by distributed models, evidenced by multiple behavioral 
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parameter sets being able to produce the same levels of performance for the observational data during model cali-
bration (Beven, 2006). This can substantially increase uncertainty in distributed models, as it not only originates 
from the compensatory effects between different model components (i.e., various pathways and storages), but also 
from their contributions from different geographic areas (hill slopes, variable source areas, and sub-catchments) 
(Cao et al., 2006). In the other words, the simulated internal fluxes could be highly uncertain in both magnitude 
and spatial patterns, even though outlet streamflow was successfully reproduced (Beven, 2006), which has been 
summarized as models giving “right answer for the wrong reasons” (Kirchner, 2006). This remains a central 
challenge in distributed modeling, considering that many applications are based only on the streamflow at outlet 
(reviewed in Fatichi et al., 2016; Wellen et al., 2015 for hydrological and water quality modeling).

One way to mitigate equifinality and increased confidence in model results is by multi-criteria calibration; that 
is, constraining a model's degrees of freedom in simulating internal fluxes by incorporating more observational 
data during calibration. This method has been increasingly applied in recent years due to the increasing data 
availability, with many different types of auxiliary data used for model calibration, for example, snowpack 
volume (Berezowski et al., 2015), soil moisture (Smith et al., 2021), GW head (Jing et al., 2018), evaporation 
(Winsemius et al., 2008), transpiration (Douinot et al., 2019), etc. Crucially, water stable isotopes (hydrogen  2H 
and oxygen  18O) have also been increasingly used in distributed modeling to trace water sources, flow paths and 
transit times (Birkel et al., 2014; Holmes et al., 2020; Smith et al., 2021; Soulsby et al., 2015), because they are 
only mediated by water mixing and fractionation but remain independent from biogeochemical reactions, and 
naturally integrate field-scale heterogeneity (Tetzlaff et al., 2015).

When reviewing various applications of multi-criteria calibrations using hydrological models, many of them 
showed benefits in terms of an increased number of diagnostics brought by auxiliary data (Birkel et al., 2014; Clark 
et al., 2011; Kuppel et al., 2018a; Piovano et al., 2018; Seibert & McDonnell, 2002), which help reject infeasible 
models, and thus reduce the dispersion in optimized parameter sets and simulated fluxes within the remaining 
behavioral models. This is generally accompanied by a better overall model performance at the expense of rela-
tively marginal degradation in the simulation of different observations, which substantially enhances the overall 
consistency of the modeling results, as the optimized model is closer to the global solution within the  parameter 
space rather than the local optima achieved via single-criterion calibration (Piovano et al., 2018).

However, some studies have shown multi-criteria calibration is not always a panacea, as the trade-off between the 
performances of different observations can be pronounced. For example, Fenicia et al. (2008) saw a significant 
degradation in streamflow performance when isotopes were added to model calibration. A similar degraded 
performance after including isotopes was also found in Scudeler et al. (2016). Besides, poor predictive ability 
was found for the internal processes in catchment function though various observations were used for model 
optimization (Cao et al., 2006). Other challenges include reduced parameter identifiability, which is a common 
corollary of introducing tracer-based metrics into calibration (Birkel & Soulsby,  2015; Holmes et  al.,  2020). 
Many reasons have been suggested in previous studies, which can be roughly grouped into three aspects: (a) the 
information contained in observational data, (i.e., data sets have overlapping information that inform the cali-
bration process with conflicting or inconsistent information, and thus pulling the model in different directions; 
Clark & Vrugt, 2006; Kuppel et al., 2018a), (b) errors in model structure or inappropriate process conceptu-
alization (Beven,  2006; McDonnell et  al.,  2007), and (c) incommensurability between data and model (e.g., 
the scale difference in model conceptualization and point-scale measurements, Piovano et al., 2018; Weiler & 
Naef, 2003). In this context, “soft” data (qualitative information or measured data that are not directly compa-
rable to model variables) are sometimes used to further constrain model uncertainty by specifying additional 
criteria to judge model simulations or the selection of model parameters (Seibert & McDonnell, 2002; Winsemius 
et al., 2008). However, soft data may themselves reflect some considerable uncertainties (Sherlock et al., 2000), 
and their inclusion often introduces subjectivity (such as the specification of evaluation rules and the weighing 
of the different objective functions; Seibert & McDonnell, 2002). Consequently, clear and consistent guidance 
for multi-criteria calibration that integrates both hard and soft data is still not available; and there remains a need 
to further study the pros and cons of the approach via more applications in data-rich areas to better constrain the 
modeling uncertainty in the future.

A data-rich riparian wetland located in the experimental catchment of Demnitzer Mill creek in north-east 
Germany provided a unique opportunity for such analyses. Identified as a “hot-spot” for hydrological and bioge-
ochemical processes in the catchment (Smith et al., 2021; Wu et al., 2022a), different types of data have been 
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extensively monitored in the wetland for at least 2 years, including (a) water level/discharge at the inlet and outlet, 
(b) stream isotopes at nine sites, (c) GW isotopes at six sites, and (d) surface soil moisture content at ∼30 sites. 
Moreover, multispectral images acquired from monthly unmanned aerial vehicle (UAV) flights and leaf area 
index (LAI) times series acquired from remote sensing products provided a detailed representation of the topog-
raphy of the model domain plus vegetation dynamics in space and time. Based on this thorough consideration of 
the spatio-temporal heterogeneity in forcing data sets, the grid-and-physics-based model EcH2O-iso was setup 
and calibrated in this wetland. To thoroughly investigate the roles of weights in multi-criteria calibration, a total 
of 286 sets of weights were assigned to discharge, stream isotopes, GW isotopes, and soil moisture. The overar-
ching goal of this application was to unravel the heterogenous spatio-temporal patterns of hydrological processes 
in the riparian wetland over a period of 2 years. Meanwhile, by summarizing the results from different calibration 
weights, we also sought to investigate the mechanisms behind the multi-criteria calibration (i.e., how the different 
constraining data sets interact to influence the model calibration, and how soft data can further help constrain 
the equifinality) with the following three research questions explored:

•  How different constraining data sets interact to influence the model calibration?
•  What are the challenges and uncertainties in quantifying wetland ecohydrological processes via multi-criteria 

calibration?
•  How can we use soft data to reduce such uncertainty?

2. Methods and Materials
2.1. Study Site

The wetland studied in this investigation is located in the long-term experimental Demnitzer Millcreek catchment 
(DMC), 55 km SE of Berlin, Germany. The study area has a relatively flat topography (slope <2%) with an area 
of ∼1.5 km 2 and is traversed by a stream of 2.1 km long, which also received drainage from several ditches to 
the east (Figure 1). Both land use and soil properties correlate with proximity to the stream: the riparian area 
is characterized by a wetland with peaty soils; while forests with more sandy soils dominate the areas further 
away from the stream (Figure 1a). Broad-leaved and conifer forests dominate most sandy areas, while vegetation 
communities in riparian wetland are highly complex and heterogenous. They were classified into grassland, 
early-season herbaceous, and late season herbaceous communities (Figure 1b) using a random forest model from 
monthly UAV imagery (for details please refer to Section 2.4 and Texts S1 and S2 in Supporting Information S1).

The study area experiences a typical continental climate with low annual precipitation (∼570 mm/year since 
1992) and high potential evapotranspiration (PET, 650–700 mm/year; Smith et al., 2021). The rainfall shows a 
distinct seasonality, with winter and summer rainfall characterized by low-intensity frontal events and intense 
convective events, respectively. Following an ongoing drought that started in 2018 (Kleine et  al.,  2020), the 

Figure 1. The field setup (a) and model conceptualization (b) of the riparian wetland.
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streamflow is intermittent within the study period, with annual average discharge of only 0.02 and 0.06 m 3/s at 
the inlet and outlet respectively (Wu et al., 2021).

In mid-2020, a beaver dam was built downstream of the outlet, increasing the inundated area and slowing stream-
flow upstream. A subsequent propagation of beaver habitat upstream was also observed in 2021 with several 
small dams built along the stream. However, these dams were generally temporary and small in size.

2.2. EcH2O-Iso

EcH2O-iso was recently developed by integrating an isotopic tracking module (Kuppel et  al.,  2018b) into 
the process-based ecohydrological model EcH2O (Maneta & Silverman, 2013). As a fully distributed model, 
grid-based fluxes are simulated at each timestep based on the energy balance, water balance, and tracer balance 
(Figure S1 in Supporting Information S1). Here, we present a brief introduction on the model structure/parameter-
ization and the adaption for this application; for detailed model descriptions please refer to Kuppel et al. (2018b) 
and Maneta and Silverman (2013).

2.2.1. Model Conceptualization

In each grid, the model resolves the mass balance of energy, water and tracer concentration sequentially for 
the vegetation canopy, soil surface, and three soil layers (Figure S1 in Supporting Information S1). The energy 
balance, driven by incoming shortwave and longwave radiation, as well as air temperature (minimum, maxi-
mum, and average), relative humidity, and wind speed, is simulated for each vegetation type at the canopy and 
soil surface level, where sensible heat, latent heat, net radiation, and ground heat fluxes are solved. Then the 
simulated heat fluxes are further used to estimate the heat-driven hydrological fluxes: evaporation from the 
canopy and first soil layer (estimated from the latent heat and available water storages), transpiration based on 
the transpiration-associated latent heat (regulated by the canopy temperature and the canopy conductance) and a 
Jarvis-type stomatal conductance model driven by maximum stomatal conductance and vapor pressure deficit, 
light availability, soil water availability, and root distribution in the three soil layers.

The water balance in EcH2O-iso follows a typical multi-layer, top-down approach, with conceptualized bucket 
storages for canopy, surface, and three soil layers (Figure S1a in Supporting Information S1). Following a vertical 
sequence, the precipitation is first intercepted by the vegetation canopy, whose amount is determined by the LAI 
and maximum canopy storage (mm/LAI). Then throughfall or direct incident rainfall (on bare soils) reaches the 
surface and ponds. Water is infiltrated into soil layer 1 using the Green-Ampt model. Then it is further vertically 
redistributed from the upper to lower layers using a gravitational drainage model based on exceedance of field 
capacity, after which the seepage leaving the soil layer 3 is estimated via a leakage parameter.

After moving vertically, the lateral flow starts to route excess water across the catchment domain. Overland flow 
routes any ponded surface storage at the end of each timestep downslope following a steepest descent approach, 
until it re-infiltrates in a downstream cell or reaches the channel. GW flow, conceptualized as the water above 
field capacity in soil layer 3, is translocated downslope using a linear kinematic model driven by the local slope. 
Streamflow in the channel is routed using a non-linear kinematic wave model regulated by a scaled Manning's n 
to attenuate the hydrograph. Note that return flow from soil layers can occur as excess water in storage moving 
vertically to the surface when the entire soil profile is saturated. In this case, the overland flow represented the 
mixed water from surface ponding and upward water from the shallow soil layers, thus is called near-surface flow 
in this study.

The isotopic simulation follows a complete mixing assumption—inflow is fully mixed with storage whilst outflow 
shares the same composition with the storage (Kuppel et al., 2018b). Fractionation is allowed during all evapora-
tion processes (from canopy, soil layer 1, and channel) using Craig-Gordon model (Craig & Gordon, 1964), while 
transpiration is assumed to be non-fractionating.

2.2.2. Model Adaptions

In the original EcH2O-iso model, the lower boundary is set as soil layer 3, which excluded interactions with 
deeper, slower moving GW, and has been shown to be inappropriate for catchments with a strong interaction with 
such deeper GW stores (Yang et al., 2021). This leads to an adaption of additional groundwater layer (DeepGW; 
Yang et al., 2021), which was further revised and used for the studied wetland, as a strong surface-groundwater 
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exchange in the area has been shown to be important in previous studies (Kleine et al., 2020). The initial DeepGW 
storage was set to 3 m in this study based on previous modeling results in DMC catchment (Smith et al., 2021) 
and recent geophysical surveys; as well as a preliminary analysis of stream and GW isotopes in this wetland (Wu, 
Tetzlaff, Goldhammer, et al., 2022). This storage is also similar to the values adopted by applications in nearby 
lowland catchments in Germany (e.g., Yang et al., 2021). The storage receives vertical leakage from soil layers 
and any lateral influx from upstream grid (also routed by a linear kinematic model), while its exfiltration to the 
channel is determined by the available storage and a weighting parameter. The weighting parameter considers 
both channel geometries and current GW level, regulating DeepGW recharge by its connecting area (At) with the 
channel bed:

𝐴𝐴𝑡𝑡 =

[

(𝑊𝑊 −𝐷𝐷) +
√

5 × (𝐷𝐷 − GW𝑡𝑡)

]

× 𝐿𝐿 (1)

where D, L, and W denote the channel depth, channel length, and the width of river banks, while GWt is the GW 
level below the surface at t time step in each grid. Note that here, we assume transects along the stream channel 
are isosceles trapezoid in shape with a bank slope of 200%, which matches our field observations since channels 
in DMC were artificially deepened for drainage in 1990s.

Similarly, the channel evaporation is linearly correlated to the channel surface within each grid (W × L).

2.3. Data Used in the Modeling

The climatic forcing data, including precipitation, temperature, relative humidity, wind speed, air pressure, and 
net radiation (calculated from short wave and long wave radiation measured in both downward and upward direc-
tions), was monitored at an automatic weather station (Environmental Measurement Limited, UK) within the 
catchment at 15-min intervals. The precipitation was also collected for isotopic measurements on a daily basis, 
using paraffin in autosampler (ISCO) bottles to avoid evaporation effects.

As for hydrological data, water level was monitored at 15-min intervals at the inlet and outlet of the wetland, 
where discharge was measured using a sonTek-IQ-plus sonde (YSI, USA) to construct rating curves based on 
levels and manual gaugings. Six GW wells were also established across the study area, with water levels moni-
tored by pressure transducers at GW3, 4, 5 and 7 (Figure 1a).

For model calibration and validation, four different data sets were collected within the studied wetland since 
2020, including (a) the discharge at the outlet at a 15-min frequency, (b) water stable isotopes (δ 18O and δ 2H) 
measured from grab samples taken at nine stream water sampling sites (SW1-9) and (c) six groundwater wells 
(GW2-7, Figure 1a) on a biweekly basis, and (d) soil moisture content in the upper soils (first 10 cm) measured 
every month at ∼30 sites that are evenly distributed over the northern wetland (Figure S2 in Supporting Informa-
tion S1). The corresponding components in EcH2O-iso are in-stream discharge, in-stream isotopes, isotopes in 
soil layer 3 (taken as GW samples), and soil moisture in soil layer 1, respectively.

Additionally, an important auxiliary data set was the multispectral imagery from monthly UAV flights, whose 
high spatial resolution (10 cm) provided detailed representation on the topography of the model domain, channel 
geometries, and vegetation dynamics in space and time.

2.4. Model Setup

The riparian wetland was delineated into 50 × 50 m grids. Most channel information (coordinates, length, and 
width) was determined from the UAV imagery and embedded into the grid-based model domain. The channel 
depth was interpolated from manual measurements at ∼50 sites along the stream. Due to the relatively small area, 
all the climatic forcing data were regarded spatially homogenous within the model domain. Similarly, the isotopic 
composition in precipitation was assumed to be spatially uniform according to our previous distributed isotopic 
sampling across the catchment (Kleine et al., 2020).

To reflect the spatial heterogeneity, soils were classified as sandy and peaty soils that were uniformly distributed 
over the vertical soil columns, while vegetation was differentiated into four communities (grassland, early-season 
herbaceous, late-season herbaceous and forest) using a random forest model trained by multispectral imagery 
from monthly UAV flights (see details in Text S1 in Supporting Information S1). These soil and vegetation maps 
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were further resampled into 50 × 50 m grids, from which soil or vegetation parameters were weight-averaged 
in each grid by their proportions (Table S1 in Supporting Information S1). Additionally, LAI was required as 
an indicator of vegetation dynamics, which was derived from Moderate Resolution Imaging Spectroradiome-
ter (MODIS) product (MOD15A2) as a reference time series, and then differentiated into community-level based 
on the summarized normalised difference vegetation index (NDVI) for each community (see details in Text S2 
in Supporting Information S1).

The model was set up to run on daily timesteps with an entire modeling period of 2 years (1 January 2020 to 
31 December 2021). The calibration was conducted from the first summer (1 July 2020 to 31 August 2021) for 
∼1 year, while the remainder of the time series was used for validation (1 September 2021 to 31 December 2021). 
Note that the first half year was excluded from calibration because of the increased residence time resulting from 
the beaver dam construction and its effect on isotope dynamics.

The initial boundary conditions of key states and fluxes were slightly modified from the optimized results in 
previous EcH2O-iso application in DMC (Smith et al., 2021). For each model run, a 1-year spin-up period was 
adopted via a repetitive use of the forcing data in 2020. As it was the first-time that EcH2O-iso was applied 
specifically to this wetland, most parameters that cannot be directly measured were selected for optimization, 
including 10 soil-type-dependent parameters, 8 vegetation-dependent parameters, and 7 global (uniformly 
distributed) parameters (Table S1 in Supporting Information S1). This resulted in a total of 59 parameters to cali-
brate. The ranges of parameters were mostly specified from previous catchment-scale modeling in DMC (Smith 
et al., 2021), with the range of max canopy storages modified based on our monitored LAI (MaxCanStorage). 
The use of narrower parameter ranges accelerated the search of parameter space exponentially given the relatively 
high parameter number.

2.5. Model Calibration

Latin-Hypercube sampling was selected to generate samples of parameters from the initial space. According to 
previous modeling experience (Gillefalk et al., 2021; Smith et al., 2021) 200,000 samples could lead to a satis-
factory calibration with similar number of calibrated parameters. Here, to increase the robustness of this study, 
the number of samples was further increased to 500,000 based on the availability of computation resources. We 
also monitored the mean parameter values of the posterior models selected from different numbers of model runs 
(Figure S3 in Supporting Information S1). The values of key parameter are generally stable after 10,000 model 
runs (though smaller changes could happen with respect to the prior parameter distribution). This, to some extent, 
supported the robustness of Latin-Hypercube sampling in this application.

After completing 500,000 model runs, the performance of each parameter set was evaluated. Here, an error 
function consisting of normal and logarithmic forms of Nash-Sutcliffe efficiency (NSE) was selected to calculate 
the deviation of simulations from each calibration target (i.e., discharge, stream isotopes, GW isotopes, and soil 
moisture). Such error function (Equation 2a) has been well tested and demonstrated to effectively mitigate the 
over-sensitivity towards high values or outliers when using the conventional NSE approach (Wu et al., 2022a):

err𝑖𝑖𝑖𝑖𝑖 = min

{

6
√

(1 − NSE𝑖𝑖𝑖𝑖𝑖)
6
+ (1 − lnNSE𝑖𝑖𝑖𝑖𝑖)

6

}

 (2a)

lnNSE𝑖𝑖𝑖𝑖𝑖 = NSE(ln(sim𝑖𝑖𝑖𝑖𝑖)𝑖 ln(obs𝑖𝑖)) (2b)

NSE�,� = NSE(sim�,� , obs�) = 1 −

Nt
∑

�=1
(sim�,�,� − obs�,�)

2

Nt
∑

�=1

(

obs�,� − obs�,�
)2

 (2c)

simi,j denotes the simulation of ith type of data (i = 1, 2, 3, 4 means discharge, stream isotopes, GW isotopes, 
and soil moisture) for jth model run (j = 1, …, 500,000), while obsi means the observation of ith type of data. Nt 
is the number of timesteps. Note that for each type of observations, all data points from multiple locations were 
used simultaneously (i.e., concatenating all available time series into a single time series) when calculating NSE 
and ln NSE. In other words, the simulation/observations at different locations were aggregated into simi,j/obsi in 
Equation 2b.
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The calculated errors were then turned from their absolute values into rank values for each calibration target 
(errnorm,i,j) to avoid the impact from different magnitudes or distributions of the errors between calibration targets. 
Then the overall performance was evaluated as a weighted average of normalized errors from four calibration 
targets for each (jth) model run:

errnorm,𝑗𝑗 =

4
∑

𝑖𝑖=1

errnorm,𝑖𝑖,𝑗𝑗 ∗ 𝑤𝑤𝑖𝑖; where

4
∑

𝑖𝑖=1

𝑤𝑤𝑖𝑖 = 1 (3)

Here to thoroughly investigate how different observations affect the model calibration, 10 individual weights (wi, 
ranging from 0 to 1 with an interval of 0.1) were assigned for each type of observations, resulting in a total of 286 
combinations of weights (i.e., weight settings). Finally for each weight setting, the most 30 behavioral parameter 
sets were selected as those with highest ranking, and were used for post-analyses.

2.6. Model Evaluation

To evaluate the simulation performance of each calibration setting, two additional metrics (mean relative error 
MRE and predictive uncertainty PU*, both modified from Kuppel et al., 2018a) were used to estimate the relative 
deviation from observations (Equation 4a) and the simulation uncertainty (Equation 4b) for each observation type 
in both calibration and validation period (1 July 2020 to 31 December 2021):

MRE𝑖𝑖𝑖𝑖𝑖 =

∑Nt

𝑡𝑡=1
|MRE𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡|

Nt
; where MRE𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =

∑𝑁𝑁eval

𝑘𝑘=1
sim𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑘𝑘∕𝑁𝑁eval − obs𝑖𝑖𝑖𝑡𝑡

obs𝑖𝑖𝑖𝑡𝑡

 (4a)

PU
∗
𝑖𝑖𝑖𝑖𝑖
=

Nt
∑

𝑡𝑡=1

PU𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

Nt
; where PU𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =

𝑀𝑀95𝑖𝑘𝑘(sim𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡) −𝑀𝑀5𝑖𝑘𝑘(sim𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡)

𝑁𝑁eval
∑

𝑘𝑘=1

sim𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑘𝑘∕𝑁𝑁eval

 (4b)

where i and j denote one of the 4 observation types and 286 calibration settings; Nt is the number of timesteps; 
Neval is the number of optimized models for post-analysis (i.e., the 30 most behavior models); M5,k and M95,k 
denote the 5th and 95th percentile of simulations of the 30 behavior models. Note that for each observation type, 
simulations/observations at different locations were also aggregated before evaluation (the same as Equation 2b). 
The calculated MRE (Equation 4a) further allows to evaluate the overall performance for all observation types: 
the observation-specific MREi,j was normalized among the 286 calibration settings and then assigned with iden-
tical weights, which finally leads to the overall MRE for all observation types (MREoverall):

MREnorm,𝑖𝑖,𝑖𝑖 =
MRE𝑖𝑖,𝑖𝑖 − min𝑖𝑖(MRE𝑖𝑖,𝑖𝑖)

max𝑖𝑖(MRE𝑖𝑖,𝑖𝑖) − min𝑖𝑖(MRE𝑖𝑖,𝑖𝑖)
 (5a)

MREoverall,𝑗𝑗 =

No
∑

𝑖𝑖=1

MREnorm,𝑖𝑖,𝑗𝑗

No

 (5b)

where 𝐴𝐴 min𝑗𝑗(MRE𝑖𝑖𝑖𝑗𝑗) and 𝐴𝐴 max𝑗𝑗(MRE𝑖𝑖𝑖𝑗𝑗) respectively represent the minimum and maximum values within the 
ensemble of 286 MRE for ith observations; No denotes the number of observation types, which is 4 in this study. 
This eventually leads to the overall MRE (MREoverall,j) for each of the 286 calibration settings.

In addition, 11 different sets of weights for four observations (10 sets that are most commonly used in previous hydro-
logical modeling—CS1–10, and the one with best overall performance in Equation 3—CS11, see details in Table 1) 
were selected, so as to better visualize the spatio-temporal patterns of simulated fluxes between calibration settings.

2.7. Soft Data Filtering

Due to the field sampling and monitoring over the past 30 years (Kleine et al., 2020), as well as recent modeling 
applications in DMC (Smith et al., 2021), additional empirical knowledge is available for this wetland (besides 
the direct measurements). For example, forest transpiration is higher than the grass communities (inferred from 
adjacent grassland and forest plots in DMC, see Kleine et  al.,  2020); overland flow is rarely generated over 
the wetland, while GW is the major source of stream water (Smith et  al.,  2021; Wu, Tetzlaff, Goldhammer, 

 19447973, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035509 by U

niversity O
f A

berdeen T
he U

ni, W
iley O

nline L
ibrary on [14/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

WU ET AL.

10.1029/2023WR035509

8 of 21

et al., 2022). However, such knowledge is so-called “soft” data (in contrast to “hard” data that can be directly 
used for calibration) because these former measurements were close to, but not located in, the modeling domain; 
while the latter information cannot be quantitively represented. Therefore, unlike some previous studies which 
quantitively incorporated soft data into calibration (e.g., Seibert & McDonnell,  2002), here we conducted a 
posterior check based on consistency with this empirical knowledge. More specifically, after selecting the 30 
best-performing models (for each weight setting), the internal fluxes of each model were checked against the field 
knowledge (forest transpiration > non-forest transpiration; near-surface flow < GW flow + DeepGW flow); only 
models that fulfill both criteria could pass the soft data check and be retained as “plausible models.”

3. Results
3.1. Simulation Performance With Different Constraining Data sets

3.1.1. Single-Criterion Calibration

The discharge at outlet could be simulated well when calibrating against its observation (CS1, NSE  =  0.76, 
Figure  2a), while calibration based on other observations only captured the general seasonal patterns yet 
performed worse in peaks given the relatively low NSE (0.38–0.5). This is clearer for the validation period, as 
NSE remained relatively high (0.62) for discharge-based calibration but dropped to 0.1–0.4 for other observa-
tions. The gradual enrichment of isotopes along the stream was correctly simulated under all calibration settings 
for both calibration and validation periods; however, their exact values could only be adequately captured when 
calibrating against the corresponding isotopic observation (CS2), while strong overestimation was found when 
using the other data sets for optimization (Figure 2b). The differences in GW isotopic simulation were not very 
marked between calibration settings, but incorporating GW isotopes did slightly improve the performance for 
both calibration and validation periods (CS3, Figure 2c). Finally, soil moisture simulation was clearly improved 
when it was calibrated against observed soil moisture, while strong deviations (mostly overestimation) were 
observed under other calibration settings (CS4, Figure 2d). However, this best simulation of soil moisture that was 
directly calibrated against its observation still showed certain deviation with MRE of 0.24.

3.1.2. Multi-Criteria Calibration

More insights on the performance of multi-criteria calibrations were gained when the deviation and uncertainty of 
simulations are compared between calibration settings with not only a single constraining data set but also combi-
nation of multiple data sets. In Figure 3, we explored the simulation deviations (Figure 3b) and PU (Figure 3c) of 
different types of observations (y-axis) when calibrating against different sets of weight combinations (x-axis). In 
general, the simulation deviation and uncertainty of a specific variable was significantly reduced when calibrating 
against its observation, especially the soil moisture whose performance shows highest dependency on the weights 
(Figure 3d). This is further demonstrated when checking the full distribution of weights and normalized devia-
tions of observations (Figures 3a and 3b): a negative relationship with weights was found for soil moisture and 
discharge. Interestingly, however, such a linear relationship was not observed when calibrating against isotopes, 
as their deviations remained relatively low until an abrupt increase when weights dropped below 0.1 (Figure 3b). 
In terms of the predictively uncertainty, negative relationships (to weights) were also found (Figure 3c). The only 
difference is that discharge reacted to weights less linearly.

Further checking the correlation between different observations, we found that the performance of most obser-
vations degraded when more weights were assigned for other observations. However, such degradation was rela-
tively mild between discharge, stream isotopes and GW isotopes. For example, the deviation of GW isotope 

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11

Discharge 1 0.5 0.5 0.5 0.4 0.4 0.3 0.4

Stream isotopes 1 0.5 0.3 0.3 0.3 0.1

GW isotopes 1 0.5 0.3 0.2 0.1

Soil moisture 1 0.5 0.3 0.2 0.4

Note. CS11 is the weight setting resulting in the best overall simulation performance (selected based on Equation 4a).

Table 1 
The Weight Settings Used for Post-Analysis (Numbers Denote the Weights for Corresponding Observations)
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simulation either did not or only slightly increased when discharge was weighted more (Figures  3a and 3b). 
Similarly, discharge simulations also remained relatively consistent with increased weights of stream and GW 
isotopes. However, when incorporating soil moisture into calibration, the degradation of simulation performance 
on the remaining observations was much stronger, especially for GW isotopes and discharge (Figure 3b).

The compensation between information brought by different types of observations is also reflected by the param-
eters from the selected behavioral models. As is shown in Figure S8 in Supporting Information S1, the poste-
rior distribution of most parameters was relatively discrete give their wide ranges. Moreover, the parameter 
distribution showed considerable differences between different weight settings. Apparently, information embed-
ded in observations are different under the current calibration scheme and model setup.

3.2. Simulation of Internal Fluxes With Different Constraining Data Sets

Generally, the simulated internal fluxes showed strong discrepancies in both magnitude and spatial patterns 
between calibration settings (Figure 4a), and reacted very differently toward changes of weights (Figure 4b). 
Among the four observations, the internal fluxes were most diverse when discharge weighted increased; or in 
the other words, there were many pathways to achieve an ideal simulation of outlet discharge. This is because the 

Figure 2. The mean and 90% bounds of simulated streamflow (a), streamwater  2H (b), groundwater  2H (c), and normalized soil moisture (d) from the best 30 parameter 
sets. The performances of parameter sets selected from different observation data sets are shown in different colors. The performance metrics were respectively 
evaluated for calibration (1 July 2020 to 31 August 2021, on the left side) and validation period (1 September 2021 to 31 December 2021, on the right side). Note that 
the period prior to dam construction was excluded from validation.
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discharge-oriented models (e.g., CS1, 5, and 6 in Figure 5) inherently produced relatively high total lateral flow 
(thus easily compensating between different components) across the model domain in order to generate enough 
streamflow to fill the gaps between discharge at the inlet and outlet of the wetland. In contrast, stream isotopes 
offered more consistent solutions—reducing the soil and channel evaporation, or decreasing the near-surface flow 
while increasing GW and deep GW flow—to reach a better isotopic performance (Figure 4b). This is because 
high lateral flow from discharge-oriented calibration often led to overestimation of near-surface flow, which was 
generally isotopically-enriched due to soil evaporative fractionation, and thus resulted in the over-enrichment of 
simulated stream isotopes. These solutions are clearly shown in selected models in Figure 5, for example, the 
depressed near-surface flow in CS2, 8, and 9 and lower soil evaporation in non-forest area in CS2, 9, and 10. 
This further led to reduced contribution of near-surface flow to stream water balance (CS2, 9 in Figure S5 in 
Supporting Information S1).

Similarly, calibrations based on GW isotopes also offered a simple and directional solution to mitigate the isotopic 
overestimation, that is, reducing the infiltration through soil layers and percolation to GW (Figure 4b as well as 
CS3 in Figure 5), so that enriched isotopic inputs from upper layers were limited. In terms of the soil moisture 

Figure 3. The simulation performances between different sets of weights. For all heatmaps, each column on X axis represents one of the 286 weight combinations, 
while Y axis corresponds to four types of measured data, that is, discharge (Q), stream isotopes (SIso), groundwater isotopes (GWIso), and soil moisture (SM) from top 
to bottom. Subplot (a), (b), and (c) respectively show the normalized weights, and the resulting simulation deviations and predictive uncertainties for each type of data, 
while subplot (d) shows the correlation between weights and simulation deviations (*/**: significant/highly statistically significant). Further, subplot (e) shows how 
many optimized models were plausible after posterior-check against soft data, while subplot (f) shows how that plausible proportion related to calibration weights.

Figure 4. The simulated fluxes (ET, vertical fluxes, and lateral flows in daily mean, mm/day) of 30 most behavioral models selected by different calibration weights 
(in X axis) were shown in subplot (a). Subplot (b) shows the relationship between weights and fluxes (*/**: significant/highly statistically significant). Suffix G, F, C 
denote grassland, forest, and channel, respectively. The color blue and red in subplot (b) respectively mean the positive and negative slope between variables.
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simulation, the main difficulty is to capture the extreme spatial heterogeneity in the wetland (see measurements 
in Figure S2 in Supporting Information S1), which is inherently related to transpiration discrepancies between 
four different vegetation communities. Therefore, the model driven by soil moisture calibration relied more on 
transpiration rather than soil evaporation to reproduce such soil moisture heterogeneity that were driven by the 
vegetation (Figure 4b).

The spatial contrasts between alternative calibration settings were also pronounced after further differentiating the 
internal fluxes at soil type/vegetation community level (see Figure 6 where fluxes were averaged among the grid 
cells where the proportion of a specific soil or vegetation type exceeds 90%). For example, while most constrain-
ing data sets showed ET fluxes across the vegetation communities with transpiration gradually decreasing in 
grassland < early-season herbaceous < late-season herbaceous < forest (and the opposite for soil evaporation), 
the GW isotope-based calibration (CS3 in Figure 6) suggested the strongest transpiration rate for early-season 

Figure 5. The spatial patterns of hydrological fluxes (averaged from the 30 most behavioral models into daily mean, mm/
day) under different weight settings. For difference maps between weight settings please refer to Figure S4 in Supporting 
Information S1.
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herbaceous species. Interestingly, like the spatial maps in Figure 4, internal fluxes were again more homogenous 
across the soil types or vegetation species when using all the data sets for calibration (CS10 and CS11), especially 
for the soil evaporation and transpiration.

In contrast to the substantial discrepancies in spatial patterns, the temporal dynamics of simulated internal fluxes 
followed similar seasonal patterns in hydroclimatic drivers for all 10 calibration settings (Figure 6). For exam-
ple, all the ET fluxes peaked around July, with transpiration mainly in the growing season (April to September) 
while soil evaporation extended over a longer period (March to October). Similarly, when screening the fluxes 
for hydrological flow paths under different calibration settings, they also shared relatively similar temporal trends 
(though behaved very differently regarding the magnitude, Figure 6). In general, the activation timing of infiltra-
tion, percolation, and near-surface flow was similar and physically realistic despite being constrained by different 
data sets, both related to the soil saturation (mostly in winter) or convective rainfall events (in summer); while the 
lateral flows within deeper layers (GW and DeepGW flow) were much more consistent.

3.3. Posterior-Check on Internal Fluxes Using Soft Data

By checking against soft data, 10%–70% of selected behavioral models fulfilled both criteria (i.e., forest 
transpiration  >  non-forest transpiration and near-surface flow  <  GW flow  +  DeepGW flow) and regarded 
as “plausible models.” The average pass rate of the soft data check for the 286 calibration settings was 46% 
(Figure 3e). By examining the correlation between calibration weights and pass rates (Figure 3f), we found that 
assigning more weights to stream isotopes could significantly increase the proportion of plausible models, while 
the increase of soil moisture weights would drive model into less physical-realistic directions, leading to lower 
pass rates. Discharge and GW isotopes did not show significant correlation to the pass rate (Figure 3f).

Further investigation of the internal fluxes simulated by the selected plausible models (Figure 7; also see full 
distributions of fluxes in Figure S6a in Supporting Information S1) showed a clear difference compared to the 
ones without any soft data validation (Figure 5; see full distributions in Figure 4a). The main differences resulted 
from the soft-data check were related to ET and lateral flow components: the transpiration was constantly higher 
in forest than in riparian wetland, while sources from deeper layer was now the main component of lateral flow 
(Figure 7). Interestingly, the other internal fluxes produced by plausible models (e.g., infiltration, percolation, 

Figure 6. The monthly hydrological fluxes under different calibration settings (summarized by different soil and vegetation types). Vegetation type 1–4 denote 
grassland, early-season herbaceous, late-season herbaceous and forest, respectively. The fluxes were averaged into daily mean (mm/day) among the grid cells where the 
proportion of a specific soil or vegetation type exceeds 90%.
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and channel evaporation) remained relatively unchanged, at least regarding the magnitude and spatial patterns 
(Figure 7). This is further demonstrated when checking the correlations between weights and internal fluxes, we 
obtained similar results for almost all the fluxes except evapotranspiration before (Figure 4b) and after soft data 
check (Figure S6b in Supporting Information S1).

4. Discussion
4.1. Benefits and Implications of Multi-Criteria Calibration

Equifinality has been long recognized as a major challenge for calibration in hydrological modeling (Beven & 
Freer, 2001). Especially when nowadays physics-based distributed models are increasingly developed and applied, 
their complex model structure, detailed process representation, and spatial disaggregation of the parameterization 

Figure 7. After filtered by soft data, the spatial patterns of hydrological fluxes under different weight settings (averaged from 
the 30 most behavioral models into daily mean, mm/day) were shown. For difference maps between weight settings please 
refer to Figure S7 in Supporting Information S1.
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make them prone to equifinality (McDonnell et al., 2007; Wellen et al., 2015). Here, we further investigated this 
central issue by alternatively calibrating a physics-and-grid based model EcH2O-iso in a riparian wetland using 
different calibration settings, either with single constraining data sets or the combination of multiple data sets.

Starting with discharge only as the calibration target, the calibrated model produced relatively high fluxes of all 
lateral flows (near-surface flow, GW flow, and DeepGW flow) in order to provide the flow increment between the 
wetlands' inlet and outlet (Figure 5), which resulted in a relatively good performance for discharge simulations. 
However, this also posed large uncertainties as all the variables/fluxes, except the outlet discharge, had large 
degrees of freedom regarding both their magnitude and spatial distributions, and thus could easily compensate 
one and other. This was evidenced by a strong overestimation of stream and GW isotope ratios, and the poor 
performance of spatial distributed soil moisture (Figure 2), indicating that while the optimized parameter sets 
had successfully calibrated discharge, they had failed to capture the other variables/fluxes in a plausible manner. 
This is consistent with the general perception that models are highly uncertain when calibrated against only 
outlet streamflow (Kirchner, 2006). As the celerity of the rainfall-runoff response, the outlet discharge integrates 
the effects of all the processes from upstream networks, whose divergent nature makes it difficult to uniquely 
backtrack the velocity of water, that is, where (at which locations within the model domain) and how (by which 
processes) the flow is generated (Birkel & Soulsby, 2015; Guse et al., 2016; Piovano et al., 2018).

From this perspective, multi-criteria calibration effectively reduced the uncertainty, as information contained 
in these auxiliary data sets helps to diagnose the simulated internal fluxes. For example, over-enriched stream 
isotopes indicated overestimated isotopic inputs via near-surface inflow; while the overestimation of GW  isotopes 
suggested that inputs via infiltration and percolation from surface were too high (Figure  5). Based on this 
information, the model then either reduced the corresponding fluxes (near-surface flow in lateral transport or 
infiltration/percolation in vertical transport) or mitigated soil evaporation to constrain the isotopic enrichment 
through fractionation, thus pulling the process representation in a more physically realistic direction. There-
fore, multi-criteria calibration did increase the credibility of calibration by rejecting the models with unfeasible 
simulations of internal fluxes, as has been reported previously (Clark et al., 2011; Kuppel et al., 2018a; Piovano 
et al., 2018; Smith et al., 2021).

Here we would like to emphasize the benefits of incorporating water isotopes into model calibration, because 
while most auxiliary hydrological variables used for calibration (soil moisture, evaporation, transpiration, etc.) 
are linked to the upper soil profiles (Efstratiadis & Koutsoyiannis, 2010; Wellen et al., 2015), the flow dynamics 
in deeper layers are often missing due to their poor measurability (Beven, 2001). In the other words, commonly 
used auxiliary variables mainly help constrain modeling of near-surface processes (e.g., evapotranspiration, infil-
tration, etc.), while simulation of deeper processes (percolation into deeper layers and exchange with GW) still 
has a certain degree of freedom and thus higher uncertainties. From this aspect, water isotopes are powerful 
because their concentrations reflect the cumulative effects of water mixing between all available storages, which 
inherently integrates the field heterogeneity and thus helps identify the velocity of different pathways, as was also 
demonstrated previously (Birkel et al., 2014; Holmes et al., 2020; Tetzlaff et al., 2015). More importantly, includ-
ing isotopes could significantly increase the credibility of overall simulation with only small weights (given the 
weights of models producing the best overall performance were 0.4, 0.1, 0.1, 0.4 for discharge, stream and GW 
isotopes, and soil moisture in this study). Note that equal weights were used when evaluating the overall perfor-
mance of different observations. In other words, each type of observations was regarded as an independent aspect 
of the physical realism of the model. Of course, a priority could be set for an observation of specific interest (e.g., 
discharge in flood prediction), but the calibration in this study favors the models that can reproduce as many types 
of observation as possible to avoid giving “the right answer for the wrong reasons” (Kirchner, 2006), which also 
fits the general concepts of many other multi-criteria calibrations (e.g., the use of Pareto front; Efstratiadis & 
Koutsoyiannis, 2010). In this context, isotopes are ideal auxiliary data for calibration, because they could effec-
tively nudge the modeling into a more physically realistic direction with a relatively small expense of predictive 
accuracy for the other observations. Such implication could potentially be generic, because the model EcH2O-
iso has been tested not only in DMC (e.g., Smith et al., 2021), but also in many catchments spanning different 
climatic, soil, and vegetation backgrounds (e.g., Neill et al., 2021; Yang et al., 2021). Moreover, its structure 
(multiple soil layers plus conceptual reservoirs in deeper layers), though with a relatively simple, computation-
ally efficient module for saturated subsurface flow compared to traditional GW-oriented models (e.g., ParFlow; 
Maxwell, 2013), has been widely adopted and tested for many hydrological models, for example, SWAT and 
mHM-Nitrate (Wellen et al., 2015). Therefore, sharing similar model structures and process conceptualization, 
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the implications from EcH2O-iso could be potentially informative to those models and contribute to the modeling 
community that focus more on near-surface hydrological processes.

Notably however, assigning weights toward different observations could still be difficult in multi-criteria cali-
bration, even with the knowledge that isotopes probably need very limited focus according to our results. This 
is due to the fact that the performance of other hydrological observations (i.e., discharge and soil moisture) was 
linearly correlated to assigned weights in this study (Figures 3a and 3b), which is highly likely for future appli-
cations given our similar experience on calibration against these types of catchment-scale hydrological models 
(Smith et al., 2021; Wu et al., 2022a; Yang et al., 2023). In the other words, regular hydrological observations 
would require a certain proportion of weights for an acceptable representation, and that proportion would be 
unpredictable as it is inherently related to detailed catchment characteristics. Technically speaking, such uncer-
tainty in weights can only be constrained by testing and comparing the performance of different strategies for 
weight assignment. In this context, calibration based on random sampling has benefits, because differing from the 
optimization-based algorithms where parameters are evolved iteratively (e.g., Dynamically Dimensioned Search; 
Tolson & Shoemaker, 2007), here the parameter set of each run was randomly sampled and thus independent, 
which allows the modeler to split the model runs and post analysis (e.g., checking the calibration performance 
under different weights). Therefore, though one could argue about the inefficiency of random sampling-based 
calibration in searching high-dimensional parameter space, such calibration would still likely be more suit-
able or efficient (see the stabilization of parameter values in Figure S3 in Supporting Information  S1) than 
optimization-based calibration which needs to be repeatedly iterated (e.g., 286 times for all sets of weights in 
this case), when a thorough check on weight assignment is required. However, it is still important to recognize 
the potential drawbacks of residue-based calibrations where the uncertainties from inputs, observations, and 
model structure were not considered. A potential solution would be using the limits of acceptability approach 
which considers the observations uncertainty with a random sampling scheme (Beven, 2006), or other iterative 
approaches (e.g., the Bayesian total error analysis to estimate input uncertainty (Marshall Price et  al.,  2007) 
or multi-model averaging techniques to assess the structural uncertainty (Raftery et al., 2005)). For those cali-
brations bypassing such analysis, we suggest incorporating isotopes if possible with relatively small weights 
(<0.2), and assigning the remaining weights to regular hydrological observations depending on specific research 
questions.

4.2. Challenges From Equifinality and Soft Data Check as a Solution

In an optimal expectation for multi-criteria calibration, the auxiliary data sets would correct and refine the model 
step by step toward a unique simulation representing the dominant wetland hydrological processes. However, the 
reality is inevitably more ambiguous.

Encouragingly, if we focus on most monitored variables (i.e., outlet discharge, stream isotopes, and GW isotopes), 
including each time series in the calibration significantly improved its simulation while only marginally degrad-
ing performance measures of the others (Figure 3). Such increased overall performance has also been observed 
previously (Holmes et al., 2020; Kuppel et al., 2018a; Piovano et al., 2018; Yang et al., 2023), which seems to 
indicate that multi-criteria calibration has driven the model toward more consistent simulations with adequate 
process representation in the studied wetland. Accordingly, the “best” model might be expected to be the one 
calibrated with all the observations as it performed overall well with acceptable trade-off (e.g., CS11 in Figure 5).

However, such an assessment changes when examining the uncalibrated internal fluxes, as strong discrepancies in 
their magnitudes and spatial (Figure 5) and temporal patterns (Figure 6) were found between weight settings. The 
most likely reason is that these different types of data had overlapping footprints that inform the calibration process 
with conflicting or inconsistent information (Clark et al., 2011; Kuppel et al., 2018a), which was evidenced by the 
discrepancies in the vertical, lateral and ET fluxes under CS1–4 summarized in Figures 8a–8d. Therefore, when 
adding auxiliary data sets into the calibration, they no longer improved the model on the basis of the parent/previ-
ous calibration, but led to a restructuring of the simulated hydrological function due to the conflicting information 
embedded in different constraining data sets. In other words, the convergence of monitored variables/fluxes was 
realized at the expense of the compensation between the other (unmonitored) variables/fluxes that are highly 
diverse and uncertain. This is further evidenced by the most calibrated parameters (Figure S8 in Supporting 
Information  S1), whose range still remained quite wide after adding more constraining data sets, indicating 
that the models still suffered from strong equifinality rather than converging toward a unique solution. Some 
exceptions of parameters achieving constrained posterior distributions could be explained by lower conflicts 
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between observation-specific information. For example, the parameter channelE_weight had a good relatively 
good convergence because the channel evaporation exerted a dominant impact on in-stream isotopic composition 
(streamwater  2H), while had little (or no) influence on the water balance of stream (discharge), GW (GW  2H), or 
soil water (soil moisture). Such a finding indeed contrasts to some previous findings that the performance range 
for certain parameters were significantly reduced in multi-criteria calibration compared to those calibrated with 
single criterion (Kuppel et al., 2018a; Piovano et al., 2018). The potential reason is that while most of those stud-
ies are based on relatively parsimonious models (with <20 parameters), the number of parameters to calibrate 
reaches 59 after parameterization in this EcH2O-iso application, leading to high dimensionality in the parameter 
space. Strictly speaking, the difficulty in fully covering such high-dimensional parameter space hindered the 
convergence of all parameters, and a sensitivity analysis might help to further reduce the uncertain parameters as 
well as the dimension of the search space. However, most parameters were retained for calibration given it is the 
first-time of EcH2O to be applied to a heterogenous wetland. According to previous EcH2O modeling experience 
(Gillefalk et al., 2021; Smith et al., 2021), a total of 200,000 samples could already yield a satisfactory calibration 
on the same parameters against multiple targets. Here, to further constrain the calibration, the number of samples 
was further increased to 500,000, which took over a week of computation time with parallel use of 200 cores from 
the cluster in Humboldt University. The relatively high sample number and stabilization of key parameter values 
(Figure S3 in Supporting Information S1) support the credibility of this random-sampling-based calibration. Such 
reduced identifiability of calibrated parameters when introducing more criteria into calibration process were also 
observed in Birkel and Soulsby (2015) and Holmes et al. (2020).

Therefore, significant equifinality seems to be unavoidable even with abundant observations (four different types 
of data in up to 30 locations in this study), which leads to marked uncertainty in internal fluxes, the so called 
getting “right answer for the wrong reasons” (Kirchner, 2006). For instance, in the model producing the best 
overall performance for all observations (CS11 in Figures 5 and 8e), transpiration exhibited higher values in 
grassland than forest, which was contrary to our field perception based on recent monitoring and modeling in 
DMC (Kleine et al., 2020; Smith et al., 2021) or nearby Berlin (Gillefalk et al., 2021). Such implausible quantifi-
cation of unmonitored fluxes is notable as it shows potential dangers in previous applications which favored more 
balanced models calibrated with all available observations (e.g., Birkel et al., 2014; Piovano et al., 2018). More 
importantly, the lack of physical realism would significantly reduce the credibility of such optimized models, 
because the uncertainty could be marked when models were further used for prediction, especially for data scarce 
areas where models are often calibrated against a relatively short period (e.g., 2 years in this study).

Figure 8. The key internal fluxes calibrated separately using (a) discharge, (b) in-stream isotopes, (c) groundwater (GW) isotopes, and (d) top soil moisture, or jointly 
using (e) discharge, in-stream isotopes, GW isotopes, and soil moisture (with weights of 0.6, 0.1, 0.1, and 0.2). Subplots (f)–(j) shows the internal fluxes of plausible 
models filtered by soft data check.
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Therefore, checking the plausibility of internal fluxes can be invaluable, using either detailed field knowledge or 
other “soft” data (Arnold et al., 2015). Here we posted a simple approach to filter the models based on transpiration 
and lateral flow, and results showed that the average pass rate of optimized models was only 46% (Figure 3e). In 
the other words, more than half of the optimized models gave the “right answer for the wrong reasons,” which 
underlined the importance of such a soft data check. By excluding the ones with implausible simulation of internal 
fluxes based on field knowledge, now the discrepancies between different calibration weights were significantly 
reduced as they all gave feasible results (Figure 7). The remaining models are thus more reliable, especially the 
ones that still captured the all types of observations (i.e., CS11 in Figures 7 and 8j). They represent the wetland as a 
slow-draining system mainly fed by lateral inflow from deeper layers but was also influenced more by near-surface 
inflow when soils were saturated in winter or after strong convective events in summer. Infiltration and percolation 
were higher in forests with sandy soils while near-surface flow was more frequently generated in wetlands due 
to the high soil moisture content and lower infiltration capacity of peaty soils. The vegetation communities also 
contributed to the heterogeneity of hydrological fluxes, given the different transpiration amounts between commu-
nities (grassland < early-season herbaceous < late-season herbaceous < forest), and contrary spatial patterns of 
soil evaporation (forest > non-forest communities). Note that here we only did a binary test on the internal fluxes 
rather than some other studies that quantitatively incorporated soft data into optimization metrics (e.g., Seibert & 
McDonnell, 2002). In this context, our positive result is encouraging for distributed modeling community that is 
constantly plagued by equifinality, because it shows that even with simple field knowledge that can be only qualita-
tively described, soft data can still be informative for model calibration and significantly constrain the equifinality.

In addition, the soft data check could potentially identify the weakness in model calibration by examining how 
the proportion of plausible models reacts to different weight settings. For example, we found that calibration 
with more weights to soil moisture favored the models producing physically unrealistic results (Figure 3f). This 
potentially points to the incompatibility between soil moisture observations and the current calibration schemes, 
which is likely due to the scale differences between the model setup (50 m grids) and point-scale measurements 
(Figure S2 in Supporting Information S1), as the model cannot reproduce observations with such high spatial 
resolutions (Beven, 2001; McDonnell et al., 2007). Moreover, one needs to consider the uncertainties during the 
measurement through the high heterogeneity in top soil moisture, which could be significantly different even 
within a few meters of distance. Accordingly, soil moisture data probably generated additional uncertainty during 
the calibration and thus needs to be further aggregated spatially rather than just normalized as in the current 
calibration scheme. Therefore, our example further demonstrates the soft data check as a useful tool to refine 
the calibration process, which is likely to be beneficial in future applications. Such refinement was also reported 
previously using hydrologically relevant “signature measures” instead of direct use of time series data (Yilmaz 
et al., 2008), which would be of further interest for future comparative studies.

4.3. Other Potential Steps to Constrain Equifinality

Although assisted by water isotopes and a further soft data test, a more plausible set of constrained models captur-
ing dominant wetland processes was obtained in this study, a definitive model that fulfills both spatio-temporal 
pattern of all monitored variables/fluxes and physical realism of unmonitored internal fluxes remains elusive. 
Facing such challenges which isotopes and soft data are no longer able to overcome, there are still pathways to 
improve model results.

4.3.1. Model Development

When reviewing our multi-criteria calibration, the main challenges originated from the different information 
embedded in different observations, leading to the discrepancies between calibrations. However, such informa-
tion does not inherently come from the data itself, but instead more depends on how the corresponding compo-
nent is conceptualized and parameterized in the model. As stated in Holmes et al. (2020), “the extent to which 
introducing auxiliary data into calibration degrades model performance likely depends on a model's ability to 
alter internal flow path contributions and still preserve total streamflow contribution.” One would aim toward 
a model that enables a global optimum producing the same levels of performance for all observations compared 
to their local optimum, while in contrast, failing to find such a model points to the incompatibility between the 
model and observations. Therefore, using these modeling insights to inform future model development (in terms 
of process conceptualization and parameterization) for better data-model compatibility would be an important 
next step.
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Here, we take the subsurface processes in this study as an example, whose importance has been demonstrated 
here and previously in the wetland (Smith et al., 2021; Wu, Tetzlaff, Goldhammer, et al., 2022). In EcH2O-iso, the 
lateral flow of GW is conceptualized as a linear kinematic model driven by slope (Maneta & Silverman, 2013), 
which is responsible for the strong discrepancies between the riparian area and remote areas due to the slope 
difference. However, it remains a matter of debate over such conceptualization because for our application in 
the wetland, the dominating role of slope on GW transport in deeper layers seems to be not physically realistic 
enough, which is mostly attributed to the consistent soil depths of the three layers. Therefore, further develop-
ment of EcH2O-iso toward dynamical soil depths across the model domain and better conceptualization of lower 
boundary conditions could lead to improved subsurface simulations, though extra computational resources and 
information/parameters (e.g., depth and slope of impeding layers) would be required.

However, arguing that many of the newly introduced parameters and processes cannot be appropriately meas-
ured, some would fear that evolution of more complex models would simply layer up uncertainty (Beven & 
Freer, 2001; McDonnell et al., 2007). In this case, changing the model parameterization is a safer option. Taking 
top soil moisture as an example, we sought to answer why the model failed to capture the top soil moisture in 
high spatial resolution in our application? This can be very likely attributed to the inappropriate parameterization 
from a mechanistic perspective (Kumar et al., 2013), apart from scale differences and measurement uncertainty 
stated above. Like many distributed hydrological models, our parameterization is realized based on soil and vege-
tation types (Wellen et al., 2015); however, it is possible that such coarse parameterization cannot reproduce the 
measured sub-grid scale heterogeneity in soil moisture, leading to simulation error and hindering the model in 
extracting information from the observations. To mitigate this, a two-step solution could be potentially adopted: 
extrapolating the possible optimal parameterization scheme via diagnostic analysis (e.g., spatial sensitivity anal-
ysis described in Wu et al., 2022b), and collecting corresponding forcing data with finer resolution to reference 
the new parameterization.

4.3.2. Improved Data Acquisition

Apart from the model development, multi-criteria calibration can also be used as a learning framework to guide 
data collection and monitoring, whose pragmatic scheme should direct experimental efforts toward collection of 
data that is most informative for model development and evaluation (McGuire et al., 2007; Soulsby et al., 2008).

The discrepancies in simulations between calibration settings suggest the lack of information on the magnitude 
of the internal fluxes, whose high degree of freedom easily led to the compensation between each other. There-
fore, expanding the monitoring for more hydrological variables/fluxes would be helpful to gain extra diagnostic 
information, which has been increasingly carried out in recent studies (e.g., transpiration estimated via sapflow 
in Gillefalk et al., 2021). Such expansion will be especially informative for physics-based models, as they inher-
ently seek to explicitly represent the state variables and fluxes that are theoretically observable in reality (Fatichi 
et al., 2016; Kuppel et al., 2018a).

Apart from the inter-variable uncertainty, equifinality was marked within each variable given the strong dynamics 
in their spatial patterns. In the other words, it is difficult for models to appropriately differentiate the unmonitored 
fluxes across the model domain due to the lack of information. This highlights the importance of increasing the 
spatial resolution for monitoring, as observation at a single point could not help tackle such uncertainty in spatial 
distribution, though it is common in distributed modeling (Wellen et al., 2015).

5. Conclusion
In this study, a multi-criteria calibration was conducted with the physically-based, fully distributed model EcH2O-
iso to unravel the spatio-temporal patterns of hydrological functions in a riparian wetland. To investigate the role 
of weights in multi-criteria calibration, a total of 286 sets of weights were assigned to discharge, stream isotopes, 
GW isotopes, and soil moisture.

The results show the benefits of using multi-criteria calibration, as it strongly increased the overall performance of 
all observations while only marginally degraded the performance of each. Notably, isotopes were highlighted as 
appropriate auxiliary data as they effectively constrained the model with relatively small weights (0.1). However, 
strong discrepancies in magnitudes and spatial patterns of the uncalibrated internal states/fluxes were still found 
between different calibration weights, and many simulated internal fluxes were not physically plausible. This 
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indicates the ongoing equifinality issues and points out the fact that more observations do not necessarily lead to 
more convincing results. This is potentially attributed to the conflicting information embedded in observations 
(discharge: amount of lateral flow; stream isotopes: proportions from different lateral pathways; GW isotopes: 
infiltration and percolation), thus pulling the calibration into different directions.

Therefore, an approach was developed as a posterior check on the internal fluxes based on soft data (transpiration 
and sources of lateral flow) in order to identify the models producing physically-implausible simulation of internal 
fluxes. Results show that more than half (54%) of optimized models gave “right answers for the wrong reasons.” 
By excluding those models, the approach effectively constrained equifinality, while meanwhile unraveling the 
potential incompatibility between observations and calibration process (e.g., here physical realism decreased 
when soil moisture was weighted more). The remaining models reflected the wetland as a slow-draining system 
mainly fed by lateral inflow from deeper layers but can be influenced more by near-surface inflow when soils 
are saturated in winter or during strong convective events in summer. Vegetation also plays an important role: 
forest shows a higher transpiration rate than riparian grass/herbaceous species, while higher soil evaporation is 
observed in non-forest area due to limited canopy cover. All ET fluxes peaked in ∼July, with transpiration mainly 
in the growing season while soil evaporation lasting for longer. The activation timing of infiltration, percola-
tion, and near-surface flow was closely related to the soil saturation (mostly in winter) or convective rainfall 
events (in summer), while the GW flow were more stable temporally. Overall, this study not only provided direct 
insights into wetland functioning, but also revealed the risk of equifinality even with abundant data for calibra-
tion; however, such equifinality could be effectively constrained by directly including isotopes into calibration 
and a posterior check on soft data.

Data Availability Statement
The source codes of EcH2O-iso are available in Zenodo repository (Wu et al., 2023). The data used as model 
forcing and calibration (catchment geography, climate, discharge, and other observations) were also available in 
the same repository.
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