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A B S T R A C T   

Effective project implementation and quantification of emissions reduction in climate-smart agriculture initia
tives face challenges in measurement, monitoring, and verification. To address these challenges, predictive 
models are regularly used to estimate the emissions reduction potential of land management changes and to 
prioritize funding for projects. Despite their growing utility, few studies have evaluated the performance of 
publicly available model tools using site specific data. This study evaluated the performance and utility of four 
common model tools that represent the three Intergovernmental Panel on Climate Change model tiers to predict 
soil organic carbon storage and estimate greenhouse gas emissions on working lands under organic matter 
amendment. Field data from two long-term, compost application experiments in Washington State formed the 
basis for model simulations using DayCent, COMET-Farm, Cool Farm, and the Washington State Climate Smart 
Estimator (WaCSE). Soil carbon sequestration and emissions estimates varied among the evaluated models, 
which was expected given their differential data requirements and input capabilities. COMET-Farm, although 
easier to use, exhibited a higher level of bias compared to DayCent, which was expected as a mixed tier model. 
The DayCent model, the model engine for the COMET-Farm tool, demonstrated the ability to explain ~50% more 
of the variation in the observed values compared to COMET-Farm when initiated using the same parameters. 
Cool Farm was unsuitable for estimating SOC sequestration benefits from compost application primarily because 
it did not add carbon to the soil pool following amendment. The differences in emissions estimates derived from 
WaCSE compared with other tools could be attributed solely to its highly constrained input parameters and basis 
in tier 1 emissions factors. We conclude that online tools can provide rapid estimates of greenhouse gas emissions 
reduction potential over larger areas or groups of farms but should be used with caution for site-specific esti
mates. Hence, it is crucial to clarify the intended purpose of an assessment and the designed function of model 
tools when evaluating their suitability for prioritizing funding for climate-smart agriculture initiatives at the 
individual farm level.   

1. Introduction 

In recent years, countries worldwide have reaffirmed commitment to 
the Paris Climate Agreement: a critical global effort to combat climate 
change that sets rigorous targets for reducing greenhouse gas (GHG) 
emissions to limit global warming below 1.5 ◦C. A key aspect of this 
commitment is the adoption of ‘climate-smart agriculture’ (CSA); pro
grams focused on GHG mitigation and enhancing soil organic carbon 
(SOC) storage on working lands (Legislature, 2020). Globally, govern
ments and institutions recognize the significance of CSA and have made 
substantial investments to encourage their inception. For example, the 

United States Department of Agriculture has allocated over $3.2 billion 
to support sustainable commodity production at the national level. 
Additionally, various U.S. states, including Washington and California, 
have introduced initiatives like the Sustainable Farms and Fields and 
Healthy Soils programs, partially funded through emissions 
cap-and-trade auctions. These initiatives illustrate the momentum 
behind CSA, with varying levels of commitment observed across the 
global policy landscape (Australian Government Department of Agri
culture and Forestry, 2022; Innovation, 2022; Johansson et al., 2022; 
McDonald et al., 2021). 

Climate-smart agriculture continues to evolve globally, amid 
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persistent scientific debate surrounding the extent to which techniques 
like reduced tillage, cover cropping, and organic amendments deliver 
significant and permanent SOC sequestration benefits. Despite scientific 
uncertainty, the development of CSA programs and initiatives remains 
robust, indicating a collective recognition of the need to explore and 
implement innovative agricultural practices to improve soil health and 
mitigate climate change. These discussions are crucial for achieving 
substantial reductions in GHG emissions, considering the prevailing 
intensive cropping practices employed in commercial agriculture 
(Anderson et al., 2020; Olen et al., 2021). In addition to public pro
grams, there has been a notable increase in the number of private sector 
initiatives that offer financial incentives for CSA. These initiatives 
involve companies compensating farmers based on a predetermined 
price per potential ton of CO2 equivalent (CO2e) sequestered, with the 
companies usually retaining ownership of the resulting ‘carbon credit.’ 
While numerous carbon crediting programs have emerged over the last 
decade (Oldfield et al., 2022), several contentious aspects of carbon 
crediting CSA require resolution before these markets can be publicly 
legitimized (Chandra et al., 2017; de Freitas Netto et al., 2020; Paul 
et al., 2023). 

Measurement, monitoring, and verification of practice implementa
tion and quantification of emissions reduction pose significant chal
lenges in the development of successful CSA initiatives. Direct 
measurement of SOC and GHGs on working lands is often time- 
consuming, operationally difficult, and subject to high variability 
(Stanley et al., 2023). There remains a lack of industry consensus 
regarding measurement requirements and protocols (Baumber et al., 
2019; Paustian et al., 2016; van der Voort et al., 2023). Furthermore, 
changes to bulk SOC under differential management occur gradually and 
may not be detectable within short-term funding timeframes. Conse
quently, many programs, both public and private, rely on predictive 
models to estimate the potential outcomes of management changes and 
to establish funding priorities for CSA projects. 

The Intergovernmental Panel on Climate Change (IPCC) developed a 
system of three methodological tiers that serve as a model framework for 
estimating emissions and removals. Each tier represents a different level 
of methodological complexity, with higher tiers requiring more 
comprehensive data. Tier 1 models incorporate basic data, commonly 
rely on IPCC-recommended default values at the country level and are 
not specific to individual sites. These models are typically employed at a 
national or regional scale, providing a broad overview of the potential 
climate impacts. Tier 2 models operate at an intermediate level of 
complexity and incorporate some site-level data. Tier 2 models are often 
used at the national or sub-national level, offering a more detailed 
assessment of the potential climate impacts within specific sectors, such 
as agriculture or energy. Tier 3 models, the most complex, demand 
extensive data and are best suited for providing site-specific estimates. 
Tier 3 models are typically applied at a local level and offer a highly 
detailed assessment of management change outcomes within specific 
ecosystems, such as a farm or river basin. Examples of tier 3 models 
include DayCent and DNDC (Del Grosso et al., 2012; Li et al., 1997). 

In practice, models employ a combination of tiers to estimate emis
sions, as this approach considers both data availability and the need to 
simplify use. Particularly in the calculation of emissions from agricul
tural operations, a mixture of site-specific management data and Tier 1 
& 2 emissions factors may be used to estimate emissions from diverse 
sources on-farm; an example of a widely used, mixed tier model is 
COMET Farm (Paustian et al., 2017; USDA Natural Resources Conser
vation Service, 2022). Initially, the tiers of model complexity were 
developed to help governments estimate their greenhouse gas emissions 
to satisfy reporting requirements under programs like the Kyoto Proto
col and Paris Agreement (Anderson et al., 2020). More recently how
ever, the structure is being used to establish guidelines and 
methodologies for CSA project development, and to assess the quality 
and credibility of emissions reductions projects - arguably, a purpose for 
which they were not designed. Specifically, the tiering structure for CSA 

schemes has been criticized for oversimplifying emissions estimates, 
having limited consideration of uncertainties, lack of consistency, 
inadequate accounting for indirect emissions, and potential for manip
ulation; all of which collectively undermine the accuracy, reliability, 
and integrity of carbon accounting (Oldfield et al., 2022). 

Despite heavy reliance on model tools during both initialization and 
implementation phases of CSA projects, while there are many studies 
comparing different online model tools (Alex Thumba et al., 2022; 
Hillier et al., 2011; Moreno-García et al., 2022; Whittaker et al., 2013), 
few studies have evaluated the performance of publicly available 
greenhouse gas accounting tools using site specific data. Evaluating 
online GHG accounting tools with site-specific data is essential to ensure 
their accuracy in addressing a wide range of agricultural management 
decisions. This is especially crucial for data-deficient ecotypes like 
drylands, and for non-traditional practices such as broad-scale applica
tion of organic amendments, as it enables tailored solutions that address 
the specific challenges and opportunities in these environments and 
under these practices (Leger et al., 2022; Luján Soto et al., 2021; Parr 
et al., 1989). Only by accounting for the unique variables of each 
location can these tools effectively support sustainable practices and 
emissions reduction strategies in agriculture. Given this data gap, and 
acknowledging the continued growth of carbon farming programs, we 
asked the question: “to what extent can common model tools be relied 
upon to make estimates of soil carbon sequestration?” Further, consid
ering ongoing debates and persistent questions surrounding carbon ac
counting and emissions reporting in United States CSA programs, we 
recognized the need to clarify model options. Concurrently, the Wash
ington State Legislature sought to quantify the SOC sequestration ca
pacity of organic amendment additions to croplands given the intention 
to incorporate this practice into CSA funding schemes. Therefore, our 
paper evaluates the effectiveness of four models representing the three 
tier types currently employed in the United States for predicting SOC 
storage and GHG emissions on working lands. For this analysis, field 
data was acquired from two long-term compost application studies 
carried out in Washington State, forming the foundation for model 
simulations. The models assessed in this study were DayCent, 
COMET-Farm, Cool Farm, and the Washington State Climate Smart 
Estimator (WaCSE); the latter being a Washington County-specific 
adaptation of the COMET-Planner tool. The models assessed represent 
all levels of complexity from those that can be applied with accuracy at 
the farm-scale using detailed site-specific data (DayCent), to those like 
the WaCSE tool which incorporates county-level climate, soil, and 
land-use data to estimate emissions following a land-use practice change 
and are likely more suitable for application at the regional level. While 
the chosen models are not an exhaustive list of available options, they 
represent the range of complexity exhibited in available model tools. 

The focus of our work was to compare model estimates of the on- 
farm benefits of organic amendment applications. Therefore, the emis
sions predictions reported were calculated from the ‘farm gate’ 
perspective and do not encompass emissions associated with amend
ment production, transport, or application. Consequently, our analysis 
does not constitute a comprehensive life cycle assessment. Instead, it is 
an exploration and evaluation of the representative emissions assess
ment tools currently employed to estimate SOC sequestration and 
emissions reduction in croplands, in the specific context of organic 
amendments. 

2. Methods 

2.1. Study description 

Using field data obtained from two organic amendment studies on 
agricultural lands in Washington, U.S.A — one in dryland wheat systems 
and one in a vegetable system with supplemental irrigation - predictions 
of SOC storage and GHG emissions (CO2, CH4, N2O) were made using 
DayCent, COMET-Farm, Cool Farm, and a newly developed Washington 
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State Department of Agriculture tool, WaCSE. These models use Tiers 1, 
2 and 3 emissions factors and management data (and a mixture of tiers). 
1) DayCent (Tier 3): Is an extensively published process-based, earth 
system model originally developed in 1998 and primarily in the field of 
academia, 2) COMET-Farm (Tiers 1,2,3): is an online GHG estimator 
developed by the USDA and Colorado State University and released in 
2005, that uses some parameters from the DayCent model, and a mixture 
of tier 1 and 2 emissions factors, 3) Cool Farm (Tiers 1,2): An online 
greenhouse gas, water, and biodiversity calculator for farmers devel
oped in the United Kingdom in 2010, and 4) WaCSE (Tier 1): the 
Washington Climate Smart Estimator, an application-based online tool 
adapted in 2022 from the COMET-Planner tool (http://comet-planner. 
com/) to establish WA-county-specific estimates of changes in GHG 
emissions resulting from changes to land management practices in line 
with USDA-NRCS conservation practices. Model-specific features and 
input potentials are detailed in Table 1, and more detailed model de
scriptions and initialization parameters are provided below. For Day
Cent and COMET-Farm, model simulations of the experimental periods 
were carried out for 10 years following baseline and equilibrium sce
narios owing to the constraints of the COMET-Farm model (section 
3.2.2). Model performance was only statistically compared between the 
DayCent, and COMET-Farm simulations because, of the models 
employed, these were the only two for which sufficient model data is 
provided to validate model predictions against field (observed) data. To 
ensure accurate validation against real-world field data, it’s imperative 
to furnish comprehensive backend information to online modeling tools. 
Fig. 1 outlines the project workflow. 

2.2. Model descriptions (Table 1) 

2.2.1. DayCent 
DayCent is the daily time step version of the CENTURY model used to 

simulate C, N, and P dynamics in forests, grasslands, and croplands. The 
model has been widely applied to simulate agricultural management 
practices including the application of organic amendments to croplands 

in the USA. Its key sub-models include non-dynamic plant productivity 
and decomposition, soil water and temperature dynamics, soil organic C 
and N dynamics, and trace gas fluxes. Plant growth is primarily 
controlled by nutrient availability, water, and temperature. Soil organic 
carbon (SOC) is represented in three soil pools (active, slow, and pas
sive/inert), and two surface organic matter pools (active and slow) each 
with a unique decomposition rate. The active SOC pool has a short 
turnover time of 1–5 years and consists primarily of microbial biomass 
and microbial products. The slow SOC pool (turnover time 10–50 years) 
constitutes up to 45–60% of total SOC and is made of resistant plant 
material and physically (mineral) protected SOC. Therefore, DayCent 
allocates faster turnover rate for coarse-textured (sandier) soils whereas 
a high silt and clay content will slow SOC turnover enhancing the sta
bilization of SOC. The passive (inert) pool is considered physically and 
chemically stabilized SOC, highly resistant to decomposition with a 
turnover time of hundreds to thousands of years, constituting 45–50% of 
total SOC. The SOC level in the model is a function of crop C input and 
organic matter additions, minus losses of C from turnover. The flow of C 
and nutrients between pools is controlled by the amount of each in the 
various pools, and the rate of decomposition of each pool varies based on 
the soil texture, water content, temperature, and crop residue N and 
residue lignin content. The decomposition rate constants used in this 
model for the active pool were DEC3 (2): 6, passive pool DEC4: 0.001 
and the slow pool DEC5 (2): 0.20. Daily maximum/minimum temper
ature and precipitation, and the timing and description of management 
events (crop planting, fertilization/OA additions, tillage, and harvest), 
and soil texture data are required to initialize the model. DayCent is 
considered a higher tier (3) model and may be considered more accurate 
than lower tier models at the site level on the condition that adequate 
data is available to initialize and calibrate the model. An infinite number 
of years of management can be modelled, and there is no limit to the 
number of crops that can be entered into rotation. Only one crop can be 
grown at any given time. 

Table 1 
Input requirements and useability compared between the DayCent, COMET-Farm, Cool Farm and WaCSE 
models/tools.. 
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2.2.2. COMET-farm 
The COMET-Farm (Paustian et al., 2017; USDA Natural Resources 

Conservation Service, 2022) system is a publicly available GHG ac
counting tool that incorporates state-of-the-art greenhouse gas quanti
fication methods in an online accessible format. The tool was developed 
by United State Department of Agriculture (USDA) and Colorado State 
University for the purpose of providing a ranch and farm greenhouse gas 
accounting system for use by land managers. It can perform a full 
greenhouse gas assessment for CO2, CH4, and N2O from all major 
on-farm emission sources (and CO2 removal into biomass and soil sinks), 
and includes land management of annual and perennial crops, pasture, 
range and agroforestry systems, and emissions from livestock. It uses 
spatially explicit data on climate obtained from the PRISM climate 
database, and soil conditions from the Soil Survey Geographic Database 
(SSURGO). It allows the user to enter detailed information for field, 
crop, and livestock management, and can incorporate National Resource 
Conservation Service (NRCS) conservation practice standards (CPS) via 
a fully spatial mapping and menu-driven graphical user interface http 
s://comet-farm.com/. The COMET-Farm model employs all three tiers 
of methodological complexity, requiring some user-defined, site-specific 
data, some data that is obtained from county-level measurements, and 
some IPCC-recommended country-level default values that are not 
site/county specific. Data can be entered manually and using drop-down 
menus and by specifying/manipulating some pre-defined values. The 
user specifies a period of historical management (pre-1980) followed by 
a baseline period of management. From the end of this baseline period, 
10 years of management can be modelled, and users can specify up to 3 
different crops in rotation (growing only one at a time) in any given 
year. 

2.2.3. Cool Farm 
Like COMET-Farm, Cool Farm is an online, menu-driven graphical 

interface tool that facilitates the calculation of GHG emissions and 
carbon sequestration under differential farm management and is 
intended for use by farmers and land managers https://coolfarmtool. 
org/. It can perform an assessment of CO2e emissions from CO2, N2O 

and CH4. Unlike some other tools, Cool Farm also allows the user to 
specify on-farm energy use for production and processing, and fuel use 
from transport. The Cool Farm tool incorporates tiers 1 and 2 of meth
odological complexity, requiring only a small amount of user-defined, 
site-specific data, but where most model inputs rely on IPCC- 
recommended country-level default values that are not site/county 
specific. Data can be entered manually and using drop-down menus and 
by specifying/manipulating some pre-defined values. Only one year of 
cropping/land management can be specified and modelled at any given 
time. If the user wishes to make multi-year predictions or specify crop 
rotations, the data must be modelled separately and summed. 

2.2.4. The Washington State Climate Smart Estimator (WaCSE) 
An adaptation of the online, user-friendly COMET-Planner tool 

(http://comet-planner.com/) developed by Colorado State University, 
WaCSE was advanced by the WSDA to support quantification of WA- 
county-specific estimates of changes in GHG emissions resulting from 
changes to land management practices in line with USDA-NRCS con
servation practice benefits. It can provide county-rectified estimates of 
GHG emissions (CO2e) savings from CO2, N2O and CH4 sources 
following the implementation of NRCS conservation practices. WaCSE 
would be classified as a tier 1 model, because it requires a very low level 
of data input/complexity and uses non-site-specific data. It produces 
GHG estimates from IPCC-recommended country-level default values 
using WA county-rectified major land use area spatial units. 

2.3. Field data 

2.3.1. Site and study description (Case study 1: Wilke Farm dryland 
wheat) 

A long-term compost study was established at the Washington State 
University Wilke Research Farm in Davenport, Washington in 2015 
(47.6562, − 118.09, Elevation = 2375 m). The no-tillage dryland wheat- 
based field site is situated on silt loam soil with an average of 337 mm of 
precipitation annually. The initial SOC concentration of the soil in 2015 
before the initiation of the experiment was ~1.55%. Throughout the 

Fig. 1. Schema outlining the project workflow.  
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field sampling period (2016–2021), the region experienced several pe
riods of drought (Fig S1 supplementary materials). In September 2016, 
municipal compost, obtained from Barr-Tech (Sprague, WA) was surface 
applied at one-time rates of 10,000, 25,000, and 50,000 kg ha-1 (8,921, 
22,304, 44,608 lb. A-1) dry weight basis, compared against a conven
tionally fertilized control, fertilized annually (11.2 g N per m2 as 46-0-0- 
0, 3.36 g P per m2 as 16-20-0-13), and a control that received neither 
compost nor fertilizer. The compost, a mixture of yard and lawn trim
mings, recyclable food materials and municipal biosolids, had a carbon 
to nitrogen ratio of 15, and added 270, 675 and 1350 g m2 of organic C 
to the system respectively. The compost treatments did not receive 
inorganic fertilizer. Two crop rotations were managed within each 
treatment: winter wheat-fallow (WF), and winter wheat – fallow – 
winter pea – fallow (WFPF) for a total of 4 replicates of each rotation and 
compost treatment. Crops were planted in September of each year and 
harvested in July of the following year. No irrigation water was applied 
to the experimental plots. 

2.3.2. Sampling and analyses (Case study 1: Wilke Farm dryland 
wheat) 

Soil samples were collected annually and analyzed for soil organic 
carbon, beginning in 2018 to a depth of 90 cm in four depth increments: 
0–15, 15–30, 30–60, and 60–90 cm. Five soil cores (5 cm diam.) from 
each treatment plot were removed, composited in the field and sub
sampled. Soil was transported in a cooler to the lab, a subsample air- 
dried, and sieved to 2 mm and the remainder refrigerated. All visible 
roots and other particulate organic matter were removed during sieving. 
Air-dried soil was then stored for subsequent analysis. Soil organic 
matter content was determined by the Walkley-Black titration method 
using a spectrophotometer (Orion Aquamate 8000 UV–Vis Spectropho
tometer, Thermo Scientific, Waltham, MA) (Gavlak et al., 2003). Soil 
organic carbon values were derived from soil organic matter by multi
plying the SOM value by 0.58. Only the 0–15 cm and 0–30 cm depth 
values for SOC were used to calibrate and validate the models. Full 
experimental results from this study are in the process of being prepared 
for peer review publication. 

2.3.3. Site and study description (Case study 2: Puyallup vegetable trial) 
A long-term organic vegetable crop experiment was established in 

2003 at the Washington State University (WSU) Puyallup Research and 
Extension Center in Puyallup, WA, USA (47◦ 11′24″ N, 122◦ 19′48″ W; 
elevation 13 m). The soil is classified as a Puyallup fine sandy loam 
(coarse-loamy over sandy, isotic over on-farm, mesic Fluventic Hap
loxerolls) with an average of 1040 mm of precipitation annually, and a 
mean annual temperature of 10.4 ◦C. Conventional row crops (pre
dominantly silage corn (Zea mays L.)) were grown before the start of 
organic transition in 2001. The original experiment compared 12 com
binations of organic management systems, consisting of three cover crop 
systems, two types of tillage, and two soil amendments arranged in a 
split-split plot design with four replicate blocks under drip irrigation. 
Cover crops were the main plots, tillage the first split, and soil amend
ment the second split. Main plots within each block measured 24.4 ×
15.2 m. Details of the full experiment setup and full results are available 
(Cogger et al., 2016; Pritchett et al., 2011). For the current modeling 
study, one cover crop type, one tillage treatment, and two organic 
amendments were modelled. The primary (cash) crops included winter 
squash and broccoli (transplanted), and winter wheat and spinach 
(directly seeded). These crops were grown in rotation with a fall planted 
cover crop – a 50:50 mixture of cereal rye (Secale cereale L.) and hairy 
vetch (Vicia villosa) seeded at 134 kg ha-1 (119.5 lb. ac.). Vegetable 
crops were planted in April–May of each year and harvested in 
August–September and fall cover crops were seeded in September of 
each year, terminated, and residue incorporated before re-planting the 
vegetables. Between September 2003–2014, broiler litter and on-farm 
compost, both produced on-farm at WSU were surface applied annu
ally to provide similar amounts of available nitrogen between each 

treatment (6000 kg ha-1 of broiler litter and 38,000 kg ha-1 of on-farm 
compost). The on-farm compost was made from locally available ma
terials, and feedstocks included separated dairy solids, animal bedding 
from the Washington State Fair, yard debris, and small amounts of 
broiler litter and fish waste. The two applications resulted in average 
carbon inputs of 1760 kg ha-1 yr-1 (1570.2 lb. ac) of C from the broiler 
litter (low C input, C:N ~12, 3.8% N), and 6250 kg ha-1 yr-1 (5576 lb. 
ac) of C from the on-farm compost (high C input, C:N ~14, 1.7% N; 
Table S1). Organic amendments were applied with a manure spreader 
in the spring after mowing the cover crop and incorporated either on the 
day of, or the day after application. Spader-tillage (rotary spader, 1–2 
passes at 1.3 km h-1 to 25 cm depth) was used prior to fall cover crop 
seeding in the fall-planted treatment and to incorporate cover crop 
residue in the spring. 

2.3.4. Sampling and analyses (Case study 2: Puyallup vegetable trial) 
Baseline samples (prior to experimental initiation) for soil carbon 

were obtained in 2002. Experimental soil samples were collected and 
analyzed annually from 2003 to 2012, and again in 2022 to a depth of 
30 cm. 10 cores were collected in each plot with a hand probe (2-cm 
diameter). The cores were on-farm, sieved (<2 mm), air-dried at 30 ◦C, 
and ground prior to analysis. All cores were collected from the center 
two beds of each plot. Soil organic carbon was determined using stan
dard combustion methods (Gavlak et al., 2003). Soil bulk density was 
determined using a hammer driven core sampler that collected a 6 cm 
deep by 5.4 cm diameter core (Grossman and Reinsch, 2002). 

2.4. Model parameterization and calibration 

Tables 2 and 3 detail simulation parameters for the DayCent, 
COMET-Farm, CoolFarm and WaCSE models for the Wilke Dryland 
Wheat and Puyallup Vegetable trials respectively. For the DayCent 
model, where model parameters like soil water holding capacity and 
crop inputs could be manually adjusted, this was performed iteratively 
until expected crop yields and measured SOC content were achieved in 
the simulation. These adjustments are detailed in Tables 2 and 3 (‘Soil 
parameters’ and ‘Crop parameters’). For an expanded parameterization 
method, please refer to ‘Model parameterization and calibration infor
mation’ in Supplementary Materials. 

2.5. Model evaluation: case studies 1 & 2 

Validation of model simulated values using observed SOC was only 
able to be performed for the DayCent model and COMET-Farm tool as 
they both provide detailed data outputs in. csv and. xml formats. For 
COMET Farm, the output. xml files were accessed from “file results” 
section of the report tab. From the “management information” files it 
was possible to access the background SSURGO data containing the soil 
parameters used to run the COMET-Farm model. Using these files, it was 
possible to determine the SSURGO imputed initial SOC content of the 
soil, soil texture information and bulk density, and to then quantify the 
predicted SOC content and GHG emissions changes for each modelled 
year. Information pertaining to the interpretation of DayCent and 
COMET output files were obtained from the individual model developers 
(Del Grosso et al., 2006; Easter, 2018). 

2.5.1. Statistical analysis 
To understand which experimental variables influenced the expres

sion of modelled and measured values between models, linear on-farm 
effects models were fitted using the “ASReml-R” (Butler et al., 2009) 
and “asremlPlus” (Brien, 2019) packages in R (R Core Team, 2022). The 
response variables (either modelled or observed C) were square root 
transformed to improve the pattern of residuals. The models included 
fixed parameters for organic amendment treatment and rotation, and 
their interactions along with terms that allowed these trends to differ 
between treatments. A random term was included for year. Model 
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residuals were confirmed to be homogenous and normally distributed 
with different variances by treatment, using scatter and qqplots. Wald 
F-tests at α = 0.05 were conducted for the fixed covariate terms, and 
non-significant terms were removed and are noted as “NA” in the 
pseudo-ANOVA tables. 

Then, to validate the DayCent and COMET-Farm models, a series of 
quantitative metrics were produced (Smith et al., 1997). The primary 
metrics calculated were root mean squared error (RMSE; Eq. (1)) which 
details the mean error between modelled and observed values, and the 
normalized root mean square error (NRMSE; Eq. (2)): a standardized 
RMSE that allows the comparison of RMSE values of differing scales 
between models. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Mi − Oi)

2

√ /

n (1)  

Where Mi and Oi denote the modelled and observed values respectively 
and n is the number of observations. 

NRMSE=RMSE ∗
100
Ô

(2)  

Where Ô is the mean of the observed data. 
Model efficiency (EF; Eq. (3)) is a metric with a value between 0 and 

1 that shows how well the modelled values approximate the mean of the 
observed data (Karhu et al., 2012). Values of EF below 0 indicate that 
the modelled values less closely approximate the mean of the observed 
data, and positive values indicate that the modelled values describe the 
data better than the mean of the observed values, and values closer to 1 
indicate a near perfect fit between modelled and observed values. 
Negative EF values can indicate lack of model fit (Nash and Sutcliffe, 
1970). Relative error (RE) determines the bias in the total difference 
between modelled and observed values, with values closer to 

Table 2 
DayCent, COMET-FARM, CoolFarm and WaCSE model parameters for Case Study 1: Wilke Dryland Wheat.  

Model DayCent COMET-Farm Cool Farm WaCSE 

Model Type Earth System Model Online whole farm and ranch carbon and 
greenhouse gas accounting system 

Online carbon and 
environmental calculator for 
agriculture 

Online calculator for generalized 
estimates of the greenhouse gas 
impacts of conservation practices 
for conservation planning 
purposes 

Initialization Equilibrium scenario (4000 years): 
Low productivity, cool season grassland. 
Baseline scenario 1 (1881–1998): 
winter wheat - fallow with “B" 
cultivation event (minimal tillage). 
Baseline scenario 2 (1998–2015): 
winter wheat - fallow, no tillage. 

Historic management scenario (Pre- 
1980): non-irrigated grain-fallow under 
intensive tillage. Baseline scenario 
(2000–2015): non-irrigated winter 
wheat no-till. 

No historical/baseline land-use 
history specified. 

No historical/baseline land-use 
history specified. 

Climate Daily min-max temperature and 
precipitation from local weather station 
(1981–2021) 

Defined by PRISMd Not specified Imputed using county-rectified 
Major Land Resource Areab 

spatial units 
Soil organic 

carbon 
Post equilibrium: ~6170 g C mb. Post 
baseline 1: 6162.21 g C m2. Post 
baseline 2: 5519.14 g C mb. 

SSURGOa designated: SOC content 
(2015) 1.16%/4647.13 g C mb 

User-defined: 1.15% Imputed using county-rectified 
Major Land Resource Areab 

spatial units 
Soil Parameters User defined: Sand = 43%, Clay = 18%, 

Bulk density = 1.31 g cm3. Field capacity 
(column 4) = 0.27, wilting point 
(column 5) = 0.09, volumetric soil water 
content wilting point (wilting point- 
deltamin, column 11) = 0.08–0.00. 

SSURGO designated: Clay = 11.5%, 
Bulk density = 1.33 g cmc 

User designated 
(constrained)c: sandy (coarse) 
texture, average soil moisture 
dry, good soil drainage, pH 
5.5–7.3 

Imputed using county-rectified 
Major Land Resource Areab 

spatial units 

Management/ 
cropping 
scenarios 

2015–2025 (Wheat-fallow rotation): 
Winter wheat (Planting: Yr. 1, Day 244. 
Harvest: Yr. 2, Day 210. Fallow: Yr. 2, 
Day 211 - Yr. 3 Da y 244). Organic 
matter additions occurred on Day 268. 
2015–2025 (Wheat-pea-fallow 
rotation): Winter wheat (Planting: Yr. 1, 
Day 244. Harvest: Yr. 2, Day 210. 
Fallow: Yr. 2, Day 211 - Yr. 3 Da y 244). 
Winter Pea (Planting: Yr. 3, Day 244, 
Harvest: Yr. 4, Day 210). 

2015–2025 (Wheat-fallow rotation): 
Winter wheat (Planting: Yr. 1, Day 244. 
Harvest: Yr. 2, Day 210. Fallow: Yr. 2, 
Day 211 - Yr. 3 Da y 244). Organic 
matter additions occurred on Day 268. 
2015–2025 (Wheat-pea-fallow 
rotation): Winter wheat (Planting: Yr. 1, 
Day 244. Harvest: Yr. 2, Day 210. 
Fallow: Yr. 2, Day 211 - Yr. 3 Da y 244). 
Winter Pea (Planting: Yr. 3, Day 244, 
Harvest: Yr. 4, Day 210). 

2015–2016: (Winter wheat 
rotation): Only one year of 
cropping was able to be 
simulated. 

No crop rotation designated 

Crop Parameters User defined: ‘PRDX (1)’ value adjusted 
for winter wheat (W1) to 1.75. Crop.100 
parameters for grass = GI3, winter 
wheat = W1, peas = AWP. 

User defined (constrained): Predicted 
yield values for winter wheat (95 Bu/ac, 
70% residue removal) and dry field pea 
(20 Bu/ac, 70% residue removal). 

User defined (constrained): 
Winter wheat (5700 lb./ac, 
70% residue removal) 

Not specified 

Organic Matter/ 
Fertilizer 
Amendments 

User defined: On-farm compost. C:N 
ratio 15. One-time rates of 10,000, 
25,000, and 50,000 kg ha− 1. 

Conventionally fertilized control applied 
annually (11.2 g N per m2 as 46-0-0-0, 
3.36 g P per m2 as 16-20-0-13). 

User defined (constrained): Compost 
or composted manure. One-time rates of 
10,000, 25,000, and 50,000 kg ha− 1. 
Moisture content = 50%, C:N 15, 1.77% 
N. Conventionally fertilized control, 
applied annually (11.2 g N per mb as 46- 
0-0-0, 3.36 g P per mb as 16-20-0-13). 

User defined (constrained): 
Compost (zero emissions) 1% 
N. Applied at experimentally 
defined rates. 

User defined (constrained): 
CPS 590e, Replacing synthetic 
nitrogen fertilizer with compost 
(C:N ratio 15)  

a The Soil Survey Geographic Database (SSURGO) is a comprehensive and detailed soil information system developed and maintained by the United States 
Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS). 

b A system used in the United States to classify and group areas with similar land use, physiography, climate, soils, and biological resources. 
c In some cases, the online tools allow the user to select from pre-defined parameters using drop-down menus. 
d PRISM (Parameter-elevation Regressions on Independent Slopes Model) weather data is a dataset that provides high-quality, fine-scale climate information for a 

specific geographic area. 
e Specific conservation practices used in agriculture and natural resource management. 
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0 suggesting a better model fit. 

EF=

⌊
∑n

i=1
(Oi − Ô)

2
−

∑n

i=1
(Mi − Oi)

2
⌋

⌊
∑n

i=1
(Oi − Ô)

2
⌋ (3)  

RE=(Mi − Oi) /Oi (4) 

For each of the case studies, these qualitative assessments were 
performed for each level of experimental complexity. For Case study 1: 
Wilke Farm dryland wheat, this included generating values for treat
ment (organic amendment amount), rotation (Wheat-Fallow or Wheat- 
Fallow-Pea-Fallow) and the combination of treatment and rotation 
type. For Case study 2: Puyallup vegetable trial, this involved generating 
values between organic amendment treatments (on-farm compost vs 
broiler litter). 

3. Results 

3.1. Model performance DayCent & COMET-farm (Case study 1: Wilke 
Farm dryland wheat) 

For the DayCent model, treatment type (p < 0.01; Table S2) and crop 
rotation (p<0.05) were both significant predictors of the modelled SOC 
values. For the observed values, both treatment type (p<0.0001; 

Table S2) and rotation (p<0.0001) were the most significant predictors 
of SOC content. The extent to which the DayCent modelled values were 
consistent with the observed values was highly dependent on both 
treatment and crop rotation. Across the whole model, 39% of the vari
ation in observed values could be explained by the modelled values, 
with an average RMSE of 580 g C m2 and an NRMSE of 11%. Total model 
bias (RE) was 4%. Overall, the DayCent modelled values tended to 
describe the data better than the mean of the observed data (EF, 
Table 4). At the treatment level, the model explained between 1 and 
87% of the variation in the observed SOC values (Table 4). For this level 
RMSE values were between 400 and 743 g C m2, and NRMSE values 
were <13%. At the rotation level, the modelled values were only able to 
explain between 36% (Wheat-Fallow) and 44% (Wheat-Fallow-Pea- 
Fallow) of the variation in the observed SOC values, and model bias (RE) 
was only 3% for the Wheat-Fallow-Pea-Fallow rotation compared with 
6% for the Wheat- Fallow rotation. Rotation by treatment modelled 
values could explain between 1 and 99% of the variation in the observed 
SOC values, with the model’s predictive capacity being better for the 
wheat-fallow rotation and for both rotations, the model best explained 
the variation in the observed values for the fertilized control treatment 
(r2 = 0.88, Table 4). Model bias (RE) was between 7 and 12% 
depending on the rotation-treatment type; DayCent tended to over
estimate SOC content (Fig. 2). 

For the COMET-Farm model, treatment type (p<0.0001; Table S2) 
and crop rotation (p<0.001) were both significant predictors of the 

Table 3 
DayCent, COMET-FARM, CoolFarm and WaCSE model parameters for Case Study 2: Puyallup vegetable trial.  

Model DayCent COMET-Farm Cool Farm WaCSE 

Model Type Earth System Model Online whole farm and ranch carbon 
and greenhouse gas accounting system 

Online carbon and environmental 
calculator for agriculture 

Online calculator for generalized 
estimates of the greenhouse gas 
impacts of conservation 
practices for conservation 
planning purposes 

Initialization Equilibrium scenario (4000 years): 
Cool season grassland. Baseline 
scenario (1980–2002): Silage corn - 
fallow with “K" cultivation event 
(moldboard plough). 

Historic management scenario (Pre- 
1980): non-irrigated grain-fallow 
under intensive tillage. Baseline 
scenario 1 (2000–2002): Irrigated 
silage corn with “K” cultivation. 
Baseline scenario 2 (2002–2005): 
Same as experimental scenario 
(2005–2015) 

No historical/baseline land-use 
history specified. 

No historical/baseline land-use 
history specified. 

Climate Daily min-max temperature and 
precipitation from local weather 
station (1981–2015) 

Defined by PRISM4 Not specified Imputed using county-rectified 
Major Land Resource Area2 

spatial units 
Soil organic 

carbon 
Post equilibrium: ~6948 g C m2. 
Post baseline: 6447.21 g C m2. 

SSURGO1 designated: SOC content 
(2005) 5.22%/9755.20 g C m2 

User-defined: 3.11% Imputed using county-rectified 
Major Land Resource Area2 

spatial units 
Soil Parameters User defined: Sand = 45%, Clay =

8%, Bulk density = 1.17 g cm3. No 
other soil parameters were altered. 

SSURGO designated: Clay = 8%, Bulk 
density = 1.46 g cm3 

User designated (constrained)3: 
Silt (medium) texture, good soil 
drainage, pH 5.5–7.3 

Imputed using county-rectified 
Major Land Resource Area2 

spatial units 
Management/ 

cropping 
scenarios 

2005–2015 (Vegetable – cover crop 
rotation): Tomato (Planting: Yr. 1, 
Day 135. Harvest: Yr. 1, Day 227. Fall 
cover crop: Yr. 1, Day 278 - Yr. 2 Da y 
100). Organic matter additions 
occurred on Day 110 of each year. 

2005–2015 (Vegetable – cover crop 
rotation): Tomato (Planting: Yr. 1, Day 
135. Harvest: Yr. 1, Day 227. Cover 
crop: Yr. 1, Day 278 - Yr. 2 Da y 100). 
Organic matter additions occurred on 
Day 110 of each year. 

2005–2006 (Tomato): Only one 
year of cropping was able to be 
simulated. 
2006–2007 (Grass-clover cover 
crop): Only one year of cropping 
was able to be simulated. Organic 
matter additions occurred on Day 
110 of each year. 
Estimates for the two separate 
simulations were summed to achieve 
estimates for the entire rotation. 

No crop rotation designated 

Crop Parameters User defined: ‘PRDX (1)’ value 
adjusted for tomato (JTOM) = 2.0. 
Crop.100 parameters for grass = GI3, 
fall cover crop = G1CPD. 

User defined (constrained): Predicted 
yield values for tomato (26,000 lb./ac, 
70% residue removal). 

User defined (constrained): 
Tomato (26,000 lb./ac, 70% residue 
removal). Grass-clover cover crop. 

Not specified 

Organic Matter/ 
Fertilizer 
Amendments 

User defined: Broiler litter: C:N ratio 
12, total N 3.8%. Annual rates of 6000 
kg ha− 1. On-farm-compost: C:N ratio 
15, total N 1.7%. Annual rates of 
38,000 kg ha− 1 

User defined (constrained): Chicken- 
broiler litter: C:N ratio 12, total N 3.8%. 
Annual rates of 6000 kg ha− 1. 

Compost/composted manure: C:N ratio 
15, total N 1.7%. Annual rates of 
38,000 kg ha− 1 

User defined (constrained): 
Compost (zero emissions) 1% N 
(OFC), Poultry layer manure 1.9 % 
N (Broiler) Applied at 
experimentally defined rates. 

User defined (constrained): 
CPS 5905, Replacing synthetic 
nitrogen fertilizer with compost 
(C:N ratio 12 & 15)  
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Table 4 
Case study 1: Wilke Farm dryland wheat model performance metrics for each level of experimental complexity for the DayCent and COMET-Farm models. Includes root 
mean square error (RMSE, g C m2), normalized root mean square error (NRMSE, % observed mean), model efficiency (EF) and relative error (RE).   

Model, Treatment, Rotation, Trt + Rotation n RMSE NRMSE (%) R2 EF RE 

Model DAYCENT 39 580 11 0.39 0.007 0.04 
Treatment No fertilizer 8 561 11.1 0.000 − 0.979 0.077 

Fertilized Control 8 630 12.9 0.871 − 3.01 0.117 
10,000 kg 8 531 10.3 0.167 − 0.601 0.066 
25,000 kg 8 400 7.48 0.027 − 0.366 0.037 
50,000 kg 7 743 12.3 0.506 − 0.555 − 0.067 

Rotation Wheat-Fallow 19 628 12.1 0.36 − 0.11 0.06 
Wheat-Fallow-Pea-Fallow 20 530 9.9 0.44 − 0.1 0.03 

Rotation by treatment Wheat-Fallow (No fertilizer) 4 610 12.1 0.020 − 0.716 0.075 
Wheat-Fallow (Fertilized control) 4 661 13.7 0.874 − 3.52 0.125 
Wheat-Fallow (10,000 kg) 4 625 12.6 0.098 − 2.63 0.109 
Wheat-Fallow (25,000 kg) 4 415 7.93 0.036 − 1.41 0.061 
Wheat-Fallow (50,000 kg) 3 818 13.3 0.992 − 0.674 − 0.077 
Wheat-Fallow-Pea-Fallow (No fertilizer) 4 508 10.1 0.074 − 1.55 0.080 
Wheat-Fallow-Pea-Fallow (Fertilized control) 4 599 12.2 0.892 − 2.61 0.109 
Wheat-Fallow-Pea-Fallow (10,000 kg) 4 418 7.83 0.332 − 0.038 0.027 
Wheat-Fallow-Pea-Fallow (25,000 kg) 4 384 7.04 0.228 − 0.088 0.015 
Wheat-Fallow-Pea-Fallow (50,000 kg) 4 682 11.3 0.303 − 0.478 − 0.059 

Model COMET 39 1196 22.7 0.27 − 3.23 − 0.127 
Treatment No fertilizer 8 562 11.2 0.246 − 0.987 0.048 

Fertilized Control 8 354 7.27 0.000 − 0.265 − 0.008 
10,000 kg 8 620 12.1 0.127 − 1.18 − 0.077 
25,000 kg 8 1091 20.4 0.057 − 9.16 − 0.192 
50,000 kg 7 2381 39.3 0.269 − 15 − 0.383 

Rotation Wheat-Fallow 19 1251 24.1 0.301 − 3.44 − 3.17 
Wheat-Fallow-Pea-Fallow 20 1142 21.4 0.29 − 3.17 − 0.129 

Rotation by treatment Wheat-Fallow (No fertilizer) 4 632 12.5 0.143 − 0.845 0.057 
Wheat-Fallow (Fertilized control) 4 337 6.98 0.008 − 0.179 − 0.018 
Wheat-Fallow (10,000 kg) 4 483 9.77 0.503 − 1.17 − 0.048 
Wheat-Fallow (25,000 kg) 4 1053 20.1 0.269 − 14.5 − 0.195 
Wheat-Fallow (50,000 kg) 3 2727 44.4 0.32 − 17.6 − 0.436 
Wheat-Fallow-Pea-Fallow (No fertilizer) 4 482 9.57 0.694 − 1.29 0.038 
Wheat-Fallow-Pea-Fallow (Fertilized control) 4 370 7.55 0.082 − 0.379 0.001 
Wheat-Fallow-Pea-Fallow (10,000 kg) 4 732 13.7 0.303 − 2.19 − 0.104 
Wheat-Fallow-Pea-Fallow (25,000 kg) 4 1128 20.6 0.151 − 8.36 − 0.189 
Wheat-Fallow-Pea-Fallow (50,000 kg) 4 2084 34.7 0.901 − 12.8 − 0.344  

Fig. 2. Case study 1: Wilke Farm dryland wheat observed vs DayCent modelled SOC (g m2) values at the treatment level. The red lines indicate the bootstrapped 95% 
confidence interval for the mean of each group. Black points indicate outliers. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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modelled SOC values. Across the whole model, 27% of the variation in 
observed values could be explained by the modelled values, with an 
average RMSE of 1196 g C m2 and an NRMSE of 22.7%. Total model bias 
(RE) was 12.7%. Across the whole model, the negative efficiency factor 
of − 3.23 indicates a poor model fit (Table 4). The linear relationship 
between the modelled and observed values (R2) did not appear to 
improve at the treatment level, and at the rotation level the amount of 
variation in the observed SOC values that could be explained by the 
modelled values was ~29%. Whether the COMET-Farm tool tended to 
over or underestimate the observed SOC values was highly dependent on 
treatment; the tendency being to underestimate SOC content for all 
organic matter additions (Table 4; Fig. 3). 

3.2. DayCent model predictions (Case study 1: Wilke Farm dryland 
wheat) 

3.2.1. SOC storage 2016–2025 
In both rotations, total soil organic carbon was predicted to be higher 

with increasing compost amount. The WF systems were predicted to lose 
up to 6% and gain up to 3% SOC, depending on the amount of organic 
amendment added. The WFPF systems lost ~0.03% and gained up to 
17% SOC between 2016 and 2025 (Fig. 4). Only the 50,000 kg treatment 
under WF, and the 25 and 50,000 kg treatments under WFPF were 
predicted to gain soil organic carbon through 2025 (Table 5). 

3.2.2. Net greenhouse gas emissions 
Since neither nitrous oxide nor methane emissions from soils were 

directly measured in the field or used to calibrate the model, net 
greenhouse gas emissions should be assessed with caution (Table 5). In 
Case study 1: Wilke Farm dryland wheat, all systems except the WFPF 
50,000 kg treatment/rotation were predicted to be net-emitting be
tween 2016 and 2025. Total emissions were lower under compost 
application compared with no fertilizer and fertilized controls for both 
rotations and were overall lower in the WFPF rotation. N2O emissions 
were predicted to be lower than fertilizer application under compost in 
the WF system, but compost tended to increase N2O emissions compared 

with fertilizer in the WFPF system. Overall, the emissions predictions 
were between − 1.2 T ha− 1 yr− 1 (WFPF 50,000 kg) and +1.75 T ha− 1 

yr− 1 (WF Unfertilized). 

3.3. COMET-farm predictions (Case study 1: Wilke Farm dryland 
wheat) 

3.3.1. Soil organic carbon storage 2016–2025 
In both rotations, the unfertilized, fertilized control, and 10,000 kg 

compost treatments were predicted to gain soil organic carbon through 
2025. Including the C added with the compost additions, the WF systems 
were predicted to increase SOC stocks by on average 9%, the greatest 
increase attributed to the unfertilized controls (Table 6). In the WF ro
tations under 25,000 kg and 50,000 kg compost, SOC loss averaged 89%; 
the loss being greatest under the 50,000 kg compost addition where the 
model predicted a loss of all added carbon, plus a further reduction of 
initial carbon stock. The average SOC increases in the WFPF system 
followed the same treatment pattern as the WF rotation but averaged 
12%, while the predicted losses were smaller; with average SOC losses of 
~48% between the 25,000 kg and 50,000 kg treatments. (Fig. 5). Unlike 
DayCent, COMET-Farm predicted higher SOC storage in unfertilized 
control, and less storage with increasing compost amount. 

3.3.2. Net greenhouse gas emissions 
For Case study 1: Wilke Farm dryland wheat, the no fertilizer, 

fertilized control, and 10,000 kg compost systems were predicted to be 
net-sequestration between 2015 and 2025 (Table 6) with overall higher 
net sequestration under the Wheat-Fallow-Pea-Fallow rotation. In the 
Wheat-Fallow rotation, total GHG emissions were generally higher 
under increasing compost application compared with the fertilized 
control except for the 10,000 kg application. In the Wheat-Fallow-Pea- 
Fallow rotation, total GHG emissions were generally higher under 
increasing compost application compared with the fertilized control. 
N2O emissions were predicted to be lower than fertilizer application 
under 10 and 25,000 kg compost applications in both rotations, but the 
50,000 kg treatment was predicted to have the highest N2O emissions 

Fig. 3. Case study 1: Wilke Farm dryland wheat observed vs COMET-Farm modelled SOC (g m2) values at the treatment level. The red lines indicate the bootstrapped 
95% confidence interval for the mean of each group. Black points indicate outliers. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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across all treatments. Annually, net emissions were predicted to be be
tween − 5.98 T ha− 1yr− 1 in the WF unfertilized control, and +11.19 T 
ha− 1yr− 1 in the WF 50,000 kg treatment. 

3.4. Model performance DayCent & COMET-farm (Case study 2: 
Puyallup vegetable trial) 

For the DayCent model, treatment type (p = 0.01; Table S3) was a 
significant predictor of the modelled SOC values. For the observed 
values, treatment type did not explain the variance in the measured 
values. The extent to which the modelled values were consistent with 
the observed values was highly dependent on treatment for both the 
DayCent and the COMET-Farm models. Across the whole DayCent 
model, 50% of the variation in observed values could be explained by 
the modelled values, with an average RMSE of 593 g C m2 and an 
NRMSE of 9%. Total model bias (RE) was 0.02%. Overall, the DayCent 
modelled values tended to describe the data better than the mean of the 
observed data (EF, Table 7). With only two measured and modelled 
values at each treatment level, R2 values are not considered a reliable 
metric for model evaluation. However, at the treatment level, RMSE 
values were 168 g C m2 for the broiler litter treatment, and 822 g C m2 

for the on-farm compost treatment, with NRMSE values < 12%. The 
DayCent model tended to slightly overestimate the average SOC content 
for both treatments, however the observed values for the on-farm 
compost treatment demonstrated a far larger variance than for the 
broiler litter (Fig. 6). 

For the COMET-Farm model, almost none of the variation in 
observed values could be explained by the modelled values, with an 
average RMSE of 1874 g C m2 and an NRMSE of 27.4%. In interpreting 
these evaluations, it is important to note that the initial SOC value of 
5.2% automatically imputed by the model from the SSURGO database 
likely significantly influenced the overall error in the COMET-Farm es
timates. Total model bias (RE) was 23%. Across the whole model, the 
negative efficiency factor of − 4.79 indicates a poor model fit (Table 7). 
The model was more accurate for the on-farm compost treatment 
(NRMSE 9.25%; Table 7) than the broiler litter (NRMSE 41%). Whether 
the COMET-Farm tool tended to over or underestimate the observed SOC 
values was highly dependent on treatment; the tendency being to 
overestimate SOC content for all organic matter additions (Table 6; 
Fig. 7). 

3.5. DayCent model predictions (Case study 2: Puyallup vegetable 
trial) 

3.5.1. Soil organic carbon storage 2006–2015 
The broiler litter compost was predicted to lose ~7%, and the on- 

farm compost to gain ~11% SOC from 2006 to 2015, mostly because 
of the total input of carbon being far greater in the on-farm compost 
treatment (Fig. 8). However, the DayCent model predicted 160% more 

Fig. 4. DayCent simulated soil organic carbon (g m2) for 2015–2025 between crop rotations and treatments (applied in kg ha− 1). WF = Wheat-fallow, WFPF =
Wheat-Fallow-Pea-Fallow. Note that the initial compost amount is included in these predictions. Shaded areas represent the 95% confidence interval of the mean 
by treatment. 

Table 5 
Greenhouse gas (GHG) calculations as modelled by DayCent, reported as grams 
CO2 equivalents (g CO2e). A positive value indicates a flux to the atmosphere 
while a negative value indicates a GHG sink. Values shown are the cumula
tive annual averages for the period 2015–2025. Total CO2e values include the 
added compost.  

Treatment N2O CO2e 
(g m2) 

CH4 CO2e 
(g m2) 

Soil CO2e (g m2) 
Compost included 

Total 
CO2e 

WF 0 357.7 − 26.5 1244.2 1575.4 
WF Fert 601.0 − 5.0 926.2 1522.2 
WF 10,000 kg 398.2 − 20.0 773.9 1152.1 
WF 25,000 kg 487.5 − 11.4 220.1 696.2 
WF 50,000 kg 678.6 2.2 − 628.9 51.9 
WWPF 0 379.6 − 17.7 1070.6 1432.5 
WWPF Fert 527.1 − 15.9 845.8 1356.9 
WWPF 

10,000 kg 
450.2 − 5.0 245.0 690.2 

WWPF 
25,000 kg 

632.5 9.9 − 641.1 1.3 

WWPF 
50,000 kg 

970.8 29.2 − 2072.5 ¡1072.5  

Table 6 
Greenhouse gas (GHG) calculations as modelled by COMET-Farm, reported as 
grams CO2 equivalents (g CO2e). A positive value indicates a flux to the at
mosphere while a negative value indicates a GHG sink. Values shown are the 
cumulative annual averages for the period 2015–2025. Total CO2e values 
include the added compost.  

Treatment N2O CO2e 
(g m2) 

CH4 CO2e 
(g m2) 

Soil CO2e (g m2) 
Compost included 

Total 
CO2e 

WF 0 6.3 NA − 5391.48 ¡5385.2 
WF Fert 18.0 NA − 58.07 ¡40.0 
WF 10,000 kg 9.9 NA − 510.94 ¡501.1 
WF 25,000 kg 17.3 NA 4368.98 4386.3 
WF 50,000 kg 27.6 NA 10045.44 10073.1 
WWPF 0 7.3 NA − 4538.91 ¡4531.7 
WWPF Fert 12.7 NA − 2045.22 ¡2032.5 
WWPF 

10,000 kg 
10.9 NA − 1072.15 ¡1061.3 

WWPF 
25,000 kg 

18.7 NA 2413.15 2431.8 

WWPF 
50,000 kg 

29.8 NA 7570.49 7600.2  
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soil organic carbon emissions from the broiler litter compared with the 
on-farm compost treatment (Table 8). 

3.5.2. Net greenhouse gas emissions 2006–2015 
The broiler litter treatment was predicted to be to net-emitting (0.61 

T ha− 1 yr− 1), while the on-farm compost was predicted to sequester 
0.14 T ha− 1 yr− 1 (Table 8). While the on-farm compost had significantly 
higher N2O emissions, the greater input of soil carbon from the 
amendment increased the net sequestration amount. Without a “busi
ness-as-usual” baseline, it is not possible to compare the climate impact 
of amendments in this system to conventional practices. 

3.6. COMET-farm predictions (Case study 2: Puyallup vegetable trial) 

3.6.1. Soil organic carbon storage 2006–2015 
The broiler litter compost treatment was predicted to lose ~16.4%, 

and the on-farm compost ~26% SOC from 2006 to 2015 (Table 9; 

Fig. 5. Case study 1: Wilke Farm dryland wheat COMET-Farm simulated soil organic carbon (g m2) for 2015–2025 between crop rotations and treatments (applied in 
kg ha− 1). WF = Wheat-fallow, WFPF = Wheat-Fallow-Pea-Fallow. Note that the initial compost amount has not been removed from these predictions. No 95% 
confidence interval was able to be calculated as the COMET-Farm output only provides a mean SOC change by year. 

Table 7 
Case study 2: Puyallup vegetable trial model performance metrics for each level of 
experimental complexity for the DayCent and COMET-Farm models. Includes 
root mean square error (RMSE, g C m2), normalized root mean square error 
(NRMSE, % observed mean), model efficiency (EF) and relative error (RE).   

Model, 
Treatment 

n RMSE NRMSE 
(%) 

R2 EF RE 

Model DAYCENT 4 593 8.69 0.5 0.149 − 0.02 
Treatment Broiler Litter 2 168 2.69 NA 0.529 0 

On Farm 
Compost 

2 822 11.1 NA − 0.597 − 0.05 

Model COMET 4 1874 27.4 0 − 4.79 0.237 
Treatment Broiler Litter 2 2559 41.1 NA − 109 0.411 

On Farm 
Compost 

2 688 9.25 NA − 0.11 0.092  

Fig. 6. Case study 2: Puyallup vegetable trial observed vs DayCent modelled SOC 
(g m2) values at the treatment level. The red lines indicate the bootstrapped 
95% confidence interval for the mean of each group. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 7. Case study 2: Puyallup vegetable trial observed vs COMET-Farm modelled 
SOC (g m2) values at the treatment level. The red lines indicate the boot
strapped 95% confidence interval for the mean of each group. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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Fig. 9). Compared with the DayCent model, COMET-Farm predicted a 
steady decrease in soil carbon in both treatments despite annual 
amendment additions. 

3.6.2. Net greenhouse gas emissions 
COMET-Farm predicted that both treatments would be net-emitting 

(Table 9). The on-farm compost treatment was responsible for signifi
cantly higher N2O and soil C emissions. The total emissions between the 
broiler litter and the on-farm compost were 2.58 T ha− 1 yr− 1 and 10.23 
T ha− 1 yr− 1 respectively. Without a “business-as-usual” baseline, it is not 
possible to compare the climate impact of amendments in this system to 
conventional practices. 

3.7. All model predictions (inc. Cool Farm & WaCSE (case studies 1 & 
2; Table 10) 

For case study 1: Wilke Farm dryland wheat, the DayCent (− 0.29 T 
ha− 1 yr− 1) and Cool-Farm (− 0.03 T ha− 1 yr− 1) tools predicted net SOC 
sequestration between ‘business as usual’ (synthetic fertilizer 

application) and application of 50,000 kg ha− 1 of compost under the 
wheat-fallow rotation. It is important to note that Cool Farm did not add 
carbon to the soil pool from amendments, nor increase crop growth in 
response to organic amendments, therefore the SOC sequestration benefit was 
static between conditions. Under the practice change scenario CPS 590 
(Nutrient Management), WaCSE predicted a 0.49 T ha− 1 yr− 1 loss of 
SOC, and COMET-Farm predicted 9.98 T ha− 1 yr− 1 loss of SOC. 
Increased N2O emissions between BAU and high compost addition 
ranged 0.04 T ha− 1 yr− 1 for COMET-Farm, 0.07 T ha− 1 yr− 1 for DayCent, 
and 1.06 T ha− 1 yr− 1 for Cool Farm. WaCSE estimated a 0.12 T ha− 1 yr− 1 

reduction in N2O emissions under the practice change. 
For Case study 2: Puyallup vegetable trial, only the DayCent model 

(− 1.02 T ha− 1 yr− 1) predicted net SOC sequestration between broiler 
litter and on-farm compost additions. SOC loss for COMET-Farm was 
predicted to be 0.36 T ha− 1 yr− 1. Net C emissions of 0.15 T ha− 1 yr− 1 

were recorded for the WaCSE simulated practice change. Cool Farm did 
not alter the amount of C added to the soil pool despite the large dif
ference in carbon added with on-farm compost compared with the 
broiler litter. Increased N2O emissions between broiler litter and on- 
farm compost addition ranged between 1.06 T ha− 1 yr− 1 for Cool 
Farm, 0.58 T ha− 1 yr− 1 for DayCent, and 0.009 T ha− 1 yr− 1 for COMET- 
Farm. WaCSE estimated a 0.12 T ha− 1 yr− 1 reduction in N2O emissions 
under the broiler litter practice change, and 0.09 T ha− 1 reduction under 
the on-farm compost. 

4. Discussion 

The evaluation of the first two tools, COMET-Farm and DayCent, 
revealed that COMET-Farm, although relatively easier to use, exhibited 
a higher level of bias compared to DayCent. In the Wilke Farm dryland 
wheat study, DayCent explained approximately 50% more of the vari
ation in the observed values compared to COMET-Farm. The disparity in 
performance was even more pronounced in the second case study. The 
difference in performance can be attributed to the lower data re
quirements and limited capability of COMET-Farm to incorporate site- 
level metrics, such as initial soil organic carbon (SOC) content. Models 
that require minimal input data may trade off ease-of-use for increased 
bias and uncertainty. The Cool Farm and WaCSE tools, for example, 
exhibited different abilities to estimate emissions and sequestration due 
to variations in their input parameters and data requirements. Cool Farm 
was found to be unsuitable for estimating SOC sequestration benefits 
from organic amendments because it did not add carbon to the soil pool 
despite large differences in the amount of C added with each differing 
amendment. Online tools may be more suitable for rapid estimates of 
greenhouse gas (GHG) emissions reduction potential over larger areas or 
groups of farms in the short-term, but caution should be exercised when 
relying on these tools for site-specific estimates. When used in isolation, 
these tools may not be suitable for establishing priority funding for 
climate-smart agriculture (CSA) initiatives at the individual farm scale. 

4.1. Using field measured data to initialize models may reduce prediction 
biases 

In the first case study (dryland wheat), the inability to initialize 
COMET-Farm using measured SOC content did not significantly impact 
the bias in model predictions, as the initialized value derived from the 
Soil Survey Geographic Database (SSURGO) was close to the measured 
value. However, in the second case study (the Puyallup vegetable trial), 
the SOC initialization value was more than 4% higher than the observed 
value, resulting in a significant source of bias in all subsequent pre
dictions. Because of this initialization error, and given the high sand 
content at this site, it is possible that the model calculated the SOC 
content to be at capacity: sandy soils having less capacity to store SOC 
(Georgiou et al., 2022). To mitigate such biases, the ability to initialize 
the COMET-Farm model using measured data, where available, could 
prove crucial. This approach may help address the challenges 

Fig. 8. DayCent simulated soil organic carbon (g m2) for 2005–2015 between 
treatments (Trt, applied in kg ha− 1). Note that the initial compost amount has 
not been removed from these predictions. Shaded areas represent the 95% 
confidence interval of the mean by treatment. 

Table 8 
Greenhouse gas (GHG) calculations as modelled by DayCent, reported as grams 
CO2 equivalents (g CO2e). A positive value indicates a flux to the atmosphere 
while a negative value indicates a GHG sink. Values shown are the cumula
tive annual averages for the period 2006–2015. Total CO2e values include the 
added compost.  

Treatment N2O CO2e (g 
m2) 

CH4 CO2e (g 
m2) 

Soil CO2e (g 
m2) 

Total 
CO2e 

Broiler litter 1345.0 49.0 1564.2 2958.1 
On-Farm 

compost 
1933.7 88.5 − 2592.1 ¡569.9  

Table 9 
Greenhouse gas (GHG) calculations as modelled by COMET-Farm, reported as 
grams CO2 equivalents (g CO2e). A positive value indicates a flux to the at
mosphere while a negative value indicates a GHG sink. Values shown are the 
cumulative annual averages for the period 2005–2015. Total CO2e values 
include the added compost.  

Treatment N2O CO2e (g 
m2) 

CH4 CO2e (g 
m2) 

Soil CO2e (g 
m2) 

Total 
CO2e 

Broiler litter 332.5 NA 5881.5 6213.9 
On-Farm 

compost 
992.8 NA 9499.4 10492.1  
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encountered in reducing model bias. Consequently, caution should be 
exercised in accepting the predictions generated by COMET-Farm for the 
Puyallup vegetable trial. 

4.2. SOC sequestration estimates likely differ under compost application 
owing to unquantified soil moisture and nutrient benefits, particularly in 
drylands 

For case study 1 (Wilke Farm dryland wheat), the observed values 
were sensitive to rotation type and treatment, and the modelled values 
for both DayCent and COMET-Farm exhibited similar sensitivity. Both 
models tended to approximate the observed values more accurately for 
the fertilized control treatment compared to the organic amendments, 
and for the wheat-fallow-pea-fallow rotation compared to the wheat- 
fallow rotation. For both models, this may be in part because DayCent 
can be insensitive to changes in soil moisture content that result from 
surface residues (Wang et al., 2018), and in both case studies, increases 
in soil moisture were observed under the compost additions (Pritchett 
et al., 2011). Because soil moisture exerts significant pressure on soil 
organic matter decomposition (Serna-Chavez et al., 2013), not ac
counting for significant changes in the model would increase bias for 

this metric. Combinations of rotation and organic amendment treat
ments displayed a random pattern of bias for each model. Despite their 
similar sensitivity to crop rotation and treatment (though not in the 
same rotation-treatment combinations), the predictions of soil organic 
carbon (SOC) sequestration differed significantly between the models. 
DayCent predicted SOC sequestration with higher compost application 
in the wheat-fallow-pea-fallow rotations and reduced nitrous oxide 
(N2O) emissions with compost application. On the other hand, 
COMET-Farm predicted more SOC under the fertilized control treatment 
and less SOC under compost, while also predicting reduced N2O emis
sions with compost. It is worth noting that while this study did not 
specifically evaluate the management of soil nutrient inputs contrib
uting to SOC storage and emissions by the models, DayCent and 
COMET-Farm appeared to handle these inputs differently. DayCent has 
been parameterized to simulate a wide range of cropping systems in the 
United States (Del Grosso et al., 2006; McClelland et al., 2021), although 
parameterizations have largely focused on temperate regions and may 
not fully account for dryland soil dynamics. Given that DayCent pro
vides the background N2O model for COMET-Farm, it was expected that 
their estimates would be more similar. 

4.3. COMET-farm predicts more SOC sequestration under inorganic 
fertilizer than organic amendment 

Existing literature supports the theory that organic amendments lead 
to increases in SOC content and reductions in N2O emissions across 
various cropping systems, including drylands (De Rosa et al., 2018; Ding 
et al., 2013; Guangbin et al., 2021). That COMET-Farm predicted more 
SOC under inorganic fertilization and less SOC under compost, but lower 
N2O emissions under compost compared to inorganic fertilizer, raises 
questions about whether COMET-Farm is well-equipped to accurately 
predict emissions reductions under organic amendments. It is important 
to recognize that COMET-Farm’s N2O model is under continuous 
development, and its high levels of uncertainty have been acknowledged 
(USDA Natural Resources Conservation Service, 2022). N2O emissions 
predictions are among the most data-deficient areas of climate science, 
and better understanding of on-farm N2O dynamics, and measurement 
of N2O emissions are crucial for improving the predictive capabilities of 
numerous models (De Rosa et al., 2018; Del Grosso et al., 2006; Kos
tyanovsky et al., 2019). Additionally, on-farm N2O emissions could not 
be verified using experimental data, and therefore the accuracy of the 
total CO2e impact of both emissions and SOC sequestration for each 
dataset is assumed based on their ability to approximate measure SOC 

Table 10 
Average yearly emissions (CO2 eq) by model for the periods. a) Case study 1: Wilke Farm dryland wheat 2016–2025 and b) Case study 2: Puyallup vegetable trial: 
2006–2015. Only one year of emissions data was able to be calculated for the COOL-Farm and WaCSE tools. Because the WaCSE tool does not use a baseline 
scenario for Case study 1, care should be taken in directly comparing these numbers with the other estimates. *BAU = ‘business as usual’, synthetic fertilizer 
application. For the Wilke Farm dryland wheat trial, data from the Wheat-Fallow rotation is reported. No CO2e emissions costs from compost or fertilizer production, 
transportation, or application were included in this analysis. A positive value indicates a flux to the atmosphere while a negative value indicates a GHG sink. 
Estimations from all reported tools are correct as calculated in October 2023.  

Case study 1: Wilke Farm dryland wheat  

CO2 N2O CH4 Total CO2 eq  

(g m2 yr− 1) (g m2 yr− 1) (g m2 yr− 1) (T ha− 1 yr− 1) 

Scenario *BAU 50,000 kg ha¡1 *BAU 50,000 kg ha¡1 *BAU 50,000 kg ha¡1 *BAU 50,000 kg ha¡1 

DAYCENT 92.62 − 62.89 60.10 67.86 − 0.5 0.02 1.52 0.049 
COMET − 5.80 1004.5 1.8 2.76 NA NA − 0.04 10.07 
Cool Farm − 19.05 − 22.31 14.04 120.2 0.00 0.00 − 0.05 97.89 
WaCSE (practice change) NA 49.42 NA − 12.35 NA 0.00 NA 0.37 
Case study 2: Puyallup vegetable trial  

CO2 N2O CH4 Total CO2 eq  
(g m2 yr¡1) (g m2 yr¡1) (g m2 yr¡1) (T ha¡1 yr¡1) 

Scenario Broiler On-Farm Broiler On-Farm Broiler On-Farm Broiler On-Farm 
DAYCENT 156.42 − 259.2 134.5 193.37 4.9 9.9 2.95 − 0.55 
COMET 588.1 949.9 33.2 99.2 0.00 0.00 6.21 10.49 
Cool Farm 38.79 38.79 235.03 242.28 0.00 0.00 2.73 2.81 
WaCSE (practice change) 19.76 34.59 − 12.35 − 9.88 0.00 0.00 0.07 0.25  

Fig. 9. Case study 2: Puyallup vegetable trial COMET-Farm simulated soil organic 
carbon (g m2) for 2006–2015 treatments (Trt, applied in kg ha− 1). Note that the 
initial compost amount has not been removed from these predictions. No 95% 
confidence interval was able to be calculated as COMET-Farm only provides a 
mean SOC change by year. 
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values. It is understood that this assessment does not provide a complete 
evaluation of model performance. Given that many climate-smart agri
culture (CSA) programs recommend diversifying crop rotations, 
reducing fallow periods, and implementing soil amendments to optimize 
emissions reductions, it becomes increasingly important to assess the 
sensitivity of models to input parameters such as crop rotations and 
organic amendments. 

4.4. Potential problems in relying on site-specific measurements of SOC to 
estimate benefits 

Interestingly, the DayCent model demonstrated better explanation of 
the observed SOC data compared to the mean of the observed values. 
This finding indicates that there was a significant amount of natural 
variation in the observed SOC values, which is to be expected in highly 
heterogeneous landscapes. Unfortunately, most sampling regimes do not 
adequately account for this variability (Stanley et al., 2023) highlighting 
a potential problem in relying solely on localized soil sampling for 
benefits assessment (Prestele and Verburg, 2020). DayCent exhibited a 
higher ability to predict the variation in observed values for Case study 
2: Puyallup vegetable trial (50%) compared to case study 1: Wilke Farm 
dryland wheat (39%), with the estimates improving significantly 
depending on the rotation and treatment. On the other hand, 
COMET-Farm could only explain 27% of the variation in the observed 
values for Case study 1: Wilke Farm dryland wheat and showed very 
limited explanatory power for Case study 2: Puyallup vegetable trial. 
The bias introduced by the SOC initialization value used by 
COMET-Farm in the Puyallup trial (case study 2) would have influenced 
all the emissions predictions. If the model assumes that the system is 
already at its maximum SOC capacity, any amendment would be 
interpreted as causing an increase in net emissions, resulting in a biased 
assessment of the benefits. All models, both simple and complex, 
inherently possess a level of uncertainty, with some aspects remaining 
unquantifiable (Rafique et al., 2015). To mitigate uncertainty, it is 
important to incorporate larger quantities of field data collected from 
diverse systems, considering both known and unknown spatial hetero
geneity. This reinforces the need for establishing additional ongoing 
long-term research on organic amendment applications in diverse 
agricultural systems. 

4.5. Important considerations when using model tools for SOC 
sequestration and emissions assessment 

In addition to conducting a detailed assessment of readily available 
model tools, we wish to highlight some important considerations for 
using model tools: 1) The tiering structure, on which many platform- 
based tools are based, often relies on default values and simplified 
models, particularly in the lower tiers. This can lead to over
simplification and generalization of emissions estimates, which may not 
accurately capture the complexity and variability of emissions from 
different agricultural sectors or regions. This was made particularly 
clear in our assessment. And while lower tier models are not explicitly 
designed to make site-specific estimates, in the context of their use in 
CSA programs, there is a risk of underestimating or misrepresenting 
actual emissions, which can impact the integrity of individual programs. 
2) Limited consideration of uncertainties: While the tiering structure 
acknowledges uncertainties associated with different tiers, it does not 
always provide a comprehensive treatment of uncertainties in emissions 
estimation. Unlike many other model tools, the COMET-Farm tool spe
cifically attempts to estimate uncertainty in both N2O and CO2 emissions 
(USDA Natural Resources Conservation Service, 2022) and these com
ponents are undergoing continuous development. Uncertainties can 
arise from various sources, including data gaps, modeling assumptions, 
complex parameter interactions, and measurement errors. Failing to 
adequately address uncertainties can undermine the accuracy and reli
ability of emission estimates used for CSA programs, potentially leading 

to incorrect allocation of funding, or poor quality of the resulting carbon 
credits. It’s essential to acknowledge that uncertainty estimation for 
mixed-tier online tools such as COMET-Farm and Cool Farm poses a 
significant challenge. Compared with higher tier models, which offer 
flexibility in altering singular parameters to quantify uncertainties, 
mixed-tier models feature a multitude of data sources, intricate 
parameter interactions, and dynamic variations in climate and agricul
tural practices, which are outside the user’s control. 3) Particularly in 
lower tiers, the use of default values and simplified approaches creates 
opportunities for manipulation of emission estimates by project de
velopers seeking to secure funding opportunities or maximize carbon 
credits. Inadequate attention to implementing verification processes 
may fail to detect deliberate or unintentional misrepresentation of 
emissions, undermining the environmental integrity of CSA schemes. 

4.6. Limitations of current model approaches and future directions 

Given the limitations of current approaches that our work highlights, 
alternative approaches should be explored. Specifically, multi-model 
ensemble frameworks may enhance decision-making for carbon 
sequestration and emissions reduction strategies by improving pre
dictions and reducing uncertainties (Antle et al., 2018; Gupta et al., 
2022; Semenov and Stratonovitch, 2010). These approaches involve 
leveraging diverse models with complementary strengths and weak
nesses, using aggregation methods like averaging or weighting to 
combine their predictions. These approaches should also be adaptive, 
allowing for model updates over time. Furthermore, it is important to 
note that none of the models studied in this paper accounted for indirect 
emissions or environmental co-benefits. Because most models primarily 
focus on direct emissions sources, they may not fully consider the in
direct emissions associated with complex supply chains or the indirect 
effects of mitigation activities, such as improvements in water or habitat 
quality and reductions in soil erosion (Ashton, 2022; Baumber et al., 
2019). Neglecting to account for indirect emissions can result in an 
incomplete assessment of the overall carbon footprint. Similarly, failing 
to consider the environmental co-benefits of differential management 
may underestimate the full potential of these practices. Some US-based 
CSA programs are already displaying initiative by weighting funding 
criteria to include not only emissions reduction potential, but environ
mental co-benefits (Legislature, 2020). Table 11 details the key sources 
of bias encountered within our assessment and makes recommendations 
for improving model estimates. 

4.7. Conclusions 

Our findings emphasize the critical significance of using accurate 
initialization data to mitigate prediction biases. Further, we suggest that 
some of the model predictions exhibited variations due to unaccounted 
factors like soil moisture and nutrient benefits, underscoring the need to 
integrate a deeper understanding of on-farm dynamics when assessing 
controls on GHG emissions. It was clear that advanced process-based 
models offer the potential for more precise site-specific emissions sim
ulations and predictions. However, striking a balance between model 
accuracy and data accessibility is difficult. For models that require low 
amounts of input data, increased bias, and therefore uncertainty at the 
site scale, may be a trade-off for ease-of-use. Platform-based tools are 
useful for rapid estimates of GHG emissions reduction potential in the 
short term and may be more relevant when applied over larger areas or 
groups of farms. Users should be cautious in relying on these tools for 
site-specific estimates, and they may not be suitable when used in 
isolation to establish priority funding for carbon farming initiatives. We 
suggest that model users will need to carefully consider several impor
tant questions when deciding whether there is a model suitable for 
calculating GHG emissions impacts from CSAs, and if so, which model(s) 
are most suitable. These questions include. 
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1) What is the desired outcome of the assessment (i.e.: Environmental 
impact assessment, regulatory compliance, farm planning and 
decision-making, carbon crediting and offsetting, research and edu
cation, benchmarking, and reporting, establishing baselines and 
targets for grants and funding applications)? Each of these outcomes 
require diverse data inputs and varying levels of precision for their 
distinct purposes. Where an absolute and accurate quantification of 
GHG emissions may be required for one purpose, an estimation of an 
expected change in emissions may be sufficient for another. 

2) What data is available, and what resources are available for col
lecting additional field-level data?  

3) What is the skill level of the user(s)? 
4) Given that model tools have differing data requirements and capa

bilities which influence model accuracy, what level of uncertainty is 
acceptable? For example, this may be different for a field level 
assessment compared to a county level assessment that is primarily 
concerned with the overall directionality of the CO2e effect of a 
practice change.  

5) If a high level of uncertainty is not acceptable, what resources are 
available to engage personnel capable of operating more complex 
models and to collect the needed data for parameterization? 

Although model tools have limitations, it is crucial not to let these 
drawbacks become a barrier to action. Models, as tools designed to assist 

in decision-making, should not solely determine actions, funding de
cisions, or inaction in climate-smart agriculture programs. Moreover, 
despite the potential disruption and upfront costs associated with many 
climate change mitigation and adaptation actions, ‘carbon farming’ 
stands out as one of several feasible and low-cost options that is already 
available (IPCC., 2022). Simply, 

“Waiting for better science to clarify choices can be rational, but only if 
the evidence accumulates faster than the situation deteriorates. Otherwise, the 
expected value of the new science is less than the cost of inaction” (Fischhoff, 
2007). 
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Table 11 
Sources of model bias and recommendations for improvement.  

Sources of model bias Underlying mechanisms Recommendations for 
improvement 

Lack of accurate 
initialization data 

Inaccurate initialization 
values lead to prediction 
biases that propagate 
throughout the model 

Prioritize the collection of 
measured site-specific data 
for accurate model 
initialization. Use reliable 
soil databases and update 
them when available 

Unaccounted factors in 
agricultural 
management 

Models may not fully 
consider the impacts of 
agricultural management 
changes on other soil/ 
ecosystems properties that 
influence model estimates 
(e.g.: increases to soil 
moisture and nutrient/ 
carbon benefits from 
compost additions) 

Develop and incorporate 
model parameters that 
account for changes in 
important soil metrics that 
indirectly influence SOC 
sequestration via their 
influence on crop growth 
and SOC decomposition 

Uncertainties in N2O 
emissions modeling 

High levels of uncertainty 
in N2O emissions 
estimates, especially for 
online tools 

Continue the development 
of N2O models in online 
tools to reduce 
uncertainty. Promote 
measurement and 
monitoring of on-farm N2O 
emissions. 

Limitations of localized 
soil sampling 

Localized soil sampling 
may not adequately 
represent the variability 
in observed values 

Conduct more extensive 
and diverse field data 
collection to reduce 
uncertainty. Explore the 
use of predictive mapping 
techniques to capture 
spatial heterogeneity 

Oversimplification and 
generalization in 
lower tier models 

Lower tier models often 
rely on default values and 
simplified model 
processes, leading to 
oversimplification 

Develop tier-specific 
models with more accurate 
parameters, or that allow a 
greater flexibility in user- 
defined parameters. 
Provide clear guidelines 
for when and how to use 
lower tier models. 
Emphasize the need to 
exercise caution in 
applying lower-tier model 
estimates to individual 
farms  
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