
Article

What determines sub-diffusive behavior in crowded
protein solutions?

Vijay Phanindra Srikanth Kompella,1,2 Maria Carmen Romano,2,3 Ian Stansfield,3 and Ricardo L. Mancera1,*
1Curtin Medical School, Curtin Health Innovation Research Institute, Curtin Institute for Data Science, Curtin University, Perth, Western
Australia, Australia; 2Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen,
United Kingdom; and 3Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

ABSTRACT The aqueous environment inside cells is densely packed. A typical cell has a macromolecular concentration in the
range 90–450 g/L, with 5%–40% of its volume being occupied by macromolecules, resulting in what is known as macromolecular
crowding. The space available for the free diffusion of metabolites and other macromolecules is thus greatly reduced, leading to
so-called excluded volume effects. The slow diffusion of macromolecules under crowded conditions has been explained using
transient complex formation. However, sub-diffusion noted in earlier works is not well characterized, particularly the role played
by transient complex formation and excluded volume effects. We have used Brownian dynamics simulations to characterize the
diffusion of chymotrypsin inhibitor 2 in protein solutions of bovine serum albumin and lysozyme at concentrations ranging from 50
to 300 g/L. The predicted changes in diffusion coefficient as a function of crowder concentration are consistent with NMR exper-
iments. The sub-diffusive behavior observed in the sub-microsecond timescale can be explained in terms of a so-called cage
effect, arising from rattling motion in a local molecular cage as a consequence of excluded volume effects. By selectively manip-
ulating the nature of interactions between protein molecules, we determined that excluded volume effects induce sub-diffusive
dynamics at sub-microsecond timescales. These findings may help to explain the diffusion-mediated effects of protein crowding
on cellular processes.

INTRODUCTION

Living cells contain a variety of macromolecules that main-
tain their functional and structural integrity. The concentra-
tion of macromolecules inside the cells varies from 90 to
450 g/L (1,2) depending on the type of cell (3), cell differ-
entiation stage, and the organelle of interest (4), occupying
nearly 5%–40% of cellular volume (2). The resulting intra-
cellular macromolecular crowding is known to affect a vari-
ety of processes including but not limited to translation and

growth (5), intracellular signaling (6), and transport medi-
ated by molecular motors such as kinesin-1 (7). Moreover,
extracellular crowding is known to play a significant role
in accelerating the development of the extracellular matrix
necessary in tissue-engineering approaches (8). These ef-
fects arise from altered molecular interactions, transport
properties, and excluded volume effects due to crowding
(9), (10–21). A more detailed understanding of the molecu-
lar mechanisms through which crowding mediates its effects
is crucial to explain the above phenomena.

Diffusion is one of the major transport properties affected
by crowding. Decreased diffusion rate as a result of crowd-
ing has been documented experimentally, through in vivo
(22–25) and in vitro (26–28) approaches, as well as various
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SIGNIFICANCE Protein crowding governs cell processes by altering the diffusion of biomolecules. Using Brownian
dynamics simulations of cell-like densely crowded environments, we show that volume exclusion is solely responsible for
sub-diffusion of proteins at the sub-microsecond scale and that molecules exhibit optimized search for interaction partners,
wherein spatially confined movement at short timescales (sub-diffusion) maximizes encounter probability, and the normal
diffusion observed at long timescales facilitates long-range search. These findings show the importance of accounting for
sub-diffusion while estimating reaction rates, especially for the purposes of modeling biochemical reaction networks
regulated by protein-protein interactions that are facilitated by diffusion. We also highlight that a well-defined
macromolecular composition is necessary to accurately describe the crowding effect in both computational and
experimental studies.
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computational approaches (20,29,30). Einstein’s equation
describes the relationship between the 3D diffusion coeffi-
cient (D) of a particle and its mean squared displacement
(MSD) (<x2 (t)>), which is the second moment of displace-
ment distribution (Eq. 1) (31).

Cx2ðtÞD ¼ 6Dta (1)

Here, <x2(t)> and D are the ensemble average of the MSD
(EAMSD) and diffusion coefficient, respectively. The diffu-
sion coefficient is a measure of the rate (slow or fast) of
diffusion and deviation from normal (linear) diffusion is
determined by the a-exponent (Eq. 1). Normal diffusion is
characterized by an a-exponent of 1.0, whereas a > 1.0
and 0 <a < 1.0 correspond to super- and sub-diffusion,
respectively.

Sub-diffusion has been observed in multiple experimental
studies. Fluorescence recovery after photobleaching,
extended to three dimensions, was used to establish sub-
diffusion of green fluorescent protein (GFP) in HeLa cells
(32). Using fluorescence correlation spectroscopy, sub-
diffusion of microinjected dextran was established in vivo
(33), and fluorescence-fluctuation analysis of raster scans
was used to study GFP sub-diffusion (34). In all of these
studies, the best time resolution was in the order of micro-
seconds. Sub-diffusive behavior has been observed in
coarse-grained simulations of bacterial cytoplasm (35),
atomistic simulations of the cytoplasm of Escherichia coli
(18); lipid bilayer systems (36,37), especially at low hydra-
tion (38); and Brownian dynamics and atomistic simulations
of crowded protein solutions (20,39). Additionally, in the
case of bacterial cytoplasm, Ando and Skolnick have shown,
using both Brownian dynamics simulations without hydro-
dynamic interactions (HIs) and Stokesian dynamics simula-
tions with HIs, that sub-diffusion is observed in timescales
<1 ms (29). The sub-diffusive behavior in the cytoplasmic
systems and protein solutions was observed in the sub-
microsecond scale and, therefore, it is challenging to char-
acterize this behavior using experimental approaches (39).
Although sub-diffusion has been predicted in multiple simu-
lation studies, there is limited understanding of the mecha-
nism through which protein crowders induce this
phenomenon.

Atomistic simulations have shown that chymotrypsin in-
hibitor 2 (CI2) exhibits significant sub-diffusive behavior in
the presence of bovine serum albumin (BSA) as the crowder
protein, whereas no appreciable sub-diffusive behavior was
observed in the presence of lysozyme (20). We note that the
spatio-temporal scale explored in these simulations was
relatively small, whereby a single molecule of CI2 was
simulated in the presence of eight protein crowder mole-
cules for 117–244 ns at a crowder concentration of 100
g/L. Lysozyme exhibited a propensity to interact more
strongly with CI2, whereas BSA crowders mostly interacted
with each other. Nawrocki et al. later explained that the

absence of substantial interactions between CI2 and BSA re-
sulted in cage effects (i.e., where the motion of a molecule is
akin to that of a particle trapped in a cage), which led to sub-
diffusive dynamics (21). However, to the best of our knowl-
edge, no attempt has yet been made to quantitatively
associate cage effects and sub-diffusive behavior in crowded
protein solutions.

There are multiple stochastic processes that display
anomalous, sub-diffusive behavior. These include contin-
uous time random walk (CTRW), fractional Brownian mo-
tion (fBm), heterogeneous diffusion process, and scaled
Brownian motion, each exhibiting different features
(40,41). For example, fBm is an ergodic process, whereas
CTRW is nonergodic, and other stochastic processes such
as scaled Brownian motion and the heterogeneous diffusion
process exhibit sub-diffusion and weak ergodicity breaking
(40). Anomalous diffusion in dextran solutions has been ex-
plained using fBm (42). A CTRW was used to explain the
lateral diffusion of potassium channels in cells (43), and a
hybrid CTRW and fBm approach was invoked to explain
sub-diffusive transport of insulin granules inside cells
(44). Therefore, before calculating the diffusion coefficient
and a-exponent, it is important to verify whether the system
is ergodic so that the EAMSD can be estimated using the
time-averaged MSD (TAMSD) (40).

Slow diffusion has been explained in terms of excluded
volume effects or cluster formation. Depending on the time-
scale, three types of cluster formation have been identified in
proteins: transient, dynamic, and permanent clusters (in
increasing order of lifetime) (45). Clusters that have a life-
time shorter than the time it takes for them to diffuse a dis-
tance equivalent to one protein diameter are defined as
transient clusters, and the diffusion properties of the system
mimic that of monomers. If the lifetime is longer, the
short-time dynamic behavior is then determined by so-called
dynamic clusters. On the other hand, permanent clusters have
a lifetime longer than experimental timescales (45). The slow
diffusion observed in crowded protein solutions of hen egg
white lysozyme, ubiquitin, villin, and the third immunoglob-
ulin G-binding domain of protein G headpiece has been ex-
plained by the formation of dynamic clusters (19). By
contrast, formation of transient clusters was invoked to
explain the slow diffusion in villin crowded systems at 135
g/L (21). Stokesian dynamics simulations of bacterial cyto-
plasm showed the importance of HI in regulating diffusion
in crowded environments (29). On the other hand, the diffu-
sion measured in the microsecond timescale in solutions
crowded with myoglobin and hemoglobin was found to be
largely dependent on excluded volume effects (46). However,
the extent to which cluster formation and excluded volume
effects influence sub-diffusion is not clearly understood;
therefore, these phenomena need to be further characterized
to explain sub-diffusion in crowded protein solutions.

We have investigated the causal relationships of sub-
diffusion in crowded protein solutions. A CI2 tracer in a
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protein crowded environment of BSA and lysozyme were
chosen as a model system since they have been studied
experimentally (26). Simulations were performed at a range
of concentrations (50–300 g/L) of both protein crowders us-
ing a grid-based Brownian dynamics approach (47,48). The
role of excluded volume effects and protein clustering in
inducing sub-diffusive behavior was discerned by selec-
tively altering the forces between molecules. Our findings
suggest that excluded volume effects, via cage effects, cause
sub-diffusive dynamics at sub-microsecond timescales in
crowded protein solutions.

MATERIALS AND METHODS

The experimentally determined 3D structures of BSA (PDB: 3V03), CI2

(PDB: 2CI2), and LYS (PDB: 1AKI) were obtained from the PDB. The

Simulation of Diffusional Association (SDA, version 7.2.2) program was

used to conduct Brownian dynamics simulations (47). Pre-processing of

the proteins, as described below, was done with webSDA (48). The proton-

ation states of amino acids in all proteins were assigned assuming a pH of

5.4 to emulate experimental conditions. Atomic charges and radii were

taken from the AMBER force field 99 (49). Electrostatic grids of 1.0 Å res-

olution were calculated assuming an ionic strength of 200 mM (to also

reproduce experimental conditions), with an ion radius of 1.5 Å, a protein

dielectric constant of 4.0, a solvent dielectric constant of 78.0, and a tem-

perature of 300 K, using the linearized Poisson-Boltzmann equation

approach (50). The electrostatic grids of LYS and CI2 were

129 � 129 � 129 Å3 in size and the grid size of BSA was

193 � 129 � 161 Å3, reflecting the differences in size and shape of these

proteins. Effective charges were calculated using webSDA. Electrostatic

desolvation, hydrophobic desolvation, and Lennard-Jones energy grids

were calculated at a resolution of 1.0 Å. The grid sizes of the electrostatic

desolvation and Lennard-Jones (repulsive) energies of BSA, LYS, and CI2

were 133 � 92 � 109 Å3, 45 � 55 � 67 Å3, and 43 � 44 � 45 Å3, respec-

tively. The size of the hydrophobic desolvation energy grids of BSA, LYS,

and CI2 were 104 � 76 � 87 Å3, 45 � 52 � 60 Å3, and 44 � 44 � 45 Å3,

respectively. The energy grid files obtained were then used to set up simu-

lations with protein crowder concentrations of 50, 100, 200, and 300 g/L,

with CI2 as the tracer. Initial configurations were generated using the gen-

box tool in SDA by placing the proteins randomly in a cubic box of 350 Å

length. To account for the potential influence of the initial configuration of

the proteins in each system, three systems with different initial configura-

tions were set up for every concentration.

The simulations were performed using SDAMM (a program used for

simulations with multiple molecules) in SDA with a time step of 0.5 ps at

the default SDA temperature of 300 K. Each of the simulations was run

with the soft-core repulsive term only for 1 ms to remove any protein over-

laps. The simulations were then run for 1 ms with the full energy term for

equilibration purposes, followed by 5 ms of production runs. The self-diffu-

sion coefficients of BSA and LYS were monitored to evaluate convergence,

which was reached before 1 ms. Since both these crowders are larger than

CI2, the convergence of the diffusion of BSA and LYS was expected to

be slower and hence was used in this evaluation. Diffusion coefficients

were calculated from the plots of TAMSD (obtained by averaging over

all possible time origins) vs. time (lag time). The simulations with the

soft-core repulsive term (decaying at a rate of 1/r6) only were performed us-

ing the same approach as above except that neither the equilibration nor the

production run included attractive interactions (the scaling factor of electro-

static, electrostatic desolvation, and hydrophobic desolvation terms is set to

zero) in the energy term. The trajectories were unfolded assuming that any

given particle does not move more than half the simulation cell length be-

tween time frames considered (51).

Calculation of the a-exponent

The value of the a-exponent was calculated from the log(TAMSD/t) vs.

log(t) curve (the linear relationship between the two variables can be derived

from a time-averaged equivalent of Eq. 1, where EAMSD is replaced with

TAMSD and t is replaced with lag time (t)) using an approach similar to

that of Balbo et al. (39). Since the a-exponent is a time-varying quantity

in our simulations, the straight-line region of the plot is chosen by fitting

the parts of the curve to a linear fit in such a way that the R2 value is main-

tained above a cutoff of 0.95. The regions at long timescales usually showed

high levels of noise, which affected the quality of the fit. This is due to the

use of TAMSD in our calculations, such that the MSD calculation is affected

at large lag time values due to poor statistics. Therefore, long-timescale re-

gions with poor statistics were omitted from the calculations of the a-expo-

nent. The average values of the a-exponents calculated using the data from

the simulations with three different initial configurations are reported in Figs.

3, 5, S13, and S14, and the error bars in the plots correspond to the standard

deviation (s). All p values were calculated using two-tailed t-tests assuming

unequal variance. It is important to note that, since log plots are used, the

data at long timescales are crowded in a small region of the graph and, as

a result, although one can reliably calculate diffusion coefficients up to the

order of a microsecond (in the TAMSD vs. t plots), it is not feasible to do

a similar calculation of the a-exponent at long timescales with a stringent

cutoff. However, since the a-exponent converges back to normal diffusion

values within the range of timescales explored, this does not have any impact

on our conclusions. Additionally, as elaborately discussed in the supporting

material, power law fits were also used to confirm our findings on sub-diffu-

sion that were inferred from the log-log plots.

Quantification of cage effects

Cage effects were quantified using Doliwa and Heuer’s approach (52).

Here, the displacement vector of a particle is given by rmn(t) ¼ r(nt) �
r(mt), where r(nt) and r(mt) are the position vectors at corresponding

time points (Fig. 1). The first and second displacement vectors are therefore

termed r01 (t) and r12 (t), respectively. The component of r12 (t) along r01
(t) is termed x12 (t). The component of r12 (t) along an arbitrary vector

perpendicular to r01 (t) is termed y12 (t). According to this approach, it

is expected that x12 (t) be negative and decrease linearly with an increase

in the magnitude of r01 (t) in the presence of cage effects. This

FIGURE 1 Quantification of cage effects. The particle is shown in yel-

low. The arbitrary vector perpendicular to r01 is shown as a dotted line vec-

tor. To see this figure in color, go online.
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anti-correlation is due to the rattling motion of the particles. The vector y12
(t) acts as control since it is the component along an arbitrary vector, so it

would be expected that, in the absence of cage effects, y12 (t) and x12 (t)

exhibit similar behavior upon the increase in the magnitude of r01 (t)

(52,53) (Fig. 1). The |r01| vs. x12 (or y12) plot is obtained by calculating

the values of |r01| and x12 (or y12) across all possible time origins along

the length of the trajectory for a given protein and t and combining the

data for all the protein molecules (of a given species) in the simulation.

The values of (|r01|) are binned with a width of 0.05 Å and the corresponding

x12 values are averaged. The plots are presented and discussed in Fig. 2.

This process is repeated for different t values. The approach described

here is similar to that of Weiss (42), where the function used (42) to infer

anti-correlation is given by

CtðtÞ ¼ C
vtðTÞ
jvtðTÞj

:
vtðT þ tÞ
jvtðT þ tÞj

D T (2)

where vt(t)¼ r(tþ t)� r(t), r being the position vector. When t¼ t, the dot

product (which is averaged across the time origins in the trajectory) is

equivalent to the dot product of the unit vectors parallel to r01 and r12, which

should carry the same sign as x12. In the presence of anti-correlation, Ct

(t) < 0 when t z t, which implies that x12 is negative, which is consistent

with the above approach.

Calculation of the a-exponent from cage effect

Weeks and Weitz have shown analytically that the slope of the |r01| vs.

<x12> curve can be used to estimate the value of the a-exponent using

the equation below (53):

acageðtÞ ¼ 1þ lnð1þ slopeðtÞÞ
lnð2Þ

(3)

Using this approach, the a-exponent is calculated from cage effect data

for a given lag time t. The same data at different t values is obtained by

skipping the appropriate number of time frames in a simulation trajectory

while calculating the displacement vectors.

RESULTS

Diffusion coefficients and sub-diffusive behavior

Time-averaged translational diffusion coefficients of CI2,
LYS, and BSA were calculated from the curve of TAMSD
vs. lag time(t), averaging over all time origins and the

FIGURE 2 Predicted diffusion properties in crowded protein solutions. (A) Comparison of experimental and predicted CI2 diffusion coefficients. The pre-

dicted values are within the same order of magnitude of experiment, revealing good agreement. (B) The predicted and experimentally determined diffusion

coefficients of the CI2 tracer in the presence of the protein crowders BSA and lysozyme and of the protein crowders themselves are plotted as a function of

crowder concentration. As expected, the increase in crowder concentration results in a downward trend of the diffusion coefficient of CI2. (C) Average x12 as

a function of |r01| (green), whereas the dashed red line corresponds to the reference x ¼ 0 curve, and the dotted vertical line separates the regions of low and

high noise. The yellow line corresponds to the linear fit for the less noisy region, whose slope is used in the calculation of a-exponent. The slope is negative,

indicating the presence of cage effects. (D) Average y12 as a function of |r01| (green), whereas the dashed dotted line corresponds to the reference y ¼ 0 line,

and the blue dotted line (which is very close to the y ¼ 0 line) corresponds to the linear fit of the less noisy region. |r01|, x12, and y12 have units of Å. Plots in

(C) and (D) correspond to data at a BSA concentration of 300 g/L at t ¼ 5 ns. To see this figure in color, go online.
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molecular species of interest. The experimental diffusion
coefficient of CI2 at concentrations of 50, 100, 200, and
300 g/L of LYS and BSA had been determined previously
(26). The long-time diffusion coefficients were calculated
in the 0- to 1000-ns time range and the predicted diffusion
coefficients of CI2 were compared with experimental
values. Fig. 2 A shows that the predicted diffusion coeffi-
cients are of the same order of magnitude as experimental
values. However, the difference in the predicted and exper-
imental diffusion coefficients increased at higher concentra-
tions. This could potentially be due to the lack of molecular
flexibility in the simulated protein structures, which could
contribute to a reduction in the tendency to form clusters.
A more detailed description of the role played by such clus-
ters is provided below. Fig. 2 B shows that the predicted
diffusion coefficients of BSA and LYS decrease in magni-
tude with an increase in the concentration of the crowder,
as expected.

The sub-diffusive behavior of the proteins was character-
ized. In solutions with a crowder concentration of 50 g/L,
the a-exponent value of CI2 remained above 0.95 in the
presence of both crowding proteins (Fig. 3 A and C). The
same behavior was observed for the self-diffusion of the
crowders, as shown in Fig. 3 E and G. The a-exponent did
not exhibit pronounced variation with respect to lag time
in each of the systems. The increase in the concentration
of the crowder led to sub-diffusion. At a crowder concentra-
tion of 300 g/L, the value of the a-exponent decreased to
0.83 (s ¼ 0.002) in the range 10.4–38.8 ns for CI2 in
BSA (Fig. 3 B), 0.87 (s ¼ 0.002) in the range 2.0–9.8 ns
for CI2 in LYS (Fig. 3 D), 0.74 (s ¼ 0.005) in the range
8.0–39.8 ns for BSA (Fig. 3 H), and 0.80 (s ¼ 0.001) in
the range 2.0–10.0 ns for LYS (Fig. 3 F), in all cases indi-
cating the presence of sub-diffusive behavior. However,
the observed sub-diffusion dynamics were transient and
normal diffusion was gradually reached after a few hundreds
of nanoseconds. In all of these cases, a clear trend can be
discerned, whereby diffusion was close to normal at short
timescales (less than 2 ns), sub-diffusive in the sub-micro-
second timescale, and showed a reverting trend toward
normal in the regime closer to 0.5 ms. This behavior is
observed in all the three proteins, which are of different
sizes and have a different total charge. An intermediate
behavior was observed in crowder concentrations of 100
and 200 g/L (Fig. S13). Such transient sub-diffusive
behavior has been predicted for g-globulin and BSA self-
crowded solutions (39).

Cage effects in the protein crowded solutions

The protein dynamics of the above-described crowded sys-
tems are consistent with sub-diffusive behavior arising due
to macromolecular crowding. However, the underlying
molecular mechanism by which protein crowding causes
this phenomenon and its physical origins are not very

well understood. The cage effect hypothesis is rigorously
tested here. This hypothesis states that macromolecules
in a crowded protein solution behave like colloidal parti-
cles and exhibit motion akin to rattling in a cage, termed
cage effect (52), wherein they are trapped in a transient
cage for a finite period of time before ‘‘hopping’’ to another
cage. In contrast to regular Brownian motion, particles do
not move freely while they are trapped in these cages.
Therefore, these particles are expected to exhibit normal
diffusion at very short timescales when they are not in
close proximity to surrounding particles, but, at intermedi-
ate timescales, these particles would exhibit rattling dy-
namics before exhibiting normal Brownian motion at
sufficiently long timescales. To quantitatively assess this,
Doliwa and Heuer’s approach (52) was used to investigate
the presence of rattling-in-a-cage type of motion in our
simulations. A plot of <x12> against |r01| is shown in
Fig. 2 C, which was obtained from unfolded trajectories.
It is evident from these plots that there is a clear anti-cor-
relation between r01 and x12. At higher values of |r01|, the
plots become noisy because there are very few particles
that make very long jumps, reducing the number of data
points available for analysis. There is also a higher proba-
bility for the particles that make long jumps to exit the tran-
sient cage, leading to cessation of the rattling motion (52).
Fig. 2 D shows that, unlike x12, y12 does not depend on the
magnitude of r01. These findings suggest the presence of a
cage effect in crowded protein solutions. The slope of the
linear section of the plot is an indicator of the strength of
this cage effect. The slope calculated at different t values
in solutions with crowders at concentrations of 50 and
300 g/L is shown in Fig. 4. As expected, the slope of the
tracer CI2 and protein crowders in the 50 g/L solutions
was �0. In the 300-g/L solutions, the slope was initially
�0 but, at intermediate timescales, the slope decreased
substantially, indicating the existence of a strong cage ef-
fect, whereas, at longer timescales, the slope recovered
back to �0. The x12 slopes calculated at intermediate time-
scales are significantly higher than y12 slopes calculated at
the same timescales, indicating a pronounced cage effect as
shown in Fig. 4. These observations indicate low cage ef-
fect at short timescales, followed by maximum cage effect
at intermediate timescales, and restoration of low cage ef-
fect at long timescales (Fig. 4).

The predicted values of the a-exponent (calculated from
the cage effect using Eq. 3) of the tracers and crowders in
all the simulations (50–300 g/L of both crowders) were
calculated and compared with the ones reported in the pre-
vious section, as shown in Figs. 3 and S13. The blue lines
in Figs. 3 and S13 show the value of the a-exponent calcu-
lated from the log plots as described in the ‘‘calculation of
the a-exponent’’ section, and the orange lines represent the
a-exponents calculated using Eq. 3. The predicted values
of the a-exponent are in good agreement with the calcu-
lated values for both crowders and tracer under all
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concentrations of the crowders at all lag times. The consis-
tency in our predictions across different types of proteins
with different sizes, net charges, and other properties is
encouraging. Since sub-diffusive behavior is the manifes-
tation of multiple mechanisms that do not necessarily
constitute anti-correlated displacements (40), the fact that

the computed value of the a-exponent obtained from
anti-correlated displacements induced by cage effect is
consistent confirms the validity of the hypothesis of cage
effects causing sub-diffusive behavior in crowded protein
solutions. The same approach described here was earlier
used to establish cage effects using experimental data of

FIGURE 3 Sub-diffusive and non-Gaussianity properties of the crowders and tracer (50 and 300 g/L concentration of crowder). (A–H) The blue, orange,

and gray lines in all the curves represent the a-exponent calculated from the log (TAMSD/t) vs. log (t) curves, a-exponent calculated from cage effects, and

non-Gaussianity parameter (NGP) measured at different lag times, respectively. All the curves on the left side of the figure represent the data for low con-

centration of the crowder at 50 g/L and the ones on the right side represent data for high crowder concentration. The data for CI2 in BSA are in the first row

highlighted in green, followed by data for CI2 in LYS in next row highlighted in yellow, followed by data for LYS and BSA highlighted in orange and red,

respectively. Error bars represent the standard deviation of the value of the a-exponent between simulations started with different configurations. The time

ranges in the individual graphs are different from each other due to the variation in the emergence of noise in the log (TAMSD/t) vs. log (t) curves. To see this

figure in color, go online.
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protein diffusion in the plasma membrane (54). However,
the cage effect observed in those experiments was in the
timescale of a few seconds. The observed anti-correlation
of consecutive displacements is similar to the one noted
in single-particle tracking experiments with dextran
crowded solutions, which was explained by fBm (42).

Non-Gaussianity and ergodicity

To probe further the nature of the sub-diffusive behavior
described in the previous section, we investigated the
magnitude of deviations from a Gaussian distribution of dis-
placements (Dr) by using a non-Gaussian parameter (NGP;

FIGURE 4 Variation of the intensity of cage effects with respect to time and crowder concentration. The straight lines plotted are representative of the

slope calculated from the less noisy regions of plots of <x12> or <y12> vs. |r01|. The blue, red, and yellow lines represent slopes at short, intermediate,

and long timescales, respectively. The first and second rows highlighted in green and yellow represent the data for the diffusion of CI2 in BSA and lysozyme,

respectively. The next two rows highlighted in orange and red represent the data for the self-diffusion of lysozyme and BSA, respectively. The first two col-

umns of every row contain plots of<x12> vs. |r01| and<y12> vs. |r01| (in that order) at the low protein crowder concentration of 50 g/L. The next two columns

contain the same plots at the high protein crowder concentration of 300 g/L. |r01|, x12, and y12 have units of Å. It should be noted that these plots are repre-

sentative of slopes and the straight lines correspond to the fits made to the less noisy regions in the corresponding plots, as described in Fig. 2. The timescales

corresponding to different colored lines are presented in Table S2. To see this figure in color, go online.
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Eq. 4), in an approach similar to that of previous
studies: (55).

NGP ¼ 3CDr4ðtÞD
5CDr2ðtÞD2

� 1 (4)

When the distribution is Gaussian, NGPz 0, and when it
deviates from Gaussian NGP is either above or below zero.
The NGP of both crowders and tracers was calculated at all
the concentrations and different lag times by choosing
appropriate values of t. It is clear from Figs. 3 and S13
that, at low concentrations, NGP is very low for both the
crowders and tracer with no significant variation with
respect to lag time. However, at the highest concentration
of 300 g/L, there is a clear rise in NGP in all the cases at in-
termediate timescales. Non-Gaussianity is more prominent
around the timescales where anomalous diffusion was iden-
tified, as described in the previous subsections. More impor-
tantly, there is a clear pattern with a slight deviation from
Gaussian behavior at short timescales followed by a rise
in non-Gaussianity that eventually reduces at longer time-
scales. Xue et al. observed increased non-Gaussianity in
nanoparticles of comparable size to that of the mesh size
of the polymer solution surrounding them (55). BSA mole-
cules are larger than lysozyme molecules and, therefore, for
a given concentration of the crowder, the BSA solution is
expected to form larger voids compared to the lysozyme so-
lution. Therefore, the tracer molecule CI2, which is a
smaller protein than lysozyme, should exhibit a greater de-
gree of non-Gaussianity in crowded BSA systems. In line
with this argument, the maximum value of NGP for CI2
in a 300-g/L solution of BSA was predicted to be nearly
twice as high as that predicted in LYS. The sudden increase
in NGP observed in the case of BSA could be due to its
larger size, which results in the molecule reaching the
cage boundaries in a shorter time. This sudden increase in
NGP also coincides with a steep decrease in the a-exponent
and, in general, a negative correlation between NGP and a is
noted in all the simulations. These observations point to a
non-Gaussian origin of sub-diffusion, unlike fBm in the
case of dextran solutions (42).

Stochastic processes such as fBm are predominantly
ergodic in nature, whereas, in CTRW, deviation from ergo-
dicity has been reported (40). While investigating the trans-
port of insulin granules inside cells, Tabei et al. used the
convergence of TAMSD, which was in turn averaged over
the number of particles to infer ergodicity. The authors
argued that, in an ergodic system, the average TAMSD
calculated at a given lag time using simulation trajectories
of different lengths should converge once sufficiently long
trajectories are chosen (44). This approach mirrors the
way we have assessed convergence in our simulations
(Figs. S1–S4). We chose trajectories of different lengths
and calculated diffusion coefficients in all these cases and,
for all trajectories beyond a certain length, minimal varia-

tion in diffusion coefficients was observed. It can thus be in-
ferred that TAMSD had converged for sufficiently long
trajectories, implying ergodicity in our simulation systems.

The above findings on ergodicity, non-Gaussianity, and
anti-correlation show that the behavior of our simulation
systems is similar to that of fBm in finite time intervals,
as reported with the numerical simulations of Guggenberger
et al. (56). These authors showed that a space-confined par-
ticle, whose motion is calculated using a sub-diffusive fBm
simulator, initially shows Gaussian behavior that becomes
non-Gaussian at long timescales. This long-term non-Gaus-
sianity is attributed to the presence of reflective boundaries.
However, in our simulations, at longer timescales a trend
pointing to recovery of Gaussianity is observed. This is
due to the fact that, unlike in simulations with a strict reflec-
tive boundary, in the case of crowded solutions, a particle
can cross this boundary at longer timescales and move to
a different cage-like structure. Therefore, the movement of
a particle at long timescales can be described as being
more akin to slow Brownian motion, whereas, at intermedi-
ate timescales, non-Gaussianity manifests due to the reflec-
tive nature of cage-like structures.

Excluded volume effects

Protein molecules in crowded solutions are predicted to
form dynamic/transient clusters and exhibit significantly
low diffusion rate (19,39,46). The role played by attractive
forces between protein molecules in regulating diffusion
in timescales of the order of tens of nanoseconds has previ-
ously been reported (19). These studies indicate that the
Stokes-Einstein equation is valid in crowded protein solu-
tions, and the slow diffusion of proteins can be explained
by the modified Stokes radius as a result of the formation
of dynamic clusters (19). However, it is important to note
that the pivotal role played by protein-protein interactions
is dependent on the proteins under investigation. Further-
more, given that the timescales of dynamic cluster forma-
tion are predicted to be of the order of 1–50 ns (19), the
effect of dynamic cluster formation on sub-microsecond-
scale anomalous diffusion needs further investigation.

The slow diffusion, especially when the protein mole-
cules form clusters with particularly slow diffusing partners,
can potentially be modeled as trapping in CTRW (for a
random amount of time), which then gives rise to anomalous
diffusion, making cluster formation a possible cause of sub-
diffusive behavior. On the other hand, cluster formation has
been proposed as a potential hindrance to caging and, there-
fore, as reducing anomalous diffusive behavior (20,21).
However, the role of protein shape and size in regulating
sub-diffusive behavior has not been explored.

To delineate the effects of cluster formation from those
arising from excluded volume, the same set of simulations
as described above were conducted using only a soft-core
repulsive term to remove attractive interactions between
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protein molecules. The a-exponent of crowders and tracers
was calculated at all concentrations, as shown in Figs. 5 and
S14. It can be seen that sub-diffusion persists despite the
lack of attractive interactions. As expected, anti-correlation

in the successive displacements due to cage effects is also
observed in these simulations with a soft-core repulsive
term. At a crowder concentration of 300 g/L, the anomalous
diffusion coefficient of BSA reached a minimum value of

FIGURE 5 Properties of tracer and crowder in the absence of attractive interactions at concentrations of 50 and 300 g/L of the crowder. (A–H) The data are

represented in the sameway as in Fig. 3. The value of the a-exponent calculated using the log plot and cage effect, and NGP are computed for systems without

attractive interactions. To see this figure in color, go online.
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0.74 (s ¼ 0.005) in simulations with the full energy term,
and a value of 0.70 (s ¼ 0.0008) in simulations with a
soft-core repulsive term, whereas it had a value of 0.80 (s
is 0.001 for both the cases) in the case of LYS in both types
of simulation. This is consistent with observations made by
Feig and Sugita using all-atom simulations of a single CI2
molecule and eight molecules of BSA/LYS at a concentra-
tion of 100 g/L (20). In their simulations it was shown
that BSA has stronger self-interactions than lysozyme
does. Moreover, the dominance of monomers in LYS solu-
tions at concentrations of less than 15% volume fraction
(the maximum crowder concentration in our simulations is
13.5%) has also been shown experimentally (57). Therefore,
the presence or absence of attractive forces did not signifi-
cantly affect the a-exponents of LYS (p ¼ 0.1). By contrast,
due to the relatively stronger interactions between BSA
molecules, the absence of attractive forces led to a signifi-
cant drop in the value of the a-exponent (p ¼ 0.006), indi-
cating an increase in sub-diffusive behavior. In the
presence of attractive forces, the value of the a-exponent
of CI2 in the crowded environment of LYS was 0.87
(s ¼ 0.002), indicating minimal sub-diffusion behavior.
However, when attractive forces were turned off, the value
of the a-exponent reduced (p ¼ 0.002) to 0.82
(s ¼ 0.006). With BSA as a crowder, the value of the a-
exponent reduced (p ¼ 3 � 10�5) from 0.83 (s ¼ 0.002)
to 0.80 (s ¼ 0.002) when attractive forces were turned
off. These observations are also consistent with the findings
of Feig and Sugita (20), since CI2 interacts more strongly
with LYS compared with BSA, and hence there is a larger
effect on the value of the a-exponent when attractive forces
are turned off. In addition, the value of the a-exponent of
BSA was 0.70 and that of LYS was 0.80 in the absence of
attractive forces (the statistical significance of this differ-
ence was measured using a t-test, p¼ 1.5� 10�6). This sug-
gests that cage effects vary between protein species even
though neither of them forms clusters. The more pro-
nounced sub-diffusion dynamics in BSA in the absence of
attractive forces might be due to its larger size. Since
large-sized crowders can create larger voids in the solution,
the probability of protein localization is thus higher. This
suggests that the extent of cage effects depends not only
on the strength of protein-protein interactions but also on
the size of the crowders (Table S3). Consequently, in sys-
tems with the full energy term, overall cage effects are likely
to be a function of the basal cage effect (observed in the
absence of attractive forces) and the strength of protein-pro-
tein interactions. Therefore, cage effects and sub-diffusion
dynamics are specific to the crowders and tracers present.
It is important to emphasize that the maximum cage effect
in a given system is observed in the absence of attractive
forces. Therefore, sub-diffusion beyond what is predicted
from the maximum cage effect must arise from other phe-
nomena. The more pronounced non-Gaussianity observed
in the case of CI2 in BSA and LYS, compared with simula-

tions with the full energy term, could be explained by an in-
crease in excluded volume effects in the absence of
attractive forces in the system, which can be inferred from
the difference in the BSA-BSA and LYS-LYS radial distri-
bution functions (at a concentration of 300 g/L) in the pres-
ence and absence of attractive interactions, as shown
in Fig. 6.

The experimental diffusion coefficients of CI2 in the lower
concentration (50 g/L) of BSA and LYS were 13.22 and
12.2 cm2/s, respectively, which decreased to 2.66 and
1.39 cm2/s, respectively, at the higher concentration of the
crowders (300 g/L), resulting in a �fivefold and �ninefold
decrease in diffusion rate in BSA and LYS, respectively. In
our simulations without attractive forces, we noted a
�threefold and�twofold decrease in the diffusion coefficient
of CI2 in BSA and LYS environments, respectively (when
going from a crowder concentration of 50 g/L to 300 g/L).
These findings suggest that the contribution of excluded vol-
ume effects toward decreased microsecond-scale diffusion
in crowded protein solutions is not insignificant.

DISCUSSION

Our findings suggest that sub-diffusive behavior is present in
crowded protein solutions and the extent of it depends on the
nature of the proteins under consideration. For a given pro-
tein solution with a certain crowder species at a given con-
centration, sub-diffusion dynamics mediated by cage effects
have a maximum limit. This limit is a function of the pro-
teins under consideration and, therefore, any sub-diffusion
dynamics stronger than this limit would be the result of phe-
nomena other than caging, such as nonspecific interactions
mediating sub-diffusion and explained using CTRWmodels
(58). However, it is evident from the use of a soft-core repul-
sive energy term only that such nonspecific interactions do
not play a role in the sub-diffusion observed in our systems,
reinforcing the role of cage effects. In our simulations, the
a-exponent of BSA decreased in the absence of attractive
interactions, whereas that of LYS remained the same. On
the other hand, McGuffee and Elcock (18) showed that
the a-exponent (of some cytoplasmic proteins) increased
in the absence of attractive interactions. These observations
indicate that sub-diffusive behavior is highly specific to the
protein of interest and its crowded environment. As ex-
plained above in the case of a CTRW model, it is possible
that the underlying sub-diffusive process in the cytoplasmic
proteins (noted by McGuffee and Elcock) relied on attrac-
tive interactions.

Recently, it has been shown mathematically that extreme
first-passage time, the minimum time taken by a searcher in
a group of searchers to reach a target, is lower in the case of
sub-diffusive searchers compared with normally diffusing
counterparts (59). This suggests that sub-diffusive behavior
has a vital role to play in biological systems, where
molecular encounters drive cellular processes. The
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implications of cage effects and the subsequent sub-diffu-
sive phenomenon are important in the context of diffu-
sion-limited reactions. Normal diffusion is the underlying
assumption made in the derivation of rate constants of diffu-
sion-limited reactions. However, since deviations from
normal diffusion are apparent and with varying intensity de-
pending on the protein species and timescales investigated,
it is important to account for such deviations using ap-
proaches such as Haugh’s (60), especially in the framework
of treating biological reaction networks as complex systems.
Combining the fact that protein crowded systems emulate
the cellular environment (26) and our findings indicating
that the strength of sub-diffusion dynamics is a result of
such crowding, in light of the above mathematical findings,
it is possible to infer that cells should maintain crowding for
optimal execution of the cellular processes. In fact, such a
mechanism has already been proposed by Van Den Berg
et al. and is termed homeocrowding (61).

The sub-diffusive behavior in our systems exhibited fea-
tures of fBm. However, a more rigorous numerical approach
is necessary to establish whether there is fBm in crowded
protein systems. It would be interesting to use soft reflective
walls that allow particles to escape the confined space to
explain the restoration of normal diffusion with Gaussian
behavior over long timescales.

Based on the simulations without attractive interactions,
we have shown that excluded volume effects play a role in
decreased diffusion. The diffusion coefficients predicted
from the simulations are of the same order of magnitude
as experimental values. However, due to the lack of precise
agreement with experimental observations, further investi-
gation is necessary to delineate the role of excluded volume
effects and cluster formation.

CONCLUSIONS

The predictions of our Brownian dynamics simulation study
clearly show that sub-diffusion in crowded protein solutions
arises from cage effects. Moreover, deviations in the distri-
butions of molecular displacements from that of Gaussian
distribution is associated with the transient sub-diffusion.
Based on our findings, it is clear that the sub-diffusive
behavior in crowded protein solutions can be explained by
volume exclusion. Since the sub-microsecond-scale anoma-
lous diffusion observed is dependent on the properties of the
proteins (i.e., surface properties such as charge, size, and
shape), it is important to carefully account for the composi-
tion of the cytoplasmic protein and nucleic acid species
when investigating the diffusive behavior of macromole-
cules in cell-like environments in these timescales.

DATA AND CODE AVAILABILITY

The data associated with this work, which include the input
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all publicly available on Zenodo (https://doi.org/10.5281/
zenodo.8412942).
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Figure S1. Convergence of the diffusion coefficient of BSA at different concentrations in 

simulations with the full energy term. The error bars represent the standard deviation (n=3). 



 

Figure S2. Convergence of the diffusion coefficient of BSA at different concentrations in 

simulations with the soft-core repulsive term only. The error bars represent the standard 

deviation (n=3). 

  



 

Figure S3. Convergence of the diffusion coefficient of lysozyme at different concentrations in 

simulations with the full energy term. The error bars represent the standard deviation (n=3). 

  



 

Figure S4. Convergence of the diffusion coefficient of lysozyme at different concentrations in 

simulations with the soft-core repulsive term only. The error bars represent the standard 

deviation (n=3). 



 

Figure S5. Time averaged mean-squared displacement (TAMSD) vs lag time plots of BSA 

(crowder) and CI2 in the presence of full energy term (ALL) and only soft-core repulsive 

(repulsive only) term. 



 

Figure S6. Time averaged mean-squared displacement (TAMSD) vs lag time plots of lysozyme 

(crowder) and CI2 in the presence of full energy term (ALL) and only soft-core repulsive 

(repulsive only) term.  

 



 

Figure S7. The log (TAMSD/τ) vs log (τ) plots of CI2 and BSA (crowder) under the conditions 

of full energy term (ALL) and only soft-core repulsive forces (repulsive only). The vertical 

dotted lines represent the time ranges used in the calculation of α-exponent. 

 



 

Figure S8. The log (TAMSD/τ) vs log (τ) plots of CI2 and lysozyme (crowder) under the 

conditions of full energy term (ALL) and only soft-core repulsive forces (repulsive only).  The 

vertical dotted lines represent the time ranges used in the calculation of α-exponent. Fitting the 

power law function to the MSD vs lag time plots 

  



Fitting of a power law function to the MSD v lag time plots 

Sub-diffusion was estimated using the α-exponent calculated from the log-log plots as 

described in the Methods section in the main text. However, a static offset in the MSD can 

result in distorted log-log plots, which incorrectly implies the presence of sub-diffusive 

behaviour. A power law function was directly fit to the MSD vs lag time (τ) plots to calculate 

the α-exponent, without invoking log-log plots, to verify the validity of the inferences drawn 

from log-log plots. Using an approach similar to that of Backlund et al., (62) the MSD plots 

were fitted to equation 1 in the main text, with the two fit parameters being the α-exponent and 

the generalized diffusion coefficient. The fits were performed using the curve_fit function in 

the scipy library of Python, which uses the Levenberg-Marquardt algorithm.  

Backlund et al. also account for static offset arising from zero mean Gaussian localization error 

(due to shot noise) by fitting the curves to the equation: 

< "!($) >	= 6*$" + , Equation S1, 

with ‘c’ being the static offset (62). Although the physical origins of the static offset in the 

simulations are different from that in the experiments, mathematically the offsets are 

equivalent. Therefore, we accounted for the static offset by following this approach using three 

parameter fits, with ‘c’ as the third parameter.  

Both types of fits were performed by choosing data ranges in an incremental manner, i.e. the 

fit at any given lag time point, ‘τ’, was performed by using all the data points up to τ.  In both 

types of fit, we noted sub-diffusive behaviour similar to that of our calculations using log-log 

plots, confirming the previously drawn conclusions (Figures S9-S12). 



 

Figure S9. Calculation of α-exponent by fitting MSD vs lag-time plots to the power law 

equation (Equation 1 in the main text). The data shown here corresponds to BSA systems.  



 

 

Figure S10. Calculation of α-exponent by fitting MSD vs lag-time plots to the power law 

equation (Equation 1 in the main text). The data shown here corresponds to lysozyme systems. 



 

Figure S11. Calculation of α-exponent by fitting MSD vs lag-time plots to the power law 

equation with a static offset (Equation S1). The data shown correspond to BSA systems. 



 

Figure S12. Calculation of α-exponent by fitting MSD vs lag-time plots to the power law 

equation with a static offset (Equation S1). The data shown here correspond to lysozyme 

systems. 

  



Table S1. Number of crowder protein molecules, tracer molecules, and total molecules in the 

simulations. 

Concentration Crowder No. of 

crowder 

molecules 

No. of tracer 

(CI2) 

molecules 

Total no. of protein 

molecules 

50 g/L BSA 21 26 47 

100 g/L BSA 43 26 69 

200 g/L BSA 86 26 112 

300 g/L BSA 128 26 154 

50 g/L LYS 96 26 122 

100 g/L LYS 193 26 219 

200 g/L LYS 385 26 411 

300 g/L LYS 579 26 605 

 

Table S2. Timescales corresponding to the colors used in Figure 4.  

Crowder/tracer 50 g/L 300 g/L 
 

blue red yellow blue red yellow 

CI2 in BSA 2 ns 13.4 ns 39.4 ns 1 ns 24.6 ns 152.2 ns 

CI2 in LYS 1 ns 6 ns 70 ns 0.4 ns 6 ns 55.6 ns 

LYS 1 ns 6 ns 70 ns 0.4 ns 1 ns 129.4 ns 

BSA 1.4 ns 17.6 ns 60 ns 1 ns 24 ns 237.4 ns 



 

Table S3. Properties of the proteins simulated. Molecular surface area and molecular weight 
were calculated using Pymol. The charge data was taken from the PQR files generated by 
PDB2PQR.  

Molecular surface area (Å2) Molecular weight (kDa) Net charge (pH=5.4) 

CI2 7,554 7.28 -1 

BSA 66,730 66.22 -2 

LYS 14,197 14.31 +10 



 

Figure S13. Sub-diffusive and non-Gaussianity properties of the crowders and tracer (at 
concentrations of 100 and 200 g/L of the crowder). The data is represented in the same way as 
in Figure 3 in the main text.  



 

Figure S14. Properties of tracer and crowder in the absence of attractive interactions (100 and 
200 g/L of the crowder). Error bars represent standard deviation (n=3). The data is represented 
in the same way as in Figure 5 in the main text. 
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