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Abstract

Quasiperiodically forced systems are an important class of dynamical systems exhibiting
quasiperiodic, strange nonchaotic, and chaotic attractors. A major concern is the identification
of the parameter range in which each one of the attractors is present. In this work, based on
the phase sensitivity proposed by Pikovsky and Feudel, we define a measure to quantitatively
distinguish quasiperiodic attractors, strange nonchaotic attractors, and chaotic attractors. Partic-
ularly, we can determine the boundary points of these three attractors in parameter space. The
reliability of this measure is verified in smooth and non-smooth systems.
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1. Introduction

There are a variety of ways to characterise attractors in dynamical systems. The primary
concern of this work is to understand and distinguish how the nonlinear dynamical system re-
sponds to quasiperiodic forcing. Chiefly, as the parameter varies, the system can evolve from
quasiperiodic to strange nonchaotic to chaotic attractor [1]. In particular, the study of strange
nonchaotic attractors (SNAs) has attracted much attention from researchers [2–5]. The non-
chaotic property of SNA can be asserted by the Lyapunov exponent, but it is more difficult in
terms of the strange property. In this work we define a measure which allows not only to char-
acterise the SNAs but it also quantifies the parameter range in which each of the three attractors
occur in quasiperiodically forced systems.
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For the identification of the strange property of attractors, two methods are particularly ef-
fective, namely rational approximation and phase sensitivity [6]. For the rational approximation
method, the frequency of the quasiperiodic system is usually taken as the reciprocal of the gold-
en mean, which can be used to distinguish SNA by using Fibonacci number [5, 7]. The phase
sensitivity can detect the sensitive to the initial phase, and the strange property of SNA can be
verified by the stairstep diagram and the phase sensitivity exponent [4, 6, 8, 9]. In addition,
recurrence quantification analysis, distribution of finite-time Lyapunov exponents, spectral dis-
tribution function, singular continuous power spectrum can also be used to verify the strange
property of SNA [10–15]. Recurrence quantification analysis refers to the time when the state
of dynamical system reappears. Different types of attractors can be distinguished on recursive
matrix by the structure of recurrence plots. The distribution of the finite time Lyapunov ex-
ponent can also distinguish different types of attractors [16–19], and the distribution is plotted
by counting the number of Lyapunov exponents that are greater and less than zero at a fixed
time. This method is also used to describe certain mechanisms of SNAs, characterised by the
differences in the distribution diagram. By counting the number of peaks larger than a threshold
value in the power spectrum, the scale power law relation can be obtained. Then it can be used
to distinguish the quasiperiodic attractors from SNAs [10]. In fact the main difficulty in the
study of SNAs is to distinguish SNAs from quasiperiodic and chaotic attractors. Generally, two
power spectra (discrete and continuous) are observed in dynamic systems. When the system
presents periodic or quasiperiodic motion, the corresponding power spectrum is discrete. For
a chaotic motion, a continuous power spectrum appears. When the attractor is an SNA, it is
characterised by a singular continuous spectrum, which is between discrete and continuous [5].
However, the above methods cannot distinguish quantitatively quasiperiodic attractors, SNAs
and chaotic attractors.

The remaining of this paper is organised as follows. In Sec. 2, based on the phase sensi-
tivity proposed by Pikovsky and Feudel [5], we introduce a measure to characterise the strange
property of attractors, and the basic idea of it is explained. In Sec. 3, we illustrate the effec-
tiveness of this measure in smooth and non-smooth systems, and it is verified that this measure
can distinguish the three types of attractors in quasiperiodic dynamics, namely, quasiperiodic,
strange nonchaotic, and chaotic attractors. In Sec. 4, the measure is used to establish the range
of SNA, and SNA is identified globally through the two-parameter transition diagram. Finally,
in Sec. 5, we give the conclution.

2. Characterizing strange property of attractors

Consider following two-dimensional skew product systems:

xn+1 = f (xn, θn) ,

θn+1 = θn + 2πω(mod 2π),
(1)

where ω is an irrational number. The Lyapunov exponent in the x direction is given by

λx = lim
n→∞

1

n

n−1X
k=0

ln

�����
∂f (xk, θk)

∂xk

����� . (2)
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If λx > 0, the attractor is chaotic. If λx ≤ 0, the attractor is either a quasiperiodic attractor or
an SNA. To verify the strange property of the attractors, Pikovsky and Feudel [6] proposed the
method of phase sensitivity. We briefly recall the definition. From the map (1), we have the
recurrence relation

∂xn+1

∂θn
= fθ (xn, θn) + fx (xn, θn)

∂xn
∂θn

. (3)

Thus, starting from the initial derivative ∂xn
∂θ0

, the derivatives at all points of the trajectory are

∂xn
∂θ0

=
nX
k=1

fθ (xk−1, θk−1)Rn−k (xk, θk) +Rn (x0, θ0)
∂x0
∂θ0

, (4)

where

RM (xm, θm) =
M−1Y
i=0

fx (xm+i, θm+i) , (5)

R0 = 1, and n is the number of iterations. According to (2), Rn ≈ ± exp (λxn). If the attractor
is not chaotic, then λx ≤ 0. In such a case, Rn(x0, θ0)

∂x0
∂θ0
→ 0 as n→ +∞. Then the equation

(4) can be expressed as

∂xn
∂θ0
≈ Sn =

nX
k=1

fθ(xk−1, θk−1)Rn−k(xk, θk). (6)

If Sn tends to infinite as n→ +∞ then the attractor is strange.
The maximum value of Sn after n iterations is denoted by

τn = max
1≤i≤n

{Si}. (7)

Take γn = min(x,θ) τn(x, θ) in some set of (x, θ), which is called the phase sensitivity. As the
number of iterations increases, the value of τn increases accordingly. If Sn tends to infinite as
n → +∞ then the attractor has infinite derivative with respect to the phase θ. In such a case,
the attractor is strange.

The phase sensitivity can distinguish quasiperiodic attractors and SNAs, but it can not dis-
tinguish effectively SNAs and chaotic attractors. To overcome this difficulty, inspired by the
phase sensitivity [5], we consider the following measure, the average

L = lim
n→∞

1

n

n−1X
k=0

ln

�����
∂xk+1

∂θ0

����� . (8)

which characterises the strange property of attractors. In particular, this quantity yields to be
more intuitive. When L < 0, the attractor is quasiperiodic. When L > 0, the attractor has the
strange property. When L is not convergent, the attractor is chaotic. Thus, using the quantity L,
the quasiperiodic attractor, SNA, and chaotic attractor can be distinguished. In Sec. 3, we will
verify the reliability of this measure and compare it with the phase sensitivity through concrete
examples.
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Now, we give a brief explanation of the physical meaning of the measure L. For map (1), if
f (xk, θk) = p(xk)g(θk), it has an invariant curve x = φ(θ), then

L = lim
n→∞

1

n

n−1X
k=0

ln

�����
∂ [p (xk) g (θk)]

∂θ0

�����
= lim

n→∞

1

n

n−1X
k=0

ln

�����
d [p (ϕ (θk)) g (θk)]

dθ0

�����
= lim

n→∞

1

n

n−1X
k=0

ln

�����
d [p (ϕ (θ0 + kω)) g (θ0 + kω)]

dθ0

�����
= lim

n→∞

1

n

n−1X
k=0

ln |p′ (ϕ (θ0 + kω))ϕ′ (θ0 + kω) g (θ0 + kω) + p (ϕ (θ0 + kω)) g′ (θ0 + kω)| .

(9)
By Birkhoff’s ergodic theorem [5], we have

Z
S1

ln |p′ (ϕ (θ))ϕ′ (θ) g (θ) + p (ϕ (θ)) g′ (θ)| dθ. (10)

If the invariant curve is an SNA, the absolutely value of p′ (ϕ (θ))ϕ′ (θ) g (θ) is larger than
that of p (ϕ (θ)) g′ (θ). Thus,

L ≈
Z
S1

ln |p′(ϕ(θ))ϕ′(θ)g(θ)| dθ =
Z
S1

ln |p′(ϕ(θ))| dθ +
Z
S1

ln |ϕ′(θ)| dθ +
Z
S1

ln |g(θ)|dθ.
(11)

Since p(x) and g(θ) are smooth, the main contribution to L is
R
S1 ln |ϕ′(θ)|. Therefore, L

describes the oscillation of the invariant curve.

3. Examples

Example 1: The GOPY model (Grebogi et al [2], the seminal work on SNA),

xn+1 = 2σ(tanhxn)cosθn,

θn+1 = θn + 2πω(mod 2π).
(12)

where ω is an irrational number. SNA is widespread in dynamical systems with quasiperiodic
excitation. In Ref. [2], ω is the inverse of the golden mean (ω = (

√
5−1)/2 ). According to the

analysis in Ref. [2], there is an SNA for |σ| > 1. Here, we take σ = 1.2 as an example to verify
the strange property of SNA using the definition (8). In Fig. 1(a), the SNA is plotted. Because
of the ergodicity in the θ direction, the orbit is the uniform distribution along the θ-axis, so the
attractor is a dense set of points in θ direction [20]. The numerical results show that L is equal
to 2.6, a positive constant, indicating that the attractor has the strange property, as shown in Fig.
1(b). The corresponding to the Lyapunov exponent λx is negative (λx=-0.417), as shown in Fig.
2(a). Then we know that the SNA is non-chaotic, and the strange property can be verified by
phase sensitivity [6], recurrence plots [21], and singular continuous power spectrum [7]. For
phase sensitivity, the value of γn increases with the number of iterations, and it does not tend to
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be a fixed value, as shown in Fig. 2(b). For recurrence plots, it has the complex texture and the
signature of disruptions on the recursive matrix, and the continuity of the diagonal can verify
that the process is non-chaotic, as shown in Fig. 2(c). For singular continuous power spectrum,
it exhibits a combination of continuous and discrete components, as shown in Fig. 2(d).

(a) (b)

Figure 1: For σ = 1.2, (a) the phase diagram; (b) the measure L.

(a) (b)

(c) (d)

Figure 2: Verifying strange property of SNA for σ = 1.2: (a) Lyapunov exponent in the x direction; (b) phase
sensitivity; (c) recurrence plots; (d) singular continuous power spectrum.
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Example 2: The Ricker family with quasiperiodic excitation is considered [22], the skew
product system F : S1 × R+ → S1 × R+ is defined by

(θ, x) 7→ (θ + ω, f(x)g(θ)), (13)

where ω is still the inverse of the golden mean. S1 = R/Z denotes the unit circle, g(θ) =
sin(πθ), and the function f(x) = fα,β(x) = αxe−βx. Then we get

f(x)g(θ) = fα,β(x)g(θ) = αxe−βxsin(πθ), α > 0, β > 0. (14)

We take β = 2, α is the control parameter. By combining theory and numerical simulation,
the attractor is an SNA for 2 < α < 16.5. Here, α = 15 is taken as an example to calculate the
measure L of the attractor. The result shows that SNA has fractal geometric structure, as shown
in Fig. 3(a). In addition, we can see that L eventually converges to 4.46. In the initial stage of
calculation (the first 40, 000 iterations), the value of 1

n

Pn−1
k=0 ln

���∂xk+1

∂θ0

��� is not stable, exhibiting
a transient, but it tends to be stable in the following 60, 000 iterations, as shown in Fig. 3(b).
The corresponding Lyapunov exponent λx is negative (λx=-0.09), as shown in Fig. 5(a). For
α = 20, the attractor is chaotic, the calculation result increases linearly, the value of L lends
to infinity with increasing number of iterations, as shown in Figs. 4(a) and 4(b). λx is negative
(λx=0.07), as shown in Fig. 5(b). Then the reliability of the definition (8) is verified again.
This measure is convenient, it only needs to know the final stable value to judge the strange
property of attractors. Now, we use the method of phase sensitivity to study these two sets of
parameters. When the attractors are SNAs ( α = 15) and chaotic attractors (α = 20), as the
number of iterations increases, the value of γn increases continuously, as shown in Figs. 6(a)
and 6(b). Then according to this concept by itself we cannot distinguish between these two kinds
of attractors. In addition, in order to determine the strange property of SNA more accurately,
we use the methods of recurrence plots and singular continuous power spectrum. The vertical
and horizontal bands in Fig. 7(a) represent the recurrence of states at different epochs and are
displayed at constant time periods. The result shows that the texture is complex. However, the
diagonal lines in the recurrence plot is continuous, the SNA is nonchaotic. Moreover, it has a
singular continuum spectrum, which is represented by δ-peaks at certain frequencies, but it is
also continuous, as shown in Fig. 7(b).
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(a) (b)

Figure 3: For α = 15, (a) the phase diagram; (b) the measure L.

(a) (b)

Figure 4: For α = 20, (a) the phase diagram; (b) the measure L.

(a) (b)

Figure 5: Lyapunov exponent in the x direction, (a) a = 15; (b) a = 20.
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(a) (b)

Figure 6: Phase sensitivity, (a) SNA; (b) chaotic attractor.

(a) (b)

Figure 7: Verifying strange property of SNA for α = 15, (a) recurrence plots; (b) singular continuous power
spectrum.

In order to verify the universality of the definition (8), we next investigate the properties
of SNA in a non-smooth system. In the process of numerical calculation, we can successfully
determine the properties of SNA by the measure L and the Lyapunov exponent.

Example 3: The piecewise linear logistic map

xn+1 =

¨
(r + ε cos 2πφn)xn, 0 ≤ xn < x̄,
(a+ ε cos 2πφn)xn (1− xn) , x̄ ≤ xn ≤ 1,

x̄− r

a
,

φn+1 = φn + ω(mod1).

(15)

We take r = 1.95 and ε = 0.3, a is to be considered as a control parameter. In Ref. [23],
we learned that a quasiperiodic attractor can evolve into an SNA through the fractal route. For
a = 3.25, the attractor is 2-tori quasiperiodic attractor which has no strange property, andL < 0,
as shown in Figs. 8(a) and 8(b). When a is increased to 3.257, the stability of the attractor
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changes, becoming unstable. The local structure of the attractor shows a wrinkling shape, but
the attractor still does not have the strange property, and the corresponding L = −0.076, but it
is very close to zero, as shown in Figs. 9(a) and 9(b). When a is increased to 3.27, the attractor
loses smoothness, as shown in Fig. 10(a). The measure L tends to a stable value 3.042 after
150,000 iterations, indicating that the attractor has strange property, as shown in Fig. 10(b).
The Lyapunov exponent in the x direction is λx = −0.01, indicating that the attractor has
nonchaotic property, as shown in 12(a). Therefore, the attractor is an SNA. When x is increased
to 3.28, the attractor is chaotic, the Lyapunov exponent λx is equal to 0.006, as shown in Figs.
11(a) and 12(b). The measure L of chaotic attractors shows different characteristics from that
of quasiperiodic attractors and SNAs. The measure L of quasiperiodic attractors and SNAs tend
to a stable value, but that of the chaotic attractors increases linearly. If the number of iterations
is infinity, the value of L corresponding chaotic attractors will go to infinity as in Fig. 11(b).
Although both SNAs and chaotic attractors have the strange property, it can be concluded that
chaotic attractors are stronger than SNAs by calculating the measure L.

However, we study these three sets of parameters by the phase sensitivity, and the quasiperi-
odic attractor and SNA can be clearly distinguished, because the quasiperiodic attractor is s-
mooth, γn is bounded. SNA is nonsooth, γn tends to infinite, as shown in Fig. 13(a). But for
chaotic attractors, γn also tends to infinity, as shown in Fig. 13(b). We still cannot distinguish
between SNAs and chaotic attractors. However, the measure L can do this, and three kinds of
attractors can be distinguished.

For this set of parameters, recurrence plots has the continuity of diagonal lines and complex
texture, and singular continuous power spectrum has continuous discrete components, which
can indicate that SNA has the strange property, as shown in Figs. 14(a) and 14(b).

(a) (b)

Figure 8: For a = 3.25, (a) the phase diagram; (b) the measure L.
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(a) (b)

Figure 9: For a = 3.257, (a) the phase diagram; (b) the measure L.

(a) (b)

Figure 10: For a = 3.27, (a) the phase diagram; (b) the measure L.

(a) (b)

Figure 11: For a = 3.28, (a) the phase diagram; (b) the measure L.
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(a) (b)

Figure 12: Lyapunov exponent in the x direction, (a) a = 3.27; (b) a = 3.28.

(a) (b)

Figure 13: Phase sensitivity, (a) a = 3.25 and a = 3.27; (b) a = 3.28.

(a) (b)

Figure 14: Verifying strange property of SNA for a = 3.27, (a) recurrence plots; (b) singular continuous power
spectrum.
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4. Determining the parameter ranges of the SNA

Verifying the strange property of SNA has been a difficult problem. Some numerical meth-
ods can be used to determine it, such as phase sensitivity, power spectrum, finite-time Lyapunov
exponents, rational approximations, and so on, but these methods can not accurately find the
boundary point among quasiperiodic attractors, SNAs, and chaotic attractors, that is, the param-
eter range corresponding SNA can not be determined accurately. The relevant numerical results
will be demonstrated by concrete examples in this Section. The boundary between quasiperi-
odic attractor and SNA is found by calculating L = 0, while the boundary between SNA and
chaotic attractor is found by determining the Lyapunov exponent λx = 0. Thus, the parameter
interval corresponding to SNAs can be determined accurately.

In this Section, we take example 3 to demonstrate how to determine the parameter range
corresponding to SNAs. We also take r = 1.95 and ε = 0.3, a is the control parameter. We
calculate the measure L varying with the parameter a and find the parameter values with L = 0.
L varying with the parameter a is shown in Fig. 15(a). We investigate the strange property of
the attractor in the interval [3.24, 3.32]. For a ∈ [3.24, 3.257), we have L < 0, the attractor
does not have the strange property and is a quasiperiodic attractor. When a = 3.257, L is equal
to 0, which is the boundary point (the point A is shown in Fig. 15) between the quasiperiodic
attractors and SNAs. For 3.257 < a < 3.32, we have L > 0, there are two kinds of attractors
in this parameter interval, namely, SNAs and chaotic attractors. They can be distinguished by
the definition (8). For a = 3.272, the Lyapunov exponent λx is equal to 0, and a = 3.272 is the
boundary point (the point B is shown in Fig. 15) between the SNAs and chaotic attractors. Then
we get that in the interval they are SNAs (between points A and B in Fig. 15). Therefore, there
exists a transition region in which SNAs alternate with chaotic attractors for a ∈ [3.272, 3.279],
and the interval is between points B and C in Fig. 15. For a ∈ (3.279, 3.29), there are chaotic
attractors, which are between points C and D in Fig. 15. But the chaotic attractors become
SNAs in the range of a ∈ (3.29, 3.305), which appears between two chaotic regions. On the
one hand, the result shows that the SNA appears not only between the quasiperiodic region and
the chaotic region, but also between two chaotic regions. On the other hand, we know that
the strange property of chaotic attractors is stronger than SNAs, the values of L is markedly
different, as show in Fig. 15(a). In addition, the boundary points of these attractors can be
accurately matched in Figs. 15(a) and 15(b), indicating that the definition (8) is feasible. In
such cases, it is concluded that the measure L is an effective and reliable method to verify the
strange property of attractors, which can distinguish among quasiperiodic attractors and SNAs.
Lyapunov exponent, as also L, can distinguish SNAs and chaotic attractors, so the range of
SNAs can be obtained.
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(a) (b)

Figure 15: For r = 1.5 and ε = 0.3, (a) L with the variation of a; (b) the Lyapunov exponent in the x direction
with the variation of a.

In addition, we study the range of SNAs in co-dimension two parameter diagram. We take
r = 1.9312, a and ε are control parameters. The global dynamics is shown in Fig. 16. In
numerical the calculation, we use the measure L and the Lyapunov exponent to determine the
kinds of attractors. The range corresponding to quasiperiodic attractors (QA) is denoted by
white, satisfying L < 0 and Lyapunov exponent λx < 0. The gray region corresponds to
SNAs, and the criterion of SNAs is that the Lyapunov exponent λ be less or equal to zero,
and L > 0. Chaotic attractors are in the purple range, which has the criterion of L increasing
linearly with the number of iterations and λx > 0. The escape regions are shown in black. We
know that SNAs exist between quasiperiodic attractors and chaotic attractors, as shown in Fig.
16. Therefore, it is shown that the measure L is effective in verifying the strange property of
attractors.

Figure 16: The two-parameter transition diagram.
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5. Conclusions

In this paper, we propose a measure to distinguish three kinds of attractors, namely, quasiperi-
odic attractors, SNAs, and chaotic attractors. The effectiveness of definition (8) is illustrated
in smooth and non-smooth systems. The measure L of SNAs is positive, that of quasiperiodic
attractors is negative, and the measure of chaotic attractors tend to infinity linearly. It is shown
that the strange property of chaotic attractors is larger than that of SNAs. Moreover, for a non-
smooth system, the parameter range of SNAs is determined by the measure L and the Lyapunov
exponent, and it is seen globally in the two-parameter transition diagram.
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