
Chaos, Solitons and Fractals 178 (2024) 114392

A
0

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Lyapunov exponents and extensivity of strongly coupled chaotic maps in
regular graphs
Juan Gancio a, Nicolás Rubido b,∗

a Universitat Politècnica de Catalunya, Departament de Fisica, Rambla Sant Nebridi 22, Terrassa 08222, Barcelona, Spain
b University of Aberdeen, King’s College, Institute for Complex Systems and Mathematical Biology, AB24 3UE, Aberdeen, United Kingdom

A R T I C L E I N F O

Keywords:
Coupled maps
Regular graphs
Extensivity
Lyapunov exponents

A B S T R A C T

In Thermodynamics and Statistical Physics, a system’s property is extensive when it grows with the system
size. When it happens, the system can be decomposed into separate components, which has been done in many
systems with weakly interacting components, such as for various gas models. Similarly, Ruelle conjectured 40
years ago that the Lyapunov exponents (LEs) of some sufficiently large chaotic systems are extensive, which
led to study the extensivity properties of chaotic systems with strong interactions. Because of the complexities
in these systems, most results achieved so far are restricted to numerical simulations. Here, we derive closed-
form expressions for the LEs and entropy rate of coupled maps in finite- and infinite-sized regular graphs,
according to the coupling strength, map’s chaoticity, and graph’s spectral properties. We show that this type
of system has either 4 or 5 cases for the LEs, depending on the graph’s extreme Laplacian eigenvalues. These
cases represent qualitatively different collective behaviours emerging in parameter space, including chaotic
synchronisation (𝑁 − 1 negative LEs) and incoherent chaos (𝑁 positive LEs). From the entropy rate, we show
that the ring and complete graphs (nearest-neighbour and all-to-all couplings, respectively) are extensive in
all parameter regions outside the chaotic synchronisation region. Although our derivations are restricted to
one-dimensional maps with constant positive derivative (i.e., chaotic), our approach can be used to find LE
and entropy rates for other regular graphs (such as for cyclic graphs) or be the basis for tackling small world
graphs via perturbative methods.
1. Introduction

Complexity research complements reductionism — it focuses on
systems that typically cannot be broken down into smaller subsystems
and study separately. The irreducibility in these systems stems from the
emergence of collective behaviours that are absent from the isolated
subsystems that compose them, due to the strong and non-trivial inter-
action between these subsystems. These systems are known as complex
systems [1–3]. However, for certain complex systems, the collective
dynamics can still be simplified to one of barely interacting subsystems.
Such behaviour is called extensive.

Extensivity is a property used to describe an observable (i.e., of
being extensive), such as the energy or entropy of a system. An ob-
servable, 𝑄, is said to be extensive if it grows with the systems size,
𝑁 [4] such that lim𝑁→∞𝑄∕𝑁 = constant [5]. For example, Clausius’
thermodynamic entropy (𝐻𝐶 = ∫ 𝛿𝑞∕𝑇 , where 𝛿𝑞 is the heat exchanged
between the system and the environment and 𝑇 the temperature of the
system) is proportional to the amount of matter in the system [6] and
Boltzmann–Gibbs (BG) entropy (𝐻𝐵𝐺 = −𝑘𝐵

∑

𝑖 𝑝𝑖 log 𝑝𝑖, with 𝑘𝐵 the
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Boltzmann constant and {𝑝𝑖} the probability distribution of accessible
micro-states) is proportional to the number of particles in the system
(for weakly interacting particles) [7].

For certain chaotic systems, Ruelle conjectured that the system
can be decomposed into smaller, identical, and weakly interacting
subsystems for system sizes larger than a limit [8]. When this happens,
the system’s observables can be expressed in terms of these subsystems
and the system is extensive. For example, the spectrum of Lyapunov
exponents (LE), which quantifies the average exponential divergence or
convergence of nearby trajectories, could be expressed as the addition
of the identical subsystems’ LE spectra. This means that as the system
size grows, we can order the system’s LE spectrum in decreasing
magnitude and plot them using a normalised index (i.e., 𝑖∕𝑁 ∈ [0, 1])
that should converge to a unique curve [9]: the system becomes ex-
tensive. This also means the area under the curve for the positive LEs
is extensive (i.e., the sum of all the positive LEs), which by Pesin’s
identity [10] we know is the upper bound to the Kolmogorov–Sinai
entropy rate [11]. This property of the LE spectrum – known as Ruelle’s
vailable online 16 December 2023
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conjecture – has been used to determine if chaos in extended systems
is extensive [12–18].

Extensive chaos has been studied in various systems, including the
Fermi-Pasta–Ulam 𝛽 model [9], the one dimensional Ginzburg–Landau
quation [12], Rayleigh–Bénard convection [13,14], the Lorenz-96
odel [15], Stuart-Landau oscillators [16,17], and neuronal mod-

ls [16,18]. However, these studies have focused on numerical simula-
ions, with analytical findings being an oddity; aside some recent results
or systems of one-dimensional, chaotic maps of constant derivative,
oupled in multiplex networks [19,20].

Here we provide a detailed analytical analysis of the spectrum of
Es for systems of one-dimensional, identical, chaotic maps of constant
erivative, coupled diffusively in regular graphs — extending some re-
ults from [19,20] and providing novel expressions for LEs and entropy
ates. We show that the collective chaotic behaviours determined by the
Es can be classified into 5 cases according to their eigenmodes and the

system’s control parameters (i.e., coupling strength, individual map’s
chaoticity, node degree, and graph’s Laplacian extreme eigenvalues).
We analyse how these 5 cases determine specific regions in parameter
space – revealing important information of the underlying attractor –
and helping us to derive closed-form expressions for their boundaries,
determining critical parameter values. We also derive closed-form ex-
pressions for the LEs and entropy rates of the 5 cases when the maps
are coupled in a ring or a complete graph (i.e., nearest neighbours
and all-to-all couplings, respectively). By analysing the thermodynamic
limit of these graphs, we show that the system is extensive in 4 of
LE’s cases. Extensivity fails only in the parameter region where chaotic
synchronisation is achieved, which is the case with 𝑁 −1 negative LEs.
We note that this region is vanishingly small for the ring graph but
finite in the complete graph.

Our work opens the door to carry similar derivations in coupled sys-
tems for the study of extensive chaos. Although our model is restricted
to chaotic maps with constant derivative and regular graphs, our results
help to improve our understanding of extensive chaos and its limits.
For example, our LE classification extends the cases in Refs. [19,20]
from 2 to 5. Our derivations of the closed-form expression for the LEs
and entropy rates of rings and complete graphs can be used to find
the Lyapunov dimension of the emerging attractors by means of the
Kaplan-York conjecture [21]. Also, these examples illustrate how our
approach can be used to find expressions for other regular graphs, such
as for 𝑘-cycles or 𝑘-Möbius ladders [22]. Moreover, they can be the
basis when changing the graph structure slightly for small-world graphs
or multiplex networks, where perturbation theory could be used.

2. Model and methods

2.1. Spectral properties of regular and cyclic graphs

In this work, we restrict our analysis to coupling chaotic maps
in regular graphs. These graphs include the lattices with periodic
boundary conditions and random graphs with uniform node degree
distribution; namely, any graph where each node has identical number
of neighbours. This means that we can define a matrix of node degrees
by 𝐊 = 𝑘 𝐈 and its inverse by 𝐊−1 = 𝐈∕𝑘, where 𝑘 is the node degree
and 𝐈 is the 𝑁 × 𝑁 identity matrix. Hence, the Laplacian matrix is
𝐋 = 𝐊−𝐀 = 𝑘 𝐈−𝐀, with 𝐀 being the adjacency matrix (𝐴𝑖𝑗 = 1 = 𝐴𝑗𝑖 if
there is a link between nodes 𝑖 and 𝑗 or 𝐴𝑖𝑗 = 0 otherwise). In particular,
we show results for cyclic graphs, which are a subclass of regular graphs
that allows cyclic permutations of nodes and hold a Fourier basis for
the eigenvalues and eigenvectors of 𝐋 [22–25].

For any graph, Gershgorin’s Circle theorem [26] bounds the Lapla-
cian’s eigenvalue spectrum to the interval [0, 2𝑘𝑀 ], where 𝑘𝑀 is the
largest node degree. For regular graphs, this implies that 𝜆𝑛 ∈ [0, 2𝑘] ∀ 𝑛.
Also, regular graphs are connected, implying that there is only one null
eigenvalue, 𝜆0 = 0 [27], and the rest is bounded between the smallest
non-zero eigenvalue 𝜆 – known as the algebraic connectivity or Fiedler
2

𝐹

eigenvalue – and the maximum eigenvalue 𝜆𝑀 . In the infinite limit size,
the probability density of eigenvalues in the interval [𝜆𝐹 , 𝜆𝑀 ] is not
null [28–30], which implies dealing with a continuum of eigenvalues
for our thermodynamic limit derivations.

2.2. Coupled map model

The model we consider here follows the Kaneko model of coupled
one-dimensional maps in regular graphs [22,31]. The map iterates are
found by

⃗𝑡+1 =
[

𝐈 − 𝜖𝐊−1 𝐋
]

𝑓
(

𝑥⃗𝑡
)

, (1)

when setting the initial conditions {𝑥(1)0 ,… , 𝑥(𝑁)
0 }, where 0 ≤ 𝜖 ≤ 1 is the

coupling strength and 𝑓
(

𝑥⃗𝑡
)

= {𝑓 (𝑥(1)𝑡 ),… , 𝑓 (𝑥(𝑁)
𝑡 )} is a column vector

with the 𝑁 identical mappings of the 𝑡th iterate states (with 𝑡 ∈ 𝐍).

2.3. Lyapunov exponent and eigenvalue spectra

Lyapunov exponents (LE) measure the average rate of exponential
divergence or convergence of orbits close to any particular solution
{𝑠𝑡}∞𝑡=0 = {𝑠(1)𝑡 ,… , 𝑠(𝑁)

𝑡 }∞𝑡=0 of Eq. (1). We can find the spectrum of LE of
Eq. (1) by considering independent linear perturbations to {𝑠𝑡}∞𝑡=0, such
that 𝑥⃗𝑡 = 𝑠𝑡+ 𝜉𝑡, and by keeping only the leading terms in 𝜉𝑡. This holds

𝜉𝑡+1 =
[

𝐈 − 𝜖𝐊−1𝐋
]

𝐉𝑓 (𝑠𝑡) 𝜉𝑡, (2)

where 𝐉𝑓 (𝑠𝑡) = diag{𝜕1𝑓 (𝑠
(1)
𝑡 ),… , 𝜕𝑁𝑓 (𝑠

(𝑁)
𝑡 )} is the Jacobian matrix of

𝑓 evaluated in the solution 𝑠𝑡 and 𝜕𝑖𝑓 = 𝑑 𝑓∕𝑑 𝑥(𝑖) are the derivatives
of the mapping components with respect to each independent variable.
From Eq. (2) and the Oseledets theorem [32] one can obtain the LE
spectrum by taking the time-average of the logarithm of the perturba-
tions. Because the Jacobian depends on 𝑠𝑡, we would require numerical
simulations to find the LEs.

In order to find analytical results, we restrict our analysis to maps
with constant derivative 𝛼 ∈ R, i.e., 𝜕𝑖𝑓𝑖(𝑠

(𝑖)
𝑡 ) = 𝛼 ∀ 𝑖 and 𝑠(𝑖)𝑡 . Then, the

Jacobian matrix is given by 𝐉𝑓 (𝑠𝑡) = 𝛼 𝐈 and Eq. (2) can be written as

𝜉𝑡+1 =
[

𝐈 − 𝜖𝐊−1 𝐋
]

𝛼 𝜉𝑡. (3)

This is a linear mapping from a constant matrix, 𝛼
[

𝐈 − 𝜖𝐊−1 𝐋
]

, to the
erturbations 𝜉𝑡 for each iteration. Moreover, this mapping is valid
or any solution {𝑠𝑡}∞𝑡=0 = {𝑠(1)𝑡 ,… , 𝑠(𝑁)

𝑡 }∞𝑡=0 of Eq. (1); including the
olution for a synchronous system 𝑠(1)𝑡 = ⋯ = 𝑠(𝑁)

𝑡 = 𝑠𝑡 ∀ 𝑡, being
𝑠𝑡}∞𝑡=0 = {𝑠𝑡}∞𝑡=01⃗.

We note that for regular graphs, 𝐋 can be transformed into a
iagonal matrix of real eigenvalues. Namely, 𝐋 = 𝐏𝜦𝐏−1, where 𝜦 =
iag{𝜆0,… , 𝜆𝑁−1} is the eigenvalue spectra and 𝐏 = {𝜓⃗0,… , 𝜓⃗𝑁−1}
s the matrix containing the (column) eigenvectors, such that 𝐋 𝜓⃗𝑛 =
𝑛 𝜓⃗𝑛 ∀ 𝑛. Consequently, we can change variables in Eq. (3) to 𝜁𝑡 =
−1𝜉𝑡, and the perturbations to {𝑠𝑡}∞𝑡=0 become decoupled in the 𝑁
igenmodes (𝑛 = 0, 1,… , 𝑁 − 1) according to
(𝑛)
𝑡+1 =

(

1 − 𝜖 𝜆𝑛∕𝑘
)

𝛼 𝜁 (𝑛)𝑡 , (4)

here the solution 𝜁 (𝑛)𝑡 = 𝑒𝜒𝑛 𝑡𝜁 (𝑛)0 gives the LE spectrum, {𝜒𝑛}𝑁−1
𝑛=0 [33–

5],

𝑛 = log
|

|

|

|

1 − 𝜖
𝜆𝑛
𝑘
|

|

|

|

+ 𝛼 = 𝜒𝑡𝑜𝑝
(

𝜖𝜆𝑛∕𝑘
)

+ 𝜒𝑑𝑦𝑛. (5)

𝜒𝑑𝑦𝑛 = 𝛼 is the contribution to 𝜒𝑛 from the one-dimensional mapping
dynamics and 𝜒𝑡𝑜𝑝 is the contribution from the topology. We note that
the zeroth mode is 𝜒0 = 𝜒𝑑𝑦𝑛 = 𝛼 because 𝜆0 = 0 (always). Also,
𝜆𝑛 ∈ [0, 2𝑘], then 𝜒𝑡𝑜𝑝(𝜖𝜆𝑛∕𝑘) < 0 ∀ 𝑛 > 0. In this work, we focus on
chaotic maps, 𝜒𝑑𝑦𝑛 > 0, so that the LE spectrum can have positive values

(i.e., when 𝜒𝑡𝑜𝑝 + 𝜒𝑑𝑦𝑛 > 0).
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2.4. Entropy rate, specific entropy rate, and extensivity

The LE are related to other invariant measures of a dynamical
system. For example, the entropy rate – or Kolmogorov–Sinai entropy
– is the production of entropy per unit of time and has an upper bound
ℎ given by the sum of positive LE. This relationship is known as the
Pesin identity [10],

ℎ =
∑

𝑛∈
𝜒𝑛, where  = {𝑛 ∈ [0, 𝑁 − 1] ⊂ N ∶ 𝜒𝑛 > 0}. (6)

In this work, we find closed-form expressions for ℎ and study
its dependency with the system size, particularly, in the thermody-
namic limit (𝑁 → ∞). The reason behind this study is assessing
the extensivity of our coupled maps. An observable 𝑄(𝑥(1),… , 𝑥(𝑁)) is
said to be extensive if it scales proportionally with 𝑁 [4] such that
lim𝑁→∞𝑄(𝑥(1),… , 𝑥(𝑁))∕𝑁 = constant [4,5]. Thus, we define a specific
entropy rate, 𝜂 = ℎ∕𝑁 , and refer to our coupled maps as extensive if
lim𝑁→∞ 𝜂 = constant.

3. Results

Here, we introduce a classification for the spectrum of Lyapunov
exponents (LEs) of qualitatively different dynamical scenarios emerging
in a system of chaotic maps with constant derivative coupled in generic
regular graphs. Our classification depends on the sign of the LEs, where
the resultant dynamical scenarios include: only having chaotically di-
vergent directions with positive LEs, having a mix of divergent and
convergent directions with positive and negative LEs, or having one
positive LE and then convergent directions with negative LEs, which
is the regime of chaotic synchronisation. Moreover, we distinguish 3
types of scenarios for the case of mixed LE signs with different emerging
properties.

Our classification is constructed by analysing the coupling strength
𝜖, maps’ chaoticity 𝜒𝑑𝑦𝑛, and topological characteristics of the graph, in-
cluding the node degree 𝑘, Laplacian eigenvalue properties, and system
size 𝑁 . Our results include closed-form expressions and illustrations
in parameter space of the classification boundaries and critical control
parameters as well as particular derivations for the ring and complete
graph (all-to-all coupling). Importantly, we show how our classifica-
tion and closed-form expressions help to determine the entropy rate
and extensive properties for these particular graphs, fulfilling Ruelle’s
conjecture outside the synchronous region.

3.1. General classification of Lyapunov exponents’ spectra according to
control parameters and graph’s characteristics

According to Eq. (5), the system’s LEs are a function of the map’s
chaoticity, 𝜒𝑑𝑦𝑛, coupling strength, 𝜖, and the normalised Laplacian
eigenvalues of the graph, 𝜆𝑛∕𝑘, which depend implicitly on the system
size, 𝑁 . We note that the absolute value in Eq. (5) creates a folding
in the LE spectrum when 𝜖𝜆𝑛∕𝑘 > 1. This means that, even if the
eigenvalues of the Laplacian matrix 𝐋 are ordered such that 𝜆0 = 0 <
𝜆1 ≤ ⋯ ≤ 𝜆𝑁−1, the LEs are not ordered according to the eigenvalues.
In what follows, we use this folding to introduce our LE classification
and derive the limits of validity in each class.

We distinguish 3 cases for the LE spectrum, which are illustrated by
vertical continuous lines in Fig. 1. For finite regular graphs, these lines
are discrete sets of points, whose distribution depends on the graph’s
topological properties. The parameter region that generates negative
LEs is highlighted by the horizontal (middle) blue shaded area (with
well-defined bounds). Positive LEs are generated outside of it, within
the pink shaded areas.

We refer to Case 1 when all LEs are positive, {𝜒𝑛}𝑁−1
𝑛=0 > 0 (leftmost

vertical line in Fig. 1); namely, 𝜒𝑡𝑜𝑝 + 𝜒𝑑𝑦𝑛 > 0, ∀ 𝑛 in Eq. (5). This case
implies chaotic collective dynamics and happens only if there are no
3

folded modes in Eq. (5). Initially, we can get Case 1 either by having 𝜒
0 < 𝜖𝜆𝑛∕𝑘 < 1 − exp (−𝜒𝑑𝑦𝑛), ∀ 𝑛 > 0 (when 1 − 𝜖𝜆𝑛∕𝑘 > 0) or by having
1 + exp (−𝜒𝑑𝑦𝑛) < 𝜖𝜆𝑛∕𝑘 < 2, ∀ 𝑛 > 0 (when 1 − 𝜖𝜆𝑛∕𝑘 < 0). However,
the second condition, which corresponds to having only folded modes,
cannot happen in any regular graph except for the complete graph,
where 𝜆𝑛∕𝑘 = 𝑁∕𝑁 − 1, ∀ 𝑛 > 0 [27].

In opposition, we refer to Case 3 when all LEs are negative – with
the exception of the first mode, 𝑛 = 0, which is always positive
(rightmost vertical line in Fig. 1). Namely, 𝜒𝑡𝑜𝑝 + 𝜒𝑑𝑦𝑛 < 0 ∀ 𝑛 > 0 or
equivalently {𝜒𝑛}𝑁−1

𝑛=1 < 0. This case corresponds to having a completely
synchronous chaos, and happens only if 1 − exp (−𝜒𝑑𝑦𝑛) < 𝜖𝜆𝑛∕𝑘 <
1 + exp (−𝜒𝑑𝑦𝑛), ∀ 𝑛 > 0 [22].

In between these cases, we refer to Case 2 when the system can have
positive and negative LEs (and null LEs). There are 3 possibilities to
obtain mixed signs in the LE spectrum, which we introduce as Types
I, II, and III and represent by 3 central vertical lines in Fig. 1. Case 2 -
Type I happens when the positive part of the LE spectrum is obtained
from unfolded modes, i.e., for 𝑛, 𝜖, and 𝑘, such that 0 < 𝜖𝜆𝑛∕𝑘 < 1,
which implies 0 < 1 − 𝜖𝜆𝑛∕𝑘 in Eq. (5). Case 2 - Type II happens
when the positive LEs are obtained from folded modes, which implies
1 − 𝜖𝜆𝑛∕𝑘 < 0 in Eq. (5) for those modes. Case 2 - Type III has positive
LEs from both folded and unfolded modes.

We note that the position and existence of the different cases in
parameter space is mainly dependent on the value of 𝜆𝐹 , 𝜆𝑀 , and 𝑘,
which are topological characteristics. The normalised Fiedler eigen-
value, 𝜆𝐹 ∕𝑘, determines the lower end of any vertical segment in Fig. 1,
and the normalised maximum eigenvalue, 𝜆𝑀∕𝑘, determines the upper
end of any vertical segment in Fig. 1. Namely, 𝜆𝐹 ∕𝑘 and 𝜆𝑀∕𝑘 bound
the LE spectrum. In the case of a complete (all-to-all) graph, 𝜆𝐹 ∕𝑘 =
𝜆𝑀∕𝑘 = 𝑁∕(𝑁 − 1) = 𝜆𝑛∕𝑘, which means that instead of vertical lines
in Fig. 1 there is a single point. Consequently, the LEs of an all-to-all
coupled map system either fall under Case 1 or 3.

3.2. Universal parameter regions and explicit boundaries for our classifica-
tion of Lyapunov spectra

The lines that separate the different shaded areas in Fig. 1 corre-
spond to null LEs, i.e., when 𝜒𝑡𝑜𝑝(𝜖𝜆𝑛∕𝑘) + 𝜒𝑑𝑦𝑛 = 0 in Eq. (5) for some
𝑛 > 0, which imply that 𝜖𝜆𝑛∕𝑘 = 1±exp(−𝜒𝑑𝑦𝑛) for that 𝑛. The limits for
the different LE cases appear when either 𝑛 = 𝐹 or 𝑀 , since then, the
remaining modes hold either larger (𝜆𝑛∕𝑘 ≥ 𝜆𝐹 ∕𝑘) or smaller (𝜆𝑛∕𝑘 ≤
𝜆𝑀∕𝑘) values. This allows us to analyse the critical values that the
other control parameters take – namely, 𝜖 and 𝜒𝑑𝑦𝑛 – when following
the null LE condition, deriving closed-form expressions for the limits
of the 3 LE cases in the (𝜖, 𝜒𝑑𝑦𝑛) parameter space. These results are
represented in Fig. 2, where we differentiate the LE spectrum cases and
types according to whether the regular graph is such that 𝜆𝐹 +𝜆𝑀 > 2𝑘
or such that 𝜆𝐹+𝜆𝑀 < 2𝑘. We discuss the reason behind this topological
differentiation in Case 3 and 2, but we have also reported it emerging
in the context of coupled-maps’ synchronisation [22].

For a finite 𝜒𝑑𝑦𝑛 and sufficiently small 𝜖, the LE spectrum falls in
the Case 1 category — namely, 𝜒𝑛 > 0 ∀ 𝑛. It remains as a Case 1
until 𝜒𝑑𝑦𝑛 is decreased or 𝜖 increased enough to have 𝜖𝜆𝑀∕𝑘 = 1 −
exp(−𝜒𝑑𝑦𝑛), which is represented by the lowest horizontal dashed line
in Fig. 1. After that point, negative LEs appear and we leave Case 1 —
the completely incoherent chaotic regime ends. This implies that the
boundary of Case 1 is

𝜖(1)
𝜆𝑀
𝑘

= 1 − exp(−𝜒𝑑𝑦𝑛) ⇒ 𝜖(1) =
[

1 − exp(−𝜒𝑑𝑦𝑛)
]

(

𝜆𝑀
𝑘

)−1
, (7)

which defines a critical 𝜖 as a function of 𝜒𝑑𝑦𝑛 – inverting Eq. (7) holds
the minimal 𝜒𝑑𝑦𝑛 as a function of 𝜖. So, given a 𝜒𝑑𝑦𝑛 > 0 and while
< 𝜖(1), the system is in a completely incoherent chaotic regime with
LE spectrum in Case 1, which corresponds to the (𝜖, 𝜒𝑑𝑦𝑛) parameter

egions on the left of the panels in Fig. 2 (blue shaded areas).
On the other hand, for a finite 𝜖 and sufficiently small (but positive)
𝑑𝑦𝑛, the LE spectrum falls in the Case 3 category — namely, 𝜒𝑛 <
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Fig. 1. Classification of Lyapunov exponents of coupled maps according to control parameters and graph characteristics. Vertical lines represent the normalised non-zero eigenvalues
of a generic regular graph, 𝜆𝑛∕𝑘 (𝑛 = 1,… , 𝑁 − 1 the eigenmodes), multiplied by the coupling strength 𝜖 between identical chaotic maps (𝜖 ∈ [0, 1]), i.e., 𝜖𝜆𝑛∕𝑘. The resultant
Lyapunov exponents (LEs) depend on the map’s (isolated and fixed) chaoticity, 𝜒𝑑𝑦𝑛, and 𝜖𝜆𝑛∕𝑘 [see Eq. (5)], creating different cases for the LEs’ signs. Negative [Positive] LEs
fall within [outside] the centrally shaded blue region.
Fig. 2. Analytic representation of the different cases of Lyapunov spectra in parameter space for chaotic maps coupled in generic regular graphs. Left [Right] panel: 5 different
cases of Lyapunov exponents [as in Fig. 1] emerging from the coupled system when the graph’s Laplacian eigenvalues are such that 𝜆𝐹 + 𝜆𝑀 > 2𝑘 [𝜆𝐹 + 𝜆𝑀 < 2𝑘], 𝜆𝐹 and 𝜆𝑀
being the Fiedler and largest Laplacian eigenvalues, respectively. Cases are represented with different coloured regions, whose boundaries are determined by the critical coupling
strength curves 𝜖(1) [Eq. (7)], 𝜖(2) [Eq. (8)], and 𝜖(3) [Eq. (9)].
0 ∀ 𝑛 > 0. It remains as a Case 3 until 𝜒𝑑𝑦𝑛 is increased enough or 𝜖
is either decreased until 𝜖𝜆𝐹 ∕𝑘 = 1 − exp (−𝜒𝑑𝑦𝑛) (which corresponds
to having the smallest mode reach the lowest horizontal dashed line in
Fig. 1) or increased until 𝜖𝜆𝑀∕𝑘 = 1 + exp (−𝜒𝑑𝑦𝑛) (which corresponds
to having the largest mode reach the highest horizontal dashed line in
Fig. 1). Crossing these limits creates a positive LE and we leave Case 3
– the completely synchronous chaotic regime ends. So, the lower bound
of Case 3 is

𝜖(2) =
[

1 − exp(−𝜒𝑑𝑦𝑛)
]

(

𝜆𝐹
𝑘

)−1
, (8)

and the upper bound of Case 3 is

𝜖(3) =
[

1 + exp(−𝜒𝑑𝑦𝑛)
]

(

𝜆𝑀
𝑘

)−1
, (9)

which define a critical 𝜖 as a function of 𝜒𝑑𝑦𝑛 – inverting Eq. (8) or (9)
gives a maximal 𝜒𝑑𝑦𝑛. When 𝜖 = 𝜖(2) or 𝜖 = 𝜖(3), a LE becomes null,
but when the graph is such that 𝜆𝐹 + 𝜆𝑀 < 2𝑘, 𝜖(3) cannot be reached
for any 𝜖 ∈ (0, 1] for such a small 𝜒𝑑𝑦𝑛. Overall, the (𝜖, 𝜒𝑑𝑦𝑛) parameter
regions where Case 3 is valid are located on the bottom of the panels
in Fig. 2 (grey shaded areas).

The intersection of the critical 𝜖(2) line with 𝜖(3) or 𝜖 = 1 determines
the maximum chaoticity that can be synchronised, 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 , in regular
graphs with 𝜆𝐹 + 𝜆𝑀 > 2𝑘 or 𝜆𝐹 + 𝜆𝑀 < 2𝑘, respectively. 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 is
signalled by a filled circle in Fig. 2 and has the following expressions
4

for the respective graphs

⎧

⎪

⎨

⎪

⎩

𝜒𝑚𝑎𝑥𝑑𝑦𝑛 = − log
[

1−(𝜆𝐹 ∕𝜆𝑀 )
1+(𝜆𝐹 ∕𝜆𝑀 )

]

= 2 tanh−1
(

𝜆𝐹
𝜆𝑀

)

,

𝜒𝑚𝑎𝑥𝑑𝑦𝑛 = − log
[

1 − 𝜆𝐹
𝑘

]

,
(10)

which are derived from making 𝜖(2) = 𝜖(3) and 𝜖(2) = 1, respectively.
These maximal values determine whether 𝜒𝑑𝑦𝑛 is sufficiently small or
not (see [22]).

In between Cases 1 and 3, the LE spectra falls in the Case 2
category — namely, the system can have positive, null, and negative
LEs, with collective dynamics that can include synchronous clusters or
chimera states. The three types of Case 2 are represented in the (𝜖, 𝜒𝑑𝑦𝑛)
parameter regions of Fig. 2 by the yellow (Case 2 - Type I), red (Case 2
- Type III), and green (Case 2 - Type II) shaded areas, where the latter
appears only if the graph is such that 𝜆𝐹 +𝜆𝑀 > 2𝑘 (left panel of Fig. 2).

Case 2 - Type I happens when 𝜖(1) < 𝜖 < min{𝜖(2), 𝜖(3), 1}, where the
positive part of the LE spectrum comes from unfolded modes, i.e., 0 <
𝜖𝜆𝑛∕𝑘 < 1 for those 𝑛 (see Fig. 1). A Case 2 - Type I happens when we
increase 𝜖 from Case 1 (i.e., 𝜖 > 𝜖(1)) or as we decrease 𝜖 from Case 3 –
as long as the regular graph is not a complete graph. This means that
the lower bound of Case 2 - Type I is 𝜖(1), but the upper bound depends
on the value of 𝜒𝑑𝑦𝑛 (which happens when 𝜖𝜆𝑀∕𝑘 = 1+exp (−𝜒𝑑𝑦𝑛)) and
on the graph being such that 𝜆𝐹 + 𝜆𝑀 > 2𝑘 or < 2𝑘. For 𝜒𝑑𝑦𝑛 > 𝜒𝑚𝑎𝑥𝑑𝑦𝑛
[Eq. (10)], the upper bound of Case 2 - Type I is min{𝜖(3), 1}. For
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𝜒𝑑𝑦𝑛 < 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 [Eq. (10)], the upper bound of Case 2 - Type I is 𝜖(2). These
ounds, i.e., 𝜖(1) < 𝜖 < min{𝜖(2), 𝜖(3), 1}, define the yellow shaded area

in Fig. 2 for the regular graphs fulfilling 𝜆𝐹 + 𝜆𝑀 > 2𝑘 (left panel) and
𝜆𝐹 + 𝜆𝑀 < 2𝑘 (right panel).

Case 2 - Type II happens when the positive part of the LE spectrum
omes from folded modes (in opposition to Case 2 - Type I). This implies
hat 𝜖𝜆𝑛∕𝑘 > 1 in Eq. (5) for those modes (see Fig. 1), which can only
appen in regular graphs fulfilling 𝜆𝐹 + 𝜆𝑀 > 2𝑘. The upper bound of

Case 2 - Type II is 𝜖 = 1, but the lower bound depends on whether
𝜒𝑑𝑦𝑛 < 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 or 𝜒𝑑𝑦𝑛 > 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 [Eq. (10)]. If 𝜒𝑑𝑦𝑛 < 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 , then the
lower bound is 𝜖(3) < 𝜖 ≤ 1. If 𝜒𝑑𝑦𝑛 > 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 , then the lower bound is
𝜖(2) < 𝜖 ≤ 1. When 𝜒𝑑𝑦𝑛 = 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 , 𝜖(2) = 𝜖(3). Consequently, Case 2 - Type
II only appears on the left panel of Fig. 2 as a green shaded area.

Case 2 – Type III has positive LEs from folded and unfolded modes
and con only occur if 𝜒𝑑𝑦𝑛 > 𝜒𝑚𝑎𝑥𝑑𝑦𝑛 [Eq. (10)]. It is bounded by Case 2
- Type I and Case 2 - Type II. Thus, the parameter region of Case 2 –
Type III is 𝜖(3) < 𝜖 < min{𝜖(2), 1}, which is represented as red shaded
areas in Fig. 2.

3.3. Application of our Lyapunov spectra classification in an extensivity
analysis of coupled maps in ring graphs

Now we show how our classification differentiates the emerging
dynamics for a set of coupled chaotic maps in ring graphs (𝑁 (𝑘)
where 𝑘 = 2) of different sizes. We study the emerging dynamics
according to 𝜖 and 𝜒𝑑𝑦𝑛, quantifying the complexity of the underlying
attractors in this parameter space with the entropy rate ℎ [Eq. (6)]
and showing which dynamics are extensive in the thermodynamic limit
(i.e., lim𝑁→∞ ℎ∕𝑁 → constant).

For 𝑁 (2), the Laplacian eigenvalues are 𝜆𝑛[𝑁 (2)] = 2[1− cos(2𝜋 𝑛∕
)] = 4 sin2(𝜋 𝑛∕𝑁) with 𝑛 = 0,… , 𝑁−1 [22,25,27]. Thus, they contain

egeneracies (i.e., most eigenvalues have multiplicity = 2), with the
xception of 𝜆0 = 0 and, if 𝑁 is odd, the maximum eigenvalue 𝜆𝑀 .

So, we can sort them: 𝜆0 = 0 < 𝜆1 = 𝜆𝐹 = 𝜆𝑁−1 ≤ 𝜆2 = 𝜆𝑁−2 ≤
𝜆3 = 𝜆𝑁−3 ≤ ⋯ ≤ 𝜆

⌊𝑁∕2⌉ = 𝜆𝑀 , which is relevant when separating
folded from unfolded LE modes. In particular, the LEs of coupled maps
𝜒𝑛 [Eq. (5)] in 𝑁 (2) are given by

𝜒𝑛[𝑁 (2)] = log
|

|

|

|

1 − 2𝜖 sin2
(𝜋 𝑛
𝑁

)

|

|

|

|

+ 𝜒𝑑𝑦𝑛, with 𝑛 = 0,… , 𝑁 − 1. (11)

We note that 𝜆𝐹 [𝑁 (2)] = 4 sin2 (𝜋∕𝑁) and 𝜆𝑀 [𝑁 (2)] = 4 sin2 (𝜋∕2) =
, which means that 𝜆𝐹 + 𝜆𝑀 > 2𝑘 = 4 and Case 2 - Type II can
e achieved (see left panel in Fig. 2). With 𝜆𝐹 and 𝜆𝑀 we derive the
ollowing equations for the boundaries of our LE classification [Eqs. (7),
8), and (9)]:
(1)
𝑁 (2) =

1 − 𝑒−𝜒𝑑𝑦𝑛
2

, 𝜖(2)𝑁 (2) =
1 − 𝑒−𝜒𝑑𝑦𝑛

2 sin2 (𝜋∕𝑁)
, 𝜖(3)𝑁 (2) =

1 + 𝑒−𝜒𝑑𝑦𝑛
2

, (12)

which for 𝜒𝑑𝑦𝑛 → ∞ tend to 𝜖(1)𝑁 (2)(𝜒𝑑𝑦𝑛 → ∞) = 𝜖(3)𝑁 (2)(𝜒𝑑𝑦𝑛 → ∞) = 1∕2
independently of 𝑁 , and 𝜖(2)𝑁 (2)(𝜒𝑑𝑦𝑛 → ∞) = 1∕2 sin2 (𝜋∕𝑁).

Extensivity in ring graphs. To analyse whether the emerging dynamics
from coupled maps in 𝑁 (2) is extensive, we analyse the Thermody-
namic limit of the specific entropy 𝜂 = ℎ∕𝑁 by using Eq. (11) – 𝜂
should tend to a constant when 𝑁 → ∞ if the system is extensive. In
what follows, we assume 𝜒𝑑𝑦𝑛 constant (for simplicity) and treat 𝜂 as a
function of 𝜖 and 𝑁 : 𝜂 = 𝜂(𝜖,𝑁).

For the parameter region where the LEs fall under our Case 1
classification (namely, when all LEs are positive), the entropy rate in
𝑁 (2) graphs is

ℎ1 = 𝑁𝜒𝑑𝑦𝑛 +
𝑁−1
∑

𝑛=1
log

[

1 − 2𝜖 sin2
(𝜋𝑛
𝑁

)]

> 0. (13)

To get an expression of ℎ as a function of 𝑁 , we expand the loga-
rithm in a Maclaurin series, ℎ1 = 𝑁𝜒𝑑𝑦𝑛−

∑𝑁−1
𝑘=1

[

∑∞
𝑗=1

[

2𝜖 sin2
(

𝜋𝑘
)]𝑗 1

]

5

𝑁 𝑗 s
and note that the first three terms are closed sums (See Appendix:
Closed sums derivation). This allows us to express Eq. (13) as ℎ1 =
𝑁𝜒𝑑𝑦𝑛 − 𝜖𝑁 − 3

4 𝜖
2𝑁 − 5

6 𝜖
3𝑁 +

(

𝜖4
)

, which is positive by construction
(in spite of the negative terms). Consequently, we can say that in the
chaotically incoherent region of Case 1 and up to fourth order in 𝜖,
𝜂1(𝜖, 𝑁) = ℎ1∕𝑁 ≃ 𝜒𝑑𝑦𝑛 − 𝜖 −

3
4 𝜖

2 − 5
6 𝜖

3 is constant and the system is
extensive when 𝜖 is kept constant and 𝑁 → ∞.

For the Case 2 - Type I region, the positive part of the LE spectrum
is obtained from unfolded modes (see Fig. 1), and these are the only
modes included in ℎ when doing the summation of Eq. (6). This means
that the positive LEs come from the first Laplacian eigenvalues up
to mode 𝑃 (𝜖, 𝜒𝑑𝑦𝑛, 𝑁)∕2 and their corresponding degenerate modes.
Namely, from the set of eigenvalues {𝜆0, 𝜆1, 𝜆𝑁−1, 𝜆2, 𝜆𝑁−2, … , 𝜆 𝑃

2
,

𝜆𝑁− 𝑃
2
}.

To determine 𝑃 (𝜖, 𝜒𝑑𝑦𝑛, 𝑁), we find the LE mode 𝑛 = 𝑃 (𝜖, 𝜒𝑑𝑦𝑛, 𝑁)∕2
such that 𝜒𝑛[𝑁 (2)] = 0. We do this by inverting Eq. (11), which holds

𝑃 (𝜖, 𝜒𝑑𝑦𝑛, 𝑁) = ⌊

𝑁
𝜋

arcsin
⎡

⎢

⎢

⎣

√

1 − exp(−𝜒𝑑𝑦𝑛)
2𝜖

⎤

⎥

⎥

⎦

⌋ < 𝑁 − 1, (14)

where ⌊⋅⌋ is the floor operator, rounding the argument to the closest
ower integer. We note from Eq. (14) that 𝑃 ∝ 𝑁 and we can use it to
efine the entropy rate of Case 2 - Type I, ℎ2,𝐼 , by

ℎ2,𝐼 = (𝑃 + 1) 𝜒𝑑𝑦𝑛 + 2
𝑃∕2
∑

𝑛=1
log

[

1 − 2𝜖 sin2
(𝜋𝑛
𝑁

)]

, (15)

where the multiplicative factor 2 comes from the multiplicity (degen-
eracy) of these eigenmodes. In the limit 𝑁 → ∞, the summation in
Eq. (15) can be replaced by an integral. Thus, ℎ2,𝐼 = (𝑃 + 1)𝜒𝑑𝑦𝑛 +
𝑁
𝜋 ∫ 𝑥𝑚𝑎𝑥0 log ||

|

1 − 2𝜖 sin2 (𝑥)||
|

𝑑𝑥, with 𝑥𝑚𝑎𝑥 = 𝜋
𝑁

𝑃
2 , which is independent

of 𝑁 . Consequently, we have that ℎ2,𝐼 ∝ 𝑁 when 𝑁 → ∞, making the
system extensive in this dynamical region as well.

For the Case 2 - Type III region, there are positive LEs coming from
folded and unfolded modes. The number of unfolded modes is found as
in Case 2 - Type I; meaning that there are 𝑃1 unfolded modes given by
Eq. (14). Then, there are 𝑃2 folded modes given by

𝑃2 = (𝑁 − 1) − ⌊

𝑁
𝜋

arcsin
⎡

⎢

⎢

⎣

√

1 + exp(−𝜒𝑑𝑦𝑛)
2𝜖

⎤

⎥

⎥

⎦

⌋ < 𝑁 − 1, (16)

hich we find by inverting Eq. (11) when the argument of the absolute
alue is negative. This means that in total, there are 𝑃 = 𝑃1 + 𝑃2 + 1
ositive LEs in this case (where the +1 comes from the null Laplacian
igenvalue). Thus, the entropy rate for Case 2 - Type III is

2,𝐼𝐼𝐼 = (𝑃1 + 𝑃2 + 1)𝜒𝑑𝑦𝑛 + 2
𝑃1∕2
∑

𝑛=1
log

[

1 − 2𝜖 sin2
(𝜋𝑛
𝑁

)]

+2
𝑁∕2
∑

𝑛=𝑃2∕2
log

[

2𝜖 sin2
(𝜋𝑛
𝑁

)

− 1
]

, (17)

where 𝑃1 is determined by Eq. (14) and 𝑃2 by Eq. (16). We note also
that both numbers are proportional to 𝑁 .

In the thermodynamic limit, 𝑁 → ∞, we can replace the summa-
tions in Eq. (17) by integrals. This holds ℎ2,𝐼𝐼𝐼 = (𝑃1 + 𝑃2 + 1)𝜒𝑑𝑦𝑛 +
2𝑁𝜋 ∫ 𝑥𝑚𝑎𝑥0 log[1−2𝜖 sin2(𝑥)]𝑑𝑥+2𝑁𝜋 ∫ 𝜋∕2𝑥𝑚𝑖𝑛

log[2𝜖 sin2(𝑥)−1]𝑑𝑥, with 𝑥𝑚𝑎𝑥 =
𝜋
𝑁

𝑃1
2 and 𝑥𝑚𝑖𝑛 = 𝜋

𝑁
𝑃2
2 , making them independent of the system size.

onsequently, we have that ℎ2,𝐼𝐼𝐼 ∝ 𝑁 when 𝑁 → ∞, making this type
f chaos extensive.

Similarly, we can find an expression for the entropy rate of Case
- Type II, which corresponds to having positive LEs coming solely

rom folded modes. This means that the number of folded modes is
iven by Eq. (16), making the resultant entropy rate extensive; as in the
revious cases. Overall, Case 1 and Case 2 are all extensive for the ring
raph, with the exception being Case 3, where the system is completely

ynchronous.
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Fig. 3. Regions with different Lyapunov spectra and entropy rates for coupled maps in ring graphs. Control parameters: coupling strength between maps, 𝜖, and map’s chaoticity
before coupling, 𝜒𝑑𝑦𝑛. Left panel: 5 regions with different collective dynamics for 𝑁 = 10 chaotic maps according to the coupled system’s Lyapunov exponents (coloured areas),
where boundaries are the critical coupling strengths 𝜖(1), 𝜖(2), and 𝜖(3) [Eq. (12)]. Contour lines show constant-valued entropy rates, ℎ, crossing the parameter space [Eqs. (13),
(15), and (17)]. Right panel: same results but for 𝑁 = 100 maps.
Fig. 4. Specific entropy rates for chaotic maps coupled in ring graphs. The chaotic
maps have fixed chaoticity of 𝜒𝑑𝑦𝑛 = log(2) when isolated and their coupled dynamics
is controlled by the coupling strength 𝜖 and system size 𝑁 changes. Shaded regions
differentiate our 5 Lyapunov exponent cases from the maps’ emerging dynamics – as
in Figs. 2 and 3 with the same colour scheme – and are separated by the boundaries
𝜖(1), 𝜖(2), and 𝜖(3) [Eq. (12)]. Contour lines show constant values for the specific entropy
rate, 𝜂 = ℎ∕𝑁 , in the different cases [Eqs. (13), (15), and (17)].

Examples for finite ring graphs. As an example, here we relate the
values of ℎ from Eqs. (13), (15), and (17) for two ring graphs with
𝑁 = 10 and 100 maps in the (𝜖, 𝜒𝑑𝑦𝑛) parameter space with their
emerging dynamics. The values of ℎ are shown in Fig. 3 as contour
lines, with coloured regions indicating the location of the cases from
our LE classification.

We can see from Fig. 3 that the different emerging dynamics –
corresponding to the different cases in our LE classification – influence
directly the resultant entropy rate of the system. This is expected, since
each parameter region corresponds to a different collective dynamic.

For example, Case 3 in the left panel of Fig. 3 corresponds to the
emergence of synchronous chaotic states. This implies that the only
mode contributing to the Pesin identity [Eq. (6)] for this dynamics
is the null eigenmode ( = {𝑛 = 0}), resulting in ℎ3 = 𝜒𝑑𝑦𝑛 and
making the system non-extensive. Within this parameter region, en-
tropy rate constant values correspond to horizontal lines, which means
that increasing 𝜖 keeps ℎ constant (as long as 𝜒𝑑𝑦𝑛 is fixed). However,
as the system size is increased, this region almost vanishes, as in the
right panel of Fig. 3. In fact, for sufficiently small 𝜒𝑑𝑦𝑛 (i.e., 𝜒𝑑𝑦𝑛 <
− log |

|

1 − 𝜖 𝜆𝐹 ∕2|| = − log ||
|

1 − 𝜖 2 sin2(𝜋∕𝑁)||
|

) the finite-sized system can
synchronise (− log ||

|

1 − 𝜖 2 sin2(𝜋∕𝑁)||
|

→ 0 as 𝑁 → ∞).
From the entropy rate contour lines in Fig. 3, we can see that

changing the control parameters – 𝜖 or 𝜒𝑑𝑦𝑛 – can have different effects
on the value of ℎ. For example, increasing 𝜖 at constant 𝜒 in the
6

𝑑𝑦𝑛
regions of Case 1 (blue area) and Case 2 - Type I (yellow area) decreases
ℎ. This means that the chaotic attractor in these parameter regions
becomes less complex for increasing 𝜖. On the other hand, increasing
𝜖 at constant 𝜒𝑑𝑦𝑛 in the region of Case 2 - Type II (green area) and
III (red areas) increases ℎ. This means that the chaotic attractor in
this parameter region becomes more complex for increasing 𝜖, which
is somewhat counter-intuitive (but stems from the folding of modes).

In order to illustrate how Eqs. (13), (15), and (17) determine the
changes in ℎ for a ring graph as 𝑁 is increased, we shown in Fig. 4
the constant values of 𝜂 = ℎ∕𝑁 (in contour lines) for maps with 𝜒𝑑𝑦𝑛 =
log(2). In this case, the dynamical regions are divided by the critical
coupling strengths from Eq. (12) : 𝜖(1)𝑁 (2) = 1∕4, 𝜖(2)𝑁 (2) = 1∕4 sin2(𝜋∕𝑁),
and 𝜖(3)𝑁 (2) = 3∕4. We can see that the specific entropy rate 𝜂 tends to
become a straight vertical line for any 𝜖 as 𝑁 is increased, meaning
that the system becomes extensive.

For 𝜒𝑑𝑦𝑛 = log(2), it has already been shown that the synchronous
solution is always unstable if 𝑁 > 5 [35], even more, 𝜆𝐹 (𝑁 = 6) = 1,
which implies that that the curve 𝜖(2)(𝑁 = 6) = 1 (see Fig. 4). Thus, for
𝜒𝑑𝑦𝑛 = log(2) and 𝑁 > 6, only Case 1, Case 2 – Type I, and Case 2 –
Type III exist.

Application of our Lyapunov spectra classification in an extensivity analysis
of coupled maps in complete graphs

Here we show how our classification differentiates the emerging
dynamics for a set of coupled chaotic maps in complete graphs (𝑁 (𝑘),
where 𝑘 = 𝑁−1) of different sizes. We study the emerging dynamics as
a function of 𝜖 and 𝜒𝑑𝑦𝑛, quantifying the complexity of the underlying
attractors by the entropy rate ℎ [Eq. (6)] and showing which dynam-
ics are extensive in the thermodynamic limit (i.e., lim𝑁→∞ ℎ∕𝑁 →

constant).
For 𝑁 (𝑁 − 1), the non-zero Laplacian eigenvalues are identical,

i.e., 𝜆𝑛[𝑁 (𝑁 − 1)] = 𝑁 with 𝑛 = 1,… , 𝑁 − 1 [22,25,27]. Thus, the
LEs 𝜒𝑛 [Eq. (5)] in 𝑁 (𝑁 − 1) are also identical,

𝜒𝑛[𝑁 (𝑁 − 1)] = log
|

|

|

|

1 − 𝜖 𝑁
𝑁 − 1

|

|

|

|

+ 𝜒𝑑𝑦𝑛, with 𝑛 = 1,… , 𝑁 − 1, (18)

with 𝜒0[𝑁 (𝑁 − 1)] = 𝜒𝑑𝑦𝑛. Moreover, 𝜆𝐹 = 𝜆𝑀 = 𝑁 , such that
𝜆𝐹 + 𝜆𝑀 > 2𝑘 = 2(𝑁 −1), which again implies that Case 2 - Type II can
be achieved (see Fig. 2). However, because of this multiplicity in the
Laplacian eigenvalues, the critical coupling strengths bounding Case 2 -
Type I and Type III blend, making these cases disappear. Namely, from
Eqs. (7), (8), and (9), we get

𝜖(1)𝑁 (𝑁−1) =
(

1 − 𝑒−𝜒𝑑𝑦𝑛
) (𝑁 − 1)

𝑁
= 𝜖(2)𝑁 (𝑁−1),

𝜖(3) =
(

1 + 𝑒−𝜒𝑑𝑦𝑛
) (𝑁 − 1)

. (19)
𝑁 (𝑁−1) 𝑁



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 178 (2024) 114392J. Gancio and N. Rubido
Fig. 5. Regions with different Lyapunov spectra and entropy rates for coupled maps in complete graphs. Control parameters: coupling strength between the maps, 𝜖, and map’s
chaoticity before coupling, 𝜒𝑑𝑦𝑛. Left panel: 3 regions with different collective dynamics for 𝑁 = 10 chaotic maps according to the coupled system’s Lyapunov exponents (coloured
areas), where boundaries are the critical coupling strengths 𝜖(1) = 𝜖(2) and 𝜖(3) [Eq. (19)]. Contour lines show constant-valued entropy rates, ℎ. Right panel: same results but for
𝑁 = 100 maps.
This means that for finite complete graphs, the system can only be in
Case 1 (i.e., incoherent chaos), Case 3 (i.e., chaotic synchronisation),
or Case 2 - Type II (i.e., chaos due to folded modes).

Extensivity in complete graphs. For the Case 1 region when all positive
LEs come from unfolded modes (𝑛 > 0), we get

ℎ1 = 𝑁 𝜒𝑑𝑦𝑛 + (𝑁 − 1) log
[

1 − 𝜖 𝑁
𝑁 − 1

]

. (20)

The first term is extensive because it is proportional to 𝑁 . In the limit
𝑁 → ∞, 𝑁∕(𝑁 − 1) → 1 and the argument of the logarithm is constant
and positive (→ 1 − 𝜖). So, the second term also is extensive, making
Case 1 of complete graphs an extensive chaotic region.

For the Case 1 region when all positive LEs come from folded modes
(𝑛 > 0), we get

ℎ1 = 𝑁 𝜒𝑑𝑦𝑛 + (𝑁 − 1) log
[

𝜖 𝑁
𝑁 − 1

− 1
]

. (21)

However, this region disappears as 𝑁 → ∞ because the boundary
𝜖(3)𝑁 (𝑁−1) → 1 + exp(−𝜒𝑑𝑦𝑛), which is larger than 1 for any 𝜒𝑑𝑦𝑛 > 0.

This means that the coupled maps in complete graphs can be either
in Case 1 or Case 3 for the thermodynamic limit, where Case 3 is not
extensive because ℎ3 = 𝜒𝑑𝑦𝑛 for all 𝑁 and control parameter values in
this region.

Examples for complete graphs. When 𝜒𝑑𝑦𝑛 → ∞, then all critical cou-
plings in Eq. (19) collapse, making 𝜖(1)𝑁 (𝑁−1)(𝜒𝑑𝑦𝑛 → ∞) = 𝜖(2)𝑁 (𝑁−1)(𝜒𝑑𝑦𝑛
→ ∞) = 𝜖(3)𝑁 (𝑁−1)(𝜒𝑑𝑦𝑛 → ∞) = (𝑁 − 1)∕𝑁 . This behaviour can be
observed in the examples of Fig. 5, where the left [right] panel shows
that these critical couplings tend to 0.9 [0.99] when 𝑁 = 10 [𝑁 = 100]
as 𝜒𝑑𝑦𝑛 → ∞.

The extensivity property of Case 1 for finite complete graphs can be
observed in Fig. 6, where the specific entropy rate 𝜂 = ℎ1∕𝑁 constant
values (contour lines), with ℎ1 determined by Eq. (20), become straight
vertical lines as 𝑁 is increased.

While the system is finite but increasing in size (as in Fig. 6), we
can derive an expression for the coupling strength tuning needed to
maintain a constant 𝜂 value in the Case 1 region. We impose that
ℎ1 ∝ 𝑁 in Eq. (20) and invert to find 𝜖 as a function of 𝑁 . Namely,
we set 𝛽 𝑁 = (𝑁 − 1) log[1 − 𝜖 𝑁∕(𝑁 − 1)], with 𝛽 = ℎ1 − 𝜒𝑑𝑦𝑛 > 0 a
constant. Then,

𝜖(𝑁) = 𝑁 − 1
𝑁

[

1 − exp
(

𝛽 𝑁
𝑁 − 1

)]

(22)

is the coupling strength that makes 𝜂 = 𝛽 + 𝜒𝑑𝑦𝑛 = constant, which are
the contour lines in Fig. 6.

We can assign a value to 𝛽 in Eq. (22) based on the thermodynamic
limit of the system (𝑁 → ∞) or for 2 coupled maps (𝑁 = 2), which
is the smallest complete graph. When 𝑁 → ∞, 𝜖 ≡ lim 𝜖(𝑁) =
7

∞ 𝑁→∞
Fig. 6. Specific entropy rates for chaotic maps coupled in complete graphs. The
chaotic maps have fixed chaoticity of 𝜒𝑑𝑦𝑛 = log(2) when isolated and their coupled
dynamics is controlled by 𝜖 and 𝑁 (as in Fig. 4). Shaded regions differentiate the
2 possible dynamical scenarios: incoherent chaos (blue) and chaotic synchronisation
(grey). The critical coupling strength 𝜖(2) separates these cases [Eq. (19)]. Contour
lines show constant values for the specific entropy rate 𝜂 = ℎ∕𝑁 [Eq. (20) for ℎ1∕𝑁
and ℎ3∕𝑁 = 𝜒𝑑𝑦𝑛∕𝑁].

1 − exp (𝛽), which implies that 𝛽 = log[1 − 𝜖∞]. This means that we can
rewrite Eq. (22) as

𝜖(𝑁) = 𝑁 − 1
𝑁

[

1 −
(

1 − 𝜖∞
)

𝑁
𝑁−1

]

.

Similarly, when 𝑁 = 2, we have that 𝜖2 ≡ 𝜖(𝑁 = 2) = 1
2 [1 − exp(2𝛽)],

which implies that 𝛽 = 1
2 log[1 − 2𝜖2]. This means that we can rewrite

Eq. (22) as

𝜖(𝑁) = 𝑁 − 1
𝑁

[

1 −
(

1 − 2𝜖2
)

𝑁
2(𝑁−1)

]

.

4. Discussion

Our results show that the Lyapunov exponents (LE) of 𝑁 identical,
one-dimensional, chaotic maps with constant derivative, coupled dif-
fusively in regular graphs [31] can be classified into 5 disjoint cases
(see Fig. 1). These cases appear in different regions of the control pa-
rameters’ space, which is defined by the isolated map’s chaoticity, 𝜒𝑑𝑦𝑛,
and coupling strength, 𝜖 (see Fig. 2). We find closed-form expressions
for the bounds of these regions, finding the critical values of 𝜖 as a
function of the graph’s spectral properties and 𝜒𝑑𝑦𝑛 [see Eqs. (7), (8),
and (9)]. These results show that there is one case (Case 2 - Type II)
that can only appear if the regular graph is such that 𝜆𝐹 + 𝜆𝑀 > 2𝑘,
e.g., in a ring graph (see Figs. 2 and 3).
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We find that the number of different collective dynamics emerging
in the parameter space depends on whether the regular graph has
𝜆𝐹 + 𝜆𝑀 > 2𝑘 (with 5 possible LE cases) or 𝜆𝐹 + 𝜆𝑀 < 2𝑘 (with 4
ossible cases) – Fig. 2. We note that this spectral distinction for regular
raphs also arises when analysing the stability of the synchronisation
anifold – as detailed in our previous work [22] – and is related to
ifferent classes of synchronisation [36].

For the analysis of Ruelle’s conjecture [8], we find closed-form
xpressions for the LEs (𝜒𝑛) and entropy rates (ℎ) of rings [see Eqs. (11),
13), (15), and (17)] and complete graphs [see Eqs. (18), (20) and
21)]. These results are illustrated in Figs. 4 and 6, which show that
hese two types of coupled map graphs are extensive. In particular,
he ring coupled system is extensive for any coupling 0 < 𝜖 < 1
utside the chaotic synchronisation region, which has 𝑁 − 1 negative
E and is vanishingly small (see Fig. 4). Similarly, the complete graph
s extensive outside the chaotic synchronisation region, which implies
ny coupling 0 < 𝜖 < 𝜖(1) = [1 − exp(−𝜒𝑑𝑦𝑛)](𝑁 − 1)∕𝑁 (see Fig. 6).

We note that our results on the extensivity of coupled maps in ring
nd complete graphs align with previous works [8,37] (particularly for
he ring graph, which is expected because of the local type of coupling).

e also note that rings and complete graphs have been used as the
uilding blocks of multiplex networks [19,20], where we get some
ifferences with these previous works which divide the LE spectrum
nto two classes. For example, we find that the extensivity of coupled
aps in ring graphs is valid for any 𝜖 ∈ (0, 1], contrary to the necessary
pper bound derived in Refs. [19] when analysing a single layer of
he multiplex network. Similarly, our 𝜖(1) upper bound [Eq. (19)] for
he extensivity of coupled maps in complete graphs is less restrictive
han that of Refs. [19,20]. We believe that these differences with our
ork arise because those works make derivations in the finite-limit

ize (i.e., ℎ ∝ 𝑁), instead of analysing ℎ in the thermodynamic limit
i.e., 𝑁 → ∞). When restricting our analysis to the finite-limit size,
hen our results match those from Refs. [19,20].

Although our work is restricted by the type graphs chosen, it can
elp to find approximate expressions in some closely regular random
raphs, such as the Watts–Strogatz small-world network model [38].
imilarly, our work can be used to find the Lyapunov dimension of the
merging attractors by means of the Kaplan-York conjecture [21].

. Conclusion

In this work, we introduce a classification for the Lyapunov ex-
onent’s (LE) spectrum of 𝑁 identical, one-dimensional, chaotic maps
ith constant derivative, that we couple diffusively in different regular
raphs [31]. We introduce this classification in order to: differentiate
he collective dynamics emerging when using different parameters,
btain closed-form expressions for critical parameters and entropy
ates for each collective dynamic, and study the system’s extensivity
roperties.

Our classification is based on the sign of the LEs and their re-
ationship to the graph’s Laplacian eigenvalue modes, resulting in 5
ases which represent 5 different collective behaviours. We obtain
he LE’s spectrum by making a linear approximation of the coupled
ystem around a generic orbit, which decouples the map’s dynamics
rom the graph’s topology — similarly to the approach followed in
he Master Stability Function [39]. Because the maps have constant
erivative (i.e., we have an 𝑁-dimensional system with a constant
acobian), the resultant LEs are valid for the entire phase space —
ot as the LEs obtained when using the MSF, which are conditioned
o the synchronisation manifold. Our results are valid for any generic
egular graph or map – as long as the maps have constant positive
erivative and are identical – complementing other studies that focus
n synchronisation properties [22,36] and aligning with previous work
n extensive chaos [8,19,20,37].

Aside the introduction of our LE classification, we also provide
he boundaries in parameter space for the different cases and sub-
8

ypes proposed, as well as analysing their properties for finite and
nfinite graphs. We also show that our classification allows to capture
ifferences in the complexity of the underlying attractors of the coupled
ystem through the entropy rate, but also how it changes when the
oupling strength or the Lyapunov exponent of the isolated map is
odified. In this sense, we show the practical use of our classification,

y analysing the extensive properties of coupled maps in ring and in
omplete graphs from their entropy rates. Moreover, our derivations
an be used in other calculations that require LEs, such as finding the
ractal dimensions of the emerging chaotic attractors [21].
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ppendix

.1. Closed sums derivations

Here we show the derivation of the first terms of the Maclaurin
xpansion for
𝑁−1
∑

𝑛=1

∞
∑

𝑗=1

[

2𝜖 sin2
(𝜋𝑛
𝑁

)]𝑗 1
𝑗
. (23)

For 𝑗 = 1, the term from Eq. (23) is
−1

∑

𝑛=1
2𝜖 sin2

(𝜋𝑛
𝑁

)

=
𝑁−1
∑

𝑛=1
𝜖
(

1 − cos
( 2𝜋𝑛
𝑁

))

,

where the right-hand-side (𝑟.ℎ.𝑠.) expression is obtained by applying
the power-reduction identity, i.e., 2 sin2(𝑥) = 1 − cos(2𝑥). Summing the
irst term, and writing the sine in its exponential form, we obtain,

.ℎ.𝑠. =
𝑁−1
∑

𝑛=1
𝜖
(

1− cos
( 2𝜋𝑛
𝑁

))

= 𝜖

(

𝑁−1−
𝑁−1
∑

𝑛=1

[

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

)] 1
2

)

.

Now we write every summation as a geometric sum, then

𝑟.ℎ.𝑠. = 𝜖

(

𝑁 − 1 −

[𝑁−1
∑

𝑛=0
exp

(

𝑖2𝜋𝑛
𝑁

)

+
𝑁−1
∑

𝑛=0
exp

(

−𝑖2𝜋𝑛
𝑁

)

− 2

]

1
2

)

= 𝜖

(

𝑁 −

[𝑁−1
∑

𝑛=0
exp

(

𝑖 2𝜋𝑛
𝑁

)

+
𝑁−1
∑

𝑛=0
exp

(

−𝑖2𝜋𝑛
𝑁

)

]

1
2

)

,

here these geometric sum are identically null. This is,
−1

∑

𝑛=0
exp

(

𝑖2𝜋𝑛
𝑁

)

=
1 − exp (2𝜋𝑖)

1 − exp (2𝜋𝑖∕𝑁)
= 0,

𝑁−1
∑

𝑛=0
exp

(

−𝑖2𝜋𝑛
𝑁

)

=
1 − exp (−2𝜋𝑖)

1 − exp (−2𝜋𝑖∕𝑁)
= 0,

since exp ±2𝜋𝑖 = 1. Thus 𝑟.ℎ.𝑠. = 𝜖𝑁 .
( )
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For 𝑗 = 2, the term from Eq. (23) is

2𝜖2
𝑁−1
∑

𝑛=1
sin4

(𝜋𝑛
𝑁

)

= 𝜖2

4

𝑁−1
∑

𝑛=1

[

3 − 4 cos
( 2𝜋𝑛
𝑁

)

+ cos
( 4𝜋𝑛
𝑁

)]

,

where again, the 𝑟.ℎ.𝑠. expression is obtained by applying the power-
reduction identity: 8 sin4(𝑥) = 3 − 4 cos(2𝑥) + cos(4𝑥). By repeating the
work done for the case 𝑗 = 1, the first sum is carried out and the cosines
are written in their exponential form,

𝑟.ℎ.𝑠. = 𝜖2

4

[

3𝑁 − 3 − 2
𝑁−1
∑

𝑛=1

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

))

+ 1
2

𝑁−1
∑

𝑛=1

(

exp
(

𝑖4𝜋𝑛
𝑁

)

+ exp
(

−𝑖4𝜋𝑛
𝑁

))

]

.

e can rewrite again the summations as geometric sums,

.ℎ.𝑠 = 𝜖2

4

[

3𝑁 − 3 − 2
𝑁−1
∑

𝑛=0

(

exp
(

𝑖2𝜋𝑛
𝑁

)

+ exp
(

−𝑖2𝜋𝑛
𝑁

))

+ 4

+ 1
2

𝑁−1
∑

𝑛=0

(

exp
(

𝑖4𝜋𝑛
𝑁

)

+ exp
(

−𝑖4𝜋𝑛
𝑁

))

− 1

]

= 𝜖2

4

[

3𝑁 − 2
𝑁−1
∑

𝑛=0
exp

(

𝑖2𝜋𝑛
𝑁

)

+ 2
𝑁−1
∑

𝑛=0
exp

(

−𝑖2𝜋𝑛
𝑁

)

+ 1
2

𝑁−1
∑

𝑛=0
exp

(

𝑖4𝜋𝑛
𝑁

)

+ 1
2

𝑁−1
∑

𝑛=0
exp

(

−𝑖 4𝜋𝑛
𝑁

)

]

,

where, by the same arguments as for case 𝑗 = 1, every summation
is identically null. Finally we obtain 𝑟.ℎ.𝑠. = 3𝜖2∕4.

For 𝑗 = 3, similar work is performed. Here, the term from Eq. (23)
is

8
3
𝜖3

𝑁−1
∑

𝑛=1
sin6

(𝜋𝑛
𝑁

)

= 𝜖3

12

𝑁−1
∑

𝑛=1

[

10 − 15 cos
( 2𝜋𝑛
𝑁

)

+ 6 cos
( 4𝜋𝑛
𝑁

)

− cos
( 6𝜋𝑛
𝑁

)]

,

here the 𝑟.ℎ.𝑠. expression corresponds to a power-reduction identity,
.e., 32 sin6(𝑥) = 10 − 15 cos(2𝑥) + 6 cos(4𝑥) − cos(6). Once again, we get

𝑟.ℎ.𝑠. = 𝜖3

12

[

10𝑁 − 10 +
𝑁−1
∑

𝑛=1

(

−15
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

))

+ 3
(

exp
(

𝑖 4𝜋𝑛
𝑁

)

+ exp
(

−𝑖 4𝜋𝑛
𝑁

))

− 1
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

)))]

= 𝜖3

12

[

10𝑁 +
𝑁−1
∑

𝑛=0

(

−15
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

))

+ 3
(

exp
(

𝑖 4𝜋𝑛
𝑁

)

+ exp
(

−𝑖 4𝜋𝑛
𝑁

))

− 1
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

)))]

= 𝜖3
[

5
6
𝑁 + 1

12

𝑁−1
∑

𝑛=0

(

−15
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

))

+ 3
(

exp
(

𝑖 4𝜋𝑛
𝑁

)

+ exp
(

−𝑖 4𝜋𝑛
𝑁

))

− 1
2

(

exp
(

𝑖 2𝜋𝑛
𝑁

)

+ exp
(

−𝑖 2𝜋𝑛
𝑁

)))]

,

where every sum is identically null. So, 𝑟.ℎ.𝑠. = 5𝜖3𝑁∕6.
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