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Modeling of bubble removal from glassmelts at fining temperatures

Eiji Itoh, Hidemi Yoshikawa and Yoshinori Kawase
Department of Applied Chemistry, Toyo University, Saitama (Japan)

A new model based on the quasi-stationary approximation is developed for removal of gas bubbles from glassmelts due to buoyant
rise of bubbles. The growth and rising of multicomponent gas bubbles in glassmelts are examined from the view point of interfacial
mass transfer. It is shown that the models for rising bubbles in glassmelts available in the literature are based on the quasi-steady
approximation which is not very reasonable. The growth of a gas bubble initially consisting of nitrogen only is studied in a glassmelt
whose diffusing gases are oxygen, water, carbon dioxide, sulfide and nitrogen. The proposed model based on the unsteady-state
mass transfer (the quasi-stationary approximation) is compared with the model based on the steady-state mass transfer (the quasi-
steady approximation). The former, which provides more rational and better descriptions of bubble behavior in refining processes
compared with the latter, predicts rather shorter refining times than the latter.

Modell fiir das Entfernen von Blasen aus Glasschmelzen bei Lautertemperaturen

Auf der Grundlage der quasistationdren Néherung wurde ein neues Modell fiir das Entfernen von Gasblasen aus Glasschmelzen
mit Hilfe des statischen Auftriebs der Blasen entwickelt. Das Wachstum und der Aufstieg vielkomponentiger Gasblasen in Glas-
schmelzen werden vom Standpunkt des Grenzflachenstoffaustausches aus untersucht. Es wird aufgezeigt, da die in der Literatur
beschriebenen Modelle fiir aufsteigende Blasen in Glasschmelzen auf der Basis einer Gleichgewichtsnédherung nicht sehr sinnvoll
sind. Das Wachstum einer zundchst nur aus Stickstoff bestehenden Gasblase wird in einer Glasschmelze untersucht, deren Diffu-
sionsgase Sauerstoff, Wasser, Kohlendioxid, Sulfid und Stickstoff sind. Das vorgeschlagene Modell, das auf dem nichtstationdren
Stoffaustausch (quasistationdre Nédherung) basiert, wird mit dem Modell auf der Grundlage des Stoffaustausches im Gleichgewicht
(d.h. quasistatische Naherung) verglichen. Ersteres, das im Vergleich zu letzterem zu einer rationelleren und besseren Beschreibung
des Blasenverhaltens bei Lauterprozessen fiihrt, sagt sehr viel kiirzere Lauterzeiten als das letztgenannte Modell voraus.

1. Introduction

The removal of gas bubbles from the glassmelt or re-
fining is an important problem in the glass industry. The
refining is required to produce high-quality glasses.

the change in the bubble size. It has been found that in
spite of its simplicity the quasi-stationary approximation
is rather reasonable [2 and §].

Two mechanisms are responsible for bubble removal

Therefore, the rate of removal of gas bubbles has re-
ceived extensive attention and several studies on this
subject have appeared in the literature [1]. In order to
analyze the behavior of the gas bubble in the melt some
approximations have been applied [2]. Although the
governing equations are well-known, exact analytical
solutions cannot be obtained in general. Hence there are
some approximate solutions such as quasi-stationary
solutions [3 to 7], quasi-steady solutions [8], pertur-
bation solutions [9] and finite-difference solutions [8 to
12]. The quasi-stationary approximation has been widely
and successfully employed in treating dissolution and
growth of bubbles. In this approximation, the motion of
the bubble boundary is neglected in solving the convec-
tive diffusion equation and the simplified differential
equation is used to determine the bubble boundary mo-
tion. The time-dependent concentration field of dis-
solved gas around the bubble is obtained by solving the
diffusion equation for a fixed radius and the concen-
tration gradient at the bubble surface is used to evaluate
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from the glassmelt: bubble dissolution and buoyant rise
of bubbles from the melt. Most published studies have
been conceived to deal with stationary bubbles instead
of moving bubbles and much progress has been made in
understanding the dissolution and growth of stationary
bubbles in the glassmelt. However, gas bubbles move
along by currents in glass melting furnaces and relatively
large bubbles are removed from the glassmelts by rising
to the surface of the melts. In order to predict bubble
trajectories in glass melting tanks with confidence, the
modeling of the behavior of multicomponent gas
bubbles rising through the glassmelts is required. The
analysis of the growth of rising bubbles in the glassmelt
is a problem of practical importance.

Nevertheless, progress in this area has been relatively
slow. There is a clear need for more work on refining
due to the rise of bubbles to the surface of the glassmelt.
It should be emphasized that the case of the stationary
bubble is considered as a first step before dealing with a
translating bubble.

Némec [13 to 15] extensively examined the behavior
of bubbles in the melt using Levich’s solution for mass
transfer from a rising bubble [16].
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Finite difference solutions of the mass transport
equations governing the dissolution or growth of a rising
gas bubble in a glassmelt were obtained by Onorato et
al. [17]. They also examined the model based on the
solution of the diffusion equation given by Levich [16].
Although they discussed a rising bubble in the melt, the
change of the bubble location was not taken into ac-
count in the estimation of the bubble pressure as if the
bubble was stationary.

Ramos [18 and 19] developed a mathematical model
for the growth of multicomponent gas bubbles rising in
the glassmelts. It is a simple model governed by an ordi-
nary differential equation. The approximation used by
Ramos [18 and 19] results in a considerable simplifi-
cation of the labor involved and provides reasonable pre-
dictions.

Although it was not mentioned in the literature, the
above models for bubbles rising in the melt are based
on the quasi-steady approximation as described later in
detail. The approximate solutions were obtained by solv-
ing the equations for the concentration distribution in
the liquid when bubble boundary motion due to disso-
lution or growth was ignored and furthermore, a steady-
state was assumed. This approximation seems to be an
over-simplified model [8].

This paper is concerned with a spherical, multicom-
ponent gas bubble rising in an infinite glassmelt. As
mentioned above, the quasi-stationary approximation
may give satisfactory results particularly when the driv-
ing force for growth is not too large [8]. In this work,
therefore, this approximate procedure is used to develop
a new model for the behavior of a gas bubble rising in
the melt. First, the quasi-stationary and quasi-steady
approximations for stationary bubbles in the melt will be
re-examined. The stationary bubble has been examined
as a first step before treating the rising bubble. Next,
the authors will develop a model based on the quasi-
stationary approximation for multicomponent bubbles
rising in the melt. Finally, the computational results for
multicomponent gas bubbles in the glassmelt will be in-
vestigated. The changes in mass transfer rate, bubble
size, bubble location and gas content in bubbles with
time are calculated.

2. Theory
2.1 Formulation of equations

The unsteady isothermal growth of a multicomponent
bubble in a melt of large extent is considered (figure 1).
The spherical bubble of initial radius q is located at a
depth H from the glassmelt surface. In this study, the
following assumptions are made about the system:

a) The mass transport is controlled by diffusion in the
melt.

b) The concentration field is spherically symmetric.

c) The gases in the bubble are always perfectly mixed.

glassmelt surface

]

t=t H-z

rising

initial bubble
N, 100%

Figure 1. Schematic representation of the system.

d) The diffusivities of the gases in the melt are independ-
ent of concentration.

e) The density of the gases is negligible compared with
the density of the glassmelt.

f) The partial specific volume of the gases in the
glassmelt is negligible.

g) There are no chemical reactions.
h) The gas mixture in the bubble is ideal.

The concentration of species 7 in the melt will be de-
scribed by the following convective diffusion equation
(1) and initial and boundary conditions (equations (2a
to ¢)):

aC[ E)C, D,‘ d ( GC, )

—+o(tr =——|r ; 1
at @ or r2 or ar M
Ci(0,r) = Cr. forr>a, (2a)

C,*(t,oo) = C,*x for = 0 N (2b)

Cit,a(t)) = Cy, for 1= 0. c)

This partial differential equation (1), with the initial and
boundary conditions, equations (2a to c), is a general
description of the transport of dissolved gases in the
melt to be solved.

The mass flow of any gas between bubble and
glassmelt is given by the following ordinary differential
equation [19]:

dn; _d (p,- V) _ i[p,—(4na3/3)
dr

= — ] = 4T[a2ki(Ciw - CiS) .
R, T, R, T

dr dr
(3)
This equation states that the mass flux to the bubble
being proportional to the concentration difference or
driving force, (Ci. = Cj) is equal to the change in the
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gas bubble composition. Since a bubble contains inde-
pendently diffusing gases, each of them is subject to
equation (3). This mass balance at the bubble surface
leads to an expression for the rate of change of bubble
radius.

In order to calculate the change in the number of
moles of species i with time using equation (3), the con-
centrations of the species i at the bubble surface, Cj,
must be known. Henry’s law is used to determine Cj. In
this study, the equilibrium according to Henry’s law is
assumed to be maintained at the gas/liquid interface.
Therefore, the dissolved concentration of gas at the bub-
ble surface, Cj, is related to the partial pressure of spec-
ies i in the bubble, p;, as:

Ci =L p:. “4)

This law is valid if any interfacial processes occur more
rapidly than the diffusion, i.e., diffusion is the rate-limit-
ing process.

2.1.1 Stationary bubble

First, the quasi-stationary and quasi-steady models for
stationary bubbles in the melt are examined to clarify
the differences in these two approximations. Consider an
isolated stationary gas bubble located at a depth H from
the melt surface. Its initial radius is aj.

a) Quasi-steady model

The quasi-steady approximation is obtained by solving
the equations for the concentration field in the melt
when bubble boundary motion is ignored and a steady-
state is assumed. Neglecting the convection transport
and the accumulation terms in equation (1), the govern-
ing equation (5) for the quasi-steady approximation and
the boundary conditions (equations (6a and b)) are ob-
tained as:

D, 8 (2d0)_,,

r2 dr (r dr 0; 5
Ci(©) = Ci (6a)
Ci(a) = G . (6b)

The solution of equation (5) for the boundary conditions
(6a and b) or the Sherwood number of steady-state mass
transfer from a bubble may be written as [20]:

_ ki2a) _

Sh;
D;

2. @)

The equation for the change in bubble radius may be
given as [19 and 21]:

R.T - aC;
%: ; > Di( aq)
i=1 r /Jta (8)

R, T !
ki(Ci = Cy) .
= gl ( )

This equation is derived from the conservation of mass '
at the bubble surface per unit time or the sum of equa-
tion (3) for all species. In other words, equation (8)
shows that the additional diffusion flux into or from the
bubble (the right-hand side of equation (8)) is equal to
the growth or shrinkage rate of the bubble (the left-hand
side of equation (8)). Equation (8) yields the change in
bubble size provided the concentrations of the species at
the bubble surface, Cj, are known.

The pressure inside the bubble whose center of mass
is stationary at z = H is given as the sum of the gaseous
species partial pressures by

n

20
P=2Pi=pa+QGgH+7- ©)

i=1

This equation indicates that the total pressure for
stationary bubbles changes with bubble radius. Substi-
tuting equations (7 and 9) into equation (8)

R, T 2 Di(Ci — Ci) (1/a)
da = =1 (10)
dt Pat0cgH +40/(3a)

is obtained. Using equations (3, 4, 7, 9 and 10), the
changes in bubble size and gas concentrations in the
bubble with time can be estimated.

b) Quasi-stationary model

In the quasi-stationary approximation, the moving bub-
ble boundary is ignored in solving the convection dif-
fusion equations. Therefore, only the convective trans-
port term in equation (1) is neglected. The resulting
model for the concentration fields is:

oC; _ D; 9 [, aci)

—=——|(rr—; 11
at r? or ( ar (b
Ci(0,r) = Ci, for r>a, (12a)
Ci(t,®) = Cj, for t =0, (12b)
Ci(t,a) = C; for t =0. (12¢)

It should be emphasized here that the bubble radius a is
treated as a constant in solving the convective diffusion
equation (11). The solution of equation (11) for the rel-
evant conditions (equations (12a to c)) or unsteady-state
mass transfer from a sphere is written in the form of the
Sherwood number [20]:

Sh,-=2(1+ a ) (13)

JruD;t

From equations (8, 9 and 13), the following equation for
the rate of change of bubble size:

10
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1

2 1
R, T Di C[oc - Cis i
_ - El ( )<a \/nD,»t) (14)

4o
PatOGgH+—
3a

%
dt

is obtained. When ¢ — o, the quasi-stationary solution,
equation (14), reduces to that of the quasi-steady solu-
tion, equation (10).

2.1.2 Rising bubble

Next, the quasi-steady and quasi-stationary models for
the behavior of rising bubbles in refining processes are
considered which is a problem of practical importance.
The stationary bubble approximation sometimes pro-
vides inadequate description of the actual phenomena.
As mentioned previously, however, only a few studies on
the growth of gas bubbles rising through glassmelts have
been published [13 to 15, and 17 to 19].

a) Quasi-steady model
Ramos [18] evaluated the mass transfer coefficient in
equations (3 and 8) using the following correlation:

Sh; =2 + 0.60 Re'’2 Scl’3 . (15)

It should be noted that the coefficients in [18, equation
(6)] should be twice as many. Later, Ramos [19] used the
following equation instead of equation (15):

Shi=1+ (1 + Pe)'?. (16)

It is to be pointed out that the equation for the change
in bubble radius in [19, equation (6)] includes an error.
These correlations for the Sherwood number used by
Ramos [18 and 19], equations (15 and 16), are solutions
for steady-state mass transfer from a solid sphere in
creeping flow [20]. When a solid sphere is stationary
(Re = 0 or Pe; = 0), equations (15 and 16) reduce to
equation (7) which is the quasi-steady model for a
stationary bubble in the glassmelts.

Némec [13 to 15] applied Levich’s correlation for Sh;
[16 and 20]

Sh; = 0.991 Pel’3 . (17)

This is an asymptotic solution for a solid sphere which
is valid at Pe; — . Levich [16] solved the convective
diffusion equation including the angular velocity com-
ponent using the thin concentration boundary layer as-
sumption and obtained equation (17).

Onorato et al. [17] applied Levich’s solution for a gas
bubble. Because the angular velocity distributions are
considered in the convective diffusion equation, they em-
ployed the equation for local Sh;(6). An expression for
the average Sh; value corresponding to the local Sk;(6)
value used by Onorato et al. [17] may be written as

[2
Sh; = ;Pe}’z. (18)

This equation is applicable when Pe; — o as well as
equation (17). It should be mentioned, incidentally, that
the equation for the rate of bubble radius change in [17,
equation (12)] includes errors. Equations (17 and 18) are
also the solutions of the steady-state convective diffusion
equation as well as equations (15 and 16).

Although the models for rising bubbles in the litera-
ture consider the forced convection due to bubble rising,
the correlations for mass transfer coefficient k; were ob-
tained by solving the steady-state convective diffusion
equation. Therefore, the models of Ramos [18 and 19],
Neémec [13 to 15] and Onorato et al. [17] are based on
the quasi-steady approximation.

b) Quasi-stationary model

In the case of stationary bubbles, the quasi-stationary
approximation provides better estimations of bubble
growth or dissolution rates compared with the quasi-
steady approximation [8]. Considering this fact, a model
based on the quasi-stationary approximation is expected
to provide satisfactory solutions for the growth or disso-
lution of rising bubbles in the melt. However, no models
based on the quasi-stationary approximation for disso-
lution or growth of a multicomponent gas bubble rising
in the glassmelts have been reported so far. Therefore,
the authors develop a new quasi-stationary model for
the growth of a gas bubble rising in the melts.

As well as in the studies of Némec [13 to 15] and
Ramos [18 and 19] the additional assumption on the
cause of the rise of bubbles is that a bubble behaves like
a rigid sphere (Re < 1). When the liquid contains small
amounts of surface-active materials, these materials tend
to suppress the motion on the surface of bubbles and
the bubbles obey Stokes’ law. Therefore, the bubble rise
velocity is given by Stokes’ equation:

_dH-2) _ 2 gcgd’

U= il
dt 9 u

. (19)

Hornyak and Weinberg [22] found the bubble rising ve-
locities were correlated by the Hadamard-Rybczynski
equation rather than the Stokes equation. It is well-
known, as noted by them, that when the melt contains
small amounts of surface-active materials bubbles be-
have like solid particles. This situation may be more
practical.

The pressure inside the bubble rising in the melt is

given as the sum of the gaseous species partial pressures
by the following equation instead of equation (9):

n

P=> pi=p.t+togg(H—z)+2ala. (20)

i=1

Using equations (3, 19 and 20), the following equation
for the change in bubble radius can be obtained [19]
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Rg T 2 k,’(C,'m - Cis) + aocg U/3
i=1

ﬂ: ) (1)
d¢ Pat 0cg(H —z) +40/(3a)

An expression of mass transfer coefficient k; or Sher-
wood number S#; for unsteady-state mass transfer from
a solid sphere is introduced instead of steady-state solu-
tions, equations (15 to 18).

In this study, the following correlation for unsteady-
state mass transfer from a solid sphere at Pe; — % [20]
is used.

r ki-(2a)

Sh;
D;

(22)
2 sTuss

= Pel’3 [0.956 + (———ﬁ“ ) ]

The above approximate correlation is valid only when

the Peclet number is large. This limitation will be dis-

cussed later.

2.2 Solution procedure

In the case of the quasi-stationary model for a rising
bubble, equations (3, 4 and 19 to 21) are simultaneously
solved to obtain the values of a, p;,, U and z at ¢t =
= t (arbitrary) by means of the fourth-order Runge-
Kutta method. The ordinary differential equations are
numerically integrated along with the initial conditions.
The time step, Az, was varied to ensure that values ob-
tained from integration were independent of the step
size. The increment of ¢ selected in this study was 0.001 s.

3. Results and discussion

As a numerical example, the growth of a gas bubble is
discussed that initially contains nitrogen only in a glass-
melt whose diffusing gases are oxygen (Co,. = 250 -
- 1073 kg m™?), water (Cy,0. = 425 - 10" kgm3), car-
bon dioxide (Cco, =175 + 1073 kg m™3), sulfur trioxide
(Csoye = 6200 + 1073kgm™3) and nitrogen (Cnye =
= 0.45 - 10 *kgm™?). The initial radius of the bubble
is 0.00l m and the initial location is 1 m below the
glassmelt surface. The physical properties used in the
calculations are those presented in the paper of Ramos
[19]. At present, accurate gas diffusivity and solubility
data in the glassmelts are not available. It should be
noted that most of the measurements of physical proper-
ties include the influence of refining agents or chemical
reaction and hence they are apparent values. It implies
that the effects of chemical reactions are indirectly in-
cluded in the concentration C;,. and as a result the esti-
mated diffusivities and Henry’s constants are apparent
rather than actually physical.

Figure 2a shows the values of Sherwood number Sh;
for oxygen at 1773.15 K as a function of time. The Sher-
wood number is a dimensionless number of the mass
transfer coefficient k; representing mass transfer rates. In

this study, the mass transfer coefficient during the re-
fining process is evaluated using equation (22). As men-
tioned previously, equation (22) is a correlation at suffi-
ciently larger values of Pe;. Since the range of Pe; in the
numerical examples is from 558 to 2.29 - 10°, the ap-
plication of equation (22) may be acceptable. Inciden-
tally, the correlation of Sh; for a stationary solid sphere
(Pe; =0) is equation (13). For the shrinkage of a very
small bubble rising in the melt with very low velocity,
equation (13) should be used instead of equation (22)
because Pe; is very small. In order to estimate Sh; for
the growth of a rising bubble in the whole range of Pe;,
equations (13 and 22) must be interpolated. This prob-
lem will be discussed in a future work dealing with the
simulation of glass melting tanks in which both growth
and shrinkage of bubbles occur.

In figure 2a the solid line is the quasi-stationary re-
sult for a rising bubble. Since the initial content of O,
gas in the bubble is zero, O, diffuses toward the bubble.
The Sherwood number rapidly decreases in the initial
stages of growth and a minimum value of Sh(O,) occurs
at + = 20s. With the further increase in time, the Sh
number gradually increases. The minimum in the Sher-
wood number can be interpreted as follows. At shorter
times, the mass transfer coefficient decreases because the
driving force decreases with time. The O, concentration
gradient at the bubble surface decreases sharply with
time due to the decreased dissolved oxygen concen-
tration in the melt near the surface. It is found, on the
other hand, that the mass transfer coefficient increases
at longer times. It is because that the bubble size in-
creases and hence, the bubble rising velocity and the
mass transfer coefficient increase. The increase in k; due
to an increase of bubble rising velocity overcomes the
decrease in k; due to a decrease of the driving force at
longer times. Ramos’ model [19], the quasi-steady model
for a rising bubble, predicts a rather smaller mass trans-
fer coefficient than the quasi-stationary model for ¢ <
< 10s. In the initial stages of growth, the quasi-steady
model underestimates the mass transfer coefficient for
O, because in the model the large driving force at shorter
times is taken into account. The predictions of these two
models are relatively close to each other for t > 50 s. For
longer times, as a matter of course the unsteady-state
value reduces to that of the steady-state.

The quasi-stationary model for a stationary bubble
(equation (11)) agrees well with that for a rising bubble
at shorter times. When ¢ — 0, both equation (22) for a
rising bubble and equation (13) for a stationary bubble
approach to Sh; = 2al\n D;t. At the early stage of bub-
ble growth, the effect of bubble rising is very slight be-
cause the bubble size is small and then the bubble rising
velocity is small. Consequently, these two models co-
incide with each other. Deviations between the quasi-
stationary model for a rising bubble and that for a
stationary bubble increase with time.

In the case of the quasi-steady model for a stationary
bubble, it is seen from equation (7) and figure 2a that

12
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4 Figures 2a to c. Sherwood number for a bubble initially con-

taining 100% N,; a) oxygen at 1773.15K, b) oxygen at
1473.15 K, c) nitrogen at 1773.15 K. Curve 1: quasi-stationary
model for a rising bubble, curve 2: quasi-steady model for a
rising bubble (Ramos’ model), curve 3: quasi-stationary model
for a stationary bubble, curve 4: quasi-steady model for a
stationary bubble.
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Figure 3. Bubble radius versus time for a bubble initially con-
taining 100 % N, at 1773.15 K. Curve 1: quasi-stationary model
for a rising bubble, curve 2: quasi-steady model for a rising
bubble (Ramos’ model), curve 3: quasi-stationary model for a
stationary bubble, curve 4: quasi-steady model for a stationary
bubble.
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Figure 4. Bubble location versus time for a bubble initially con-
taining 100% N, at 1773.15K. Curve I: quasi-stationary
model, curve 2: quasi-steady model.
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Figures 5a to d. Mole fractions of gases in a bubble versus time at 1773.15K for a bubble initially containing 100% N»; a) quasi-
stationary model for a rising bubble, b) quasi-steady model for a rising bubble (Ramos’ model), ¢) quasi-stationary model for a
stationary bubble, d) quasi-steady model for a stationary bubble. Curve 1: N, curve 2: SOs, curve 3: O,, curve 4: CO,, curve 5: H,O.

the Sherwood number is constant. Since the model as-
sumes a steady-state and no bubble rising, Sh; does not
change with time. The quasi-steady model for the
stationary bubble can be found to underestimate the
mass transfer coefficient for O, significantly.

The Sherwood numbers for oxygen at 1473.15K are
shown in figure 2b. The Si(O,) number for the rising
bubble monotonically decreases with time and has no
minimum value unlike the result at 1773.15K. The
quasi-steady model for the stationary bubble predicts
only a slightly increase in Sh(O,). It is found that the
predictions of the quasi-stationary models for the rising
bubble and the stationary bubble agree well with each

other. Since the temperature of the melt is low, the
growth rate of bubble and hence the bubble rising veloc-
ity are very slow as if the stationary bubble.

As shown in figure 2c, the change in Sh(N,) at
1773.15 K with time is similar to that in S2(O,). How-
ever, a minimum value of Sh(N,) occurs at ¢ = 70 s. Be-
cause the bubble initially contains N, only, N, diffuses
away from the bubble.

Figure 3 illustrates the time dependence of the bub-
ble radius. The initially sharp concentration gradients at
the bubble surface which contribute to the rapid growth
for short time in the quasi-stationary approximation do
not contribute to the quasi-steady solution. In the earlier

14
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stages of the bubble growth, the quasi-steady approxi-
, mation underestimates the concentration gradient or the
driving force of mass transfer at the surface and as a
result the bubble growth rate by ignoring the transient
mass transfer regime. For this reason, the quasi-station-
ary model proposed in this study appears to give su-
perior results as compared with the quasi-steady models
in the literature. For ¢ > 50 s, the quasi-stationary model
predicts that the bubble radius increases nearly linearly
with time. The bubble grows continuously until the bub-
ble reaches the glassmelt surface. The quasi-stationary
solution for a rising bubble is in good agreement with
the quasi-stationary solution for a stationary bubble
during an initial period of bubble growth (¢ < 50s) and
at longer times agrees reasonably with the quasi-steady
model of Ramos [19]. It is clear from figure 3 that the
rates of bubble growth for the rising bubble are larger as
compared with those for a stationary bubble.

The bubble location is illustrated as a function of
time in figure 4. The quasi-stationary model predicts
that the refining time defined as the time required for
the bubble to reach the glassmelt surface is 154s. The
refining time evaluated by Ramos’ model is 178 s which
is about 15% larger than that obtained by the quasi-
stationary model.

In figure Sa, the mole fractions of nitrogen, oxygen,
carbon dioxide, water and sulfur trioxide in the bubble
predicted by the quasi-stationary model for the rising
bubble are shown as a function of time. During the re-
fining process, the mole fraction of N, always decreases,
whereas the mole fractions of O,, SO;, CO, and H,0
increase with time. It should be noted that the number
of moles of nitrogen in the bubble is almost constant
because its diffusivity and solubility are very small. Sul-
fur trioxide, water and oxygen the diffusivities of which
are large diffuse from the glassmelt to the bubble. As a
result, the mole fraction of N, decreases with time. In
the case of the present numerical examples, the bubble
growth occurs mainly due to the entrance of SOz and
O,. Since the solubility and the driving force of SO; in
the melt are quite large, the SO; diffusion is rather faster
than the diffusions of other species. During the first few
ten seconds rapid growth occurs mainly due to the en-
trance of SO; into the bubble.

Figure 5b depicts the predictions obtained by the
quasi-steady model of Ramos [19] for the mole fractions
of the species in the bubble. It is apparent from figures
5a and b that at short times the quasi-steady model
underestimates the mass transfer rates. According to the
quasi-stationary model, as shown in figure 5a, the nitro-
gen concentration in the bubble decreases quite rapidly
at the beginning. At about 10 s the mole fraction of N,
decreases to 0.35. However, the quasi-steady model pre-
dicts rather slow change in nitrogen concentration in the
bubble. As seen in figure 5b, the quasi-steady model pre-
dicts that the decrease in the N, mole fraction from 1 to
0.35 requires about 35s.

In figure Sc the mole fractions in the bubble calcu-
lated by the quasi-stationary model for the stationary
bubble are given. It can be found from figures 5a and ¢
that the transitional motion of the bubble only slightly
affects the change of mole fractions with time.

As shown in figure 5d the predictions of the quasi-
steady model for the stationary bubble are quite different
from those obtained by other models shown in figures
5a to c. The quasi-steady model predicts considerably
slow diffusion of species as compared with the results of
the quasi-stationary model shown in figure 5c.

4. Conclusions

From the viewpoint of mass transfer at the bubble sur-
face, the quasi-stationary and quasi-steady approxi-
mations were examined. A quasi-stationary model for
the growth of a multicomponent bubble rising in a
glassmelt has been developed. The quasi-stationary
model based on unsteady-state mass transfer is more
rational compared with the quasi-steady model based on
steady-state mass transfer. Numerical results indicate
that the quasi-steady model may underestimate the mass
transfer coefficient and overestimate the refining time
both for the rising bubble and the stationary bubble. The
quasi-stationary model proposed in this study may be
superior to the quasi-steady models in the literature to
describe the behavior of multicomponent bubbles rising
in the glassmelts. This work was undertaken as a starting
point for the simulation of the glass refining processes.

5. Nomenclature
5.1 Symbols

a bubble radius in m

C concentration in glassmelt in mol m=3

D diffusivity in m?s™!

g gravitational acceleration in ms~?2

H bubble location at 7 = 0 in m

k mass transfer coefficient in ms™!

L Henry’s law constant in mol m=3 Pa=!

n number of moles in mol

P bubble pressure in Pa

Pe Péclet number (= 2a U/D)

p partial pressure in Pa

Da atmospheric pressure above the glassmelt in Pa

R, gas constant in J mol ™! K!

Re Reynolds number (= 2 a Ulvg)

r radial coordinate in m

Sc Schmidt number (= vg/D)

Sh Sherwood number (= 2 a k/D)

T temperature in K

t time in s

U bubble rising velocity in ms™!

|4 bubble volume in m?

u(t,r) radial velocity in ms™!

z bubble location with respect to the initial bubble
location in m

0 angular coordinate in rad

u dynamic viscosity in Pas

VG kinematic viscosity in m?s~!

G density in kgm™3

a surface tension in Nm™!
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5.2 Subscripts

i species
s surface
0 value at large r values
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