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Cyclic gob weight and loading variations from stirred glass delivery
systems

Paul F. Spremulli"
Furnace Development Department, Corning Inc., Corning, NY (USA)

With stirred glass delivery systems cyclic variations in gob weights and gob throws (the angles at which free falling gobs land in the
molds) are caused by wobbly stirrers which are displaced (offset) from the delivery system’s center line and rotating at speeds
differing from the gobbing rate. This loss of statistical process control disappears if the stirrer’s rotational speed is synchronized
with the gobbing rate. However, even in a perfect setup, if the stirrer is offset from its central location, a new steady weight and a
constant hooking of the gobs away from the center and toward the smaller gap side result.

Three equations are derived. One equation predicts the projected horizontal angle for the orientation of a gob as it lands in a
mold. Another predicts the number of gobs before equal or almost equal weights repeat. A third equation relates weight variation
to wobble and to the radial location of the rotating stirrer or needle. This equation shows the symmetry that may be expected in
weight variation curves. It is used to generate a normalized theoretical weight curve by setting the averaged percent differences
between the maximum and minimum weights divided by the average weight to 1%. This curve may also be used to disclose the
number of gobs per cycle.

Both loading and weight variations resulted when a non-centered, wobbling stirrer was modelled. The correlation between an
experimental and a calculated weight variation curve, due to the stirrer’s rotation and normalized to 1%, was excellent. This
investigation also showed that modelling could be extended to disclose changes in the weight (flow) of molten glass exiting from an
orifice associated with a stirrer’s rotation and alignment.

Zyklische Schwankungen des Tropfengewichts und des Durchsatzes bei Speisern mit Riihrern

Bei Speisern mit Rithrern werden zyklische Schwankungen des Tropfengewichts und des Auswurfs (d.h. des jeweiligen Winkels, in
dem freifallende Tropfen in den Formen landen) durch azentrisch arbeitende Riihrer verursacht, die aus dem Zentrum des Speisersy-
stems herauslaufen und deren Rotationsgeschwindigkeit von der Schnittzahl abweicht. Diese Beeintrachtigung der statistischen
Verfahrenssteuerung ist vermeidbar, wenn die Rotationsgeschwindigkeit des Rithrers mit der Schnittzahl synchronisiert wird. Den-
noch stellt sich sogar bei einer perfekten Einstellung ein neues stationéres Tropfengewicht und eine stindige Ablenkung der Tropfen
von der Mitte in Richtung der Seite des kleineren Abstands ein, wenn der Riihrer aus der zentralen Position herauslauft.

Drei Gleichungen wurden abgeleitet. Eine davon beschreibt den vorgesehenen horizontalen Winkel fiir die Lage eines Tropfens
bei der Landung in der Form. Die zweite erlaubt die Berechnung der Tropfenanzahl, bevor gleiche oder fast gleiche Tropfengewichte
sich wiederholen. Die dritte Gleichung stellt eine Beziehung her zwischen der Gewichtsschwankung, dem azentrischen Lauf und
der radialen Positionierung des rotierenden Rithrers oder Plungers. Letztere zeigt auch die Symmetrie, die beim Verlauf der Gewichts-
schwankungen zu erwarten ist. Sie wird benutzt, um eine normierte theoretische Gewichtskurve aufzustellen, indem die durchschnitt-
lichen prozentualen Abweichungen zwischen den Maximal- und Minimalgewichten, jeweils geteilt durch das Durchschnittsgewicht,
auf 1% festgelegt werden. Diese Kurve kann auBlerdem dazu verwendet werden, um die Anzahl der Tropfen pro Zyklus festzustellen.

Sowohl Durchsatz- als auch Gewichtsschwankungen ergaben sich aus der Modellierung eines nichtzentrierten Riihrers. Die
Korrelation zwischen einer experimentellen und einer berechneten Gewichtsschwankungskurve bezogen auf die Rotation des Rithrers
und der Gewichtsnormierung von 1% war sehr gut. Diese Untersuchung zeigte auch, daB die auf einen rotierenden, ausgerichteten
Riihrer bezogene Modellierung ausgeweitet werden kann, um Veranderungen der Verarbeitbarkeit der Glasschmelze festzustellen.

1. Introduction

The quality and dimensions of all manufactured prod-
ucts are always subject to certain amounts of variation
as a result of chance and can be followed by means of
control charts. A control chart consists of a chronologi-
cal plot of the quantity being recorded along with its
upper and lower limits. When the process making the

side the control limits. The process is not under control
when points lie outside the control limits, show trends
and or cycles [1]. These abnormal data reveal the pres-
ence of unwanted, extraneously assignable causes influ-
encing the product. Identification and removal or con-
trol of the troublesome causes result in a process which
is in statistical control [2].

product is in statistical control, the plotted points fluctu-
ate randomly about their average value and remain in-
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D Now retired.

In all cases concerning gob orientation or fall (the
horizontal angle at which gobs land in the molds) the
phrase “throw of the gob” may be used. Gob orientation
and weight can vary from a stirred glass gob delivery
system without any adjustments being made and can be
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Figure 1. Sketch of a gobbing stirrer and its delivery system.

followed by means of control charts. Abnormal gobbing
behavior or lack of control may result from five major
causes, namely: a) changes in viscosity due to alterations
in the composition of the glass, b) variations in the con-
trol temperature, c) fluctuations in the head of glass,
d) mechanical problems and e) problems with stirrers
or rotating needles including stroke, position, rotation,
centering and wobble. Evidence supporting parts of the
last four claims was presented in earlier publications [3
and 4]. The reported evidence consisted of gob weights
and related variables, and each set of such data is called
a weight run. The weight runs were from different pro-
duction lines making different products. Consequently,
there was little choice in requesting changes for a more
complete study.

As reported earlier [4] changing the rotational speed
(rpm) of a stirrer (i.e. the degree of synchronization) to
more closely match the gobbing rate does not change the
amplitude of a weight variation curve but only its
period. For these cases stopping the rotation eliminated
the cyclic variations in weight and loading or throw of
the gobs. When rotation was restarted, new weights and
gob orientations were found. In setups where synchroni-
zation is perfect no weight or loading variations due to
the stirrer’s rotation occur because these gobs are all cut
at the same angular position of the stirrer. The work
reported herein explains these problems and relates gob
weight and loading variations to the angular position of
the stirrer at the time of the shear cut. This angular posi-
tion determines the vertical and radial gaps (clearances)
between the stirrer’s hummock and the adjacent bushing
(figure 1). These gaps influence the weight and fall or
“throw of the gobs*“. The influence increases as the mini-
mum gap size decreases. While this discussion has been
presented in terms of a gobbing stirrer, it is also true for
a rotating needle and is not restricted to gobbing. In this
report the words stirrer and rotating needle may be used
interchangeably. In addition, for this work and for
simplicity, additional data were obtained from a full-size
model using a reciprocating, rotating needle. The re-
mainder of this paper deals almost exclusively only with
nonsynchronized stirrers. In addition, in order to restrict
the number of variables, the conditions listed below
were used.

2. Assumptions

2.1 Adjustment of shears

Shears are adjusted so cutting gobs does not influence
how the gobs fall. Thus without chutes, gobs centered
in the delivery system will fall and load vertically in the
molds. Any deviations from a vertical, free fall are not
caused by the shears but by the action of the rotating
needle or stirrer.

2.2 Temperature

Temperature is assumed to remain constant. In sym-
metrical gobs any temperature gradients are radial so
even if the core glass is the hottest, the temperature dis-
tribution in each outer glass layer is symmetrical and
isothermal.

2.3 Geometry

All corresponding parts are similar and all round sec-
tions are assumed to have perfectly circular cross-sec-
tions centered on a straight center line. For the delivery
system the stirring well, bushing and the orifice ring are
perfectly shaped and aligned on a common axis. For the
stirrer this means that any plates and/or the gobbing
hummock are perfectly circular, the individual blades at
any level have the same dimensions, shape and relative
orientation and all parts are centered on the stirrer’s
shaft. For a needle the shaft is circular and its bottom
(hummock) is symmetrical. In practice, if the center line
of the rotating member is not straight or is cocked rela-
tive to the axis of rotation, runout occurs. Runout can
be seen as a circular wobble or precession in the motion
of the needle’s bottom.

2.4 Physical variables

For the delivery system, fluid level, orifice ring diameter,
controls for the stirrer’s rotational speed, bottom posi-
tion and stroke were kept constant but the stirrer’s cen-
tering and wobble were changed.

3. General setup

The setup for this work is depicted in figure 2. Gobs are
always cut at the same position just as the needle rises
from the bottom of its stroke. Suppose the hummock’s
center line of wobble (Cy) is displaced a distance E (the
eccentricity) towards the side where the word shears is
located. Imagine a horizontal plane to be drawn through
the hummock between the inside surfaces of the bushing
at the elevation where the radial gap (or clearance) be-
tween the hummock and the bushing has a minimum.
At this elevation the bushing has a radius Ry and that
of the hummock is Ry. Project this plane to the eleva-
tion of the orifice and then on this new reference plane
locate the center line of the bushing (Cg), the eccentricity
(E) and the stirrer’s wobble circle with center Cy and
radius Ry to show the runout. Initially at # = 0 the
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angular position of the stirrer is at § = 0° relative to the
x-axis showing that the system has been adjusted so that
Cg, E, Cyw, Ry and the initial minimum gap (not shown)
are on the same line and also in-line with the x-axis. The
notation “shears” indicates that the center line of the
shears is in the direction of the x-axis but, of course,
must be at a lower elevation, and is the constant refer-
ence position at which all the gobs are severed. When
the stirrer has rotated through an angle 6 (as shown in
figure 2), its axis is at Cy on the wobble circle and the
minimum gap, identified as G(6)m;,, makes an angle ¢
with the x-axis as explained in section 5.2.

If rotation is stopped and then restarted, usually Cg,
E and Cy are no longer in-line with the shears and a
new set of initial variations result. This is equivalent to
a rotation of the shears in figure 2 with revised values
for 6 and ¢.

4. Special cases
4.1 Case 1

The centered, perfect parts are depicted in figure 3 with
E = Ry = 0. At the bottom of any stroke for a perfect,
rotating needle centered in a perfect delivery system, the
radial clearance between the hummock and the bushing
is uniform and remains constant regardless of the angu-
lar position of the hummock. For this case the minimum
gap is Gy and is equal to the clearance. At ¢ = 0 let Z,
be the reference point. For the next gob Z, rotates to Z,
and the corresponding gap is Gy which is still equal to
the minimum gap. So

Go-Rg — Ry . 1)

Equation (1) means that the clearance is constant so the
resistance to flow of the glass does not vary with the
angular position of the hummock. Consequently neither
the weight nor the vertical loading of gobs (as explained
later) will vary and the setup will behave like a perfectly
centered, standard (nonrotating) needle with a perfect
sleeve, except, of course, that visual glass striae or in-
homogeneities called cords are not attenuated [5].

4.2 Case 2

The offset, perfect parts are shown in (figure 4 with
Ry, = 0 but E # 0. If in the previous setup the stirrer is
offset from its central location, there is now an actual
constant size, minimum gap between the hummock and
the bushing regardless of the rotation.

However, the gobs no longer fall vertically, so that a
“throw of the gob” has now been introduced. The gobs
will now curl towards the minimum gap side. This can
be explained by noting that on the downstroke the glass
moving through the narrow (minimum) gap experiences
a lot more resistance to flow than the glass moving past
the other side of the needle and so the flow near the
smallest gap must be smaller than elsewhere. In addition,

wobble
circle

shears—> x

Figure 2. Pertinent variables plus the outline of the bushing and
hummock at the minimum gap elevation projected downward
to the orifice’s level. The shears, of course, are mounted below
the orifice with their center line parallel to the x-axis.

Figure 3. Gap (clearance) for case 1 with £ = Ry = 0.

Figure 4. Gap (clearance) for case 2. Similar to figure 3 with
Ry = 0, except center is displaced a distance E.

experience has shown that the temperature in the region
of the smallest clearance is easily 1 to 2 K cooler than
elsewhere. The net result of the lower flow and tempera-
ture is that the gobs hook toward the low flow side (fig-
ure 5). As the size of this minimum gap (Gp) remains
constant, the resistance to flow again does not vary.
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Figures 6a to d. Gap (clearance) for case 3. Cross-sectional
views for a needle’s or stirrer’s hummock wobbling in a circle
which is centered on the axis of the delivery system.

Thus, although the weight has changed from its previous
value for the centered case, the new weight is also con-
stant.

Reiterating, even though the reference point Z; has
rotated through an angle 0 to Zj the minimum gap has
a constant value equal to

Go = Rg — (E + Ry) . 2

Figure 7. Relative locations of the gobs for the four positions
of the hummock shown in figures 6a to d (displaced from center
for clarity).

Thus, the minimum gap remains at Z; and is constant
for all angles as is clear from figure 4. As Gy is constant,
the direction of “throw of the gobs™ is also constant and
to the right from Cg. For this setup the clearance at all
points is fixed, so the flow does not vary and gob
weights do not vary.

4.3 Case 3

The wobble centered on the axis of the delivery system
is shown in figures 6a to d with £ = 0 but Ry > 0. A
stirrer wobbling in a circle whose center lies on the axis
of the delivery setup, results in no weight variation, but
does yield cyclic loading changes. Figures 6a to d show
four cross-sectional views for the reference plane. In each
figure the central square represents the axis common to
the delivery system (center line of the bushing) and the
other squares indicate the center line of rotation of the
needle. The ‘intermediate (heavy) circle represents the
hummock and its axis is always on the circumference of
the inner circle whose radius is Ryw. This is the wobble
circle. In figure 6a, the maximum coupling (smallest
gap), is labeled G,. Figures 6b to d depict the same setup
when the needle’s center line has precessed through 90,
180 and 270°, respectively. By inspection of figures 6a to
d, it is clear that the size of the minimum gaps (G;, G,
G; and G,) is the same for these four positions and (with
n=1273,4)is

G,=Rg — Ry — Ry, (3)

which is independent of the angle. Thus, it follows that
the fluid flowing through each configuration experiences
the same forces and there is no weight variation asso-
ciated with this rotation.

Viewed from above, gobs for figure 6a, on free fall,
land in position 1 in figure 7, in which the gob is shown
displaced radially from Cjy for clarity. Similar results are
found for the other positions. In actuality the gobs are
not dispersed as shown but pile-up on one another with
their tops overlapping at Cg. This variable “throw of the
gob” is a serious defect unless chutes are used to load
gobs into the molds. (From section 2.1 it is evident that
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the “throw of the gob” just discussed is not caused by
the shears because they were adjusted not to influence
the throw.)

4.4 General case

The wobble center offset from the axis of the delivery
system is depicted in figures 8a to d with £ # 0 and
Ry, # 0. A stirrer wobbling in a circle whose axis does
not coincide with the axis of the delivery setup results in
both cyclic weight and loading variations. Figures 8a to
d are similar to figures 6a to d but include the hum-
mock’s eccentricity. For this case figure 8a has the small-
est minimum gap (at Z;) but the heaviest gob. In ad-
dition, the throw of the gob has also increased from that
discussed in section 4.3 as the gap is smaller.

At 0 = 0°, ¢ = 0°, according to figure 8a (angles
not marked)

Gi=RB_(E+Rw+RH). (4)

At 0 = 90°, according to figure 8b (angle not marked)
Gy = Rg — Ry — (E* + R)'?, ®)
and also from figure 8b

¢ = tan" ! (Rw/E) . (6)

For this case the reference point has rotated 90° from Z;
to Z, but the minimum gap has only moved to G,.

At 6 = 180°, ¢ = 180°, according to figure 8c (angles
not marked)

G5=Rg— Ry — Ry + E. @)
At 0 = 270°, according to figure 8d (angle not marked)
Gi= Rg — Ru — (E* + R)'”, ®)
and from the same figure

¢ = tan ! (—Ry/E) . )
The four different values for the gaps illustrate the cyclic

nature of the loading and of the weight variation for this
case and substantiate the first sentence in this section.

5. Analysis

As mentioned earlier, a perfect setup does not have
cyclic weight and loading variation and is not considered
in the following material.

5.1 Discussion

From the discussions in section 4.1 to 4.4 it is clear that
weight variation and loading variation curves are repeat-

c) d)

Figures 8a to d. Similar to figures 6a to d, except the wobble
circle is not centered in the well

able and occur because of runout and eccentricity. From
experience and conjecture it is known that centering can
change the violence of the “throw of the gob®. In this
discussion it is assumed that the needle is sufficiently
close to the center of the system and its wobble is small
enough, so that all possible changes such as preferential
chilling at the orifice and changes in dynamic pumping
(with angle) by the stirrer can be neglected. For all the
different setups, at the needle’s bottom position, the an-
nular space available for the flow of glass is constant.
This assumes that at the time the gob is cut, only the
radial distance between the hummock and the bushing is
important and that any vertical displacements associated
with the changing tilt of the wobble circle can be neg-
lected. Thus, with the assumptions listed above and in
sections 2.1 to 2.4, runout and eccentricity, in this dis-
cussion, are the only variables that can cause the cyclic
changes. Thus, the minimum gap at which a gob is cut
may be assumed to control the variations due to ro-
tation.

5.2 Angle ¢

In figure 2 the arrow from Cy to the outer circle is the
radius (Rg). This arrow makes an angle ¢ with the
x-axis and it is perpendicular to the tangent (not shown)
at that point. Likewise, the collinear arrow from Cy to
the intermediate circle is the hummock’s radius (Ry) and
is perpendicular to the tangent (not shown) at that
point. G(0)iy 1s the perpendicular distance between the
two parallel tangents and is the minimum gap between
the hummock and the bushing. Application of the
trigonometric cosine law to the triangle in figure 2 and
using the interior angle ¢ results in
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Figure 9. Theoretical percent weight variation, minimum gap
size and direction of gob’s fall. Curve 1: percent weight varia-
tion normalized to 1%; curve 2: minimum gap size [G(0)in)
as gobs are severed; curve 3: angular direction for “throw of
the gob*.

Ry = [Rg — Ry — G(O)mu) + E?
— 2E[Rg — Ru — G(O)min] cos &, (10)
S0
=Ré -+ [Re — Ry = Glth]" + B
2E[Rg — Ry — G(O)minl

cos¢ = (11a)

Originally, British units were used for the calculations.
For a numerical example Rp, Ry, Rw and E were arbi-
trarily set equal to 6", 2—5/8", 2" and 1 — 1/4", respec-
tively. To retain easy recognition, these numbers were
not rounded-off when converted to meters and became
0.1524, 0.066675, 0.05080 and 0.03175 m, respectively.
Substituting these numbers into equation (11a) yields

—0.0015726 + [0.085725 — G(O)min]
0.0635[0.085725 — G(O)min] '

cos¢ = (11b)

The law of sines can also be used with the triangle and
yields

(sin @)/ Ry = [sin(n — O)J/[Rg — Ry — G(O)min] - (122)

Either equation (11a) or (11b) can be used to find ¢
provided the correct gap is known. For the same values
of Ry, Ry, Rw and E just used, equation (12a) becomes

sin ¢ = 0.0508 [sin ( — 0)]/[0.1524 — 0.066675 — G(O)ainl]
or

sin¢ = 0.0508[sind]/[0.085725 — G (O)min] - (12b)
These equations result in the same relations for the angle
¢ found in section 4.4.

The direction for the “throw of the gob” is interest-
ing but the minimum gap as a function of the angle is
of fundamental importance.

5.3 Angle 0

The equation for the minimum gap as a function of 6
can be found from the same triangle but the exterior
angle 6 is now used. 6 is the angle between Ry and the
x-axis and is the angle that the stirrer has turned. The
trigonometric law now yields

[Rg — Ry — G(@)aiP= E2 + R3y + QERy) cosh. (13)
So
G(H)Min = RB_RH_[E2+R%V+(2ERw) cos0]1/2. (14)

Of course, this equation shows that the minimum gap
depends on the angular position of the hummock and
the other pertinent variables when the gob is cut.

For a numerical example Rg, Ry, Rw and E were
again arbitrarily set equal to 0.1524, 0.066675, 0.05080
and 0.03175 m, respectively, and then substituted into
equation (14). So

G(O)viin =0.085725—0.0599058[1+0.898877 cos0]'/2. (15)

When 6 increases by multiples of 2n, the value of cosf
remains unchanged, and the value of G (), repeats
showing that this function has a period of 27. When 6
is equal to any j - T * 0(0 = any arbitrary angle and
j = 0,1,2, etc.), the value of G (), remains unchanged
showing symmetry about § = j - n (curve 2, figure 9).

5.4 Graph of the angle for the “Throw of the gob*®

This angle was found by using equations (12b and 14)
which were solved simultaneously with a simple com-
puter program (not shown). The angle ¢ is plotted
as curve 3 in figure 9. It is a periodic function of the
angle 6 at which the gob is cut for the general case in
which E and Ry > 0. It is noted that ¢ = 0° when
6 = 0° and lags 6 for 0° < 6 < 180°. When 6 = 128.68°,
¢ = 90°. Also ¢ = 180° for § = 180° and leads 6 for
180° < 0 < 360°. At 0 = 231.32°, ¢ = 270°, etc.

5.5 Weight versus minimum gap or angle

A simple assumption relating weight with the angular
position of the needle is that gob weight, W(6), is a lin-
ear function of the minimum gap at which the gob is
cut, i.e.

W@ =mG(O)min + b (16)

where m and b are appropriate constants that can be
evaluated. As it is desirable to consider weight varia-
tions, this equation may be rewritten as

W) = Way + m[G(O)min — Gavl a7
where W,y is the average weight and G,y is equal to

G (0)min averaged over a complete cycle (see section 11.).
In equation (16), b has been replaced by
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b= WAV e mGAv . (18)

Equation (17) shows that W(6) = Way when G()umin =
= Gav. (Note that the assumptions used to write equa-
tion (17) determine how b is defined by equation (18).
Different assumptions will result in different forms for
equation (18).) In practice, with a fixed physical struc-
ture, Wy and Gay can be changed by varying the tem-
perature of the stirred glass, its chemical composition
and its level (head, see figure 1) above the orifice of the
delivery system. W,y and Guy can also be varied by any
changes in the stirrer’s rotational speed, direction of
rotation, centering, gobbing rate as well its elevation
(vertical position) and/or stroke [1]. In other words, Wy
and Gay can be changed by varying the value of any of
the parameters in equation (14).

From equation (17) divided by Wxy
(W) — Wavll Way = m[G(O)min — Gavl/Way - (19)

Define the maximum and minimum gob weights as
Waax and Wy, and the maximum and minimum gap
sizes as Gyax and Gy, Using the fact, as explained ear-
lier, that the gob weight has its maximum value, Wy,y,
when G(f)umin, has its minimum value, equation (17)
gives

(Wmax — Wav)! Way = m[Guin — Gavl/ Way - (20
Likewise
(Wnmin — Wav)! Way = m[Gmax — Gavl/ Way . (21)

Subtracting equation (21) from equation (20) yields
(Wmax = Wwmin)/ Wav = m[Gpmin — Omax)/ Wav - (22)

It is desirable to normalize the total percent weight fluc-
tuation to one percent. With this information

WMax_ WMin m [GMin_ GMax]

100% =

AV AV

100% = 1%. (23)
This results in
m = Way/(100[Gpmin — Gmaxl) - (24)

On this basis equation (19) becomes

WO) = Way 100 — GOnin — Gav 6
AV GMmin — OMax
Thus theoretically, the normalized percent weight fluctu-
ation for any gob can be found by evaluating the right
hand side of equation (25). The results for a complete
cycle are plotted in figure 9 as curve 1. From this curve
it can be seen that the peak for the minimum weights is
narrower than that for the maximum weights. Figure 9
can be used to predict a normalized percent weight

variation curve for any actual or predicted weight run.
This requires determining the change in the angular po-
sition of the stirrer between successive gobs cut or to
be cut. This procedure is illustrated for the weight run
discussed in this article in section 5.8.

5.6 General relation between rpm and gpm

When rpm and gpm are known, the actual angles at
which gobs are cut can be calculated. With these angles
equation (15) can then be used to calculate the corre-
sponding minimum gaps. The closer the angles at which
gobs are cut, the closer the gob weights will repeat. In
this section, gob and the matching turn numbers for
gobs cut close to 0°, 360°, 720°, etc. will be calculated.

Let

nglty = gpm (26a)
or
ty/ng = time per gob (26b)

and let ug equal the rotational speed of the stirrer in
turns per minute. Therefore,

uy = 360n,/t, . 27)

Let the angle the stirrer turns through per gob be y, then

Y = ustylng = (360 ny/t;) (tg/ng) (28a)
or
y = 360 (rpm/gpm) . (28b)

Let g, be the integral number of gobs cut during an
integral (complete) number of turns N, of the stirrer.
The difference in the angular position at which the gob
is cut and the angular position of the stirrer is
A = [360 Nine — 78ml - (29a)
This difference may be positive or negative. With equa-
tion (28b) and using absolute values, it may be rewrit-
ten as

|A/360] = |[Nip, — (rpm/gpm) g]| = Var=¢=0  (29b)
where Var is defined to be |A/360| and ¢ is any desired,
arbitrary number(s). Division of this inequality by the
positive number g, results in

[Nini/gm — (rpm/gpm)] < elgp = &' = 0 (29)
where ¢’ is also arbitrary. Examination of this inequality
shows that if the arbitrary numbers ¢ and ¢’ are large
enough, one or more values of the ratio of the integral

number of turns over number of gobs cut (Ni,/gm) will
be close enough to rpm/gpm to satisfy this inequality.
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Table 1. Variations for corresponding integral values of gobs
and turns for which weights (and throws) will or almost will
repeat versus ¢ in the range (1 = g, = 50) with (1 < N, = 65).

& Nint e=0.08 £=0.06 ¢=0.04 £=0.02 ¢=0
10 9 0.02 0.02 0.02 0.02 e
19 17 0.06 = = = o=
20 18 0.04 0.04 0.04 - =
29 26 0.04 0.04 - = =
30 27 0.06 0.06 = = =
39 35 0.03 0.03 0.03 = -
40 36 0.08 = = = o
49 44 0.01 0.01 0.01 0.01 o

Explanation: Variations = Var = [Nj,, — (rpm/gpm) g, ] <& =0.
Division of this inequality by the positive integer, g, results in
[Nint/gm — (rpm/gpm)] =< ¢/g, = 0. When ¢ = 0 both of the
above inequalities become equations. For this case (Nip/gm) is
exactly equal to (rpm/gpm). Otherwise, when ¢ # 0 and from
either inequality, it is clear that the smaller ¢ and/or &/gy, is, the
closer the ratio of the integral number of turns over the (inte-
gral) number of gobs cut (N, /gy,) is to (rpm/gpm). This state-
ment is further explained in the discussion following equation
(29b) in the text.

Clearly, as the value ¢ or &’ decreases, some of these ra-
tios will be excluded. For small enough values of ¢ and
&', all ratios will be excluded unless N;,/gy, is identically
equal to rpm/gpm. For this later case the inequality
(equation (29c)) will be satisfied for ¢ = ¢’ = 0. For large
values of ¢ or ¢’ there may be many values (pairs) of N,
and g, which will satisfy the inequalities (equations (29b
and c)). As smaller values of ¢ (or &) are chosen, the
number of pairs of of N;,, and g,, which will also satisfy
the inequalities’ decrease (table 1). Other examples are
discussed in section 5.7. In the above inequalities (equa-
tions (29b or ¢)), Ny, is the number of the turn during
which gobs numbered g, are cut. For values of N, and
gint for which dif or Var or ¢ or &' = 0, the weight and
throw will repeat exactly. When there is a mismatch in
synchronization between gob cutting and stirrer ro-
tation, | Nj,, — (rpm/gpm)g,,| € and &” > 0 and the weight
and throw will change for each gob. The smaller the
value of ¢ and &', the closer weight and throw will repeat.
Some examples will now be discussed.

5.6.1 rpm are multiples of gpm

Synchronization occurs when rpm is any exact multiple
of gpm. All gobs will then be cut at the identical angular
position of the stirrer. Consequently, no weight or load-
ing differences due to stirrer’s rotation can occur.

5.6.2 Integral values of rpm and gpm

From physical consideration if rpm < gpm, then some
gob weights and throws must be different from others.
For example, if rpm = 1 and gpm = 3, then three gobs
are cut for each revolution of the stirrer. During the first
turn, the hummock will have turned through 120° for
the first gob, 240° for the second gob and 360° for the
third gob. As the gaps for the original gob and the fol-

lowing two are different, the weights and throws must
also be different. As long as the other variables remain
unchanged, weights and throws will repeat exactly every
third gob as these will be cut at identical angles.

For the same example equation (29b), is rewritten as
A/(360gm) = [Nint/gm — (rpm/gpm)] = Var/gy, = &/gm = 0.

With rpm/gpm = 1/3, this equation can be satisfied with
¢ = 0 by equating Nj,/g, to 1/3 or 2/6 or 3/9, etc. From
this it is again clear that weights and throws will repeat
every third gob. A = 360[N;,, — (rpm/gpm) g.,]) will
now be used to study the same example with more
detail.

For the first turn N;,, = 1 and three gobs (g, g, and
g3) are associated with it. So for the first gob

A = 360[1 — 1(1/3)] = 240°.
For the second gob

A = 360[1 — 2(1/3)] = 120°.
For the third gob

A =360[1 — 3 (1/3)] = 0°.

For the fourth, fifth and sixth gobs N;,, = 2 and the
differences are

A = 360[2 — 4 (1/3)] = 240°,
A = 360[2 — 5(1/3)] = 120°,
A = 36012 — 6 (1/3)] = 0.

With this procedure it is again clear that weight and
throw will repeat for multiples of 3.

With this example it is conaluded that when rpm and
gpm are integers and rpm < gpm, then cyclic weight and
loading variations must occur.

5.7 Determination of gob and turn numbers for
which weights and throw will or almost will repeat

For this example let rpm = 28.2 and gpm = 31.4, so that
rpm/gpm = 0.8980892. With these numbers the angle at
which a gob is cut can be found. Then equations (14 and
17) can be used to determine the gap and the gob
weight, respectively. It is assumed that the starting gob
in a weight run is cut at the zero angular position of the
stirrer where the gob weight is a maximum.

Equation (29b) is now used to find the succeeding
gob and turn numbers for which the weights will be
equal to or close to the original weight. The smaller ¢ is
in this equation, the closer weights (and throws) will re-
peat. To find the values g, and Ny, for ¢ = 0, consider
rpm/gpm = 28.2/31.4 = 282/314 = 141/157. No smaller
ratio of integers is possible. With this ratio becomes
equation (29b) becomes

|Nine — (141/157)g| = Var = e =0 .
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Obviously the solution is g, = 157 and N;,, = 141.
Thus, depending on the accuracy of the measured vales
of rpm and gpm, the first exact repetition of weight will
occur for gob no. 157 and turn no. 141 and others will
occur at multiples of these numbers. Equation (29b) was
also solved to find other pairs of (g, Nin:) With other
values of ¢. Table 1, generated with a computer, shows
the values of g, Ny and Var for g, ranging from 1 to
50 and N, going from 1 to 65 for various values of e.
For ¢ = 0.08, eight sets of (g, Nin) were found. The
first set is (10, 9) with Var = 0.02. The second and third
sets are (19,17) with Var = 0.06 and (20, 18) with
Var = 0.04. The smaller value of Var for the third set
means that the angle at which this gob is cut is closer to
a multiple of 360° than that for the second set. This
means that the first two peak gob weights will be ten
gobs apart. The fourth and fifth sets are (29,26) with
Var = 0.04 and (30,27) with Var = 0.06. Thus set
(29,26) will be cut at a more favorable angle than set
(30,27), so that its peak gob weight will be nine gobs
away from the previous one. As smaller values of ¢ are
used, fewer sets will be found. Thus, with an examina-
tion of table 1, gob order for peak weights is 0, 10, 29,
39 and 49. This shows a separation of nine and ten gobs
between adjacent peaks. In addition, the different values
of Var for these sets show that their peak weights are
also different and that the weight of gob no. 49 is closer
to that of the starting gob than the others.

Equation (29b) was now examined for (g, Ni)
varying up through (195, 215) with ¢ = 0.08, 0.04 and 0.
Similar conclusions resulted including the observation
that multiples of 49 gobs also yielded weights quite close
to the maximum gob weight.

From this work it was clear that weight (and throw)
would repeat approximately every ninth or tenth gob
and that the peak weights in a weight run would only
occasionally repeat exactly.

6. Experimental percent weight variation
curve

From theory it is known that a properly designed and
operated model can be used to study gobbing rep-
resenting a stirred glass delivery system [3]. Thus, a full-
size model (figure 1) was used to simulate the delivering
of gobs of a typical production line making borosilicate
glassware. Its gobbing stirrer was offset from the delivery
system’s center line and had a pronounced wobble. The
rpm and gpm were determined by timing 100 turns and
100 gobs, giving an rpm of 28.2 and a gobbing rate of
31.4 gpm. Gob collection was started when the angular
position of the stirrer was apparently aligned to give one
gob ahead of a maximum weight. This means, of course,
that for the first maximum weight gob, the angle 6 was
as close to zero as could be realized experimentally. Thus
the weight run started with gob number (—1).

TTTTTTTT T T
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10 15 20 25 30 35 40 45 5

Gob number

Figure 10. Percent weight variation curves normalized to 1 %.
Solid circles represent experimental values, open circles are cal-
culated points.

The cyclic gob-loading variation, predicted by the-
ory, was clearly evident. In addition, weights varied from
the average by about 6 %. The average was calculated
with the following equation in which N = 49,

N
Way = X WiI(N+2). 31
i=-—1
The cycles in the resultant curve repeated every nine to
ten gobs. For comparison with a calculated curve, the
spread was normalized to 1%. This was done by al-
gebraically subtracting the average of the lower peaks
from the average of the upper peaks and dividing by the
average weight. This percent spread was then made
equal to 1%. This 1% spread and the normalized exper-
imental weight curve (with solid circles) are shown in
figure 10. In appearance this weight curve is similar to
many others found in production runs [4]. From figure
10 it also appears that the lower peaks are sharper than
the upper peaks as suggested earlier. It is also noted that
the maximum weights of the gobs are different as sug-
gested earlier, while the minimum value at gob no. 44
was the lowest. In practice, parts are not perfect, tem-
perature distributions may not be ideal and other unpre-
dictable perturbations may occur as stated in the intro-
duction. Therefore, weight and loading variation curves
will always show some degree of asymmetry. Of course,
the better the parts are made and aligned, and the
smaller the random changes in the operating variables

are, the smaller the fluctuations in the cyclic variations
will be.

7. Theoretical percent weight variation curve
7.1 Calculation

From the rpm and gpm values, the angle 6 can be deter-
mined and by equations (12a and 14), the angle ¢ and
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Table 2. British and the corresponding metric numbers used for
the experimental and calculated, normalized, 1% weight curves
of figure 10 in which the same values for rpm and gpm were
retained. Note, even though there are big differences between
some of the corresponding numbers, they do not influence the
amplitudes of the normalized curves.

inches meters inches meters

for for for for

experimental experimental calculated calculated
Rg? 3.00 0.0762 6.00 0.1524
Ry? 2.50 0.0635 2.625 0.066675
E? 0.125 0.003175 1.25 0.03175
Ry? 0.25 0.00635 2.00 0.5080

2 As the exact experimental values for Rg, Ry, Ry and E are
not known, more or less typical values for them are shown in
this table. The actual numbers shown here and used for the
calculations were shown in the first paragraph following equa-
tion (11a). Note the large differences between the numbers rela-
tive to the experiment and to those used in the calculations.
Nevertheless, the normalized experimental and calculated per-
cent weight variation curves show excellent agreement (see
figure 10).

the minimum gap can be calculated. Thus, theoretical
curves of gob weights and throws can be constructed.
From these curves the number of gobs at which weights
and throws almost repeat can be seen directly. However,
only the theoretical gob weight curve was constructed.

The calculation was started one gob early, so the gob
numbered (0) was cut with 8 = 0. For equation (29a)
successive gobs were cut at successive values of y where

y = 360rpm/gpm = 360(28.2/31.4) = 323.2°/gob . (32)

With this value for y, (inequality) equation (29b) with ¢
ranging from 0.04 to 0.01 shows that the gob weights
will almost repeat every ninth or tenth gob (as shown in
section 6.) in agreement with the experimental results.

The normalized theoretical percent weight variation
values for gobs numbered —1 to 49 can be found from
curve 1 in figure 9 at y = (i) - (323.2°), where i = —1 to
51. These values can also be found more accurately and
easily by substituting the y’s into equation (25) with
Gayv = 0.0298 as evaluated in section 11. The resultant
points are plotted in figure 10 as open circles.

7.2 Discussion

Normalization of the weight run curves changes the
magnitude of the variations in weight due to eccentricity
and wobble but leaves the angular variations intact.
Thus, the periodicity of these curves is only a function
of the angle (y) irrespective of eccentricity and wobble
and other dimensions. This statement is confirmed by
noting the widely different values used for the exper-
imental and calculated values (table 2) of Rg, Ry, Rw
and E to construct the curves shown in figure 10, while
the same values were retained for rpm and gpm.

The normalized percent weight curves extend over
several cycles in which the gob weights almost repeat.
The calculated curve based on the experimental rates,
namely 28.2 rpm and 31.4 gpm correlates very well
with the experimental one. The maximum weight was
off by +1 gob at the third and fourth cycles and by
+2 gobs in the fifth and sixth cycles. Agreement for the
minimum weights was excellent. Changing the ratio
rpm/gpm = 28.2/31.4 by using 28.4 for the rpm or by
0.7 % made the fit much poorer. Using 28.0 rpm shifted
the disparity in the opposite direction. With rpm = 28.1
or by a shift of 0.35% in the ratio, the maximum weight
was off by +1 gob at the tops of the fourth, fifth and
sixth cycles and the bottom of the cycles no longer fit as
well. It was concluded that the calculated curve based
on the experimental values of 28,2 rpm and 31.4 gpm
resulted in the best fit and that the disparities were due
to small perturbation in the experiment and to possible
but unknown asymmetries in the equipment.

8. Conclusions

It was concluded that the model could be used to study
weight and loading variations due to a stirrer’s wobble
and eccentricity, and moreover, that these normalized
variations could be calculated. It was also clear that the
variations could be eliminated if all the gobs were cut at
the same angular position.

9. Nomenclature

9.1 Symbols

b appropriate constant

Cg, Cy, Cw centers for bushing, hummock and wobble,
respectively (figure 2)

E eccentricity, offset distance (figure 2)

G (0)Min minimum gap at angle 6 (figure 2)

Gay average gap size

GMax maximum gap size

GMin minimum gap size

o size of minimum gap independent of angle

Gy, Gy gaps (figure 3)

Gy gap (figure 4)

Gy, G,, Gs, G  gaps (figures 6a to d)

Gi, Gy, G3, G, gaps (figures 8a to d)

o gob number

m appropriate constant

Nint integral number of turns

ng number of gobs

n number of turns of the stirrer

Rg, Ry, Ry radii for bushing, hummock and wobble,
respectively

t time

ty time for gob

1 time for the stirrer in min

U rotational speed of the stirrer

14 gob weight

Zy, Zy reference points (figure 3)

Zy, Zy reference points (figure 4)

Z\, Z,, Z5, Z, reference points (figures 8a to d)
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y angle at which a gob is cut for the theoretical
and experimental weight runs

arbitrary size angle

arbitrarily chosen number

angular position of stirrer as gob is cut
angle for “throw of the gob®

* T ™

9.2 Subscripts

B bushing

g gob

H hummock

i,n,m index numbers

w wobble

0 reference point at start

9.3 Abbreviations

AV average

gpm gobs per minute

rpm rotation per minute

Var variation (equation (29b))
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11. Appendix: Theoretical evaluation of Gay

Theoretically, this average is defined as
2n 2n 2z

Gav = (f G(6) db?)/ J do=(1/2n) [ GO)do (33)
0 0 0

With equation (14), equation (33) yields

2w
Gav=Rs — Ry — (112m) [ JRy + E2+2ERycos0 d6 .
0
(34)
For a numerical example, Rp, Ry, Rw and E were arbitrarily

set equal to 0.1524, 0.066675, 0.0508 and 0.03175 m, respec-
tively, and substituted into equation (34) yielding

Gay = 0.085725 — 0.0095343 [ /1 + 0.898877cos0df.  (35)
0

Integrals of the type found in equation (35) are known [6]. After
various transformations letting § = 2x, df = 2dx and then
with the identity cos(2x) = 1—2sin?(x), the integral became

2n
I J1+0.898877 cosf df = 2.7559949
K (36)
- [ J1-0.9467457 sin2(x) dx.
0

This last integral is an elliptic integral of the second kind and
its values are tabulated in [7]. Thus, equation (35) may be solved
in this manner or very easily using a computer. With equation
(36) equation (35) becomes

Gav = 0.085725 — 0.0262765 ][' V1 —0.9467457 sin? (x) dx
0
(37
and after evaluation of the integral

Gay = 0.0298 . (38)
0798P003
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