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This conference was organized by K. Ecker (FU Berlin), J. Shatah (Courant Institute, New
York) and M. Struwe (ETH Zürich).
The main aim of the meeting was to discuss progress on three classes of nonlinear evolution
equations, namely geometric evolution equations (essentially parabolic type), nonlinear hy-
perbolic equations and dispersive equations and to show and establish connections between
these.
Lectures were delivered mainly in the morning sessions with one talk in the late afternoon
which left ample time for individual discussions. As at previous meetings, several exciting
recent developments were presented:

Huisken and Sinestrari used mean curvature flow to establish a canonical topological de-
composition for three dimensional hypersurfaces with positive scalar curvature in Euclidean
space. This result bears relation to the work of Hamilton and Perelman which aims at prov-
ing Thurston’s geometrization conjecture via Ricciflow, a geometric evolution equation.

Another most notable development were the results by Tataru and by Krieger on global
well-posedness of the wave-map system for small data in the energy norm. This completes
a long period of intensive research extending previous results of Struwe-Shatah and of Tao.

Rodnianski presented a new notion of weak null condition which is satisfied by the Einstein
equations in the harmonic gauge. This fundamental contribution enables exciting applica-
tions to the problem of global nonlinear stability of Minkowski space.

Connections between the three areas of research become ever more apparent were the topic
of many individual discussions and also of questions asked after the lectures. A common
theme appears to the phenomenon of blow-up (singularity formation) for solutions and
methods to describe the solution near these. Selfsimilar solutions and blow-up rates play
an important role for all three types of equations. In geometric evolution equations, results
in this direction are more advanced than for example for hyperbolic equations due to the
availability of local energy quantities which behave monotonically in time.
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Abstracts

Minimization problems and associated flows related to weighted p -energy and
Total Variation

Yunmei Chen, University of Florida

(joint work with Murali Rao)

Motivated by the problem of edge preserving regularization in image restoration, in this
paper we investigate the relations between weighted p energy based and total variation
based minimization problems, and their associated flows. We prove that the weighted
total variation based minimization and its associated flow in a weakened formulation can
be approximated by the weighted p energy based minimization and its associated flows,
respectively.
Moreover, we show that the flow of the weighted total variation based minimization con-
verges weakly in BV and strongly in L2 to the minimizer as t→∞.

On the continuity of the solution map to the wave map equation

Piero D’Ancona, University of Roma I

(joint work with V. Georgiev, Pisa)

We study the continuity properties of the solution map for the wave map equation in the
critical spaces. We consider wave maps defined on the Minkowski space R × Rn, with
n ≥ 2, with values in an arbitrary target manifold N; the only assumption concerning N is
that it should not be a flat manifold, i.e., that there exists at least one geodesic which is
not a straight line near one point. Then, assume the initial data are in the homogeneous
space X = Ḣn/2×Ḣn/2−1, which is critical both for scaling and for the local well posedness.
Under these assumptions alone, it is not known if a solution exists in general (apart from
the case of small data, as recently settled by Tataru following work of Tao). But assume
a solution map, possibly not unique, is defined on some neighbourhood of 0 in the above
spaces, and takes its values in the space Y (T ) = C([−T, T ]; Ḣn/2) (or equivalently in
C1([−T, T ]; Ḣn/2−1)) for some T > 0. Then such a map cannot be uniformly continuous
from any neighbourhood of 0 in X to Y (T ).
Although this result does not exclude the local existence of solutions, it shows that a
contraction mapping argument in the above spaces (or comparable topologies) must fail.

Some dynamical properties of volume preserving curvature driven flows

Joachim Escher, Universität Hannover

The intermediate surface diffusion flow (ISD) is a geometric evolution law for compact
hypersurfaces which formally connects the surface diffusion flow (SD) with the volume
preserving mean curvature flow (VMC). The first part of the talk provides a rigorous proof
of one part of this conjecture: It is shown that the solutions to (ISD) converge in a suitable
norm to the corresponding solution of (VMC).
In the second part of the talk it is shown that nonconvex solutions to (SD) in the plane form
in finite time a singularity. Moreover, in this situation, an upper bound for the maximal
time of existence is presented.
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Transonic shocks and free boundary problems

Mikhail Feldman, University of Wisconsin-Madison

(joint work with G.-Q. Chen)

We consider transonic (elliptic-hyperbolic) shocks for steady solutions of compressible Euler
equations in multiple dimensions in unbounded domains. We show existence and stability of
such solutions near flat and spherical transonic shocks, and study asymptotics at infinity.
The method is to reduce the problem to a free boundary problem for nonlinear elliptic
equations.

Decay estimates for the wave equation with potential

Vladimir Georgiev, Universita di Pisa

(joint work with Nicola Visciglia, SNS Pisa)

We consider a potential type perturbation of the three dimensional wave equation and we
establish a Strichartz type estimate for the associated propagator. For the potential V (x)
we assume that it is non - negative and has the following L∞ bound∥∥(

|x|2+ε + |x|2−ε
)
V (x)

∥∥
L∞

≤ C <∞,

where ε is arbitrary small positive number. The main results establish dispersive type
estimates of the same type as the linear wave equation as well as Strichartz type estimate
for the corresponding Cauchy problem with potential perturbation. The case of spherically
symmetric potential of type V (x) = a/|x|2 is considered in [PSS], [BP].

[BP] Burq, N.; Planchon, F.; Stalker, J.; Tahvildar-Zadeh, S. Strichart estimates for the
Wave and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002.

[PSS] Planchon F.; Stalker J.; Tahvildar-Zadeh, S. Lp estimates for the wave equation with
the inverse-square potential, will appear in Discrete and Cont. Dyn. Systems.

Motion of a surface by binormal Mean Curvature

Manoussos Grillakis, University of Maryland

(joint work with H. Gomez)

Let us examine the motion by binormal mean curvature of a surface embedded in a four
dimensional space. Consider Σ ⊂ R4 where Σ stands for the surface which can be described
by some internal, but arbitrary, coordinates via Σ := {x ∈ R4 : xj(uα)} where j = 1, 2, 3, 4
and α = 1, 2. Assume that R4 is equipped with the flat Euclidean metric and let us adopt
the summation over repeated indices convention. The tangent vectors to the surface are
defined via tα = ∂αx. The metric on the surface and the Laplacian of the position vector
are given by

gαβ
def
=

〈
tα, tβ

〉
; g

def
=

√
det (gαβ) ; ∆gx

def
=

1

g
∂α

(
g gαβ∂βx

)
. (1)

Using the totally antisymmetric form εαβ on the surface and the antisymmetric tensor εjklm

on the ambient space R4 we define the two forms

σlm def
= εαβtl αt

m
β ; ωjk

def
= εjklmt

l
αt

m
βε

αβ . (2)
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The equation of motion is ∂tx
j = ωj

k∆gx
k. In order to proceed further we have to examine

the basic structural properties of the embedded surface. We introduce a complex mean
curvature on the surface, say Ψ, and a gauge field Aα, the point of the construction being
that the equations are gauge invariant. Finally we derive an evolution equation for Ψ which
is quasilinear of Schrödinger type. There is presently no general theory for existence of
this type of equations except some recent work by Kenig, Ponce and Vega.

Progress in Mean Curvature Flow in R3

Tom Ilmanen, ETH Zürich

(joint work with R. Schätzle, Universität Bonn)

Let Mt, 0 ≤ t < T , be compact, smooth hypersurfaces surfaces moving by mean curvature
in Rn. Fix x0 ∈ Rn. It is known from Huisken’s monotonicity formula that the centred
rescalings about (x0, T ), namely the flows

Mλ
t := λ−1 · (MT+λ2t − x0), −T/λ2 ≤ t < 0,

converge subsequentially in a weak (varifold) sense to a self-similarly shrinking weak mean
curvature flow

Nt =
√
−t ·N−1, t < 0.

Theorem in Progress. Suppose Mt is embedded and n = 3. Then Nt is smooth and Mλi
t

converges to Nt locally in C∞.

It was already known (1993) that Nt is smooth; the difficult point is to show that the
convergence occurs smoothly. In principle there could be several layers of Mλi

t over Nt

connected by small necks that move around unpredictably and serve to drawn the layers
together. The idea of the proof is to show (using the Gauss-Bonnet formula) that the necks
have small parabolic 2-capacity in a certain sense. As a result the layers behave almost as
if they were unconnected without any necks. Then because of embeddedness, the average
distance between the layers is nearly nonincreasing. Since the spatial scale is shrinking like√
T − t, this implies that there can actually be only one layer in the limit. Smoothness of

the convergence then follows by Brakke’s local regularity theorem.
Applications include: an effective dimension-reducing argument; sup estimates of curva-
ture on self-shrinkers; self-shrinkers are smoothly asymptotic to cones and/or cylinders
at infinity; if Nt has no cylinders, then MT has an isolated singular point at x0, MT has
smooth tangent cones, and Mt regains smoothness near x0 for t > T .
This gives good prospects for a partial regularity theory for embedded mean curvature
flows in R3. (Vide also considerable progress by B. White.) Open questions include:
1. If a self-shrinker Nt has an end asymptotic to a cylinder, must Nt be isometric to the
standard cylinder?
2. If an asymptotic cylinder is present in Nt, show that the singular set of MT is either
an isolated point, or a closed curve (and Mt is a torus that shrinks to this curve and
disappears). In the first case, show how to continue the evolution smoothly past the
singular time.
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Scattering for rough solutions of a Nonlinear Schrodinger Equation

Markus Keel, University of Minnesota

(joint work with J. Colliander, G. Staffilani, H. Takaoka, and T. Tao.)

We prove global existence and scattering for the defocussing, cubic nonlinear Schrödinger
equation in Hs(R3) for s > 4/5. The main new estimate in the argument is a Morawetz-
type inequality for the solution φ. This estimate bounds ||φ||L4

x,t(R
3×R), whereas the well-

known Morawetz-type estimate of Lin-Strauss controls
∫ ∞

0

∫
R3

|φ(x,t)|4
|x| dxdt.

Transport and dispersion for the Benjamin-Ono equation

Herbert Koch, Universität Dortmund

(joint work with Nikolay Tzvetkov)

The Benjamin-Ono equation is a close relative of Burgers equation and the Korteweg-de-
Vries equation. Its solutions show the competing effects of transport and dispersion. We
construct a two parameter family of solutions with interacting low and high frequency
parts. As a consequence, the map from the initial data to the solution at fixed time cannot
be uniformly continuous. On the other hand we show local wellposedness for initial data
with s > 5/4 derivatives in L2.

Global regularity of Wave Maps in 2 and 3 spatial dimensions

Joachim Krieger, Princeton University

We explain our proof of global regularity of Wave Maps from the 3+1 Minkowski space
to arbitrary targets, provided the initial data are smooth and small in the critical Sobolev
norm. Similarly, we prove that Wave Maps from the 2+1 Minkowski space to the hyperbolic
plane satisfy the analogous property. Our method relies on an ’intrinsic formulation’ and
the use of a global Coulomb Gauge (as in earlier work by Klainerman-Rodnianski and
Shatah-Struwe), as well as exploiting a sophisticated null-structure in the nonlinearity of
this semilinear system. We also rely on the complex Banach spaces invented by D. Tataru
and further developed by T. Tao.

Willmore Flow and Removability of Singularities

Ernst Kuwert, Universität Freiburg

(joint work with R. Schätzle, Universität Bonn)

We consider surfaces Σ ⊂ R3 moving by the gradient flow of the Willmore functional,
i.e. the L2 integral of the mean curvature. We show that if the initial surface is a sphere
with Willmore energy at most 8π, then the flow converges smoothly to a round sphere
(of energy 4π). An example by Mayer & Simonett shows that the bound 8π is sharp. To
prove the theorem we first show that if the flow develops a singularity, then a rescaling
yields a Willmore surface which is neither a plane nor a round sphere. If that blowup is
compact or can be smoothly compactified by an inversion, then results of R. Bryant imply
that it has energy at least 8π, which is impossible. The decisive tool is then a theorem on
removability of isolated singularities of Willmore surfaces with curvature in L2 and density
less than two at the singularity.
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On the large body limit for the Landau-Lifshitz equation in micromagnetics

Roger Moser, MPI Leipzig

For a bounded, open domain Ω ⊂ R3 and a number ε > 0, we consider the functional

Eε(m) =
ε

2

∫
Ω

|∇m|2 dx+
1

2

∫
R3

|∇um|2 dx, m ∈ H1(Ω,S2),

where um ∈ H1(R3) is the unique distributional solution of the equation

∆um = divm in R3

for the trivial extension of m. This is a simplified version of the micromagnetic energy of
a ferromagnetic body of shape Ω with magnetization m. For constants α > 0 and β ∈ R,
we study the Landau-Lifshitz equation for the functional Eε,

∂m

∂t
= −αm× (m×Hε)− β m×Hε,

where Hε is the negative L2-gradient of Eε, i. e. Hε = ε∆m − ∇um. In particular we are
interested in the limiting behaviour of this problem for ε↘ 0.
The formal limiting equation is a pseudo-differential evolution equation of order 0 with
respect to the spatial variables. We prove that for Hölder continuous initial data, the
corresponding Cauchy problem has a unique global solution. For initial data in L∞, we
prove the same by approximation with Hölder continuous maps. Moreover, we have a look
at the problem of proving convergence of solutions of the original equation to a solution of
the limiting problem for ε↘ 0.

On global existence of wave and Schrödinger maps at critical regularity

Andrea Nahmod, University of Massachusetts, Amherst

There are three evolution equations that are derived from the same geometric considera-
tions. The heat flow for harmonic maps which has largely been successfully studied; the
Schrödinger map equation into a complete Kähler manifold which has been less studied
and the wave map equation into a complete Riemannian manifold which has experienced
considerable attention and progress lately. We first survey recent work joint with A. Ste-
fanov and K. Uhlenbeck for critical wave maps from Minkowski space Rn+1 into (compact)
Riemaniann manifolds in spatial dimensions n ≥ 4 and for subcritical Schrödinger maps
into the sphere S2 or hyperbolic space H2 in n = 2 spatial dimensions. We focus on
the results obtained and some of the methods from harmonic analysis and gauge theory
used. We then present a new gauge and a unified set up under which the 2 + 1 space-time
dimensional Schrödinger map system with H1-critical data and the 3+1 space-time dimen-
sional wave map equation (for complete Riemannian manifolds with bounded geometry)
behave in tandem, in the sense they can be written so that their nonlinearities have specific
structures obeying similar corresponding estimates. The scheme we outline thus provide
a path to establish global existence, uniqueness and regularity with small critical data for
both problems above. These ideas are being developed jointly with A. Stefanov and K.
Uhlenbeck.
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The Cahn-Hilliard equation with dynamic boundary conditions

Reinhard Racke, Universität Konstanz

We consider the Cahn-Hilliard equation ψt = ∆µ where µ = −∆ψ − ψ + ψ3, subject on
the boundary to the classical boundary condition ∂νµ = 0, and the following dynamic
boundary condition

σs∆||ψ − ∂νψ + hs − gsψ =
1

Γs

ψt.

This problem was recently proposed by physicists to describe spinodal decomposition of
binary mixtures where the effective interaction between the wall (i.e. the boundary) and
two mixture components are short-ranged. The global stability and the uniqueness of
solutions to this initial-boundary value problem are described (joint work with S. Zheng).
We also report on recent progress on the maximal regularity of solutions, as well as on the
existence of attractors.(joint work with J. Prüß, S. Zheng)

Blow up dynamics for solutions to the L2 critical nonlinear Schrödinger
equation

Pierre Raphael, Université de Cergy-Pointoise

(joint work with Frank Merle, Institut Universitaire de France)

We consider finite time blow up solutions to the critical nonlinear Schrödinger equation
iut = −∆u − |u| 4

N u with initial condition in the energy space H1. Existence of such so-
lutions is known, but the complete blow up dynamic is not understood so far. Our work
focuses on small in a certain sense blow up solutions. A first result is finite time blow up for
strictly negative energy solutions, and an upper bound on the blow up speed corresponding

to numerical observations is proved: |∇u(t)|L2 ≤ C
√

log|log(T−t)|
T−t

. This result relies on viriel

type estimates on the solution. Similar techniques were first exhibited by Martel-Merle for
the study of the generalized KdV equation. More generally, we prove stability in H1 of
the log-log upper bound, whereas blow up solutions outside this stable regime are proved

to satisfy |∇u(t)|L2 ≥ C(u)
T−t

which is the rate of the known explicit blow up solution.

On the Cauchy problem for the Einstein vacuum equations

Igor Rodnianski, Princeton University

The talk describes the results obtained in joint work with H. Lindblad. We discuss the
notion of null condition for general systems of quasilinear wave equations and its failure for
the Einstein vacuum equations in harmonic gauge. We then propose a notion of weak null
condition based on the idea of Friedlander’s radiation field and show that it is satisfied for
Einstein vacuum equations in harmonic gauge. We also discuss applications to the problem
of stability of Minkowski space.
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Convergence of the Yamabe flow for large energies

Hartmut Schwetlick, MPI Leipzig

(joint work with Michael Struwe, ETH Zürich)

We consider the Yamabe or scalar curvature flow on general compact closed manifolds. By
showing convergence of the scalar curvature to its average value in all Lp norms for t→∞,
we deduce via a concentration-compactness argument that the metrics either converge to
a smooth Yamabe metric, or else concentrate in finitely many bubbles. In the presence of
at most one bubble we identify a Kazdan-Warner type transversality condition that rules
out concentration and therefore implies convergence of the flow. The condition is very
natural and easily verified when the manifold is conformal to the standard sphere. Using
the positive mass Theorem we proof that the criterion also holds on general manifolds of
dimensions 3 ≤ n ≤ 5 and in the local conformally flat case.

Ricciflow of L∞-metrics on 3-manifolds

Miles Simon, Universität Freiburg

We consider the Ricci flow
∂

∂t
gij = −2Ricci(g)ij,

of Riemannian metrics whose initial value g0 = g(0) is not necessarily smooth but which
is controlled by a smooth background metric, in the sense that

1

c
h ≤ g0 ≤ ch,

for some smooth metric h. In particular we prove the following theorems.

Theorem 1. Let (Mn, g(t))t∈[0,T ) be a smooth solution to the Ricci-flow, where 1
c
h ≤

g(·, t) ≤ ch, for all t ∈ [0, T ). Then the solution may be extended to (M, g(t)t∈[0,T+ε)) for
some small ε > 0.

As an application we obtain the following theorem.

Theorem 2. Let (M3, ig), i ∈ N be a family of smooth metrics which satisfy 1
c
h ≤ ig ≤ ch,

for some constant c independent of i, and sec(ig) ≥ −ε(i) where ε(i) → 0 as i→∞. Then
there exists a smooth metric g′ on M3 such that sec(g′) ≥ 0 and so M3 may be differen-
tially/topologically classified using the theorem of R.Hamilton [Ha].

[Ha ] Hamilton, R. Four-manifolds with positive isotropic curvature, Comm. Anal. Geom.
5 (1997), no. 1, pp. 1–92.

Mean curvature flow with surgeries

Carlo Sinestrari, Universita’ di Roma ”Tor Vergata”

(joint work with Gerhard Huisken, MPI Potsdam)

An important task in the theory of geometric flows is to define a continuation of the flow
after the singular time in such a way that the topology of the evolving manifold can be
controlled. This has been achieved by Hamilton (1997) for the Ricci flow of four-manifolds
by means of a surgery procedure.
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In this work we introduce a similar procedure for mean curvature flow, which allows us
to define a flow beyond singular time of three-manifolds with positive scalar curvature.
In each surgery we remove a cylindrical region with high curvature and replace it by two
spherical caps. We can prove that after a finite number of surgeries the remaining pieces
are diffeomorphic to spheres or to tori. As a result, we obtain the following.

Theorem: Let M be a smooth closed three-dimensional surface immersed in R4 with
positive scalar curvature. Then M is diffeomorphic either to a sphere or to a connected
sum of tori S2 × S1.

Rough solutions for wave maps

Daniel Tataru, University of California at Berkeley

Wave maps solve the Euler-Lagrange equation for the usual wave Lagrangian, but applied
to functions taking values in a Riemanian manifold.
The result I talked about asserts roughly that the wave maps in 2+1 dimensions is well-
posed in the energy space for small energy data, globally in time. This applies to any
target manifold with ”bounded geometry”, i.e. bounded curvature (and its derivatives)
and positive injectivity radius.
The well-posedness is of a nonlinear kind, in that it only provides solutions which depend
continuously on the initial data.

Regularity of harmonic map flows under extra hypotheses

Peter Topping, University of Warwick

We consider the question of the regularity of the harmonic map flow from a 2D domain, at
the time t = T at which a smooth solution blows up. The map u(T ) can, we have shown,
fail to be continuous. Here we discuss additional hypotheses under which we can be sure
that u(T ) is even Hölder continuous.

Well-posedness and ill-posedness of the Cauchy problem for the modified
KdV equation

Yoshio Tsutsumi, Tohuku University

(joint work with H. Takaoka, Kobe University)

We consider the Cauchy problem for the modified KdV equation in the one dimensional
torus, to which is referred to as (mKdV). It is known that (mKdV) is time locally well-posed
in Hs for s ≥ 1/2, which was proved by Bourgain. The trilinear estimate plays a crucial role
in the proof of Bourgain, which automatically yields the uniformly continuous dependence
of solutions on initial data. On the other hand, Kenig, Ponce and Vega showed that this
trilinear estimate breaks down for s < 1/2. We prove that if 1/2 > s > 1/8, (mKdV)
is time locally well-posed in Hs. In that case, the point-wise continuous dependence on
initial data holds, though the uniformly continuous dependence fails.

Edited by Felix Schulze
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Prof. Dr. Robert L. Jerrard
rjerrard@math.toronto.edu

Department of Mathematics
University of Toronto
100 St. George Str.
Toronto Ont. M5S 3G3 – Canada

Prof. Dr. Markus Keel
keel@math.umn.edu

School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455 – USA

Prof. Dr. Joy Yueh Ko
joyko@cims.nyu.edu

Courant Institute of Math. Sciences
New York University
251, Mercer Street
New York NY 10012-1185 – USA

Prof. Dr. Herbert Koch
koch@mathematik.uni-dortmund.de

koch@math.uni-dortmund.de

Fachbereich Mathematik
Universität Dortmund
D–44221 Dortmund

Joachim Krieger
jkrieger@math.princeton.edu

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000 – USA

Prof. Dr. Sergei B. Kuksin
kuksin@ma.hw.ac.uk

SB.Kuksin@ma.hw.ac.uk

Dept. of Mathematics
Heriot-Watt University
Riccarton-Currie
GB-Edinburgh, EH14 4AS

Prof. Dr. Ernst Kuwert
ernst.kuwert@math.uni-freiburg.de

Mathematisches Institut
Universität Freiburg
Eckerstr.1
D–79104 Freiburg

Prof. Dr. Pierangelo Marcati
marcati@univaq.it

Department of Pure and Applied
Mathematics
University of L’Aquila
Via Vetoio, Loc. Coppito
I-67100 L’Aquila

Prof. Dr. Nader Masmoudi
masmoudi@cims.nyu.edu

Courant Institute of Math. Sciences
New York University
251, Mercer Street
New York NY 10012-1185 – USA

Dr. James McCoy
James.McCoy@maths.anu.edu.au

CMA
School of Mathematical Sciences
Australian National University
Canberra ACT 0200 – Australia

11



Helena McGahagan
mcgahaga@cims.nyu.edu

Courant Institute of Math. Sciences
New York University
251, Mercer Street
New York NY 10012-1185 – USA

Dr. Roger Moser
Roger.Moser@mis.mpg.de

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
D–04103 Leipzig

Prof. Dr. Andrea Nahmod
nahmod@math.umass.edu

Dept. of Mathematics & Statistics
University of Massachusetts
Amherst, MA 01003-9305 – USA

Prof. Dr. Fabrice Planchon
fab@math.univ-paris13.fr
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