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For many practical cases of tempering the temper stresses calculated by instant freezing theories are sufficient and in good agreement 
with experiments. The auhors give a brief summary of the theories by Adams and Williamson, Bartenev and Indenbom and discuss 
their numerical Implementation. For example, frozen-in temper stresses are calculated and discussed within the model of a symmetri­
cally cooled, infinite glass plate. Based on the numerical soludon of the heat conduction equadon with a given heat transfer coef­
ficient, especially the influence of the inidal temperature of quenching is investigated. Furthermore, a numerical algorithm is pre­
sented to calculate the temporal evoludon of the permanent temper stresses for Indenbom's theory. Finally, as a practical example, 
residual stresses are determined in the surface of a tempered glass-particle composite system. 

Glasübergang und Instant-Freezing-Theorien - Vergleich der eingefrorenen Wärmespannungen 

Für viele prakdsche Anwendungsfälle des thermischen Vorspannens von Glas sind thermische Eigenspannungen, die auf der Grund­
lage von Instant-freezing-Modellen berechnet wurden, ausreichend und in guter Übereinstimmung mit dem Experiment. Die Autoren 
geben eine kurze Zusammenfassung der Instant-freezing-Modelle von Adams und Wilhamson, Bartenev sowie Indenbom und disku­
tieren ihre numerische Umsetzung. Als Beispiel werden eingefrorene Wärmespannungen im Rahmen des Modells einer symmetrisch 
abgekühlten, unendlich ausgedehnten Glasplatte endlicher Dicke berechnet und verglichen. Auf der Grundlage der numerischen 
Lösung der Wärmeleitungsgleichung bei vorgegebenem Wärmeübergangskoeffizienten wird insbesondere der Einfluß der Ausgangs­
temperatur der Abkühlung auf die Höhe der Spannungen diskutiert. Ferner wird ein numerischer Algorithmus präsentiert, um 
die zeidiche Ausprägung der thermischen Eigenspannungen für Indenboms Modell zu berechnen. Als prakdsches Beispiel werden 
abschließend Eigenspannungen in der Oberfläche eines vorgespannten Glas-Teilchen-Verbundsystems bestimmt. 

1. Introduction 
The theory of the glass transi t ion has a long history. 
Dur ing the last nearly 100 years a number of theoretical 
approaches has been developed to model the mechanical 
response of glass dur ing cooling [1]. In the classic theory 
of annealing, A d a m s and Will iamson [2] investigated 
slow cooling of glass plates in order to reduce stress gen­
eration. Typically, temperature in annealing is controlled 
to produce a cons tant cooling rate bringing about only 
small temperature equalization stresses. These are 
stresses evoked in a glass plate by the decay of a nearly 
parabolic temperature distr ibution existing in the plate 
after leaving the t ransformat ion ränge. 

In tempering glass with cooling rates being much 
higher and varying with time, addit ional contr ibut ions 
to the final temper stresses have to be taken into ac­
count: these are solidificadon stresses and stresses of 
structural origin [1]. The latter arises even while glass is 
being cooled at a cons tant cooling rate [3]. 

Clearly, the s tructural or thermoviscoelastic theory is 
necessary for a deeper unders tanding of the na ture of 
glass t rans idon [4 a n d 5]. It is the only theory that refers 
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to the " rea l " glass, bu t it requires a set of physical 
p r o p e r d e s tha t may no t be available in any case. Jus t 
then , ins tan t freezing mode l s us ing restr icted o p e r a ü n g 
p a r a m e t e r s can also predict final t emper stresses as well 
as t he m o r e sophis t icated viscoelasüc or s t ruc tu ra l 
theory. 

In ins tan t freezing theor ies the t r ans fo rma t ion r ä n g e 
of glass is reduced to a single sol idif icadon t e m p e r a t u r e 
Tg. Th i s simplification p roduces a d iscont inui ty in t he 
mater ia l behaviour at Tgi glass above Tg is t r ea ted as a 
stress-free fluid, while glass be low Tg is r ega rded as a n 
elastic solid wi thou t any stress re laxat ion. Never the less , 
for m a n y pract ical cases of t emper ing , in s t an t freezing 
theor ies yield sufficient results (see e.g. figure 1). Th i s is 
due t o the fact tha t t emper stresses in glass q u e n c h e d 
from relatively high t empera tu res are p r edomina t e ly 
t empera tu re equa l i zaüon stresses, i.e. the precise r h e o ­
logical proper t ies of glass in the t r ans fo rma t ion r änge 
are of relatively little m o m e n t . 

T h e present pape r gives a brief s u m m a r y of the the ­
ories by A d a m s a n d Wi l l iamson, Bar tenev [6] a n d In ­
d e n b o m [7]. For these theories , numerical ly ca lcu la ted 
t e m p e r stresses are discussed a n d c o m p a r e d . F u r t h e r ­
more , the influence of the initial t empera tu re of q u e n c h ­
ing a n d the t empora l evolu t ion of the t e m p e r stresses 
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Figure 1. Influence of the initial temperature Γο on the size 
of midplane stresses σ(0) with heat transfer coefficient k as 
parameter [1, p. 154]: Experimental results and Bartenev's 
theory [6] (dashed lines). 

perature distr ibution depends only on the z-coordinate 
and the heat conduct ion e q u a d o n is one-dimensional 

Τ 
QCy, = K - (2) 

where ρ is the Volumetrie specific heat a n d κ the ther­
mal conductivity. 

Within the model of an infinite glass plate the 
stresses produced are two-dimensionally isotropic plane 
stresses, varying th rough its thickness only: 

(^XX = ^YY = Ö - ( Z ) ; σ,, = 0 . (3) 

Calculations were performed for a representative glass 
plate with the geometric and material parameters as 
shown in table 1. 

Any theoretical description of tempering must start 
with a transient thermal conducdon analysis, i.e. equa­
tion (2) has to be solved with initial and bounda ry con­
ditions. For the case of tempering these are given by 

Γ(ζ,Ο) = Γο and -κ 
I Τ 

\ η I ±DL2 
= k{T- ΓΟ 

±DL2 
(4) 

Table 1. Processing parameters of the infinite glass plate model 

density Q 2.5 g/cm^ 
specific heat C O 775 J/(kg · Κ) 
thermal conductivity Κ 0.87 W/(m · Κ) 
linear thermal expansion coefficient α 8.9 · 10-6 K - i 
elastic modulus Ε 6.98 · 10^0 Pa 
Poisson's ratio ν 0.247 
glass transition temperature Τ, 575 °C 

plate thickness d 6.1 mm 
initial temperature To 635 °C 
quenching temperature Τχ 26 °C 
heat transfer coefficient k 330.7 W / ( M 2 · K) 

The exact Solution for this problem is given e.g. in [9] in 
the form of an infinite series which was used to calculate 
the temperature d is t r ibudon Γ(ζ, t) applying a sophisti­
cated numerical technique with precalculated eigenval-
ues. This approach increases bo th precision and Oper­
ation speed in compar i son to numerical "Standard meth­
ods" for solving part ia l differential equadons of type (2). 

Once the temperature distr ibution Γ(ζ, t) is known, 
thermoelasdc stresses can be calculated from first prin­
ciples of thermoelastici ty [10]. 

σ ( ζ , 0 = -IG 
1 + v 

1 - v 
a[T{zj)-T{t)], (5) 

(for I n d e n b o m ' s theory) is investigated. Finally, as a 
pract ical example , the results are appl ied t o determine 
residual stresses in the surface of a t empered glass-par­
ticle compos i t e system. These Systems are of specific 
interest in o rde r to use their n o n h n e a r opt ica l properties 
[8]. All the following considera t ions a re related to a flat 
glass plate tha t is large in relat ion to its thickness d\ 

- a ^ x ^ a , - b ^ y ^ b ; -d/2 ^ ζ ^ d/2; a, b > d. (1) 

B o t h sides are symmetrical ly cooled wi th a given heat 
t ransfer coefficient k governing the ra te of hea t exchange 
be tween the glass (with the h o m o g e n e o u s inidal tem­
pera tu re Γο) a n d the quench ing m e d i u m (e.g. with r o o m 
t empera tu re Γ ι ) . Fo r a region far f rom all edges the tem-

where G is the shear modu lus and ν Poisson's ratio, α 
is the linear thermal expansion coefficient and T(t) the 
average temperature corresponding to the distr ibution 
T(z,t). N o t e that these transient thermoelastic stresses 
are reversible. Also, for cooling, one gets tensile stresses 
in the surface being balanced by compression in the in­
terior according to the required mechanical equil ibrium 
of the glass plate: 

l d/2 
σ(ζ,ί) = - J σ(ζ,ί)άζ = 0. 

d -d/2 
(6) 

The transient thermoelast ic stresses (equation (5)) are 
the basis for evaluadng pe rmanen t temper stresses 
within the framework of instant freezing theories. In­
stead of using a dynamical concept, all instant freezing 



theories describe the glass t rans idon from the Standpoint 
of the static or quasi-static cont inuum mechanics and 
thermodynamics , respectively. 

2. The model by Adams and Williamson 
A d a m s and Will iamson [2] investigated t h e anneal ing of 
glass as a process of r e m o v i n g or d i m i n i s h i n g s t r a i n s and 

corresponding internal stresses in glass by slow cooling 
at a c o n s t a n t cooling rate. In summary, t h e following 
two S t a t e m e n t s o u t l i n e t h e i r quahtat ive model : 

a) "The strain remaining in a block of glass is equal and 
opposi te in sign to the ... strain lost by viscous yielding 
in the early stage of the cooling process" [2, p. 604]. 

b) "When a glass is heated to a relatively high tempera­
ture and then cooled at a cons tant rate, the fmal stress 
is exact the same as the temporary stress which would 
be caused by heating at the same ra te" [2, p. 840]. 

Thus, temperature equalization stresses can be calcu­
lated from equadon (5) by changing the sign and apply­
ing the temperature distr ibution at a time t = tg-

1 + v 

1 - v 
A[T(ZJ)-TU.. (7) 

In this model the glass t rans idon is considered as a non-
local process which occurs "at once" at the sohdification 
time tg. The time tg can be computed e.g. by solving 
the equat ion 

1 D/2 
- J T(Z,T = T,)AZ=T,. 
D -D/2 

(8) 

Once the time tg is known, the calculation of the pe rma­
nent temper stresses (equat ion (7)) is easy 

The model by A d a m s and Will iamson can be con­
sidered to be the simplest instant freezing model which 
holds also for tempering at modera te cooling rates even 
though the (predominat ing) temperature equalization 
stresses are not the only stresses brought forth. 

For a plate of soda-lime-silica glass with a thickness 
D = 6.1 m m and propert ies given in table 1, some calcu­
ladons are presented in figures 2 to 4. 

Figure 2 shows temperature profiles across the whole 
plate t = tg for several heat transfer coefficients k. As 
the initial temperature TQ = 635 °C is distinctly above 
the solidificadon temperature (T^g = 575 °C), there is 
enough time to build u p a nearly parabolically shaped 
temperature profile even for relatively high quenching 
rates. Because of equat ion (7) this is also t rue for the 
corresponding stress profiles shown in figure 3. 

The influence of the initial temperature 7Ό on the 
magni tude of the fmal midplane stresses is shown in fig­
ure 4 for some heat transfer coefficients k already used 
in [1]. This allows a direct compar ison of the results also 
shown in figure 1. Compar ing figures 1 and 4, it be­
comes clear that the model by A d a m s and Will iamson 

Figure 2. The model by Adams and Wilhamson [2]: Tempera­
ture at sohdification across the whole plate. 
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Figure 3. The model by Adams and Williamson [2]: Permanent 
stresses σ{ζ) across the whole plate. 

can only be a first approx imat ion of the real behaviour . 
Especially, the influence of the initial t empera tu re on the 
m a g n i t u d e of the final t emper stresses is t o o s t rong . T h e 
evident advan tage of the mo d e l by A d a m s a n d Wil l iam­
son is its s implici ty This m a k e s it interest ing for p r a c d -
cal cases even today. In par t icular , it is very useful for 
es t imat ing p e r m a n e n t t emper stresses (for " regu lä r con­
d i t i o n s " of temper ing) in glass specimens wi th real geo­
m e t r y by m e a n s of thermoelas t ic F E M calculat ions. 

3. Bartenev's postulate 
In 1949 Bar tenev [6] p roposed to treat glass as solid-
ifying at a single t r a n s f o r m a d o n t empera tu re Tg. Thus , 
the process of sohdification is simply realized by travel-
ling the Tg i so the rme ("freezing front") from the surface 
t o the midp lane of the glass plate. Conce rn ing the final 
t e m p e r stresses created after sohdificat ion by t emper ing , 
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Figure 4. The model by Adams and Williamson [2]: Influence of 
the inidal temperature TQ on the size of midplane stresses σ(0). 
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Figure 5. The model by Bartenev [6]: Fictitious temperature 
φ{ζ) across the whole plate. 

Bar tenev pos tu la ted to calculate t h e m from the decay 
of a fictitious t empera tu re d i s t r ibu t ion φ(ζ) defined by 
the equa t ion 

άφ 

dz 

d r 
dz 

(9) 

Th i s m e a n s tha t φ(ζ) results from the local temperature 
gradient calculated at the present pos i t ion of the freezing 
front Tg. T h e numer ica l p rocedure for caiculating φ(ζ) is 
s t ra ightforward: After Computing the solidificadon time 
tg(z) for each pos i t ion ζ inside the p la te the right side of 
equa t ion (9) is evaluated. In the second s tep equadon (9) 
is in tegrated. Finally, the p e r m a n e n t t e m p e r stresses are 
calculated ana logous to equa t ion (7) 

7^^{z) = 2G 
1 + v 

1 - v 

Bartenev's approach was the first tha t models the glass 
transit ion in a local manne r by equat ion (9). As φ(ζ) 
differs from the temperature distr ibution Γ(ζ) , the fmal 
temper stresses (equat ion (10)) represent bo th the stres­
ses brought forth dur ing sohdification and the tempera­
ture equal izaüon stresses as a whole. 

The cr iüque of Bartenev's approach especially con­
cerns the lack in the theoreücal background. The model 
is inconsistent with the first principles of thermoelast ic­
ity and does no t disünguish between stresses b rough 
forth dur ing sohdification and temperature equal izaüon 
stresses. In particular, this makes it impossible to calcu­
late the tempora l evoluüon of the pe rmanen t temper 
stresses. Nevertheless, Bartenev's theory holds for rela­
tively high initial temperatures ΤΓ ~ 650 °C and moder -
ately high quenching rates [1]. For the glass plate with 
properties given in table 1 the results are shown in fig­
ures 5 to 7. 

The fictitious temperature profiles (figure 5) calcu­
lated from e q u a d o n (9) obviously differ from the actual 
temperature distr ibutions (figure 2). This affects the 
shape of the stress profiles (figure 6). But the magni tude 
of the stresses - especially the one of the interesting 
compressive stresses in the surface region - is nearly the 
same. This underlines the well-known fact, that tempera­
ture equalization stresses are p redominant under 
"regulär condi t ions" of tempering. 

Finally, figure 7 presents the influence of the initial 
temperature on the final midplane stresses. At low tem­
peratures near Tg no significant pe rmanen t stresses are 
built up because of the sohdification occurring very 
early. Wi th increasing TQ stress relaxation comes into ac­
count resulting in pe rmanen t temper stresses with the 
opposi te sign of the relaxed transient stresses. After 
reaching a temperature distinctly far above the t rans­
formation ränge no further increase of pe rmanen t 
stresses can be achieved because the sohdificaüon occurs 
when nearly all t ransient stresses have been relaxed to 
zero. 

Note , that in spite of the quite different theoretical 
approaches, the models by Bartenev and by A d a m s and 
Will iamson predict final temper stresses wi thout signifi­
cant differences for "regulär cond idons" of tempering 
(figures 4 and 7). 

4. Indenbom's theory 
I n d e n b o m [7] was the first who succeeded in combining 
the first principles of thermoelasticity and the instant 
freezing theory to calculate pe rmanen t temper stresses. 
Rejecting Bartenev's work he intented to develop a con­
sistent model wi thout the need of any postulate. He 
recognized that , in addi t ion to the elastic and the ther­
mal pa r t of strains, a further component of the total 
strain tensor has to be taken into account: 

α[φ(ζ) -φ] . (10) 
(11) 



The viscous strains ε^^^ are know^n from hydrodynamics 
to describe viscous fluids; from a thermodynamical 
point of view, they may also contain contr ibut ions due 
to the dynamics of the glass transit ion, i.e. Statistical 
hopping and cooperative m o d o n of the glass atoms, 
respectively. 

The elastic strains ε^^ can be calculated if all other 
strains are known: 

1 
(VW + Ü V ) - a{T(zj) - TREF) ^ - Ρ (12) 

Ε denotes the unity tensor, V is the nabla operator and 
ü is the displacement vector. Note , that bo th the viscous 
strains and the thermal extra strains are of diagonal 
structure. 

It is interesting to realize that no further assumpt ions 
are m a d e about the viscous strains within Indenbom's 
theory; they may change as long as the considered par t 
of the plate is fluid, i.e. has a temperature above Tg. 
Because only the frozen-in form of the viscous strains 
are impor tan t for the bui ld-up of temper stresses, In­
d e n b o m denoted them separately as "residual s t ra ins" 

For the following considerations, the sohdification of the 
glass is described by the progress of the freezing front Ζ 
in the upper half of the glass plate 

T(t,Z) = Tg, Ζ = y , . . . , 0 . (14) 

Each Position Ζ corresponds to a given sohdification 
time /g(Z) and vice versa. 
Now, consider a t ime tg where the freezing front Ζ is 
situated within the glass plate (figure 8). In this case the 
fluid and the solid par t s of the plate have to be con­
sidered separately: 

0 < ζ < Z : ε̂ ^̂  = ε^^ + ε^'' , 

ζ = Ζ : = ε^^ + ε'^' , 

Ζ < ζ < f: ε^°^ = ε̂ ^ + + ε^^ + ε^^' . 

(15) 

(16) 

(17) 

N o t e that in zones with Τ > TgUO elastic strains arise, 
i.e. the plate is stress-free for 0 < ζ < Z . At the freezing 
front Ζ the following b o u n d a r y cond idon holds for the 
total strains 

(18) 

N o assumpdons are m a d e about the viscous (fluid) zone 
ζ < Z ; in fact this is no t necessary for the further con-
sideradons. 

C 

Figure 6. The model by Bartenev [6]: Permanent temper stresses 
σ(ζ) across the whole plate. 
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Figure 7. The model by Bartenev [6]: Influence of the initial 
temperature TQ on the size of midplane stresses σ(0). 

E q u a t i o n s (11 a n d 13) can be cons idered as the bas is 
of I n d e n b o m ' s theory. Wi th in the f ramework of t h e lin­
ear t heo ry of elasticity he derived an express ion which 
al lows the calculat ion of t rans ient as well as p e r m a n e n t 
t e m p e r stresses. To recall this, we p re suppose t he dis­
p lacement s a n d Uy in the infinite plate to be given by 

= CoX , Uy = C^Y . (19) 

Because of a cons t an t to ta l s t rain c o m p o n e n t 

^^XI = = one gets from equa t ion (12) for the elast ic 

s t ra in c o m p o n e n t 

ε5ΐ = ^ ο - ί ^ ( Γ ( ζ ) - 7 ; E F ) - ε - ^ (20) 

T h e cond i t ion of mechanica l equ i l ib r ium (equa t ion (6)) 
conce rns only the elastic zone 
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Figure 8. The model by Indenbom [7]: Defmidon of the freezing 
front Z. 

Besides, e q u a d o n (24) also contains the purely elastic 
case: if glass is cooled down from temperatures Τ < Tg, 
the material is primari ly elasdc with zero viscous strains 
leading to e q u a d o n (5). 

The essendal problem is the numerical computa t ion 
of the residual strains. To solve this problem, an integral 
equat ion wiU be derived next. It results from evaluating 
the bounda ry cond idon (18) for the total strain c o m p o ­
nent ε^*ϊ. Within the elastic zone Ζ < ζ < i//2 with equa­
tions (17 and 20) 

-res 

= α [ Γ - Γ(ζ)] + ε ί ? - ε - ( ζ ) 

+ α[Τ{ζ) - Tief] + ε ί ? ( ζ ) 
(26 

= α[Τ- r,ef] + ε. res 
XX 

is obtained. 

A t the freezing front, where the viscous strains are 
being frozen, this strain componen t is 

DL2 ALL 
0 = / d z σ , , = / d z e j ! , , 

ζ ζ 
(21) 

leading to the following expression for the constant cq: 

ALL 
Co = 

f - Z έ 
/ d z n ^ ) + 

1 

I-Z έ 

D/2 
Ί άζε. res 

XX (22) 

Inser t ing equa t ion (22) in to equa t ion (20), one obtains 
the following relat ions for the elastic s t ra in component 

EFAZJ) = a[NT) - T(T,Z)] + ε ί ? ( 0 - ε ί - ( ^ ) 

a n d for the t rans ient t emper stresses in the plate 

(23) 

σ ΐ β ( ζ , 0 = 2G 
1 + v 

1 - v 
{a[NT)- T(T,z)] 

(24) 

+ ε ί - ( 0 - ε ί ? ( ί , ζ ) } . 

If the res idual s trains ε^^^ are k n o w n , the tempora l and 
spatial evolu t ion of the stresses (equa t ion (24)) can be 
calcula ted easily. This is the decisive advantage of In­
d e n b o m ' s m o d e l in c o m p a r i s o n wi th the other models 
discussed before. 

Since n o high-speed digital Computers were available 
at tha t t ime, I n d e n b o m could only discuss special cases 
of equa t ion (24) from a quali tat ive p o i n t of view. This 
concerns e.g. the fmal t emper stresses which can be ob­
ta ined f rom equa t ion (24) t ak ing the limit t ^ ^.In this 
case the t empera tu re Τ is identical wi th its average Τ 
leading to 

σΐΒ,οο(^) = 2 G 1 + v 

1 - v 
[ ε ί ? - ε ί - ( ζ ) ] . (25) 

ε ^ ; = α[Τ(Ζ) - Tref] + ε - Π Ζ ) = α[Τ^ - T,,r] + e'^'iZ). 

(27) 

By equadng relations (26 and 27) to equadon (18), fmally 

^ - ε - ( Z ) = α ( Γ g - Γ ) (28) 

is obtained. This expression represents an integral equa­
t ion for the u n k n o w n quanti t ies ε5?(Ζ): 

1 D/2 
J d z ε - ( z ) - ε - ( Z ( 0 , 0 f - Z ( 0 ζ ω 

(29) 

= α Τ -
1 D/2 

Ί dzTizj) 
-2-Z(t) Z(t) 

After solving equat ion (29) for each pos idon z = Ζ (corre­
sponding to a sohdification time tg{Z)) temper stresses 
can be evaluated easily using equat ion (24) or (25). 

Equa t ion (29) has been solved numerically on a fixed 
grid using sums instead of the Integrals. To illustrate this, 
assume the ζ direction of the plate to be split into 2n inter­
vals of equal length. Because of the symmetry only η + 1 
points Zi with Z q = 0, . . . ,Z„ = i//2 have to be considered. 
With the following defmidons 

Ti = a(Tg-NZ,)) 

equat ion (29) can be writ ten in the following form: 

n + l - i j=i 

(30) 

(31) 

(32) 

This is a set of « + 1 equat ions for the a2 + 1 u n k n o w n 
values Εο,.,.,Ε^,. Taking into consideradon e q u a d o n (24) 



1 I 
^ 1 ^ 3 

^0 El ^2 

Figure 9. The model by Indenbom [7]: Visualization of the nu-
merieal algorithm. 

the residual strains ε^^'(ζ) can be shifted by any constant . 
Choosing a value of -ei^^(f) one obtains the useful 
bounda ry condit ion 

(33) 

To demonstra te the algori thm, consider a grid consisting 
of only four points as shown in figure 9. In this case the 
following System of equadons 

EO + ΕΧ+ E2 + E^ 

EI + E2 + E2 

3 

E2 + E3 

- ^1 = 7̂ 1 , 

-E2 = T2, 
2 

has to be solved. This simple structure which also holds 
for the general case of Η intervals 

1 

Η + 1 J=O  
\_ 

Σ Ε, - EQ - TQ , 

Σ EJ-E,= T , , (35) 

makes the Solution very easy. The only non-trivial p rob­
lem is the evaluation of T^. This has been done by Comput­
ing the sohdification time for each (discrete) posit ion ζ in­
side the glass plate: 
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Figures 10a and b. The model by Indenbom [7]: Temporal evo­
lution of temperature profiles T(z) across the whole plate for 
a) / < 10 s, b) ί > 10 s. 

(34) = α Tg- .^NZJJD 
Η + \ - I J=I 

(36) 

App ly ing this a lgor i thm a n d using again the p roper t i e s of 
the glass plate given in table 1, some results for In­
d e n b o m ' s theory will be presented next . 

T h e t empora l evolut ion of the t empera tu re profile a n d 
the co r r e spond ing t ransient stresses are shown in figures 
10a, b a n d 1 l a , b. N o t e tha t t rans ient stresses in t he glass 
plate d u r i n g the first seconds of cool ing (figure I I a ) a re 
qui te small , only a few percent of the fmal t empe r stresses 
(figure I I b ) . Moreover , the stress d is t r ibut ion d u r i n g the 
early s tages of cool ing shows a variety of different shapes 
inc luding tensile stresses in the surface region. T h e latter, 
of course , s trongly depends on b o t h the initial t e m p e r a ­
ture a n d the quench ing rate. 

In con t r a s t to the mode l s previously discussed, p l a t eau 
levels of t emper stresses already occur from init ial t em­
pera tu res of ab o u t 100 Κ above Tg (figure 12). Especial ly 
this resul t fits exper imenta l da t a very well (see e.g. 
figure 1). 



Figures I Ia and b. The model by Indenbom [7]: Temporal evo­
lution of frozen-in temper stresses σ(ζ) across the whole plate 
for a) / < 10 s, b) / > 10 s. 

Figure 12. The model by Indenbom [7]: Influence of the initial 
temperature TQ on the size of midplane stresses σ(0). 

Α c o m p a r i s o n of the three theor ies presented leads to 
the following results: Fo r t emper ing wi th relatively low 
heat t ransfer coefficients, there is pract ical ly no difference 

5 8 0 6 0 0 6 2 0 640 660 680 700 720  
To in °C ί 

Figure 13. Influence of the initial temperature TQ on the size of 
midplane stresses σ(0): Α comparison of all models presented 
(case k = 330.7 W/(m^ · K)). 

be tween ' the midplane stresses calculated. However, for 
higher quenching rates, Indenbom's theory predicts pla­
teau levels of temper at lower temperatures than the theo­
ries by Bartenev and by A d a m s and Will iamson (figure 
13). This agrees with experimental da ta very weh [1]. Sig­
nificant differences occur for low initial temperatures near 
Jg and higher quenching rates. The reason for this is that 
the instant freezing assumption, neglecdng the real t rans­
formation ränge of glass, is too rough. 

5. /c-fitting and application 
In tempering the rate of heat exchange is primarily gov­
erned by the heat transfer coefficient K. It depends no t 
only on the propert ies of bo th the tempering and the 
quenching med ium but also on further processing con­
d idons such as the surface State and the velocity of the 
quenching medium. Therefore, the heat transfer coef­
ficient varies in a wide ränge. Usually, K is determined by 
measur ing the t ime history curve of temperature T(T) at 
the surface of the glass specimen and fitting a given ana­
lytical Solution. To a first approximation, this can be done 
using the relation 

T(T)=To + (T,-To)^XP(-T/to) (37) 

with TQ = R^Y^ Equa t ion (37) turns out to be Solution of 
2k 

the differential equat ion 

}c,^T= -K{T-To), (38) 

which results from a balance of the thermal energy within 
the model of an infinite glass plate applying Newton 's 
cooling law [11]. The unknown heat transfer coefficient 
K can be fitted e.g. by means of the Computer algebra (CA) 
Software M A T H E M A T I C A . 



Table 2. Permanent temper stresses of all models presented (quenching from Γο = 635 °C to Τχ = 26 °C): midplane tension σ(0) 
and surface compression σ(/), / = ± dll) for the theories by Adams and Williamson (A&W, equation (7)), Bartenev (BV, equation 
(10)) and Indenbom (IB, equadon (25)) 

= 30 W/(m k = 1 0 0 W / ( m 2 · K) k = 240 W / ( m 2 · K) 
d in mm theory σ(0) σ{ΐ) σ(0) σ{1) σ(0) σ{1) 

in MPa in MPa in MPa in MPa in MPa in MPa 

A&W 0.19 -0.38 0.34 -0 .68 0.24 - 0 . 4 7 
0.2 BV 0.23 -0.45 0.76 -1 .50 1.82 - 3 . 6 0 

IB 0.23 -0.45 0.76 -1 .50 1.81 - 3 . 5 9 

0.5 A&W 0.57 -1.12 1.47 -2 .90 2.15 - 4 . 2 3 
BV 0.57 -1 .13 1.89 -3 .75 4.51 - 8 . 9 5 
IB 0.57 -1.13 1.89 -3 .74 4.47 - 8 . 9 0 

A&W 1.20 -2.36 3.50 -6 .90 6.52 -12 .81 
1.0 BV 1.14 -2.25 3.76 -7 .47 8.89 -17 .76 

IB 1.14 -2.35 3.74 -7 .43 8.73 -17 .56 

A&W 2.45 -4 .83 7.58 -14.89 15.75 -30 .76 
2.0 BV 2.27 -4.49 7.44 -14.84 17.13 -35 .45 

IB 2.26 -4.48 7.33 -14.70 16.68 -33 .97 

A&W 4.30 -9.09 13.55 -28.45 29.28 -60 .68 
4.0 BV 4.51 -8.95 14.49 -29.10 30.39 -61 .66 

IB 4.46 -8 .8 14.12 -28.67 30.24 -62 .00 

A&W 4.13 -11.25 13.10 -35.31 28.59 -75 .69 
6.0 BV 6.71 -13.37 20.86 -42.00 40.20 -83 .07 

IB 6.53 -13.07 20.37 -41.56 41.21 -85 .18 

Α more precise result can be obta ined by fitting the ex­
act Solution T(d/2, ή of the heat conduct ion equat ion (2), 
with boundary condit ions (equat ion (4)), to the measured 
time history curve of temperature T{t) at the surface 
ζ = ±d/2 of the glass plate. This so ludon was used to fit k 
applying a nonlinear Levenberg-Marquard t algori thm. In 
most practical cases the procedure converges very fast if 
the following inidal or reference values for k are used: 

• / c r e f = 30 W/(m^ · K) , na tura l convection, 

• ^ r e f = 100 W/(m^ · K) , forced convection (e.g. by a fan), 

• /Tref = 240 W/(m^ · K) , symmetrical cooling in contact 
with metal plates. 

For these k values representing typical s i tuadons of 
quenching [12], final temper stresses (i.e. midplane ten­
sion σ(0) and surface compression σ(/) , / = ±d/2 with 
plane structure (equation (3)) obta ined from equat ions (7, 
10 and 25)) have been calculated and listed in table 2 for all 
instant freezing theories considered. The stresses increase 
with bo th increasing k values and increasing thickness d 
of the glass plate. N o t e that relatively small differences oc­
cur for stresses calculated by different theories. 

The au thors have used these results to determine per­
manen t temper stresses in the surface of a g l a s s -pa r t i c l e 
composi te system. Nanos ized silver pardcles have been 
incorporated into the s o d a - l i m e - s i l i c a glass matr ix by 
various methods, e.g. by ion Implantat ion or by ion ex­
change followed by a the rmal t reatment or by electron ir­
radiat ion [13]. Usually, the nanosized silver particles are 

fo rmed in a surface layer of mic romet re ränge [14]. I n in­
vest igat ing such compos i t e Systems, the influence of t h e 
t empe r ing process o n their proper t ies is of special in teres t . 

F o r example, a specimen has been invest igated wi th 
geomet r i c pa r ame te r s α = b = 20 m m , d = 5 m m . T h e 
t ime h is tory curves of t empera tu re T(t) were m e a s u r e d by 
m e a n s of a t h e r m o c o u p l e m o u n t e d o n the surface of t he 
glass p la te by s o d i u m trisilicate glass. T h e curves T(t) a n d 
the resul ts of the n o n h n e a r L e v e n b e r g - M a r q u a r d t f i t t ing 
are s h o w n in figure 14 for the three quench ing p r o c e d u r e s 
m e n t i o n e d above. Differences be tween the m e a s u r e d a n d 
the fit ted curves are due to the fact tha t the m o d e l of a n 
infinite glass plate does no t complete ly reflect t h e exper­
imen ta l Situation. Subsequently, the influence of b o t h the 
specimen's finite vo lume (aspect ra t io a/d = 4) a n d the 
t h e r m o c o u p l e leads t o a d is t r ibut ion of b o t h t e m p e r a t u r e 
a n d stresses which is part ial ly th ree -d imens iona l . 

However , for valuable results to extract , the n o n l i n e a r 
fitting p rocedure uses a weight ing funct ion t h a t g u a r a n ­
tees a g o o d agreement between the m e a s u r e d a n d the fit­
ted t ime his tory curves for later t imes, while accep t ing dif­
ferences in the first p a r t of the curves. 

Hav ing fitted the heat t ransfer coefficient k, o n e c a n 
apply e.g. I n d e n b o m ' s theory to calculate the final t e m p e r 
stresses (equa t ion (25)) in the surface ζ = l = ±dl2 of t he 
specimen. T h e results are 
for k = 36, 90, a n d 238 W / ( m 2 · K ) , 
σ ΐ Β , ο ο ( ^ ) =-ll^ - 2 9 , a n d - 7 1 M P a , 
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Figure 14. Measured and fitted time history curves of surface 
temperature T{t) for a glass-particle composite system; 
quenching procedure from To = 635 °C to Γι = 26 °C by 
curves 1: natural convecdon, curves 2: forced convection, 
curves 3: contact with metal plates. 

whereby the fitted k values sufficiently agree with the pre­
sumed reference values k^QF for the th ree quenching pro­
cedures used. 

Thus , the cool ing p rocedure of the specimen is no t 
only connec ted wi th a t h e r m o e l a s d c effect on the nanos­
ized part icles [15]. Also, the bu i ld -up of a Sta te of com­
press ion as a result of the t emper ing process should influ­
ence the s t ruc ture a n d the proper t ies of the nanosized sil­
ver part icles as well. Invest igat ions a re in preparat ion in 
o rder to quant i fy these effects. 

6. Conclusions 
Α brief review of ins tan t freezing theor ies and their 
numer ica l i m p l e m e n t a d o n has been presented. For the 
theor ies by A d a m s a n d Wi l l iamson, Bar tenev and In­
d e n b o m , frozen-in t emper stresses have been calculated 
a n d discussed within the m o d e l of a n infinite glass plate. 
All results have been calculated apply ing an Interactive 
X I 1 p r o g r a m which has been developed to realize all nu­
merical t asks from the fitting of exper imenta l ly measured 
t ime h is tory curves of t empera tu re u p t o the calculation of 
p e r m a n e n t t emper stresses. 

In c o m p a r i s o n to the viscoelastic o r s t ructural theory, 
ins tan t freezing theories require only a l imited set of op­
erat ing Parameters . Moreover , they a re quite easy to 
h a n d l e a n d can predict final t emper stresses very well. To 
show this, a Computer p r o g r a m was used to calculate 
p e r m a n e n t t emper stresses in the surface of a tempered 
g l a s s - p a r t i c l e compos i t e system. F u r t h e r m o r e , this p ro­
g r a m enables to calculate residual stresses in any glass 
plates which have been s t reng thened by tempering. 

Trans ient stresses in t emper ing can be calculated only 
by I n d e n b o m ' s theory. Fo r this theory, a numerical algo­
r i t h m has been presented which al lows the calculation of 

the tempora l evolution of temper stresses. However, the 
instant freezing hypothesis leads to an underest imate of 
the transient surface tension [1]. As a consequence, t ransi­
ent stresses calculated from Indenbom's theory do no t fit 
experimental da ta very well. This discrepancy can only be 
eliminated when the viscoelasdc or the s tructural theory 
is applied with a proper description of the stress relaxation 
in the t ransformat ion ränge of glass [5 and 16]. 

7. Nomenclature 

7.1 Synnbols 

a, b length and width of the glass plate in mm 
Co constant 
Cv specific heat in J/(kg · K) 
d thickness of the glass plate in mm 
Ε elastic modulus in Pa 
Ε unity tensor 
G shear modulus in Pa 
k heat transfer coefficient in W/(m^ · K) 
/̂ ref reference value of k 
h normal unity vector 
t time in s 
/ g sohdification time in s 
Γ temperature in °C 
Tg glass transidon temperature in °C 
Tref reference temperature in °C 
Γο, Γι initial temperature in °C, quenching temperature in °C 
Ύ displacement vector in mm 
X, Y, Ζ cartesian coordinates in mm 
Ζ Position of the freezing front in mm 

α linear thermal expansion coefficient in K~ ̂  
ε strain tensor 
φ fictitious temperature in °C 
κ thermal conductivity in W/(m · K) 
V Poisson's ratio 
ρ density in g/cm^ 
Σ stress in Pa 
σ stress tensor in Pa 
V nabla operator 

7.2 Superscripts 

0 0 limit t 0 0 
AW Adams and Williamson 
BV Bartenev 
IB Indenbom 
el elastic 
res residual 
th thermal 
tot total 
vis viscous 
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