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For many practical cases of tempering the temper stresses calculated by instant freezing theories are sufficient and in good agreement
with experiments. The auhors give a brief summary of the theories by Adams and Williamson, Bartenev and Indenbom and discuss
their numerical implementation. For example, frozen-in temper stresses are calculated and discussed within the model of a symmetri-
cally cooled, infinite glass plate. Based on the numerical solution of the heat conduction equation with a given heat transfer coef-
ficient, especially the influence of the initial temperature of quenching is investigated. Furthermore, a numerical algorithm is pre-
sented to calculate the temporal evolution of the permanent temper stresses for Indenbom’s theory. Finally, as a practical example,
residual stresses are determined in the surface of a tempered glass-particle composite system.

Glastibergang und Instant-Freezing-Theorien — Vergleich der eingefrorenen Warmespannungen

Fiir viele praktische Anwendungsfélle des thermischen Vorspannens von Glas sind thermische Eigenspannungen, die auf der Grund-
lage von Instant-freezing-Modellen berechnet wurden, ausreichend und in guter Ubereinstimmung mit dem Experiment. Die Autoren
geben eine kurze Zusammenfassung der Instant-freezing-Modelle von Adams und Williamson, Bartenev sowie Indenbom und disku-
tieren ihre numerische Umsetzung. Als Beispiel werden eingefrorene Warmespannungen im Rahmen des Modells einer symmetrisch
abgekiihlten, unendlich ausgedehnten Glasplatte endlicher Dicke berechnet und verglichen. Auf der Grundlage der numerischen
Losung der Wirmeleitungsgleichung bei vorgegebenem Wirmeiibergangskoeffizienten wird insbesondere der Einflul der Ausgangs-
temperatur der Abkiithlung auf die Hohe der Spannungen diskutiert. Ferner wird ein numerischer Algorithmus prisentiert, um
die zeitliche Auspriagung der thermischen Eigenspannungen fiir Indenboms Modell zu berechnen. Als praktisches Beispiel werden
abschlieBend Eigenspannungen in der Oberflache eines vorgespannten Glas-Teilchen-Verbundsystems bestimmt.

1. Introduction

The theory of the glass transition has a long history.
During the last nearly 100 years a number of theoretical
approaches has been developed to model the mechanical
response of glass during cooling [1]. In the classic theory
of annealing, Adams and Williamson [2] investigated
slow cooling of glass plates in order to reduce stress gen-
eration. Typically, temperature in annealing is controlled
to produce a constant cooling rate bringing about only
small temperature equalization stresses. These are

to the “real” glass, but it requires a set of physical
properties that may not be available in any case. Just
then, instant freezing models using restricted operating
parameters can also predict final temper stresses as well
as the more sophisticated viscoelastic or structural
theory.

In instant freezing theories the transformation range
of glass is reduced to a single solidification temperature
T,. This simplification produces a discontinuity in the
material behaviour at Ty: glass above T, is treated as a

stresses evoked in a glass plate by the decay of a nearly
parabolic temperature distribution existing in the plate
after leaving the transformation range.

In tempering glass with cooling rates being much
higher and varying with time, additional contributions
to the final temper stresses have to be taken into ac-
count: these are solidification stresses and stresses of
structural origin [1]. The latter arises even while glass is
being cooled at a constant cooling rate [3].

Clearly, the structural or thermoviscoelastic theory is
necessary for a deeper understanding of the nature of
glass transition [4 and 5]. It is the only theory that refers

Received 26 September 1997, revised manuscript 25 February
1998.

stress-free fluid, while glass below Ty, is regarded as an
elastic solid without any stress relaxation. Nevertheless,
for many practical cases of tempering, instant freezing
theories yield sufficient results (see e.g. figure 1). This is
due to the fact that temper stresses in glass quenched
from relatively high temperatures are predominately
temperature equalization stresses, i.e. the precise rheo-
logical properties of glass in the transformation range
are of relatively little moment.

The present paper gives a brief summary of the the-
ories by Adams and Williamson, Bartenev [6] and In-
denbom [7]. For these theories, numerically calculated
temper stresses are discussed and compared. Further-
more, the influence of the initial temperature of quench-
ing and the temporal evolution of the temper stresses
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Figure 1. Influence of the initial temperature 7, on the size
of midplane stresses o(0) with heat transfer coefficient k as
parameter [1, p. 154]: Experimental results and Bartenev’s
theory [6] (dashed lines).

Table 1. Processing parameters of the infinite glass plate model

density 0 2.5 g/cm?
specific heat Cy 775 Ji(kg - K)
thermal conductivity K 0.87 W/(m - K)
linear thermal expansion coefficient o 8.9-107¢K™!
elastic modulus E 6.98 - 10'° Pa
Poisson’s ratio v 0.247

glass transition temperature T 575°C

plate thickness d 6.1 mm

initial temperature Ty 635°C
quenching temperature T, 26°C

heat transfer coefficient k 330.7 W/(m? - K)

(for Indenbom’s theory) is investigated. Finally, as a
practical example, the results are applied to determine
residual stresses in the surface of a tempered glass-par-
ticle composite system. These systems are of specific
interest in order to use their nonlinear optical properties
[8]. All the following considerations are related to a flat
glass plate that is large in relation to its thickness d:

—a=x=a,-b=s=y=b;—-d2=z=d2;ab>d. (1)

Both sides are symmetrically cooled with a given heat
transfer coefficient k& governing the rate of heat exchange
between the glass (with the homogeneous initial tem-
perature 7,) and the quenching medium (e.g. with room
temperature 7). For a region far from all edges the tem-

perature distribution depends only on the z-coordinate
and the heat conduction equation is one-dimensional

—2 ’ (2)

where 9 ¢, is the volumetric specific heat and « the ther-
mal conductivity.

Within the model of an infinite glass plate the
stresses produced are two-dimensionally isotropic plane
stresses, varying through its thickness only:

Oxx = Oyy = O'(Z) 5 02z = 0. (3)

Calculations were performed for a representative glass
plate with the geometric and material parameters as
shown in table 1.

Any theoretical description of tempering must start
with a transient thermal conduction analysis, i.e. equa-
tion (2) has to be solved with initial and boundary con-
ditions. For the case of tempering these are given by

+d/2

T(z.0) = T, and —K(—T-) )

n

+d/2

The exact solution for this problem is given e.g. in [9] in
the form of an infinite series which was used to calculate
the temperature distribution 7'(z, t) applying a sophisti-
cated numerical technique with precalculated eigenval-
ues. This approach increases both precision and oper-
ation speed in comparison to numerical “standard meth-
ods” for solving partial differential equations of type (2).

Once the temperature distribution 7'(z, ) is known,

thermoelastic stresses can be calculated from first prin-
ciples of thermoelasticity [10].

o(z0) = —2G 1” a[T(z 1) - TM), (5)
=¥

where G is the shear modulus and v Poisson’s ratio, «
is the linear thermal expansion coefficient and 7'(7) the
average temperature corresponding to the distribution
T(z,t). Note that these transient thermoelastic stresses
are reversible. Also, for cooling, one gets tensile stresses
in the surface being balanced by compression in the in-
terior according to the required mechanical equilibrium
of the glass plate:

df o(z,1)dz =0. (6)

12
—d/2

o(z,t) =

-

The transient thermoelastic stresses (equation (5)) are
the basis for evaluating permanent temper stresses
within the framework of instant freezing theories. In-
stead of using a dynamical concept, all instant freezing
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theories describe the glass transition from the standpoint
of the static or quasi-static continuum mechanics and
thermodynamics, respectively.

2. The model by Adams and Williamson

Adams and Williamson [2] investigated the annealing of
glass as a process of removing or diminishing strains and
corresponding internal stresses in glass by slow cooling
at a constant cooling rate. In summary, the following
two statements outline their qualitative model:

a) “The strain remaining in a block of glass is equal and
opposite in sign to the ... strain lost by viscous yielding
in the early stage of the cooling process™ [2, p. 604].

b) “When a glass is heated to a relatively high tempera-
ture and then cooled at a constant rate, the final stress
is exact the same as the temporary stress which would
be caused by heating at the same rate” [2, p. 840].

Thus, temperature equalization stresses can be calcu-
lated from equation (5) by changing the sign and apply-
ing the temperature distribution at a time 7 = f,:

oV (2) = 2G

L e T ™
I=v

In this model the glass transition is considered as a non-
local process which occurs “at once” at the solidification
time t,. The time #, can be computed e.g. by solving
the equation

1 an
7-_5/2 T(zt=1t)dz=T,. (8)

Once the time ¢, is known, the calculation of the perma-
nent temper stresses (equation (7)) is easy.

The model by Adams and Williamson can be con-
sidered to be the simplest instant freezing model which
holds also for tempering at moderate cooling rates even
though the (predominating) temperature equalization
stresses are not the only stresses brought forth.

For a plate of soda-lime-silica glass with a thickness
d = 6.1 mm and properties given in table 1, some calcu-
lations are presented in figures 2 to 4.

Figure 2 shows temperature profiles across the whole
plate at ¢ = t, for several heat transfer coefficients k. As
the initial temperature 7, = 635°C is distinctly above
the solidification temperature (T, = 575°C), there is
enough time to build up a nearly parabolically shaped
temperature profile even for relatively high quenching
rates. Because of equation (7) this is also true for the
corresponding stress profiles shown in figure 3.

The influence of the initial temperature 7, on the
magnitude of the final midplane stresses is shown in fig-
ure 4 for some heat transfer coefficients k already used
in [1]. This allows a direct comparison of the results also
shown in figure 1. Comparing figures 1 and 4, it be-
comes clear that the model by Adams and Williamson
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Figure 2. The model by Adams and Williamson [2]: Tempera-
ture at solidification across the whole plate.
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Figure 3. The model by Adams and Williamson [2]: Permanent
stresses o(z) across the whole plate.

can only be a first approximation of the real behaviour.
Especially, the influence of the initial temperature on the
magnitude of the final temper stresses is too strong. The
evident advantage of the model by Adams and William-
son is its simplicity. This makes it interesting for practi-
cal cases even today. In particular, it is very useful for
estimating permanent temper stresses (for “regular con-
ditions” of tempering) in glass specimens with real geo-
metry by means of thermoelastic FEM calculations.

3. Bartenev’s postulate

In 1949 Bartenev [6] proposed to treat glass as solid-
ifying at a single transformation temperature 7. Thus,
the process of solidification is simply realized by travel-
ling the T, isotherme (“freezing front”) from the surface
to the midplane of the glass plate. Concerning the final

temper stresses created after solidification by tempering,
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Figure 4. The model by Adams and Williamson [2]: Influence of
the initial temperature 7, on the size of midplane stresses (0).
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Figure 5. The model by Bartenev [6]: Fictitious temperature
¢(z) across the whole plate.

Bartenev postulated to calculate them from the decay
of a fictitious temperature distribution ¢(z) defined by
the equation

4o _ a1 5

dz dz |lr=1,°

This means that ¢(z) results from the local temperature
gradient calculated at the present position of the freezing
front T,. The numerical procedure for calculating ¢(z) is
straightforward: After computing the solidification time
1,(z) for each position z inside the plate the right side of
equation (9) is evaluated. In the second step equation (9)
is integrated. Finally, the permanent temper stresses are
calculated analogous to equation (7)

TG i” el =] (10)

i)

Bartenev’s approach was the first that models the glass
transition in a local manner by equation (9). As ¢(z)
differs from the temperature distribution 7'(z), the final
temper stresses (equation (10)) represent both the stres-
ses brought forth during solidification and the tempera-
ture equalization stresses as a whole.

The critique of Bartenev’s approach especially con-
cerns the lack in the theoretical background. The model
is inconsistent with the first principles of thermoelastic-
ity and does not distinguish between stresses brough
forth during solidification and temperature equalization
stresses. In particular, this makes it impossible to calcu-
late the temporal evolution of the permanent temper
stresses. Nevertheless, Bartenev’s theory holds for rela-
tively high initial temperatures 7; = 650°C and moder-
ately high quenching rates [1]. For the glass plate with
properties given in table 1 the results are shown in fig-
ures 5 to 7.

The fictitious temperature profiles (figure 5) calcu-
lated from equation (9) obviously differ from the actual
temperature distributions (figure 2). This affects the
shape of the stress profiles (figure 6). But the magnitude
of the stresses — especially the one of the interesting
compressive stresses in the surface region — is nearly the
same. This underlines the well-known fact, that tempera-
ture equalization stresses are predominant under
“regular conditions” of tempering.

Finally, figure 7 presents the influence of the initial
temperature on the final midplane stresses. At low tem-
peratures near T, no significant permanent stresses are
built up because of the solidification occurring very
early. With increasing T}, stress relaxation comes into ac-
count resulting in permanent temper stresses with the
opposite sign of the relaxed transient stresses. After
reaching a temperature distinctly far above the trans-
formation range no further increase of permanent
stresses can be achieved because the solidification occurs
when nearly all transient stresses have been relaxed to
Zero.

Note, that in spite of the quite different theoretical
approaches, the models by Bartenev and by Adams and
Williamson predict final temper stresses without signifi-
cant differences for “regular conditions” of tempering
(figures 4 and 7).

4. Indenbom’s theory

Indenbom [7] was the first who succeeded in combining
the first principles of thermoelasticity and the instant
freezing theory to calculate permanent temper stresses.
Rejecting Bartenev’s work he intented to develop a con-
sistent model without the need of any postulate. He
recognized that, in addition to the elastic and the ther-
mal part of strains, a further component of the total
strain tensor has to be taken into account:

gtot — gel - Eth 4 gvis . (11)
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The viscous strains £ are known from hydrodynamics
to describe viscous fluids; from a thermodynamical
point of view, they may also contain contributions due
to the dynamics of the glass transition, i.e. statistical
hopping and cooperative motion of the glass atoms,
respectively.

The elastic strains & can be calculated if all other
strains are known:

gl % W+ 4% —a(Tlad - T E—- 85, (13

E denotes the unity tensor, V is the nabla operator and
u is the displacement vector. Note, that both the viscous
strains and the thermal extra strains are of diagonal
structure.

It is interesting to realize that no further assumptions
are made about the viscous strains within Indenbom’s
theory; they may change as long as the considered part
of the plate is fluid, i.e. has a temperature above Ty.
Because only the frozen-in form of the viscous strains
are important for the build-up of temper stresses, In-

denbom denoted them separately as “residual strains”
£res:

gres — §ViS|T: T, - (13)

For the following considerations, the solidification of the
glass is described by the progress of the freezing front Z
in the upper half of the glass plate

d
T@Z)=T,, Z= 70 (14)

Each position Z corresponds to a given solidification
time #,(Z) and vice versa.

Now, consider a time 7 where the freezing front Z is
situated within the glass plate (figure 8). In this case the
fluid and the solid parts of the plate have to be con-
sidered separately:

O=ip<Z: 1 glti=ighit gvs (15)
7= 7 got = Eth + gres . (16)
Z<gsh o=l L ph g (17)

Note that in zones with 7' = T, no elastic strains arise,
i.e. the plate is stress-free for 0 = z =< Z. At the freezing
front Z the following boundary condition holds for the
total strains

§l°t|_.:Z = gtot

>z (18)

No assumptions are made about the viscous (fluid) zone
z < Z; in fact this is not necessary for the further con-
siderations.

kin W/(m?K) :

o in MPa

Figure 6. The model by Bartenev [6]: Permanent temper stresses
o(z) across the whole plate.
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Figure 7. The model by Bartenev [6]: Influence of the initial
temperature 7, on the size of midplane stresses o (0).

Equations (11 and 13) can be considered as the basis
of Indenbom’s theory. Within the framework of the lin-
ear theory of elasticity he derived an expression which
allows the calculation of transient as well as permanent
temper stresses. To recall this, we presuppose the dis-
placements u, and u, in the infinite plate to be given by

W= Cp%, MUy = CoPs (19)

Because of a constant total strain

component

u ; !

't = —= = ¢, one gets from equation (12) for the elastic
v

strain component
=6 — ol (@ — T — 85 s (20)

The condition of mechanical equilibrium (equation (6))
concerns only the elastic zone
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Figure 8. The model by Indenbom [7]: Definition of the freezing
front Z.

dn i
0= [ dzo,, = [ dzeZ, (21)
Z z

leading to the following expression for the constant cg:

drn d/zd
dzT(z) + 7855
§ T + 25 T doer

Co —

d
i_z7

(22)

—algg=al + &5 — alys.

Inserting equation (22) into equation (20), one obtains
the following relations for the elastic strain component

ez = e[l - Ta] + 20 — &2, @3

and for the transient temper stresses in the plate

aB(z, 1) = 2G¥ {a[T() — T(t,2)]
= (24)

e e (e

If the residual strains &5¥ are known, the temporal and
spatial evolution of the stresses (equation (24)) can be
calculated easily. This is the decisive advantage of In-
denbom’s model in comparison with the other models
discussed before.

Since no high-speed digital computers were available
at that time, Indenbom could only discuss special cases
of equation (24) from a qualitative point of view. This
concerns e.g. the final temper stresses which can be ob-
tained from equation (24) taking the limit ¢ — . In this
case the temperature 7 is identical with its average T
leading to

lebpn e
S - e (o) (25)
-V

o®”(2) = 2G i

Besides, equation (24) also contains the purely elastic
case: if glass is cooled down from temperatures 7' < T,
the material is primarily elastic with zero viscous strains
leading to equation (5).

The essential problem is the numerical computation
of the residual strains. To solve this problem, an integral
equation will be derived next. It results from evaluating
the boundary condition (18) for the total strain compo-
nent &', Within the elastic zone Z < z =< d/2 with equa-
tions (17 and 20)

B0 e (e Gl i
ell - T@)] + =& — @)

ta[T(2) = Tl + 302

(26

o[l - Tl + &

is obtained.

At the freezing front, where the viscous strains are
being frozen, this strain component is

&3 = a[T(Z) = Tl + £™(2) = [Ty — Tief] + £™(2) .
7

By equating relations (26 and 27) to equation (18), finally
- @) =ad,~T) (28)

is obtained. This expression represents an integral equa-
tion for the unknown quantities &5 (Z):

di2

= [ dze5(2) = e5(Z(0),1)
20 Zf(r) = (29)

|7 T @7

=« = Ze L Z )|

£ 470 Zo

After solving equation (29) for each position z = Z (corre-
sponding to a solidification time #,(Z)) temper stresses
can be evaluated easily using equation (24) or (25).

Equation (29) has been solved numerically on a fixed
grid using sums instead of the integrals. To illustrate this,
assume the z direction of the plate to be split into 2# inter-
vals of equal length. Because of the symmetry only n + 1
points Z; with Z, = 0,...,Z,, = d/2 have to be considered.
With the following definitions

Ei=&3(Z), (30)
Ti=o(T, — T(Z) (€))

equation (29) can be written in the following form:

1 n
T ——— E—-—E=T;,, i=0,..,n. 32
n+1—l'j§i . ( )

This is a set of n + 1 equations for the n + 1 unknown
values E,, ..., E,. Taking into consideration equation (24)
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Figure 9. The model by Indenbom [7]: Visualization of the nu-
merical algorithm.

the residual strains &5 (z) can be shifted by any constant.
Choosing a value of —glss 521) one obtains the useful

boundary condition
E,=0. (33)
To demonstrate the algorithm, consider a grid consisting

of only four points as shown in figure 9. In this case the
following system of equations

E, + + + E )

ot Ey+ Ep 3 _E=T,,

4
E,+E +FE
SIS _peT,
3 > (34)

E, + E
_2—3__E2=T2’

2
E3=T3=0 J

has to be solved. This simple structure which also holds
for the general case of n intervals

IR |
E—E;=1Ty,
n+1_,-§()j i .

#EE/‘_EVZTXW ’ (35)
fst ol — § g=5 ©
1

= T
5 I 1

7

makes the solution very easy. The only non-trivial prob-
lem is the evaluation of 7. This has been done by comput-
ing the solidification time for each (discrete) position z in-
side the glass plate:

\ 1%
Y eaof iU
580
fabig \t=1s
480 |
t=3s
430 -
t=5s
380 t=7s
t=9s
330 & . : : . .
9 3 2 -1 0 1 2 3
=
N = ; ; . .
t=0s
600 | |,
500
400 |
t=10s
300 1
/\ t=20's
€90 /\ t=30 s
100 ] t=40s
fe— 5 ereseang
t=90 s
o " i

0 1 2 3
zinmm. =———— ™

Figures 10a and b. The model by Indenbom [7]: Temporal evo-
lution of temperature profiles 7'(z) across the whole plate for
a)t<10s,b)t>10s.

ﬂ=aﬁg- i .iT@ﬂﬂ. (36)

n+l—1i,=;

Applying this algorithm and using again the properties of
the glass plate given in table 1, some results for In-
denbom’s theory will be presented next.

The temporal evolution of the temperature profile and
the corresponding transient stresses are shown in figures
10a, b and 11a, b. Note that transient stresses in the glass
plate during the first seconds of cooling (figure 11a) are
quite small, only a few percent of the final temper stresses
(figure 11b). Moreover, the stress distribution during the
early stages of cooling shows a variety of different shapes
including tensile stresses in the surface region. The latter,
of course, strongly depends on both the initial tempera-
ture and the quenching rate.

In contrast to the models previously discussed, plateau
levels of temper stresses already occur from initial tem-
peratures of about 100 K above T, (figure 12). Especially
this result fits experimental data very well (see e.g.
figure 1).
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Figure 12. The model by Indenbom [7]: Influence of the initial
temperature T, on the size of midplane stresses o (0).

A comparison of the three theories presented leads to
the following results: For tempering with relatively low
heat transfer coefficients, there is practically no difference
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e gl
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Toin C——————»

Figure 13. Influence of the initial temperature T, on the size of
midplane stresses o(0): A comparison of all models presented
(case k = 330.7 W/(m? - K)).

between’ the midplane stresses calculated. However, for
higher quenching rates, Indenbom’s theory predicts pla-
teau levels of temper at lower temperatures than the theo-
ries by Bartenev and by Adams and Williamson (figure
13). This agrees with experimental data very well [1]. Sig-
nificant differences occur for low initial temperatures near
T, and higher quenching rates. The reason for this is that
the instant freezing assumption, neglecting the real trans-
formation range of glass, is too rough.

5. k-fitting and application

In tempering the rate of heat exchange is primarily gov-
erned by the heat transfer coefficient k. It depends not
only on the properties of both the tempering and the
quenching medium but also on further processing con-
ditions such as the surface state and the velocity of the
quenching medium. Therefore, the heat transfer coef-
ficient varies in a wide range. Usually, k& is determined by
measuring the time history curve of temperature 7'(¢) at
the surface of the glass specimen and fitting a given ana-
lytical solution. To a first approximation, this can be done
using the relation

T(t)= Ty + (T, — Ty) exp(—tlty) (37)

: o d . .
with ty = ch_k Equation (37) turns out to be solution of

the differential equation
d .
QCUET=—k(T—To), (3%)

which results from a balance of the thermal energy within
the model of an infinite glass plate applying Newton’s
cooling law [11]. The unknown heat transfer coefficient
k can be fitted e.g. by means of the computer algebra (CA)
software MATHEMATICA.
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Table 2. Permanent temper stresses of all models presented (quenching from T, = 635°C to 7T} = 26°C): midplane tension a(0)
and surface compression a(/), [ = + d/2) for the theories by Adams and Williamson (A&W, equation (7)), Bartenev (BV, equation

(10)) and Indenbom (IB, equation (25))

k = 30 W/(m? - K)

k = 100 W/(m? - K) k = 240 W/(m? - K)

d in mm theory a(0) a(l) a(0) a(l) a(0) a())
in MPa in MPa in MPa in MPa in MPa in MPa
A&W 0.19 —0.38 0.34 —0.68 0.24 —0.47
0.2 BV 0.23 —0.45 0.76 -1.50 1.82 —3.60
1B 0.23 —0.45 0.76 -1.50 1.81 —3159
0.5 A&W 0.57 —1.12 1.47 -2.90 215 —4.23
BV 0.57 =513 1.89 —3.75 4.51 —8.95
1B 0.57 —1.13 1.89 -3.74 4.47 —-8.90
A&W 1.20 —2.36 3.50 -6.90 6.52 —12:81
1.0 BV 1.14 —2.25 3.76 —-7.47 8.89 —-17.76
1B 1.14 —2:35 3.74 —7.43 8.73 —17.56
A&W 2.45 —4.83 7.58 —14.89 15.75 —30.76
2.0 BV 2.27 —-4.49 7.44 —14.84 17.13 —35.45
1B 2.26 —4.48 7.33 —14.70 16.68 —33.97
A&W 4.30 -9.09 13.55 —28.45 29.28 —60.68
4.0 BV 4.51 —8.95 14.49 —29.10 30.39 —61.66
1B 4.46 -8.8 14.12 —28.67 30.24 —62.00
A&W 4.13 —11.25 13.10 —35.31 28.59 —75.69
6.0 BV 6.71 —13.37 20.86 —42.00 40.20 —83.07
1B 6.53 —13.07 20.37 —41.56 41.21 —85.18

A more precise result can be obtained by fitting the ex-
act solution 7'(d/2, t) of the heat conduction equation (2),
with boundary conditions (equation (4)), to the measured
time history curve of temperature 7°(¢) at the surface
z = % dJ2 of the glass plate. This solution was used to fit k
applying a nonlinear Levenberg-Marquardt algorithm. In
most practical cases the procedure converges very fast if
the following initial or reference values for k are used:

o k.r =30 W/(m? - K), natural convection,
e ker = 100 W/(m? - K), forced convection (e.g. by a fan),

o ks =240 W/(m? - K), symmetrical cooling in contact
with metal plates.

For these k values representing typical situations of
quenching [12], final temper stresses (i.e. midplane ten-
sion ¢(0) and surface compression a(/), / = *d/2 with
plane structure (equation (3)) obtained from equations (7,
10 and 25)) have been calculated and listed in table 2 for all
instant freezing theories considered. The stresses increase
with both increasing k values and increasing thickness d
of the glass plate. Note that relatively small differences oc-
cur for stresses calculated by different theories.

The authors have used these results to determine per-
manent temper stresses in the surface of a glass—particle
composite system. Nanosized silver particles have been
incorporated into the soda—lime—silica glass matrix by
various methods, e.g. by ion implantation or by ion ex-
change followed by a thermal treatment or by electron ir-
radiation [13]. Usually, the nanosized silver particles are

formed in a surface layer of micrometre range [14]. In in-
vestigating such composite systems, the influence of the
tempering process on their properties is of special interest.

For example, a specimen has been investigated with
geometric parameters ¢ = b = 20 mm, d = 5 mm. The
time history curves of temperature 7'(¢) were measured by
means of a thermocouple mounted on the surface of the
glass plate by sodium trisilicate glass. The curves 7'(¢) and
the results of the nonlinear Levenberg-Marquardt fitting
are shown in figure 14 for the three quenching procedures
mentioned above. Differences between the measured and
the fitted curves are due to the fact that the model of an
infinite glass plate does not completely reflect the exper-
imental situation. Subsequently, the influence of both the
specimen’s finite volume (aspect ratio a/d = 4) and the
thermocouple leads to a distribution of both temperature
and stresses which is partially three-dimensional.

However, for valuable results to extract, the nonlinear
fitting procedure uses a weighting function that guaran-
tees a good agreement between the measured and the fit-
ted time history curves for later times, while accepting dif-
ferences in the first part of the curves.

Having fitted the heat transfer coefficient k, one can
apply e.g. Indenbom’s theory to calculate the final temper
stresses (equation (25)) in the surface z = / = +d/2 of the
specimen. The results are
for k = 36, 90, and 238 W/(m? - K),

o'B.=() = —11, =29, and —71 MPa,
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Figure 14. Measured and fitted time history curves of surface
temperature 7(z) for a glass—particle composite system;
quenching procedure from 7, = 635°C to 7, = 26°C by
curves l: natural convection, curves 2: forced convection,
curves 3: contact with metal plates.

whereby the fitted k values sufficiently agree with the pre-
sumed reference values k¢ for the three quenching pro-
cedures used.

Thus, the cooling procedure of the specimen is not
only connected with a thermoelastic effect on the nanos-
ized particles [15]. Also, the build-up of a state of com-
pression as a result of the tempering process should influ-
ence the structure and the properties of the nanosized sil-
ver particles as well. Investigations are in preparation in
order to quantify these effects.

6. Conclusions

A brief review of instant freezing theories and their
numerical implementation has been presented. For the
theories by Adams and Williamson, Bartenev and In-
denbom, frozen-in temper stresses have been calculated
and discussed within the model of an infinite glass plate.
All results have been calculated applying an interactive
X11 program which has been developed to realize all nu-
merical tasks from the fitting of experimentally measured
time history curves of temperature up to the calculation of
permanent temper stresses.

In comparison to the viscoelastic or structural theory,
instant freezing theories require only a limited set of op-
erating parameters. Moreover, they are quite easy to
handle and can predict final temper stresses very well. To
show this, a computer program was used to calculate
permanent temper stresses in the surface of a tempered
glass—particle composite system. Furthermore, this pro-
gram enables to calculate residual stresses in any glass
plates which have been strengthened by tempering.

Transient stresses in tempering can be calculated only
by Indenbom’s theory. For this theory, a numerical algo-
rithm has been presented which allows the calculation of

the temporal evolution of temper stresses. However, the
instant freezing hypothesis leads to an underestimate of
the transient surface tension [1]. As a consequence, transi-
ent stresses calculated from Indenbom’s theory do not fit
experimental data very well. This discrepancy can only be
eliminated when the viscoelastic or the structural theory
is applied with a proper description of the stress relaxation
in the transformation range of glass [5 and 16].

7. Nomenclature

7.1 Symbols

ab length and width of the glass plate in mm
Co constant

Gy specific heat in J/(kg - K)

d thickness of the glass plate in mm

E elastic modulus in Pa

E unity tensor

G shear modulus in Pa

k heat transfer coefficient in W/(m? - K)
Krer reference value of k

n normal unity vector

t timein s

ty solidification time in s

T temperature in °C

755 glass transition temperature in °C

o reference temperature in °C

To, Ty initial temperature in °C, quenching temperature in °C
u displacement vector in mm

XY,z cartesian coordinates in mm

Z position of the freezing front in mm

a linear thermal expansion coefficient in K !
g strain tensor

1) fictitious temperature in °C

K thermal conductivity in W/(m - K)

v Poisson’s ratio

0 density in g/cm?

4 stress in Pa

G stress tensor in Pa

\% nabla operator

7.2 Superscripts

o0 limit t — o0

AW Adams and Williamson
BV Bartenev

IB Indenbom

el elastic

res residual

th thermal

tot total

vis viscous
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