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Introduction by the Organisers

The workshop Partial differential equations, organised by Tom Ilmanen (ETH
Zürich), Reiner Schätzle (Universität Tübingen) and Neil Trudinger (Australian
National University Canberra) was held July 22-28, 2007. This meeting was well
attended by 50 participants, including 6 females, with broad geographic reprensen-
tation. The program consisted of 19 talks and 3 shorter contributions and left
sufficient time for discussions.

One focus was the combination of nonlinear partial differential equations and
geometric problems. There were talks on monotonicity formulas in presence of
degenerate singularities and on estimates of the singular set for branched minimal
immersions. One striking new result was the proof of the diffeomorphic sphere
theorem by the use of Ricci flow.

Many leading experts in the regularity of elliptic and variational problems and
in fully nonlinear differential equations occuring in optimal transport and in Hes-
sian equations attended the workshop. Several main contributions were given to
this subject. Here, we mention the proof of interior estimates for quadratic Hessian
equations in three dimensions, which has been an open problem for several years
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of similar relevance as the gradient estimates for the minimal surface equation.

New results were also presented for the Willmore functional. It was achieved
to write the Euler-Lagrange equation in divergence form, and the existence of
minimizers in fixed conformal classes with certain energy bounds were obtained.

The organisers and the participants are grateful to the Oberwolfach Institute for
presenting the opportunity and the resources to arrange this interesting meeting.
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Abstracts

Estimates of the Jacobian Determinant in Terms of Subdeterminants
Hardy & Littlewood unite with Fefferman & Stein in maximal

inequalities

Tadeusz Iwaniec

(joint work with Flavia Giannetti, Jani Onninen and Anna Verde)

Recent advances in the Calculus of Variations (polyconvex energy integrals), Geo-
metric Function Theory and Nonlinear Elasticity rely on various estimates of the
Jacobian determinants of weakly differentiable mappings. This is where both har-
monic analysis and geometric PDEs come in extremely useful. Two results will be
presented. First we discuss local integrability property of nonnegative Jacobians
under minimal integrability hypotheses on the differential and its subdeterminants.
Then we shall allow the Jacobian to change sign, and show that it lies in the Hardy
space. These questions arise naturally in the study of mappings of finite distortion
and, in particular, deformations of hyperelastic materials. Some new cancellation
phenomena, which we shall observe in commutators of singular integrals, are the
key elements of the proofs. However, the true novelty of our approach are maximal
operators which we obtain by interpolating between the classical Hardy-Littlewood
and the spherical Fefferman-Stein maximal operators.
This lecture is based on two joint publications with Flavia Giannetti, Jani Onninen
and Anna Verde.

A Hilbertian approach to some hyperbolic conservation laws

Yann Brenier

First order systems of conservation laws read: ∂tu + ∇x · (Q(u)) = 0 , where
u = u(t, x) ∈ Rm depends on t ≥ 0, x ∈ Rd, and · denotes the inner product in Rd.
The Qi (for i = 1, · · ·, d) are given smooth functions from an open subset U of Rm

into Rm. The system is called hyperbolic when, for each τ ∈ Rd and each w ∈ U ,
them×mmatrix

∑

i=1,d τiQ
′
i(w) can be put in diagonal form with real eigenvalues.

There is no general theory to solve globally in time the initial value problem for
such systems of PDEs. (See [Da] for a recent general description of the field.) In
the non-linear case, local smooth solutions usually blow up in finite time (shock
waves). The only theories available providing existence and uniqueness of global
solutions (beyond singularity formation) are limited to the scalar case (Kruzhkov’s
theory: m = 1 [Kr]) or to one space dimension (Glimm-Bressan theory: d = 1,
for small initial conditions [BB]). In both cases the functional spaces L1 and BV
play a crucial role while Hilbert spaces are of no use. Unfortunately, most linear
multidimensional systems (such as linear acoustics, or Maxwell’s equations) can
be shown to be well posed only on Hilbert spaces such as L2 [Brn].
The main point of our discussion is to revisit the Kruzhkov theory by showing
that, unexpectedly, there is a Hilbertian structure behind it. Roughly speaking,
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any Kruzhkov ’entropy’ solutions u(t, x), t ≥ 0, x ∈ Rd/Zd, assumed to be valued
in [0, 1] for simplicity, can be written:

u(t, x) =

∫ 1

0

1{Y (t,a,x)≤0}da,

where Y = Y (t, x, a), x ∈ Rd/Zd, a ∈ [0, 1], solves the subdifferential equation

0 ∈ ∂tY +Q′(a) · ∇xY + ∂K[Y ],

where ∂K denotes the subdifferential of the convex lsc functional Y → K[Y ]
valued in {0,+∞}, with value 0 whenever ∂aY ≥ 0 and +∞ otherwise. According
to maximal monotone operator theory, this subdifferential equation is well posed in
the Hilbert space H = L2(Rd/Zd × [0, 1]) and enjoys the non-expansive property:

∫

|Y (t, x, a) − Ỹ (t, x, a)|pdadx ≤
∫

|Y (0, x, a) − Ỹ (0, x, a)|pdadx,

for all pairs of solutions Y, Ỹ and all p ∈ [0,+∞]. The proof [Br5] is based on a com-
bination of level-set, kinetic and transport-collapse approximations, in the spirit of
previous works by Giga, Miyakawa, Osher, Tsai and the author [Br2, GM, TGO].
Let us mention that the indicator function 1{Y (t,a,x)≤0} coincides with the one
involved in the Lions-Perthame-Tadmor kinetic formulation [LPT]. Also notice
recent related works [BBL, CFL].

Of course, dealing with scalar conservation laws is of limited interest. (However the
regularizing effect of shock waves in that case is not yet fully understood, in spite of
remarkable results by Lions-Perthame-Tadmor, Ambrosio-Kirchheim-Lecumberry-
Rivière and De Lellis-Otto-Westdickenberg. Maybe our approach could provide
new insights.) There is a very limited hope that our approach can be general-
ized to interesting multidimensional systems of conservation laws. Let us mention
one positive example we treated earlier (which was crucial for our understanding).
The so-called ’Born-Infeld-Chaplygin’ system considered in [Br4], and the related
concept of ’order-preserving strings’. This system reads:

(1) ∂t(hv) + ∂y(hv2 − hb2) − ∂x(hb) = 0,

∂th+ ∂y(hv) = 0, ∂t(hb) − ∂x(hv) = 0,

where h, b, v are real valued functions of time t and two space variables x, y. In
[Br4], this system is related to the following subdifferential system:

(2) 0 ∈ ∂tY − ∂xW + ∂K[Y ], ∂tW = ∂xY,

where (Y,W ) are real valued functions of (t, a, x) andK is as above. Unfortunately,
this system is very special (its smooth solutions are easily integrable).
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Regularity in gradient constrained problems and thin-film
micromagnetics

Stefan Müller

(joint work with John Andersson and Bisjawit Karmakar)

Let S ⊂ R2 be a bounded domain with Lipschitz boundary and let hext be a vector
in R2. For a magnetization

(1) m : S → R
2

consider the energy

(2) E(m) = −
∫

S

hext ·mdx+
1

4
||div (mχS)||2H−1/2 .

Here the notation mχS indicates that m is extended by zero outside S and the
divergence is understood in the sense of distributions. The homogeneous H−1/2

norm is defined by Fourier transform: ||f ||2
H−1/2 =

∫

|ξ|−1|f̂(ξ)|2 dξ. Alternatively

this norm can be expressed as the electrostatic energy of a potential u : R3 → R

generated by the surface charge f , i.e.,

(3)
1

4
||f ||2H−1/2 =

1

2

∫

R3

|∇u|2,

where

(4) −∆u = f(x1, x2)δ0(x3)

in the sense of distributions.
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We consider the minimization problem

(5) Minimize E(m) subject to |m| ≤ 1 (P ).

This problem arises as a Γ-limit of the full three-dimensional micromagnetic energy
for films which are thin (small aspect ratio) and whose lateral dimension is large
compared to a material parameter, the exchange length (that length is typically
of the order of a few nanometers), see [3]. We are interested in the regularity of
minimizers of (P).
Note first that (P) is convex and hence existence of minimizers is easy. On the
other hand (P) is strongly degenerate, the energy E(m) depends only on m only
through divm. More precisely

(6) E(m+ ∇⊥ψ) = E(m) ∀ψ ∈ W 1,∞
0 (S),

where ∇⊥ψ = (−∂2ψ, ∂1ψ). Hence we have neither uniqueness nor regularity of
all minimizers, not even for hext = 0 (take, e.g., m(x) = x⊥/|x|).
C. Melcher [6] has shown that one has at least higher regularity for divm (see also
[3] for simply connected domains).

Theorem 1. Let m be a solution of (P ). Then divm ∈ H
1/2
loc (S).

Our first result is

Theorem 2. For each hext ∈ R2 there exists a solution m̄ of (P) with

(7) m̄ ∈ C0,β
loc (S),

for some β > 0.

To prove this we first note that Melcher’s result and Hodge decomposition show

that any minimizer is of the form m0 + ∇⊥ψ with m0 ∈ H
3/2
loc (S) →֒ C

0,1/2
loc (S).

It just remains to make a good choice of ψ, keeping in mind the constraint |m0 +
∇⊥ψ| ≤ 1. A natural attempt is to choose ψ in such a way that the L∞ norm
of |m0 + ∇⊥ψ| is minimal. This leads to an interesting regularity problem for
a perturbation of the infinity Laplacian, which to the best of our knowledge is
unsolved (see [7, 5] for striking recent progress on infinity harmonic functions).
We will instead minimize the Dirichlet integral of ψ subject to the constraint
|m0+∇⊥ψ| ≤ 1. Then the theorem follows from the following result of independent
interest.

Theorem 3. Let Ω be a bounded domain in Rn, n ≥ 2. Let α > 0, a ∈ C0,α(Ω,Rn)
and consider the admissible set

(8) K = {w ∈ H1
0 (Ω) : |∇w − a| ≤ 1 a.e.}.

If K is nonempty then

(9) I(w) =

∫

Ω

|∇w|2 dx

has a unique minimizer w̄ in K and w̄ ∈ C1,β
loc (Ω), for some β > 0.
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If a = 0 then the problem turns out to be equivalent to a double obstacle problem,
i.e., the minimization of I(w) subject to w− ≤ w ≤ w+, and classical results
[1, 4] give w̄ ∈ C1,1. There is by now a large literature on elliptic problems with
constraints on the gradient (see, e.g., [2] for more general homogeneous constraints
and a review of earlier work), but we are not aware of other results where the
constraint depends on x with relatively low regularity (Evans [4] treats |∇w| ≤ g
with g2 ∈ C2). The main ingredient in the proof is a comparison between the
homogeneous and the x-dependent problem. From this the assertion follows by the
C1,1 estimate for the homogeneous problem and the usual application of Morrey’s
decay lemma.

Lemma 1. Let 0 < ε ≤ 1 and suppose that ||a||∞ ≤ ε. Let B1 denote the unit
ball and consider the admissible sets

Ka = {w ∈ H1(B1) : |∇w − a| ≤ 1 a.e.},
Kε = {w ∈ H1(B1) : |∇w| ≤ 1 + ε a.e.}.

Let w0 ∈ Ka and let u and v be the minimizers of I(w) in (w0 +H1
0 (B1)) ∩Ka

and (w0 +H1
0 (B1)) ∩Kε, respectively. Then

(10) I(u) − I(v) ≤ Cγε
γ , for all γ < 1/3.

Idea of proof. Clearly Ka ⊂ Kε. We construct a test function in Ka which agrees
with v if ∇v is small. More precisely set

(11) A = {x ∈ B1−εγ : |∇v| ≤ 1 − 2εβ},

(12) K̃ = {w ∈ Ka ∩ (w0 +H1
0 ) : w = v in A}

(we can take later β = γ ∈ (0, 1/3) ). If we can show that K̃ is nonempty the

estimate for I(u) − I(v) follows easily. To see that K̃ is nonempty we adapt
the argument that Lipschitz functions on a subset can be extended to globally
Lipschitz functions with the same Lipschitz constant. We first use the estimate
|D2v| ≤ Cε−γ in B1−εγ to show that

(13)
|v(x) − v(y)|

|x− y| ≤ 1 − ε ∀x ∈ A, ∀y ∈ A ∪ ∂B1.

Using this and the fact that w0 ∈ Ka we easily see that for each x0 ∈ A∪ ∂B1 the
barriers

(14) wx0 = inf{w ∈ Ka : w(x0) = v(x0)}

satisfy wx0 ≤ v on A ∪ ∂B1. Thus ũ = supx0∈A∪∂B1
wx0 belongs to K̃, as desired.

We are grateful to R. Mingione for bringing the work of Choe and Shim [2] to our
attention during this workshop.
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Heat flow of harmonic maps whose gradients belong to Serrin class

Changyou Wang

For two smooth compact Riemannian manifolds (M, g) and (N, h) without bound-
aries and (N, h) isometrically embedded into an Euclidean space RL, we consider
the heat flow of harmonic maps from M to N , that is a map u : M × R+ → N
solving:

∂tu− ∆Mu = A(u)(∇u,∇u) x ∈M, t > 0(1)

u|t=0 = φ ∈ C∞(M,N).(2)

It is a well known fact that there exists a maximal time interval 0 < T ≤ +∞
depending on φ,M,N such that there is a unique smooth solution u ∈
C∞(M × [0, T ), N) to (1) and (2). Moreover, if such a T is finite then

(3) lim sup
t↑T

‖∇u(t)‖C0(M) = ∞.

In this talk, we are interested in finding a scaling invariant integral characterization
for the finite, maximal time interval T . We establish the following result

Theorem 1. For n = dim(M) ≥ 3, 0 < T < +∞ is a maximal time interval of
(1) and (2) iff

(4) lim sup
t↑T

‖∇u(t)‖Ln(M) = ∞.

This theorem is a consequence of the following regularity theorem for weak solu-
tions to (1) and (2) whose gradients belong to the Serrin class Ln

xL
∞
t .

Theorem 2. For n ≥ 4 and 0 < T ≤ ∞, if u : M × (0, T ) → N is a weak solution
to (1) and (2) such that ∇u ∈ L∞([0, T ], Ln(M)), then u ∈ C∞(M × (0, T ], N).

The ideas to prove both theorems involve: (1) an improved ǫ0-regularity theorem,
and (2) exclusion of self-similar solutions to the heat equation of harmonic maps
in the Serrin class. A crucial step to prove (2) is the application of an unique
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continuation theorem of the backward heat equation due to Escauriaza-Seregin-
Sverák.

Continuity of maps of optimal transportation

Gregoire Loeper

We give a necessary and sufficient condition on the cost function so that the map
solution of Monge’s optimal transportation problem is continuous for arbitrary
smooth positive data. This condition was first introduced by Ma, Trudinger and
Wang for a priori estimates of the corresponding Monge-Ampère equation. It is
expressed by a so-called cost-sectional curvature being non-negative. We show
that when the cost function is the squared distance of a Riemannian manifold, the
cost-sectional curvature yields the sectional curvature. As a consequence, if the
manifold does not have non-negative sectional curvature everywhere, the optimal
transport map can not be continuous for arbitrary smooth positive data. The
non-negativity of the cost-sectional curvature is shown to be equivalent to the
connectedness of the contact set between any cost-convex function (the proper
generalization of a convex function) and any of its supporting functions. When
the cost-sectional curvature is uniformly positive, we obtain that optimal maps
are continuous or Hölder continuous under quite weak assumptions on the data,
compared to what is needed in the Euclidean case. This case includes the reflector
antenna problem and the squared Riemannian distance on the sphere.

A new frequency formula and the singular set of a free boundary
problem

Georg S. Weiss

(joint work with David Jerison)

Consider the parabolic free boundary problem

∆u − ∂tu = 0 in {u > 0} , |∇u| = 1 on ∂{u > 0} .
Originally it has been derived by J.D. Buckmaster (formally) as singular limit
from the following model for the propagation of equidiffusional premixed flames
as ε→ 0, i.e. the as the activation energy goes to infinity:

∆uε − ∂tuε = βε(uε)

Here βε(z) = 1
εβ( z

ε ) , β ∈ C1
0 ([0, 1]) , β > 0 in (0, 1) and

∫

β = 1
2 . In the model

uε = λ(Tc − T ) , Tc is the flame temperature, which is assumed to be constant, T
is the temperature outside the flame and λ is a normalization factor.
By [1], minimizers of the energy

∫

(|∇u|2 + χ{u>0}) are solutions in the sense of
distributions, whose free boundary ∂{u > 0} can be decomposed into a relatively
open regular part and a singular part of vanishing Hn−1-measure.
For non-minimizers cones are not the only possible singularities: there are cusps,

crosses and not much is known on the dimension of the singular set.
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In the time-dependent case it is known that for initial data u0 that are strictly
mean concave in the interior of their support, a sequence of ε-solutions converges
to a solution of the free boundary problem in the sense of distributions (cf. [2]).
Moreover, for general initial data a sequence of ε-solutions converges to a solution
of the free boundary problem in the sense of domain variations ([4]).
The questions of how big the singular set can be and whether the ε-limit is in
general a solution in the sense of distributions are related to the harmonic/caloric
measure of the free boundary (cf. [3]).
Here we describe progress in a project with David Jerison. Using a new frequency
formula, we obtain in the stationary case results on the structure of singularities.
We also prove that the Hausdorff dimension of the topological free boundary of
each ε-limit is ≤ n− 1.
We point out possible generalizations of the frequency formula to more general
nonlinearities.
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Regularity of measures with Hölder density ratio

Tatiana Toro

(joint work with G. David - C. Kenig & D. Preiss - X. Tolsa)

We study the following question: to what extend does the behavior of the density
ratio of a measure determine the regularity of its support?
Let µ be a Borel locally finite measure on Rm. For 0 ≤ n ≤ m, the n-density ratio
of µ is defined by

(1) θ(x, r) =
µ(B(x, r))

ωnrn
for x ∈ R

m, r > 0,

where ωn denotes the Lebesgue measure of a ball of radius 1 in Rn. The n-density
of µ at x exists if

0 < lim
r→0

θ(x, r) <∞.

In the 1920’s, Besicovitch proved that if m = 2, n = 1 and the 1-density of
µ exits µ-a.e then µ is 1-rectifiable ([1]). In the 1950’s Marstrand showed that
if the density exists on a set of µ positive measure then n is an integer ([4]). In
1986 Preiss proved that if the n-density of µ exits µ-a.e then µ is n-rectifiable ([5]).
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Preiss’ argument could be outlined as follows:

• A blow up procedure shows that if the n-density of µ exists then for µ-a.e.
x ∈ Rm all tangent measures of µ at x are n-uniform. The set of tangent
measures of µ at x, Tan (µ, x), consists of all non-zero scaled blow-ups of
the measure µ at x. A measure ν is n-uniform if there is a constant C > 0
so that for all r > 0 and x ∈ spt ν, ν(B(x, r)) = Crn.

• Let ν be an n-uniform tangent measure then ν is either a flat measure
(i.e a multiple of the n-dimensional Hausdorff measure restricted to an
n-plane) or its support is very far away from any n-plane.

• For µ a.e. x ∈ sptµ, Tan (µ, x) contains a flat measure.
• By connectivity for µ a.e x ∈ spt Rm all measures in Tan (µ, x) are flat.

Consider the following two examples of n-inform measures in R
m:

• Let L be an n-plane in Rm and ν = Hn L be the n-dimensional Hausdorff
measure on an L.

• Kowalski-Preiss cone: let Σ = {(x1, x2, x3, x4, · · · , xn+1) ∈ Rn+1 : x2
4 =

x2
1 + x2

2 + x2
3} then ν = Hn Σ satisfies ν(B(x, r)) = ωnr

n for x ∈ Σ and
r > 0. Note that here m = n+ 1.

What distinguishes these two n-uniform measures is the degree of flatness of their
support. Thus we introduce two quantities which measure flatness. Let Σ ⊂ Rm,
for x ∈ Σ and r > 0 define

β2(x, r) = min
L∈G(n,m)

1

rn

∫

B(x,r)

(

dist (y, L)

r

)2

dµ(y).

and

β∞(x, r) =
1

r
inf
L
D[Σ ∩B(x, r), L ∩B(x, r)],

where the infimun is taken over all n-planes L through x. D denotes the Hausdorff
distance between 2 sets. Note that

(2) β2(x, r) ≤ Cβ∞(x, r).

Definition 1. A point x is an L∞ (resp. L2) flat point of S if given ǫ > 0 there
is r0 > 0 such that β∞(x, r) < ǫ (resp. β2(x, r) < ǫ) for 0 < r < r0. A set S is
δ-Reifenberg flat (for some δ > 0) if there exits R > 0 such that for all x ∈ S and
0 < r < R, β∞(x, r) ≤ δ.

We now focus our attention in the following question:

Let µ be a Borel locally finite measure, and let

S = {x ∈ R
m : µ(B(x, r)) > 0, ∀r > 0}.

Assume that there exist α ∈ (0, 1) and C > 0 such that

(3) |θ(x, r) − 1| ≤ Crα for x ∈ Σ and 0 < r ≤ 1, how smooth is S?
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First we note that µ = Hn S. Thus by Preiss’ result S is n-rectifiable.

Theorem 1. (Local regularity [2], [6]) For α > 0 there exists γ > 0 such that
if Σ ⊂ Rm, satisfies (3) and if n ≥ 3, Σ is Reifenberg flat, then Σ is a C1,γ

n-dimensional submanifold of Rm.

Theorem 2. (Global regularity [6]) For α > 0 there exists γ > 0 such that if
Σ ⊂ R

m, satisfies (3) then if n = 1, 2, Σ is a C1,γ n-submanifold in R
m. If n ≥ 3,

Σ is a C1,γ n-submanifold in Rm away from a closed set S such that Hn(S) = 0.

We briefly sketch the proof of the global regularity theorem:

(1) (3) implies that all tangent and pseudo-tangent measures of µ are n-
uniform (see [5] and [3]).

(2) Since S is rectifiable L∞ flatness is a generic condition. Thus by (2), L2

flatness is also a generic condition.
(3) L2 flatness on S is an open condition (see[6]).
(4) L2 flatness in a neighborhood of x ∈ S implies that there is a neighborhood

of x ∈ S which is Reifenberg flat.
(5) The local regularity theorem ensures that a neighborhood of x ∈ S admits

a C1,γ parameterization.

Corollary 3. For each α > 0 there is γ > 0 such that if Σ ⊂ Rn+1 satisfies (3)
then Σ is a C1,γ n-submanifold in Rn+1 away from a closed set S of dimension
n− 3. If n = 3 S, is discrete.
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Hessian estimates for the sigma-2 equation in dimension three

Micah Warren

(joint work with Yu Yuan)

We derive an interior a priori Hessian estimate for the σ2 equation

(1) σ2

(

D2u
)

= λ1λ2 + λ2λ3 + λ3λ1 = 1

in dimension three, where λi are the eigenvalues of the Hessian D2u.

Theorem 1. Let u be a smooth solution to (1) on BR(0) ⊂ R3. Then we have

|D2u(0)| ≤ C(3) exp

[

C(3) max
BR(0)

|Du|3/R3

]

.

In the 1950’s, Heinz [H] derived a Hessian bound for the two dimensional Monge-
Ampère equation, σ2(D

2u) = λ1λ2 = det(D2u) = 1, which is equivalent to (2)
with n = 2 and Θ = ±π/2. In the 1970’s Pogorelov [P] constructed his famous
counterexamples, namely irregular solutions to three dimensional Monge-Ampère
equations σ3(D

2u) = λ1λ2λ3 = det(D2u) = 1.
By Trudinger’s [T] gradient estimates for σk equations, we can bound D2u in
terms of u as

|D2u(0)| ≤ C(3) exp

[

C(3) max
B2R(0)

|u|3/R6

]

.

We attack (1) via its special Lagrangian equation form

(2)

n
∑

i=1

arctanλi = Θ

with n = 3 and Θ = π/2. Equation (2) stems from the special Lagrangian geometry
[HL]. The Lagrangian graph (x,Du (x)) ⊂ Rn×Rn is called special when the phase
or the argument of the complex number

(

1 +
√
−1λ1

)

· · ·
(

1 +
√
−1λn

)

is constant
Θ, and it is special if and only if (x,Du (x)) is a (volume minimizing) minimal
surface in Rn × Rn [HL, Theorem 2.3, Proposition 2.17].
In dimensions two and three, the special Lagrangian equations (2) can be expressed
as

cosΘ(σ1 − σ3) + sinΘ(σ2 − 1) = 0.

1. Outline of Proof

Heuristically, the proof breaks into the following three steps. We may assume by
scaling that u is a solution on B4(0) ⊂ R3.

Step 1)
Choose a function b(D2u(x)) such that, with respect to the induced metric on the
graph (x,Du (x)) , b satisfies the (weak) Jacobi inequality

△gb ≥ |∇gb|2g.
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We choose

b(D2u) = ln
√

1 + λ2
max

where λmax is the largest eigenvalue of the Hessian D2u.

Step 2)
By Michael and Simon’s mean value and Sobolev inequalities for minimal surfaces,
it follows from Step 1 (choosing appropriate exponents) that

b(0) ≤ C(3)

[∫

B2

ϕ2 |∇gb|2 V dx+

∫

B2

b |∇gϕ|2 V dx
]

where V is the volume element on the graph, and ϕ is an appropriately chosen
test function.

Step 3)
Finally, we show that the integrals in Step 2 may be bounded by ‖Du‖L∞(B4)

. In

fact, Step 1) implies that
∫

B2

ϕ2 |∇gb|2 dvg ≤ C(3)

∫

B2

|∇gϕ|2 dvg.

The identity

giiV = σ1 − λi

yields an estimate
∫

B2

|∇gϕ|2 V dx ≤ C(3)

∫

B2

△udx ≤ ‖Du‖L∞(B2)
.

Further integration by parts, using the above identity, completes the estimate.

2. Questions

1) Estimates for σ2

(

D2u
)

= 1 when n ≥ 4? The special Lagrangian structure is
available only when n = 2 or 3, so a challenge is to replace the mean value and
Sobolev inequalities in Step 2.
2) Estimates for σ2

(

D2u
)

= f(x, u,Du)? What conditions on f(x, u,Du)? The
mean curvature is not given by a simple expression in terms of derivatives of f, so
this generalization does not follow immediately.
3) Similar estimates for special Lagrangian equations (2) with larger phase |Θ| ≥
π/2 in dimension three are obtained in [WY]. The challenging problem is to derive
estimates for (2) with lower phase, in particular the equation σ1 = σ3 correspond-
ing to Θ = 0.
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Boundary regularity for an elliptic system in geometry and an
application

Sophie Szu-yu Chen

We consider in dimension four an elliptic system

δRij = (Rc ∗Rm)ij

with boundary conditions ∇Rγβ = 0 and Lγβ = 0, where Rc, Rm and L are
Ricci tensor, Riemann tensor and the second fundamental form, respectively. The
equation is motivated by a conformally invariant tensor (Bach tensor) and its
matching conformally invariant tensor on the boundary. We will show a partial
regularity result and an application to a compactness result in conformal geometry.

Calderón-Zygmund estimates around limit cases

Giuseppe Mingione

I am reporting on some results from my recent paper [8]. I will consider a Dirichlet
problem of the type

(1)

{

−div a(x,Du) = µ in Ω
u = 0 on ∂Ω.

Here and in the following I am assuming that Ω ⊂ Rn is a bounded domain, µ is a
signed Radon measure with finite total variation |µ|(Ω) <∞, and a : Ω×Rn → Rn

is a Carathèodory vector field satisfying the following standard monotonicity and
Lipschitz assumptions:

(2)























ν(s2 + |z1|2 + |z2|2)
p−2
2 |z2 − z1|2 ≤ 〈a(x, z2) − a(x, z1), z2 − z1〉

|a(x, z2) − a(x, z1)| ≤ L(s2 + |z1|2 + |z2|2)
p−2
2 |z2 − z1|

|a(x, 0)| ≤ Lsp−1 ,

for every z1, z2 ∈ R
n, x ∈ Ω. When referring to the structural properties of a, and

in particular to (2), I do always assume

(3) 2 ≤ p ≤ n, 0 < ν ≤ 1 ≤ L, s ≥ 0 .
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The measure µ will be considered as defined on the whole R
n by simply letting

|µ|(Rn \ Ω) = 0. At certain stages, I shall also require the following Lipschitz
continuity assumption on the map x 7→ a(x, z):

(4) |a(x, z) − a(x0, z)| ≤ L|x− x0|(s2 + |z|2) p−1
2 , ∀ x, x0 ∈ Ω, z ∈ R

n .

Assumptions (2) are modeled on the basic example

(5) −div[c(x)(s2 + |Du|2) p−2
2 Du] = µ, ν ≤ c(x) ≤ L, [c(·)]0,1 ≤ L ,

which is indeed covered here. When s = 0 and c(x) ≡ 1 the equation in (5) has
on the left hand side the familiar p-Laplacean operator

(6) −△pu = −div(|Du|p−2Du) = µ .

The basic result, see [4], about the problem (1) is the existence of a distributional

solution u ∈ W 1,1
0 (Ω), obtained by means of an approximations argument, i.e.

uniform a priori estimates for problems with smooth right hand side + passage to
the limit, such that

(7) Du ∈ Lq(Ω,Rn), for every q <
n(p− 1)

n− 1
when p ≤ n .

The inclusion in (7) is in a certain sense sharp in the scale of Lebesgue’s spaces
(a discussion about sharpness in connection to the definition of solution is hereby
omitted for the sake of brevity, since it would be definitely a long story...). This
is clear when considering the so called fundamental solution to the p-Laplacean

equation, that is, up to multiplicative constant, |x| p−n
p−1 when p < n, otherwise it

is log |x|. Anyway a significant sharpening of (7) can be obtained by considering
so called weak-Lq spaces, often called Marcinkiewicz spaces; in fact, see [3, 6], it
holds that

(8) Du ∈ M
n(p−1)

n−1 (Ω,Rn) .

as proved in [3, 6]. This means that

sup
λ≥0

λ
n(p−1)

n−1 |{x ∈ Ω : |Du(x)| ≥ λ}| <∞ .

The results (7)-(8) are more or less all is known about the regularity of solutions
to general measure data problems as (1). My aim here is to show how these
integrability properties are connected to, and actually are, a consequence of a
much deeper regularity property of Du, at least in a local fashion - in [8] I am
concentrating on local estimates for the sake of brevity. In turn, this represents the
maximal regularity of solutions which is expectable under the general assumptions
(2)-(4). In some sense I will show an extension of the classical Calderón-Zygmund
theory beyond those cases which are traditionally considered as limit ones.
Let me focus for simplicity on the case p = 2, looking at (7) from a different
viewpoint, considering △u = f . In this case the standard Calderón-Zygmund
theory asserts f ∈ L1+ε implies Du ∈ W 1,1+ε for every ε > 0. Using Sobolev
embedding theorem we have in particular Du ∈ Ln/(n−1), that is, the “limit case”
of (7) when p = 2. This does not hold when ε = 0, since the inclusion Du ∈ W 1,1
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generally fails, as is well-known. So, one could interpret (7) as the trace of a
potentially existent Calderón-Zygmund theory below the limit case W 1,1. In this
respect the first result I am presenting is

Theorem 1 (of Calderón-Zygmund type). Under the assumptions (2)-(4) there

exists a solution u ∈W 1,1
0 (Ω) to the problem (1) such that

(9) Du ∈ W
1−ε
p−1 ,p−1

loc (Ω,Rn) ,

holds for every ε ∈ (0, 1). In particular

(10) Du ∈ W 1−ε,1
loc (Ω,Rn) , when p = 2 .

In other words, if we cannot have second differentiability of solutions, (10) tells us
that we “almost have” second derivatives. Explicit local estimates is a sharp form
are actually available, see [8, Theorem 1.3].
Let me recall here that the function spaces involved in Theorem 1 are the well-
known “fractional Sobolev spaces”, defined by saying that w ∈ Wα,q(A,Rk) pro-
vided the following Gagliardo-type norm is finite:

‖w‖W α,q(A) :=

(∫

A

|w(x)|q dx
)

1
q

+

(∫

A

∫

A

|w(x) − w(y)|q
|x− y|n+αq

dx dy

)
1
q

,

where α ∈ (0, 1) and q ≥ 1; the local variant Wα,q
loc (A,Rk) is obviously defined.

Note that Sobolev embedding theorem in the fractional case ensures that

(11) Wα,q →֒ L
nq

n−αq provided αq < n .

Therefore, we observe that also (9) is sharp since, assuming (9) with ε = 0 would

lead to Du ∈ L
n(p−1)

n−1

loc , which is obviously false for the fundamental solution. The
same argument then allows to recover, at least in a local fashion, the original result
(7) from the one in (9), by means of (11).
A remarkable consequence of Theorem 1 is the following:

Corollary 1 (BV-type behavior). Let Σu denote the set of non-Lebesgue points
of the solution found in Theorem 1, in the sense of

(12)

Σu :=

{

x ∈ Ω : lim inf
ρց0

−
∫

B(x,ρ)

|Du(y) − (Du)x,ρ|p−1 dy > 0

or lim sup
ρց0

|(Du)x,ρ| = ∞
}

.

Then its Hausdorff dimension dim(Σu) satisfies dim(Σu) ≤ n− 1.

In fact, a classical result in potential theory asserts that the set of non-Lebesgue
points of a Wα,q-map, with αq < n, has Hausdorff dimension less than or equal
than n− sα.
The optimality of the exponent n(p − 1)/(n − 1) in (8) stems from considering
measure data problems involving the Dirac mass, as △pu = δ. The question is
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now: What happens if the measure “diffuses”? We consider now a condition as

(13) |µ|(BR) ≤MRn−θ 0 ≤ θ ≤ n, M ≥ 0,

satisfied for any ball BR ⊂ Rn of radius R. Assuming (13) does not allow µ to
concentrate on sets with Hausdorff dimension less than n − θ, and indeed higher
regularity of solutions can be obtained. Two cases must be anyway distinguished.
When θ < p we have that a classical theorem of Adams [1] ensures that µ belongs

to the dual of W 1,p, and therefore problem (1) can be uniquely solved in W 1,p
0 (Ω)

by standard monotonicity methods: this is in some sense the “uninteresting case”.
I shall concentrate on the case θ ∈ [p, n]. An interesting phenomenon is coming
up here: we shall see that the number θ replaces n everywhere, playing the role of
a “new dimension”. Indeed

Theorem 2 (Marcinkiewicz-Morrey regularity). Under the assumptions (2)-(3),

and (13) with θ ≥ p, there exists a solution u ∈ W 1,1
0 (Ω) to the problem (1) such

that

(14) Du ∈ M
θ(p−1)

θ−1 ,θ

loc (Ω,Rn) ⊆ M
θ(p−1)

θ−1

loc (Ω,Rn) .

In particular, in the limit case θ = p we have Du ∈ Mp
loc(Ω,R

n) .

The space Mq,s(A), with q ≥ 1 and s ∈ [0, n], is the Marcikiewicz-Morrey space
defined by saying that w ∈ Mq,s(A) iff

sup
λ≥0

λq|{x ∈ BR : |w(x)| ≥ λ}| ≤ cRn−s ,

for every ball BR ⊂ A. Observe how in the case θ = n inclusion (14) gives back
the original one in (8). Moreover, in the limit case p = θ, the gradient Du misses
the Lp-integrability, which on the other hand holds as soon as θ < p, just by a
natural Marcinkiewicz factor. In this last case it is possible to prove that u is a
Bounded Mean Oscillation Function in the sense of John-Nirenberg, and, under
a slightly stronger assumption, that is even VMO in the sense of Sarason- see [8,
Theorem 1.12]. When p = n, which forces θ = n, Theorem 2 recovers in the case
of scalar problems the results by Dolzmann & Hungerbühler & Müller [6]. Finally,
the exponent θ(p − 1)/(θ − 1) is sharp when p = 2, as shown by Adams [2]; it is
also sharp when p 6= 2 and θ is an integer, as shown by Serrin [9], and it is safely
conjectured to be sharp for every choice p > 2.
Finally, the density property (13) also reflects on the higher derivatives of Du:

Theorem 3 (Sobolev-Morrey regularity). Under the assumptions (2)-(4), and

(13) with θ ≥ p, let u ∈W 1,1
0 (Ω) be the solution found in Theorem 2. Then

(15)

∫

BR

∫

BR

|Du(x) −Du(y)|p−1

|x− y|n+1−ε
dx dy ≤ cRn−θ ,

holds for every ε ∈ (0, 1) and every ball BR ⊂⊂ Ω of radius R, where c depends on
ε,M , and on the distance between BR and ∂Ω.
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The density property (15) actually means that Du belongs to the Sobolev-Morrey

space W
1−ε
p−1 ,p−1,θ

loc (Ω,Rn), for every ε ∈ (0, 1), and for p = 2, it is the natural
borderline analog of the classical Calderón-Zygmund estimates in Morrey spaces
derived by several authors like Campanato, Caffarelli, Liebermann, and so on. See
for instance [5, 7, 10]. When θ = n, Theorem 3 gives back Theorem 1.
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The role of integrability by compensation in the analysis of Willmore
surfaces

Tristan Rivière

We present a new formulation to the Euler-Lagrange equation of the Willmore
functional for immersed surfaces in Rm. This new formulation of Willmore equa-
tion appears to be of divergence form, moreover, the non-linearities are made of

jacobians. Additionally to that, if ~H denotes the mean curvature vector of the

surface, this new form writes L ~H = 0 where L is a well defined locally invertible
elliptic self-adjoint operator. These 3 facts have numerous consequences in the
analysis of Willmore surfaces.
One first consequence is that the long standing open problem to give a meaning
to the Willmore Euler-Lagrange equation for immersions having only L2 bounded
second fundamental form is now solved. We then establish the regularity of weak
Willmore immersion with L2 bounded second fundamental form. The proof of this
result is based on the discovery of conservation laws for Willmore immersions which
are preserved under weak convergences. These conservation laws are made of linear
combinations of linear terms in one hand and non linear quantities which happen
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to be quadratic and made of jacobians in the other hand. This last fact permits
to make use of the integrability by compensation theory introduced originally by
H. Wente in his work on prescribed mean curvature surfaces and systematized and
extended in the works of L.Tartar and R.Coifman-P.L.Lions-Y.Meyer-S.Semmes.
We shall explain how this use of integrability by compensation not only provides
new results in border line situations but also permits to give a much simpler
approach to existing analysis results for Willmore surfaces such as ǫ−regularity
results...etc.
In the last part of our presentation we make use of the previous analysis in order
to establish a weak compactness result for Willmore surfaces of energy less than
8π (the Li-Yau condition which ensures the embeddedness of the surface). This
theorem is based on a point removability result we prove for Willmore surfaces in
Rm. This result extends to arbitrary codimension a result previously established
by E.Kuwert and R.Schätzle for surfaces in R3. Finally, we deduce from this point
removability result the strong compactness, modulo the Möbius group action, of
Willmore tori below the energy level 8π in dimensions 3 and 4. The dimension 3
case was already solved in the work of Kuwert and Schätzle.

Minimizers of the Willmore functional with prescribed conformal type

Ernst Kuwert

(joint work with Reiner Schätzle)

The Willmore integral of an immersed surface f : Σ → R
n is given by

W(f) =
1

4

∫

Σ

| ~H|2 dµg,

where g = f∗geuc is the induced metric with area measure µg, and ~H is the mean
curvature vector. An important property of the integral is its invariance under
Möbius transformations of Rn. By the work of L. Simon [8], the infimum βn

p of
the functional among all genus p immersions is attained (see also [1] for the case
p ≥ 2).

Willmore conjectured that W(f) ≥ 2π2 for all tori in R
3. By now, this inequality

has been verified for several classes of tori, in particular Li and Yau proved it in
[3] if the induced conformal type belongs to a certain compact subset of the mod-
uli space, compare [4]. The inequality holds also for tori whose conformal type is
sufficiently degenerate [2]. A proof of the full Willmore conjecture is claimed in [6].

Fixing a class τ in the Teichmüller space T (Σ) where Σ has genus p ≥ 1, we
put

µn
p (τ) = inf{W(f)| f : Σ → R

n immersed, π(f∗geuc) = τ}.
Here π denotes the projection from the set of Riemannian metrics into T (Σ). We
refer to [9] for the definition of the Teichmüller space. Our main result is as follows.
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Theorem. If n ∈ {3, 4} and if µn
p (τ) < ωn

p , then the infimum µn
p (τ) is attained

by a smooth embedding f : Σ → Rn, which satisfies the Euler-Lagrange equation

~W (f) = g(A◦, q).

In the statement, ~W (f) is the L2 gradient of the Willmore functional, A◦ is the
vector-valued, traceless second fundamental form and q is a transverse traceless
2-tensor which comes up as a Lagrange multiplier. The condition on the infima
is used to ensure the convergence of minimizing sequences using results from [2].
The constants ωn

p are given by

ωn
p =

{

min(8π, β̃3
p) for n = 3,

min(8π, β̃4
p , β

4
p + 8π

3 ) for n = 4,

where for p = 1 we have β̃n
1 = ∞, and for p ≥ 2

β̃n
p = min

{

4π +

k
∑

i=1

(βn
pi
− 4π) : 1 ≤ pi < p,

k
∑

i=1

pi = p
}

.

We have 2π2 < 8π = ω3
1 , and in fact βn

p < ωn
p for all p ≥ 1, n ∈ {3, 4}. On the

other hand, it is not known whether the assumption µn
p (τ) < ωn

p is satisfied for all
conformal classes τ .

Minimizers of prescribed conformal type are also considered in [7], without re-
strictions on the Willmore energy. The functional is extended to maps which are
not necessarily immersed, and the minimization is approached in this generalized
setting.

References

[1] Bauer, M. & Kuwert, E., Existence of minimizing Willmore surfaces of precribed genus,
Int. Math. Res. Notices 10 (2003), 553–576.

[2] Kuwert, E. & Schätzle, R., Closed surfaces with bounds on their Willmore energy,
Preprint 2006.

[3] Li, P. & Yau, S.-T., A New Conformal Invariant and its Applications to the Will-
more Conjecture and the First Eigenvalue on Compact Surfaces, Inventiones Math. 69

(1982), 269–291.
[4] Montiel, S. & Ros, A., Minimal immersions of surfaces by the first eigenfunctions and

conformal area, Inventiones Math. 83 (1985), 153-166.
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Willmore blow-ups are never compact

Ralph Chill

(joint work with Eva Fašangová and Reiner Schätzle)

We study the qualitative behaviour near the maximal existence time of Willmore
flows which are, by definition, solutions of the evolution equation

(1) ∂tft +
1

2
(∆⊥H +Q(A0)H) = 0, t ≥ 0.

Here, the ft : Σ → R
n are immersions of a closed surface Σ, H and A0 are

the corresponding mean curvature vector and the trace-free part of the second
fundamental form, respectively, ∆⊥ is the Laplacian in the normal bundle along
ft, and Q(A0)H = A0(ei, ej)〈A0(ei, ej), H〉.
It is an important feature of this evolution equation that it is a gradient system
for the Willmore functional given by

W(f) :=
1

4

∫

Σ

|H |2 dµf ;

see [3]. The Willmore functional is invariant under the full Möbius group of Rn.
Critical points of the Willmore functional are called Willmore surfaces or, more
precisely, Willmore immersions.

Let T ≤ ∞ be the maximal existence time of a Willmore flow (ft). In [2] and [4],
a blow-up procedure was described asserting that for each tj ր T , after passing
to a subsequence, there exists rj > 0 and xj ∈ Rn such that

r−1
j (ftj+c0r4

j
− xj)

converges, for given c0 = c0(n) > 0 and after appropriate reparametrization,

smoothly on compact subsets of Rn to a Willmore immersion fW : Σ̂ → Rn, where
Σ̂ 6= ∅ is a complete surface without boundary. Moreover, it is possible to select
tj in such a way that fW is non-trivial in the sense AfW 6≡ 0. After rescaling and
passing to appropriate subsequences, one has either rj → 0, rj = 1 or rj → ∞
(one always has rj → 0 if the maximal existence time is finite). We call the limit
fW blow-up if rj → 0 and blow-down if rj → ∞.

Our main result says that none of the components of blow-ups or blow-downs is
compact.

The proof of this main result is based on the gradient structure of the Willmore
flow, the fact that the Willmore functional satisfies the Lojasiewicz-Simon gradient
inequality near every Willmore immersion (see [5] and [6] for first instances of this
inequality in the literature), and the following global existence and convergence
result for the Willmore flow.
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Lemma. For every k ∈ N, δ > 0, there exists ε > 0 such that the following is
true: suppose that (ft)t is a Willmore flow of Σ satisfying

‖f0 − fW ‖W 2,2∩C1 < ε and

(2) W(ft) ≥ W(fW ) whenever ‖ft ◦ Φt − fW ‖Ck ≤ δ,

for some appropriate diffeomorphisms Φt : Σ
≈−→ Σ.

Then this Willmore flow exists globally, that is, T = ∞, and converges, after

reparametrization by appropriate diffeomorphisms Φ̃t : Σ
≈−→ Σ, smoothly to a

Willmore immersion f∞, that is,

ft ◦ Φ̃t → f∞ as t→ ∞.

Moreover, W(f∞) = W(fW ) and ‖f∞ − fW ‖Ck ≤ δ.

This global existence and convergence result also implies that if there is no blow-
up or blow-down (i.e. rj = 1 in the above blow-up procedure), then the Willmore
flow necessarily exists globally and converges, after appropriate reparametrization,
to a Willmore immersion.

In addition, the above lemma implies that if the Willmore flow starts near a
local minimizer of the Willmore functional (near with respect to the topology in
W 2,2 ∩ C1), then again the flow exists globally and converges, after appropriate
reparametrization, to a Willmore immersion which is itself a local minimizer of
the Willmore functional. This corollary generalizes a result by Simonett [7].
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Some aspects and results for compressible and incompressible
Navier-Stokes equation

Jens Frehse

(joint work with M.S. Neugebauer - M. Steinhauer & W. Weigant)

1. We present an example of a scalar uniformly elliptic equation with measurable
complex valued coefficients having a complex valued discontinuous or unbounded
solution in dimension d > 2 . The case of d = 3 or 4 has been left open by Mazya-
Nasarov-Plamenevsky.

2. (joint work with Mrs. M. Specovius Neugebauer). We present ”re-normalized”
estimates for the solution of the classical time dependent Navier-Stokes equations
(incompressible case). Roughly spoken, the gradient of the solution divided by
some power of the modulus of the solution is in L3(L3).

3. (joint work with M.Steinhauer and Wladimir Weigant). We consider the clas-
sical Navier-Stokes equation for compressible fluids (stationary case) with some
pressure law p = c · ργ . Depending on the boundary value problem in considera-
tion we obtain existence of long-time-weak solutions for values of γ < 3/2 (up to
1 in special cases).

Curvature and continuity of optimal transport

Robert J. McCann

(joint work with Young-Heon Kim)

This abstract sketches a geometric framework proposed in [1] and its consequences
concerning the general regularity theory for optimal mappings developed by Ma,
Trudinger, Wang and Loeper, following pioneering work on special cost functions
by (at least) Caffarelli, Delanoë, Huang, Guan, Gutierrez, Oliker, Urbas, and X-J
Wang. Due to space limitations we do not attempt to cite the literature or give
much historical context, referring the reader instead to our paper, except that we
note a different approach to some of our results was discovered independently at
about the same time by Trudinger & Wang in arXiv:math/0702807. For simplicity
our assumptions here are more restrictive than required in [1].
Let M and M̄ be domains with compact closure clM ⊂ M ′ and cl M̄ ⊂ M̄ ′ in
smooth manifolds M ′ and M̄ ′. Suppose M and M̄ are equipped with Borel prob-
ability measures ρ and ρ̄, and let s ∈ C4(Ω′) be the surplus (= − transportation
cost) defined on the product space Ω′ = M ′ × M̄ ′. The optimal transportation
problem of Kantorovich is then to find the measure γ ≥ 0 onM×M̄ which achieves
the supremum

(1) −W−s(ρ, ρ̄) := max
γ∈Γ(ρ,ρ̄)

∫

M×M̄

s(x, x̄)dγ(x, x̄).
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Here Γ(ρ, ρ̄) denotes the set of joint probabilities having the same left and right
marginals as ρ ⊗ ρ̄. It is not hard to check that this maximum is attained; any
maximizing measure γ ∈ Γ(ρ, ρ̄) is then called optimal. Each feasible γ ∈ Γ(ρ, ρ̄)
can be thought of as a weighted relation pairing points x distributed like ρ with
points x̄ distributed like ρ̄; optimality implies this pairing also maximizes the
average value of the specified surplus s(x, x̄) for transporting each point x to its
destination x̄.
The optimal transportation problem of Monge amounts to finding a Borel map
F : M −→ M̄ , and an optimal measure γ vanishing outside Graph(F ) := {(x, x̄) ∈
M × M̄ | x̄ = F (x)}. When such a map F exists, it is called an optimal map
between ρ and ρ̄; in this case, the relation γ is single-valued, so that ρ-almost
every point x has a unique partner x̄ = F (x), and optimality can be achieved in
(1) without subdividing the mass at such points x between different destinations.
Although Monge’s problem is more subtle to solve than Kantorovich’s, when M
is a smooth manifold and ρ vanishes on every Lipschitz submanifold of lower
dimension, a twist condition (see (A1) below) on the surplus function s(x, x̄)
guarantees existence and uniqueness of an optimal map F , as well as uniqueness
of the optimal measure γ. One can then ask about the smoothness of the optimal
map F : M −→ M̄ .
For ρ, ρ̄ smooth and bounded away from zero on their respective domains, Ma,
Trudinger & Wang gave hypotheses on Euclidean domains M, M̄ ⊂ Rn and s ∈
C4(Ω′) which ensure an affirmative answer. Their hypotheses may appear daunt-
ing, but inspired by Loeper’s discoveries on Riemannian manifolds we recast them
geometrically as follows. Use local coordinates x1, . . . , xn on M ′ and x1̄, . . . , xn̄

on M̄ ′ to define an inner product dℓ2 := (∂2s/∂xi∂xj̄)(dxi ⊗ dxj̄ + dxj̄ ⊗ dxi)/2 of

indefinite sign and a symplectic form ω := (∂2s/∂xi∂xj̄)dxi ∧ dxj̄ on the tangent
bundle TΩ′ of the product space. Repeated indices are summed from 1, . . . , n
or n + 1, . . . , n + n̄ according to whether they are barred or unbarred. Assume
these bilinear forms are non-degenerate (A2) and n = n̄. Then dℓ2 defines a
pseudo-Riemannian metric on Ω′ with as many timelike as spacelike directions,
i.e. signature (n, n). A vector P ∈ T(x,x̄)Ω

′ is called null if it is self-orthogonal
with respect to this metric. The canonical splitting of a vector in the tangent
space T(x,x̄)Ω

′ = TxM
′ ⊕ Tx̄M̄

′ is denoted by P = p ⊕ p̄. The metric dℓ2 induces
a pseudo-Riemannian curvature tensor Ri′j′k′l′ on Ω′, which we use to define sec-
tional curvature

(2) sec(x,x̄) P ∧Q :=

2n
∑

i′=1

2n
∑

j′=1

2n
∑

k′=1

2n
∑

l′=1

Ri′j′k′l′P
i′Qj′P k′

Ql′

in the standard way, except that we do not attempt to normalize it for fear of
dividing by zero in the case of most interest to us, namely the null vectors P = p⊕0
and Q = 0⊕ p̄ orthogonal to each other, or equivalently p⊕ p̄ null.
The surplus function s ∈ C4(Ω′) is said to be weakly regular (A3w) if dℓ2 is
non-degenerate and

(3) sec(x,x̄)(p⊕ 0) ∧ (0 ⊕ p̄) ≥ 0
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for all (x, x̄) ∈ Ω′ and null-vectors p⊕ p̄ ∈ T(x,x̄)Ω
′. It is said to be strictly regular

(A3s) if, in addition, equality in (3) implies p = 0 or p̄ = 0. This terminology is
motivated by the fact that weak regularity is known to be necessary [2] as well as
sufficient for smoothness of optimal maps between nice probability measures. A
set Λ ⊂ Ω′ is geodesically convex if every pair of points (x, x̄), (y, ȳ) ∈ Λ is linked
by a curve satisfying the geodesic equation for our pseudo-Riemannian metric.
It is vertically convex if Λ ∩ ({x} × M̄) is geodesically convex for each x ∈ M ;
horizontally convex if Λ ∩ (M × {x̄}) is geodesically convex for each x̄ ∈ M̄ ; and
bi-convex if both hold. Our first main result is a maximum principle:

Theorem 1. Let s ∈ C4(M ′×M̄ ′) be weakly regular. If Λ ⊂M ′×M̄ ′ is open, hori-
zontally convex and t ∈ [0, 1] −→ (x, x̄(t)) ∈ Λ is a geodesic then ∪0≤t≤1(y, x̄(t)) ⊂
Λ implies f(t, y) := s(y, x̄(t)) − s(x, x̄(t)) ≤ max{f(0, y), f(1, y)}.
Idea of proof. Vanishing of f ′(t0) = 0 gives the null condition for weak regularity
to imply f ′′(t0) ≥ 0, with strict inequality in the strictly regular case. This
precludes a local maximum and is obtained using horizontal convexity to integrate
the identity

2
∂4

∂r2∂t2
s(y(r), x̄(t)) = sec(y(r),x̄(t))(y

′(r) ⊕ 0) ∧ (0⊕ x̄′(t)) ≥ 0

along a geodesic from (x, x̄(t0)) (where all t derivatives of f vanish) to (y, x̄(t0)).
�

For Λ = M × M̄ , a version of this theorem was originally deduced [2] under
additional hypotheses by relying on a sophisticated result of Trudinger & Wang.
But our theorem requires no additional hypotheses, not even that the surplus
s ∈ C4(M ′ × M̄ ′) be twisted, meaning (A1): for each ȳ, z̄ ∈ M̄ ′ the function
x ∈ M ′ −→ s(x, ȳ) − s(x, z̄) has no critical points. If, in addition the reflected
surplus s∗(x̄, x) = s(x, x̄) is twisted on M̄ ′ × M ′, we say s is bi-twisted. Our
theorem combines with a subtle yet elementary argument of Loeper to yield [2]
[1]:

Theorem 2. Let s ∈ C4(Ω′) be twisted and weakly regular on Ω′ = R
n ×R

n and
M × M̄ ⊂ Ω′ a bounded bi-convex domain. Suppose u ∈ C(clM) and ū ∈ C(clM)
are continuous functions with u(x) = maxx̄∈cl M̄ s(x, x̄) − ū(x̄) for each x ∈ clM .
If there exist (x, x̄) ∈M × cl M̄ such that u(z) ≥ u(x) + s(z, x̄) − s(x, x̄) for all z
close to x, then the same inequality holds for all z ∈ clM .

For strongly regular, bi-twisted surpluses and probability densities dρ/d vol ∈
L∞(M) and d vol /dρ̄ ∈ L∞(M̄) on M × M̄ ⊂ Rn × Rn bounded and bi-convex,
powerful ideas of Loeper augmented by a few simplifications then yield a self-
contained proof [1] of his Hölder continuity of optimal maps: F ∈
C

1,1/ max{5,4n−1}
loc (M ; cl M̄). A future ambition is to extend his continuity result

to more general geometries M ′ 6= Rn 6= M̄ ′. We must surrender smoothness of
the cost to satisfy the twist condition as soon as the manifold M ′ is compact.
Hölder continuity results from [2] for the restriction of s(x, x̄) = log |x − x̄| to
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the unit sphere M = M̄ = Sn in Rn+1, and for the geodesic distance squared
s(x, x̄) = −d2(x, x̄) on the round sphere, are also recovered by our technique [1].
In our current work, they are extended to Riemannian submersions of geometries
like the latter; (related work is in progress by Delanoë & Ge). We also explore
products thereof.
Let us conclude by observing any s-optimal diffeomorphism F : M −→ M̄ has
a graph which is spacelike with respect to dℓ2 and Lagrangian with respect to
ω, and conversely, using results from Trudinger & Wang, that any diffeomor-
phism between suitable domains whose graph is dℓ2-spacelike and ω-Lagrangian
is in fact the s-optimal map between the measures ρ := π#(vol |Graph(F )) and
ρ̄ := π̄#(vol |Graph(F )) obtained by the canonical projections through π(x, x̄) = x
and π̄(x, x̄) = x̄ of the Riemannian volume vol induced by the pseudo-metric
dℓ2 on Graph(F ) ⊂ Ω′. This reveals an unexpected connection between opti-
mal transportation and symplectic or pseudo-Kähler geometry. There is related
work of Wolfson and of Warren in the (pseudo-) Euclidean case with s(x, x̄) = x·x̄.
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Euler–Poisson systems as energy minimizing paths in the Wasserstein
space P2(R)

Wilfrid Gangbo

(joint work with T. Nguyen and A. Tudorascu)

This paper uses a variational approach to establish existence and uniqueness of
solutions (σt, vt) of the 1–d Euler-Poisson system, mimimizing an action. Here,
σ0, σT are prescribed and the time interval [0, T ] satisfies T < π. This extends the
concept of the Euler-Poisson system to general measures. These solutions conserve
the Hamiltonian, Legendre transform of the Lagrangian appearing in the action.
They yield a path t→ σt on P the set of probability measures on the real line and
turn out to be characteristic of an infinite dimensional Hamilton-Jacobi equation
on P . The associated Hamiltonian system is nothing but the 1–d Vlasov-Poisson
system. When σt = δy(t) is a dirac mass, the Euler-Poisson system reduces to
ÿ + y = 0, the Hamilton-Jacobi equation is merely finite dimensional and is given
by ∂tu+ 1/2(∂yu)

2 + 1/2y2 + 1/24 = 0.
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Integral formulas for Levi curvature PDE’s and applications to
isoperimetric inequalities and to symmetry problems

Annamaria Montanari

(joint work with Vittorio Martino)

The study of surfaces in the Euclidean space with either constant Gauss curvature
or constant mean curvature received in the past a great amount of attention. In
1899 Liebmann proved that the spheres are the only compact surfaces in R3 with
constant Gauss curvature. In 1952 Süss extended the Liebmann result showing
that a compact convex hypersurface in the Euclidean space must be a sphere, pro-
vided that for some j the j−th elementary symmetric polynomial in the principal
curvatures is constant. In 1954 Hsiung proved that the “convexity” assumption
can be relaxed to the “star-shapedness” one. The proofs of the above results are
based on the Minkowski formulae. A breakthrough for this sort of problems was
made by Alexandrov in 1956, who proved that the sphere is the only compact
hypersurface embedded into the Euclidean space with constant mean curvature.
Alexandrov method is completely different from the Liebmann-Süss method, and
is based on the moving plane technique, on the interior maximum principle for
elliptic equations and on the boundary maximum principle of Hopf type for uni-
formly elliptic equations. In 1978 Reilly obtained another proof of the Alexandrov
theorem combining the Minkowski formulae with some new elegant arguments
which are useful to study the Levi-curvature equations, too.
In [7] we introduced the j-th Levi curvature for real hypersurfaces in C

n+1 in
terms of elementary symmetric functions of the eigenvalues of the normalized Levi
form and we proved that, if Ω is a bounded domain of Cn+1 with boundary a real
hypersurface of class C2, then the j-th Levi curvature of ∂Ω at z = (z1, . . . , zn+1) ∈
∂Ω writes in term of defining function f of Ω = {f(z) < 0} as

(1) K
(j)
∂Ω(z) = − 1

(

n
j

)

1

|∂f |j+2

∑

1≤i1<···<ij+1≤n+1

∆(i1,··· ,ij+1)(f)

for all j = 1, . . . , n, where |∂f | =
√

∑n+1
j=1 |fj |2 ,

∆(i1,··· ,ij+1)(f) = det











0 fī1 . . . fij+1

fi1 fi1 ,̄i1 . . . fi1,ij+1

...
...

. . .
...

fij+1 fij+1 ,̄i1 . . . fij+1,ij+1











and fj = ∂f
∂zj

, fj̄ = fj , fjℓ̄ = ∂2f
∂zj∂z̄ℓ

.

In [7] we then proved a strong comparison principle, leading to the following sym-
metry theorem for domains with constant curvatures.
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Theorem 1. Let D ⊆ C
n+1 be a strictly j-pseudoconvex domain with connected

boundary, 1 ≤ j ≤ n. Let BR(z0) ⊆ D be a ball of radius R and center at z0.

Assume that BR(z0) is tangent to ∂D at some point p ∈ ∂D. If K
(j)
∂D(z) is the j-th

Levi curvature of ∂D at z ∈ ∂D and

K
(j)
∂D(z) ≥ 1/Rj, ∀z ∈ ∂D,

then D is a ball of radius R.

Theorem 1 suggested the following question: are spheres the unique compact hy-
persurfaces with constant Levi curvatures? Klingenberg in [4] gave a first positive
answer to this problem by showing that a compact and strictly pseudoconvex real
hypersurface M ⊂ Cn+1 is isometric to a sphere, provided that M has constant
horizontal mean curvature and the CR structure T1,0(M) is parallel in T 1,0(Cn+1).
Later on in [5] we relaxed Klingerberg conditions and we proved that if the charac-
teristic direction is a geodesic, then Alexandrov Theorem holds for hypersurfaces
with positive constant Levi mean curvature.
The problem of characterizing hypersurfaces with constant Levi curvature has been
recently studied by many authors. Hounie and Lanconelli in [3] showed Alexandrov
for Reinhardt domain of C2, i.e. for domains D such that if (z1, z2) ∈ D, then
(eiθ1z1, e

iθ2z2) ∈ D for all real θ1, θ2. Then in [8] Monti and Morbidelli proved
a Darboux -type theorem for n ≥ 2: the unique Levi umbelical hypersurfaces in
Cn+1 with all constant Levi curvatures are spheres or cylinders.
Our approach and our hypotheses to prove Alexandrov are different from the
previous ones. Precisly in [6] we use the null Lagrangian property for elementary
symmetric functions in the eigenvalues of the complex Hessian matrix and the
classical divergence theorem to prove the following integral formula for a closed
hypersurface in term of the j-th Levi curvature.

Theorem 2. Let Ω be a bounded domain of Cn+1 with boundary a real hypersur-
face of class C2. For every defining function f of class C2 of Ω = {f(z) < 0} and
for every j = 1, . . . , n we have

∫

Ω

σj+1(∂∂̄f)dx =

(

n+ 1
j + 1

)

1

2(n+ 1)

∫

∂Ω

K
(j)
∂Ω(z)|∂f |j+1dσ(x),

where K
(j)
∂Ω is the j-th Levi curvature of ∂Ω defined by (1) and σj(∂∂̄f) is the j-th

elementary symmetric function in the eigenvalues of the complex Hessian matrix
of f .

Then we follow the Reilly approach to prove the following isoperimetric estimate:

Theorem 3 (Isoperimetric estimate). Let Ω be a bounded domain of Cn+1

with boundary a real hypersurface of class C∞. If K
(j)
∂Ω is non negative at every

point of ∂Ω then

(2)

∫

∂Ω

(

1

K
(j)
∂Ω(x)

)1/j

dσ(x) ≥ 2(n+ 1)|Ω|
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where |Ω| is the Lebesgue measure of Ω. If K
(j)
∂Ω is constant, then the equality holds

in (2) if and only if Ω is a ball of radius

(

1

K
(j)
∂Ω

)1/j

.

Since there are non spherical sets which satisfy the equality in (2), then the class
of sets which satisfy the equality in (2) is larger than the class of sets which satisfy
the equality in the classical isoperimetric inequality and in the Alexandrov Fenchel
inequalities for quermassintegrals ( see [1], [2] and [10]).

On the other side, if K
(j)
∂Ω is constant, then

(

K
(j)
∂Ω

)1/j

≤ meas (∂Ω)
2(n+1)|Ω| and by the

Minkowski formula for the classical mean curvature, together with Serrin theorem
[9], in [6] we get the following Alexandrov type theorem for star-shaped domains
whose classical mean curvature is bounded from above by a constant j-Levi cur-
vature to 1/j.

Theorem 4 (An Alexandrov type Theorem). Let Ω ⊂ Cn+1 be a bounded
star-shaped domain with boundary a smooth real hypersurface. If the j-Levi curva-
ture is a positive constant K at every point of ∂Ω and the maximum of the mean
curvature of ∂Ω is bounded from above by K1/j, then ∂Ω is a sphere and Ω is a
ball.
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matics, 80. Birkhäuser Verlag, Basel, 1984.
[3] J.G. Hounie, E. Lanconelli, An Alexander type Theorem for Reinhardt domains of C2,

Recent progress on some problems in several complex variables and partial differential equa-
tions 129–146, Contemp. Math., 400, Amer. Math. Soc., Providence, RI, 2006.
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Singular set bounds for branched minimal hypersurfaces

Neshan Wickramasekera

(joint work with Leon Simon)

A local C1,α partial regularity theory for stable branched minimal hypersurfaces
of multiplicity at most 2 has recently been established in [W].
One of the results obtained in [W] says that if V is the measure-theoretic (i.e. var-
ifold) limit of a sequence of stable minimal hypersurfaces of an open set in Rn+1

each of which is immersed away from a closed set (to be thought of as the singular
set) of locally finite (n−2)-dimensional Hausdorff measure, and if at a point X the
varifold V has a tangent cone equal to the multiplicity 2 varifold associated with
a hyperplane, then, in a neighborhood of X , the support of V is a C1,α 2-valued
graph over the tangent plane for some α = α(n) ∈ (0, 1). It remained an open
question how large the singular set of V could be near such a point. Also left open
was the question of the optimal value of α.

One of the main results (Theorem 2 below) presented in this talk provides an-
swers to these questions. It says that the varifold near the point is always a C1,1/2

2-valued graph, and that either it is regular there (meaning that its support decom-
poses as the union of two distinct smooth embedded intersecting minimal graphs
or the varifold is equal to a multiplicity 2 copy of a single regular embedded min-
imal graph), or the set of its singularities (i.e. branch points) has codimension 2.

In fact these conclusions hold under much weaker assumptions, as asserted in The-
orem 1 below. It suffices to assume that the graph is C1,α for some α ∈ (0, 1) and,
viewed as a multiplicity 1 varifold, it is merely a stationary point (in the open
cylinder over the domain of the graph) of the area functional. Thus, no stability
hypothesis is necessary; nor is it necessary to impose a priori any control over the
size of the set of branch points.

Before we can state the theorems, we need to establish some notation and defini-
tions. Let Bρ(x0) be the open unit ball of Rn of radius ρ and center x0, and u
denote a C1,α(Bρ(x0)) 2-valued function. Thus

(1) u(x) = {u1(x), u2(x)}

(an unordered pair of real numbers) and

(2) Du(x) = {Du1(x), Du2(x)}

(an unordered pair of vectors in Rn) for each x ∈ Bρ(x0), with

(3) |u|C1,α(Bρ(x0)) ≡ sup
Bρ(x0)

ρ−1|u| + [Du]α <∞,
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where |u| and the Hölder coefficient [Du]α are defined in the usual way for multiple
valued functions; thus,

(4) |u| = |u1| + |u2|,

(5) [Du]α = sup
x1,x2∈Bρ(x0),x1 6=x2

|x1 − x2|−α|Du(x1) −Du(x2)|,

where

|Du(x1) −Du(x2)| = min {|Du1(x1) −Du1(x2)| + |Du2(x1) −Du2(x2)|,
|Du1(x1) −Du2(x2)| + |Du2(x1) −Du1(x2)|}.(6)

Let us assume that

(7) u(0) = {0, 0} and Du(0) = {0, 0},
which we can always arrange by choosing coordinates appropriately. The area
functional is given by

(8) A (u) =

∫

Bρ(x0)

√

1 + |Du1|2 +
√

1 + |Du2|2.

Note that this makes sense because the integrand is a well defined single-valued
function on Bρ(x0). We assume that u is a stationary point for this functional A
in the sense that G = graphu (with multiplicity 1) is a stationary varifold. Thus
we assume that

(9)

∫

G

∇j ζ = 0, j = 1, ..., n+ 1, ζ ∈ C1
c (Bρ(x0) × R),

where ∇ ζ denotes the gradient on G (i.e. Px(Dζ), where Px is the orthogonal
projection of Rn+1 onto the tangent space ofG at any point x ∈ G) and ∇j = ej ·∇.
Let

(10) Ku = {x ∈ Bρ(x0) : u1(x) = u2(x) and Du1(x) = Du2(x)}.
Note that there is a well-defined single-valued ÒaverageÓ ua given by

(11) ua =
1

2
(u1 + u2)

in Bρ(x0). Denote by v the 2-valued difference. Thus

(12) v = {±(u1 − u2)}
in Bρ(x0). Since we are interested only in local results, we may assume (by rescal-
ing) that
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(13) |u|C1,α (Bρ(x0)) < ǫ

where ǫ is a small positive number. Our main result is the following:

Theorem 1 (SW). There exists ǫ0 = ǫ0(n) ∈ (0, 1/2) such that the following
holds. Suppose u is a 2-valued C1,α (Bρ(x0)) function for some α ∈ (0, 1) (in the
sense described above in (1)—(6)) such that G = graphu, taken as a multiplicity
1 varifold, is a stationary point of the area functional A (·) (notation as in (8)) in
the cylinder Bρ(x0) × R in the sense that (9) holds. Suppose ǫ ≤ ǫ0 and that (7)
and (13) hold. Then

(1) u is in C1,1/2 (Bρ/4(x0)), with |u|C1,1/2 (Bρ/4(x0)) ≤ Cǫ. In fact, we have

that the 2-valued difference v ∈ C1,1/2 (Bρ/4(x0)) with |v|C1,1/2 (Bρ/4(x0)) ≤
Cǫ and the single valued average ua ∈ C1,1 (Bρ/4(x0)) with |ua|C1,1 (Bρ/4(x0))

≤ Cǫ. Here the notation is as in (11) and (12) and C = C(n) ∈ (0,∞).

(2) Either u1 ≡ u2 in Bρ(x0), or the Hausdorff dimension of Ku (notation
as in (10)) is at most (n − 2) and in case n = 2 Ku is locally finite. In
particular, the branching set Bu of u (i.e. the set of points z ∈ Bρ(x0)
such that there exists no σ > 0 with the property that G ∩ (Bσ(z) × R) is
equal to the union of two embedded, possibly intersecting, smooth minimal
disks) is either empty or has Hausdorff dimension (n − 2), and in case
n = 2, Bu is locally finite.

As discussed above, in view of the results of [W], this theorem immediately im-
plies the following result concerning the size of the singular sets of certain stable,
stationary integral varifolds.

Theorem 2 (SW). If V is an n-dimensional stationary integral varifold of an
open set U in Rn+1 arising as the weak limit of a sequence of stable minimal hy-
persurfaces Mk, k = 1, 2, . . . , of U , and if for each k, Mk is immersed away from
a closed set of locally finite (n−2)-dimensional Hausdorff measure, then the set of
points z ∈ spt ‖V ‖ where V has a multiplicity 2 tangent plane but spt ‖V ‖ is not
a smooth embbeded minimal hypersurface in any neighborhood of z has Hausdorff
dimension at most (n − 2), and is locally finite if n = 2. In particular, the set of
multiplicity 2 branch points of V is either empty or has positive (n−2)-dimensional
Hausdorff measure and Hausdorff dimension (n− 2), and is locally finite if n = 2.
Furthermore, near each point z ∈ spt ‖V ‖ where V has a multiplicity 2 tangent
plane, spt ‖V ‖ is a 2-valued C1,1/2 graph over the tangent plane, with a local esti-
mate for the C1,1/2 norm (over a sufficiently small ball, in terms of the supremum
of the height of the graph over the tangent plane over a larger ball).
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The main tool which we use to bound the size of of the branch set is a monotone
frequency function for the 2-valued difference v. The frequency function allows
us to produce non-trivial, homogeneous 2-valued stationary harmonic blow-ups at
branch points. We then use the “dimension reducing” arguments in a standard
way to estimate the size of the branch set. F.J. Almgren, Jr [A] introduced the
notion of frequency function first and used this method in the setting of area min-
imizing currents (of arbitrary dimension and codimension) and energy minimizing
multiple-valued harmonic functions.

Establishing monotonicity properties of the frequency function in the present PDE
setting depends crucially on knowing the C1,1/2 regularity of v and C1,1 regularity
of ua. Once these regularity results are established, it is straightforward to prove
that the 2-valued function v satisfies a divergence form elliptic equation with Lip-
schitz coefficients, and it can then be checked that the work of N. Garofalo and
F.-H. Lin [GL] (which establishes monotonicity of the frequency function for single
valued solutions to divergence form elliptic equations with Lipschitz coefficients)
applies in our setting.

Finally, we mention that using the same procedure, but in a much more straight-
forward manner, one can obtain entirely analogous results for the C1,α solutions
to the corresponding “linear problem”; i.e. for the 2-valued C1,α stationary points
of the Dirichlet energy.

Acknowledgment: The author was partly supported by the NSF grants DMS-
0601265 & DMS-0707005 at U. C. San Diego.
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Quantization for a fourth order equation with critical exponential
growth

Michael Struwe

We describe results from our recent work [11]. Let Ω be a bounded domain of R4

and let uk > 0 be solutions to the equation

(1) ∆2uk = λkuke
2u2

k in Ω

with constants λk > 0, where we prescribe Navier boundary conditions

(2) uk = ∆uk = 0 on ∂Ω.

We assume that λk → 0 and

(3)

∫

Ω

|∆uk|2 dx =

∫

Ω

uk∆2uk dx = λk

∫

Ω

u2
ke

2u2
k dx→ Λ > 0

as k → ∞. In view of the boundary condition uk = 0 on ∂Ω, then by standard
elliptic estimates we also have the uniform estimate

(4)

∫

Ω

|∇2uk|2 dx ≤ C

∫

Ω

|∆uk|2 dx ≤ C

for all k. Since λk → 0, from (3), (4) we conclude that ∆2uk → 0 in L1(Ω) and
uk ⇀ 0 weakly in H2(Ω) as k → ∞, but not strongly. In fact, as shown in [10], the
sequence (uk) blows up in a finite number of points where after rescaling spherical
bubbles form in the following sense.

Theorem 1. Let Ω be a bounded domain of R4 and let (uk)k∈N be a sequence of
positive solutions to problem (1), (2), satisfying (3) for some Λ > 0 as above.
Then there exist a subsequence (uk) and finitely many points x(i) ∈ Ω, 1 ≤ i ≤ I ≤
CΛ, such that for each i with suitable points xk = x

(i)
k → x(i) and scale factors

0 < rk = r
(i)
k → 0 satisfying

(5) λkr
4
ku

2
k(xk)e2u2

k(xk) = 96

we have

(6) ηk(x) = η
(i)
k (x) := uk(xk)(uk(xk + rkx) − uk(xk)) → η0 = log

(

1

1 + |x|2
)

locally C3-uniformly on R4 as k → ∞, where η = η0 + log 2 = log
(

2
1+|x|2

)

solves

the fourth order analogue of Liouville’s equation

(7) ∆2η = ∆2η0 = 96e4η0 = 6e4η on R
4.

In addition we have

(8)
|x(i)

k − x
(j)
k |

r
(i)
k

→ ∞ for all 1 ≤ i 6= j ≤ I,

and there holds the pointwise estimate

(9) λk inf
i
|x− x

(i)
k |4u2

k(x)e2u2
k(x) ≤ C,

uniformly for all x ∈ Ω and all k.
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Geometrically, the solutions η to the limit equation (7) correspond to conformal
metrics g = e2ηgR4 on R4 of constant Q-curvature Q = 1

2e
−4η∆2η = 3 = QS4 ,

which are obtained by pull-back of the spherical metric on S4 under stereographic
projection and with total Q-curvature

(10) 2

∫

R4

Q dµg =

∫

R4

6e4η dx = 2

∫

S4

QS4 dµgS4 = 16π2 =: Λ1.

This geometric interpretation of η is the reason why we prefer to state the preceding
result in the present form rather than choosing scaling constants as in [10].
Continuing our previous work, in [11] we establish the following result, showing
that the concentration energy Λ is quantized in multiples of Λ1.

Theorem 2. In the context of Theorem 1 we have Λ = LΛ1 for some L ∈ N.

Theorem 2 is the four-dimensional analogue of a recent result by Druet [4] for the
corresponding 2-dimensional equation

(11) −∆uk = λkuke
2u2

k in Ω ⊂ R
2,

which refines our previous result with Adimurthi in [2], characterizing only the
first blow-up energy level.
A similar quantization has been observed by Wei [12] for the fourth order analogue
of Liouville’s equation

(12) ∆2uk = λke
4uk in Ω ⊂ R

4,

with Navier boundary conditions (2), assuming the uniform L1-bound

(13)

∫

Ω

λke
4uk dx ≤ Λ

and with λk → 0 as k → ∞. Quite remarkably, Wei is able to show that for (12)
each blow-up point is simple in the sense that L = I. In the geometric context
of the problem of prescribed Q-curvature on S4, an analogous result was obtained
by Malchiodi and this author [8]. It is an interesting open question whether the
same strong quantization property holds true for equation (1) as well.
Related results on compactness issues for fourth order equations were obtained by
Adimurthi-Robert-Struwe [1], Hebey-Robert-Wen [5], Robert [9], or Malchiodi [7].
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Ricci flow on manifolds with 1/4-pinched sectional curvature

Simon Brendle

(joint work with Richard Schoen)

Let (M, g0) be a compact Riemannian manifold of dimension n ≥ 4, and let g(t)
be the solution to the normalized Ricci flow with initial metric g0. We provide a
sufficient condition for g(t) to converge to a constant curvature metric as t→ ∞.
This condition is closely related to the concept of positive isotropic curvature. The
class of manifolds satisfying this condition includes all manifolds with 1/4-pinched
sectional curvatures, as well as those with positive curvature operator.

Isoperimetric Inequalities in 3-manifolds of non-negative Ricci
curvature

Gerhard Huisken

We use Mean Curvature Flow and Inverse Mean Curvature Flow to prove sharp
isoperimetric inequalities for 3-manifolds of non-negative Ricci curvature.

In particular we show that

inf { 1

2
(

∫

Σ2

H2dµ)1/2 | Σ2 = ∂Ω, Ω ⊂ (M3, g) outward minimizing}

= inf { |Σ2|3/2

3 Vol(Ω)
| Σ2 = ∂Ω, Ω ⊂ (M3, g)}.

Reporter: Patrick Breuning
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