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Abstract. The emphasis of the workshop was on the deep relations be-
tween, on the one hand, recent advances in probabilistic investigation of
statistical mechanical models and spatial stochastic processes and, on the
other hand, rigorous field-theoretic and analytic methods of mathematical
physics. There were 52 participants, including 6 postdocs and graduate stu-
dents, working in diverse intertwining areas of probability, statistical mechan-
ics and field theory. Specific topics addressed during the 24 talks include:
Universality and critical phenomena, disordered models, Gaussian free field
(GFF), stochastic representation of classical and quantum-mechanical models
and related random interchange and permutation processes, random planar
graphs and unimodular planar maps, random walks on critical graphs and

the Alexander-Orbach conjecture, reinforced random walks and non-linear
σ-models, metastability, aging, equilibrium and dynamics for continuum par-
ticles with hard core interactions, non-equilibrium dynamics and Toom’s in-
terfaces.
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Introduction by the Organisers

The workshop was a sequel to three MFO conferences which took place in 2006,
2009 and 2012, and which were organized by Ken Alexander, Marek Biskup, Remco
van der Hofstad and Vladas Sidoravicius. We tried to continue the tradition of
organizing this series of workshops against the background of probabilistic and
analytic methods of non-integrable statistical mechanics, this time with an em-
phasis on exchange of ideas between the experts in disjoint areas, specifically in
rigorous Field Theory and in probabilistic Statistical Mechanics. The list of 52
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invited participants reflects our attempts to maintain an optimal balance between
diverse fields, leading experts and promising young researchers. Six participants
were on postdoctoral and graduate level. One of the participants, Gordon Slade,
was awarded Simons Visiting Professor fellowship.

In our choice of 24 talks we tried to illuminate major recent advances in the
field and to expose and address at least some aspects of the works for each and
every one of the participants. A more detailed account of the presentations is
given below. Due to an intended intertwining of topics and themes it is hard to
give an unambiguous classification.

Universality, renormalization and critical phenomena.
In a special session Roland Bauerschmidt explained profound ideas and techniques
which were developed by Pierlugi Falco for an analysis of the Kosterlitz–Thouless
transition line for the two-dimensional Coulomb gas.
Gordon Slade described recent results on criticality for four-dimensional weakly
self-avoiding walks and φ4 lattice fields via a rigorous renormalization group ap-
proach based on Berezin integration and the analysis of the flow of the effective
coupling constants.
Alessandro Giuliani presented important results on: (1) universality of energy cor-
relations and of free energy fluctuations for non-integrable two-dimensional Ising
models and (2) universality of GFF-like height fluctuations of non-integrable two-
dimensional dimer models.
Michael Aizenman explained how a random current representation leads to a proof
of triviality of scaling theories in dimensions higher than four, and indicated how
switching lemmas for the latter lead to fermionic Wick-type formulas in dimension
two.
Francesco Caravenna presented results on universality of weak disorder limits, via
chaos expansions, for a class of directed polymers, such as the (2 + 1) directed
polymer or the (1 + 1) directed polymer with heavy tails.
A recent proof of the mean-field nature of critical percolation in dimensions larger
than 10, via an enhanced method of lace expansions was outlined in the talk by
Remco van der Hofstadt.
Asaf Nachmias presented results about critical branching random walk in 5 di-
mensions, showing that some spectral exponents deviate from their mean-field
values.
A proof of full RSW bound for crossing probabilities in the critical model of two-
dimensional Voronoi percolation was explained in the talk by Vincent Tassion.
Finally, Wendelin Werner gave an overview of Brownian loop soup and some new
results connecting it to the gaussian free field.

Quantum models, reinforced walks and permutations.
A mixed random loop and random stirring representation for a class of quantum
spin models was introduced by Daniel Ueltschi with a subsequent discussion of fas-
cinating probabilistic interpretation of several open questions related to quantum
phase transitions.
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Shannon Starr explained his recent results on ordering of energy levels for quantum
Heisenberg ferromagnet, and elucidated the relation with Aldous’ spectral gap
conjecture.
Emergence of microscopically large loops for random interchange process on the
hyper-cube was discussed in the talk of Piotr Mi loś. Although the results fall short
of proving Poisson-Dirichlet limiting statistics for macroscopic loop sizes, or even
of proving existence of macroscopically large loops, an interesting fragmentation-
coagulation structure was disclosed.
Ron Peled gave a different view on random permutations by discussing Mallows
permutations model and band permutations.
Christophe Sabot presented results on the spectral properties of a random Schrö-
dinger operator, which imply for instance recurrence of the Edge Reinforced Ran-
dom Walk in dimension d = 2 and a functional central limit theorem at weak
disorder in dimension d ≥ 3.
Margherita Disertori surveyed relations between the vertex-reinforced jump pro-
cess, the edge-reinforced random walk and the supersymmetric hyperbolic sigma
model.

Discrete Gaussian free field (GFF), spin waves and related models.
Hubert Lacoin gave a lecture on the d-dimensional GFF interacting with a flat
interface via a disordered pinning potential. For d > 2, the critical point of the
pinning transition coincides with that of the annealed model, while the critical
exponent is modified by quenched disorder. This contrasts the situation for d = 1.
Thomas Richthammer presented results in the challenging field of continuous par-
ticle systems. His results quantify the absence of breaking of translation invariance
in two-dimensional hard disk models: the variance of a particle’s position w.r.t.
its ideal crystalline position is at least the logarithm of the system size.
Marek Biskup presented deep results which fully describe, in terms of a decorated
Poisson-Dirichlet process, the extremal process of the two-dimensional lattice GFF
and its conformal invariance properties.

Random planar graphs and unimodular planar maps.
Omer Angel showed a new characterization of hyperbolic planar triangulations
using a notion of discrete curvature.
Nicolas Curien presented universality results for random planar maps, showing
that, using various natural definitions of distance on these graphs, large balls grow
in the same way, up to a constant multiplicative factor.

Random walks, long time behavior of equilibrium and non-equilibrium dynamics,
metastability and aging.
Jǐŕı Černý presented recent results on aging for the Metropolis dynamics of the
Random Energy Model: aging is proved without the usual non-physical assumption
that the process is a time change of the simple random walk on the hypercube.
Sabine Jansen gave a lecture on metastability phenomena for a Metropolis dynam-
ics of continuous particles, and presented results on nucleation time and shape of
critical droplets.
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Nicholas Crawford discussed several results related to Toom’s model, a nonequi-
librium particle system.
Balint Toth presented a superdiffusive central limit theorem, valid in any dimen-
sion, for the displacement of a test particle in the periodic Lorentz gas in the limit
of large times t and low scatterer densities (Boltzmann-Grad limit).

Summary. The workshop was an obvious success. In particular, it helped to
update the participants on the state of the art and on the important pending open
problems in the fields related to their domain of research, facilitated exchange of
ideas between researchers in technically disconnected areas, and it gave rise to
many interesting and informative discussions, which were conducted either during
10 minutes discussion time allocated after each and every 50 minute talk, or during
afternoon breaks or during the evenings, all of which were kept free.

Acknowledgement: The organizers would like to thank the MFO personnel for the
help and for the invaluable logistic support, as well as for creating a friendly and
stimulating environment throughout the entire meeting.

The MFO and the workshop organizers would like to thank the National Science
Foundation for supporting the participation of junior researchers in the workshop
by the grant DMS-1049268, “US Junior Oberwolfach Fellows”. Moreover, the
MFO and the workshop organizers would like to thank the Simons Foundation
for supporting Gordon Slade in the “Simons Visiting Professors” program at the
MFO.
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Bálint Tóth (joint with Jens Marklof)
Superdiffusion in the periodic Lorentz gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359
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Abstracts

Extreme points and shape of large peaks for 2D DGFF

Marek Biskup

(joint work with Oren Louidor)

In this report we will discuss detailed properties of extreme values of the Dis-
crete Gaussian Free Field (DGFF) in finite subsets V ⊂ Z2. This is a mean-zero
Gaussian process {hx : x ∈ V } whose covariance is the Green function GV of the
simple symmetric random walk killed upon exiting V . In VN := (0, N)2 ∩ Z2 we
have GVN (x, y) = log

(
N

|x−y|
)

+ o(1) in the limit N ≫ |x − y| ≫ 1. Here |x − y|
denotes the Euclidean distance between x and y and so the resulting object is
asymptotically scale and, in fact, conformally invariant.

Much recent effort went to the behavior of the absolute maximum MN :=
maxx∈VN

hx of the DGFF in VN . This culminated in the work of Bramson, Ding
and Zeitouni [5] who showed that the law of MN −mN , where

(1) mN := 2
√
g logN − 3

4

√
g log logN

with g := 2/π, converges to a non-degenerate limit as N → ∞.
Our main focus here is the extreme value process. We wil use a description

based on local maxima and keep record of the following triplet of “coordinates”:
(1) the scaled positions of (suitably defined) local maxima, (2) the reduced values
of the field there and (3) the shape of the configuration in the vicinity of the local
maxima. To address more general domains, we pick D ⊂ C bounded, open with
“nice” boundary and let DN be an appropriately defined scaled-up lattice version
thereof. Then we define the structured point-process measure by

(2) ηDN,r :=
∑

x∈DN

1{hx=maxz∈Λr(x) hz} δx/N ⊗ δhx−mN
⊗ δ{hx−hx+z : z∈Z2},

where Λr(x) := {z ∈ Z2 : |x − z| < r} designates the neighborhood of x in which
we regard (or require) hx to be the local maximum of h — this is what is ensured
by the indicator in the sum. Our main result, proved in [2, 4], is then:

Theorem 1. There exist a random, a.s.-finite Borel measure ZD on D and a

probability measure ν on [0,∞)Z
2

such that for any rN → ∞ with rN/N → 0,

(3) ηDN,rN

law−→
N→∞

PPP
(
ZD(dx) ⊗ e−αhdh⊗ ν(dφ)

)
,

where α := 2/
√
g =

√
2π and where PPP(λ) denotes a Poisson point process with

intensity measure λ.

This conclusion comes in two rather disjoint parts. This is because the theorem
captures both the global structure of the extrema, governed by the mysterious
random measure ZD, as well as the local structure — the shape of the peaks —
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which are trivial in terms of correlation but complicated within each peak. We
proceed to discuss details of both of these aspects of the problem separately.

1. Global properties and conformal invariance

To begin with, we note that a couple of basic facts about the ZD measure:

Proposition 2. For the ZD measure above, we have:

(1) If A ⊂ D has Leb(A) = 0, then ZD(A) = 0 a.s.
(2) If A ⊂ D is open and non-empty, then ZD(A) > 0 a.s.
(3) ZD is a.s. non-atomic.

The last line shows that the measure cannot be supported on a set that is too
small. Yet this is quite misleading as we also have:

Conjecture 3. ZD is a.s. supported on a set of zero Hausdorff dimension.

Perhaps a more interesting question is that of dependence of ZD on D. Here is
a transformation rule under conformal bijections of the underlying domain:

Theorem 4. Let D be an admissible domain and let f be a conformal bijection
of D onto another admissible domain f(D). Then

(4) Zf(D) ◦ f(dx)
law
=
∣∣f ′(x)

∣∣4 ZD(dx)

This should be contrasted with the Lebesgue measure, which transforms via
the second power of |f ′(x)|. Besides the scaling limit of the DGFF not being
a function, the hard part of this conclusion is the fact that the extreme values
of the DGFF do not transform canonically under conformal maps. The Gibbs-
Markov property, satisfied both by the DGFF and its scaling limit, helps via a
transformation rule of ZD under partitions of D. See [2, 3] for proofs.

Naturally, one can ask whether the above measure could be constructed directly.
Indeed, this is the case; the limit is conjectured to coincide (up to a constant) with
the critical Liouville Quantum Gravity (LQG) constructed by Duplantier, Rhodes,
Sheffield and Vargas [8]. The problem is that the LQG measure is not characterized
uniquely and so its identification with ZD is difficult. Notwithstanding, [3] contains
a theorem giving conditions that do characterize ZD and so all that remains to be
done is to check that the critical LQG measure of [8] conforms to these as well.

2. Local properties and freezing phenomenon

Moving over to the local behavior at the peaks, we begin with an explicit descrip-
tion of measure ν. Let φ denote the DGFF in Z2 \ {0} (a.k.a. pinned field). Let a

denote the so called potential ; i.e., the unique solution of ∆a = δ0 with a(0) = 0,
where ∆ is the discrete Laplacian (normalized by 1

4 ).

Theorem 5. For the measure ν above, we have:

(5) ν = lim
r→∞

Law of

(
φ+

2√
g
a

∣∣∣∣φ+
2√
g
a ≥ 0 for |x| < r

)
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The limit exists by soft arguments (FKG inequality) but turns out to be sin-
gular: the probability of the conditional event in (5) decays as c⋆

log r as r → ∞.

The proof of all local results is by way of a novel concentric decomposition of the
DGFF in the vicinity of large local maxima. See [4] for all details.

Our methods also settle some conjectures that have in the past been subject to
debates in the spin-glass literature. These concern the Gibbs measure

(6) µD
N

(
{x}
)

:=
eβhx

ZN,β
, x ∈ DN ,

where β ∈ (0,∞) is the inverse temperature and ZN,β is a normalizing constant.
Carpentier and Le Doussal [6] pointed out that µD

N exhibits a phase transition
akin to the Random Energy Model: Denoting βc := α, the measure µD

N puts most

of the mass at the level set
{
x ∈ DN : hx ≈ β∧βc

βc
2
√
g logN

}
. This can be proved

rigorously by plugging in the results of Daviaud [7].
For β > βc, we have been able to describe the structure of µD

N far more precisely.

Indeed, writing ẐD to denote the probability measure ẐD(A) := ZD(A)/ZD(D),
where ZD is above, we have:

Theorem 6. Fix β > βc := α. Then

(7)
∑

z∈DN

µD
N

(
{z}
)
δz/N (dx)

law−→
N→∞

∑

i∈N

piδXi
,

where {pi} has the Poisson-Dirichlet law with parameter βc/β and {Xi} are (con-

ditionally on ZD) independent samples from ẐD, independent of {pi}.
A version of this result, formulated in the language of overlaps, has been derived

by Arguin and Zindy [1]. The fact that the spatial distribution of the positions,
expressed by {Xi : i ∈ N} above, does not depend on β is a manifestation of a
freezing phenomenon. A subtle fact is that each limit point on the right of (7) is
a conglomerate of the contributions of a whole cluster of points. This has to do
with the behavior of the Gumbel law under independent shifts. See [4] for details.
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Universality in marginally relevant disordered systems

Francesco Caravenna

(joint work with Rongfeng Sun, Nikos Zygouras)

1. Abstract

We consider disordered systems of directed polymer type, for which disorder is so-
called marginally relevant. This includes the disordered pinning model with tail
exponent 1/2 and the usual (short-range) directed polymer model in dimension
(2 + 1), as well as the long-range directed polymer model with Cauchy tails in
dimension (1 + 1). We show that in a suitable weak disorder and infinite volume
limit, the partition functions of these different models converge to a universal
limit: a log-normal random field with a multi-scale correlation structure, which
undergoes a phase transition as the disorder strength varies. As a by-product, we
show that the solution of the two-dimensional Stochastic Heat Equation, suitably
regularized, converges to the same limit.

2. Results

Many disordered systems arise as random perturbations of a pure (or homogenous)
model. Examples include the random pinning model [G07], where the pure system
is a renewal process, the directed polymer model [CSY04], where the pure system
is a directed random walk, the random field Ising model and the stochastic heat
equation [BC95]. A fundamental question for such systems is: Does the addition
of disorder alter the qualitative behavior of the pure model, such as its large-scale
properties and/or critical exponents?

If the answer is yes, regardless of how small is the disorder strength, then the
model is called disorder relevant. If, on the other hand, disorder has to be strong
enough to cause a qualitative change, then the model is called disorder irrelevant.

Inspired by the study of an intermediate disorder regime for directed polymers
[AKQ14a], we gave in [CSZ13] a new perspective on disorder relevance: if a model
is disorder relevant, then it should be possible to tune the strength of disorder down
to zero (weak disorder limit) at the same time as one rescales space (continuum
limit), so as to obtain a one-parameter family of disordered continuum models,

indexed by a disorder strength parameter β̂ ≥ 0.
The main step in the construction of such disordered continuum models is to

identify their partition functions. In [CSZ13], we formulated general conditions on
the pure model (that are consistent with the celebrated Harris criterion d < 2/ν
from the physical literature [H74]) which allowed us to construct explicitly the
continuum partition functions. However, the marginally relevant case (d = 2/ν in
the Harris criterion) escapes the framework proposed in [CSZ13].
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In the present work, we develop a novel approach to study marginally relevant
systems of directed polymer type, which include pinning models (pin) and directed
polymer models (dp), whose partition functions are defined as follows:

Zω,pin
N,β := E

[
e
∑N

n=1(βωn−λ(β))1{n∈τ}

]
, Zω,dp

N,β := E
[
e
∑N

n=1(β ω(n,Sn)−λ(β))
]
.

Here τ = (τn)n≥0 is a renewal process on N0; (Sn)n≥0 is a symmetric random walk
on Zd; while ω (the disorder) is a family of i.i.d. random variables, independent of
τ, S, with zero mean, unit variance and λ(β) := logE[eβω1 ] < ∞ for small β > 0.
These models are marginal in the following cases:

• for the pinning model, P(τ1 > n) = n−1/2+o(1);
• for directed polymers, either d = 2 and Var(S1) < ∞ (short-range case),

or d = 1 and P(|S1| > x) ∼ x−1+o(1) (long-range case with Cauchy tails).

Surprisingly, there is a common structure among all these models. More pre-
cisely, one can defined a natural replica overlap RN for each model, namely

RN :=
∑

1≤n≤N

P(n ∈ τ)2 , resp. RN :=
∑

1≤n≤N

∑

x∈Zd

P(Sn = x)2 ,

which is a slowly varying function of N → ∞. Assuming that RN diverges as
N → ∞ (usually RN ∼ C logN), one can prove the following results.

• If the disorder strength is sent to 0 as βN = β̂/
√
RN for fixed β̂ > 0, then

the partition function has a universal limit, irrespective of the model:

(1) Zω
N,βN

d−−−−→
N→∞

Z β̂

d
=

{
log-normal if β̂ < 1

0 if β̂ ≥ 1
.

More precisely, Z β̂

d
= e

σ
β̂
W1− 1

2σ
2
β̂ where σ2

β̂
= log 1

1−β̂2
.

• A process-level version of (1) holds: for β̂ < 1, the family of log partition
functions logZN,βN

(X), where the random walk starts at the space-time
point X ∈ Zd × N0 (for directed polymers) or the renewal process starts
at the time point X ∈ N0 (for pinning models), converges to a limiting
Gaussian random field with an explicit multi-scale covariance structure.

As a corollary, we gain new insights on how to define the solution of the two-
dimensional Stochastic Heat Equation (2d SHE), which is formally written as

(2)
∂u(t, x)

∂t
=

1

2
∆u(t, x) + β Ẇ (t, x)u(t, x), u(0, ·) ≡ 1,

(t, x) ∈ [0,∞) × R2, β > 0 and Ẇ is (space-time) white noise on [0,∞) × R2.

One source of interest in the SHE is that it is connected via the Hopf-Cole
transformation (h := log u) to the KPZ equation [KPZ86]. Rigorously defining
the solution of the SHE (or KPZ) is a serious challenge due to ill-defined terms

such as uẆ . The recent Theory of Regularity Structures bt Hairer [H13, H14]
provides a robust and systematic way to make sense of singular SPDEs such as
the SHE and KPZ; see also [K14], [GIP12] for alternative approaches. However,
all these approaches fail at the critical dimension two for the SHE, and the SPDEs
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that can be treated so far are all known as sub-critical (or super-renormalizable
in the physics literature [K14]). It turns out that the notion of sub-criticality
for singular SPDEs correspond exactly to the notion of disorder relevance, while
criticality corresponds to the case where the effect of disorder is marginal.

Since the solution of the SHE can be interpreted as the partition function of a
continuum directed polymer via a generalized Feynman-Kac formula [BC95], our
result for directed polymers implies a similar result for the 2d SHE. More precisely,
consider the mollified 2d SHE

(3)
∂uε

∂t
=

1

2
∆uε + βεẆ

εuε, uε(0, ·) ≡ 1,

where Ẇ ε is the space-mollification of Ẇ via convolution with a smooth probability

density jε(x) := ε−2j(x/ε) on R2. If the noise strength is scaled as βε = β̂
√

2π
log ε−1

for some β̂ > 0, then uε(t, x) converges (as ε → 0) in distribution to the same
universal limit Z β̂ in (1) as for the other marginally relevant models.

We hope that the universal structure we have uncovered among models of di-
rected polymer type opens the door to further understanding of marginally rele-
vant models in general, including both statistical mechanics models that are not
of directed polymer type, as well as critical singular SPDEs with non-linearity.
In particular, our results suggest that for marginally relevant models in general,
there is a transition in the effect of disorder on an intermediate disorder scale.
Establishing this transition in general, as well as understanding the behavior of
the models at and above the transition point, will be the key future challenges.
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Disorder relevance for pinning of interfaces

Hubert Lacoin

(joint work with Giambattista Giacomin)

We present a rigorous study of the localization transition for a Gaussian free field
on Zd, d ≥ 2, interacting with a quenched disordered substrate that acts on the
interface when the interface height is close to zero. If PN denotes the measure of
the centered lattice free-field in the box [0, N ]d, we are interested in the following
exponential-tilt of PN

Pβ,h,ω
N (dφ) :=

1

Zβ,h,ω
N

exp

(
∑

x∈ΛN

(βωx + h)1[−1,1](φx)

)
PN (dφ)

where (ωx)x∈Zd is a field of IID centered random variables with finite exponential
moments, and β > 0 and h ∈ R are two parameters, and

Zβ,h,ω
N := EN

[
exp

(
∑

x∈ΛN

(βωx + h)1[−1,1](φx)

)]
,

is the partition function.

In the infinite volume N → ∞, the system undergoes a wetting transition in
h: there exists a critical value hc(β) which separates a localized phase where φ
sticks to the interaction band, and a delocalized one where the contact fraction of
φ with the band vanishes. More precisely if the asymptotic free-energy per unit of
volume is given by [1]

(1) f(β, h) := lim
N→∞

1

Nd
logZβ,h,ω

N ,

This free-energy is non-negative. then the transition occurs when the free-energy

hc(β) := inf{h ∈ R : f(β, h) > 0} = sup{h ∈ R : f(β, h) = 0}.
A simple upper bound for the free-energy is given by considering the annealed
partition function. We have

(2) f(β, h) ≤ lim
N→∞

1

Nd
logZβ,h,ω

N = f(0, h+ λ(β)).

where λ(β) := logE[eλ(β)]. Note that it is known from [1] that the inequality (2)
is always strict.

We want to study the influence of disorder for this system, or more precisely
how this localization transition differs from that of the pure model (that for β = 0),
which coincides with the annealed model. Note that for β = 0 we have

f(0, h) ∼
{
c2

h√
| log h|

for d = 2,

c3h for d = 3.
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We present a rather complete answer to the question in dimension 3 [3] and
discuss on-going progress in dimension 2 [4]. We show that when there is disorder,
the critical point is never shifted with respect to the annealed one but that the
order of the transition is change: the free-energy grows quadratically for d ≥
3 (proved only for Gaussians) and the free-energy curve is believed to be even
smoother in dimension d = 2.

Theorem 1. (Critical point and critical behavior for the free energy)

(i) For d ≥ 2, for all β > 0, we have hc(β) = λ(β).
(ii) For d ≥ 2, for all β > 0, we have f(0, u+ λ(β)) ≤ Cβu

2 for u ∈ [0, 1]
(iii) For d ≥ 3, for all β > 0, we have f(0, u+ λ(β)) ≤ cβu

2 for u ∈ [0, 1]
if ω is Gaussian.
For general ω we have f(0, u+ λ(β)) ≤ cβu

66d.

References

[1] L. Coquille and P. Milos, A note on the discrete Gaussian free field with disordered pinning
on Zd, d ≥ 2, Stoch. Proc. and Appl. 123 (2013) 3542?3559.

[2] L. Coquille and P. Milos, A second note on the discrete Gaussian free field with disordered
pinning on Zd, d ≥ 2, (preprint) arXiv:1303.6770.

[3] H. Lacoin and G. Giacomin Pinning and disorder relevance for the lattice Gaussian free
field (preprint).

[4] H. Lacoin Pinning and disorder relevance for the lattice Gaussian free field II: the two
dimensional case (in preparation).

History dependent stochastic processes and non linear sigma models

Margherita Disertori

(joint work with T.Spencer, M.Zirnbauer, C. Sabot, P. Tarrès)

1. Two history dependent stochastic processes

Edge reinforced random walk (ERRW) and vertex reinforced jump processes
(VRJP) are history dependent stochastic processes where the particle tends to
come back more often on sites it has already visited in the past.

We will consider here a finite cube Λ ⊂ Zd (though all definitions can be gen-
eralized to any finite graph). Let E be the set of non oriented edges (nearest
neighbor pairs) in Zd. Each edge e ∈ E is associated to a pair of vertices in Zd:
e = (ie, je) (with some arbitrary order). Similarly we introduce EΛ the set of edges
inside Λ. A pair of nearest neighbor vertices i, j will be often denoted by i ∼ j.
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1.1. Linearly Edge Reinforced Random Walk (ERRW) [1, 2]. This is a
dicrete time process (Xn)n∈N on Λ with conditional transition probability at time

n given by P (Xn+1 = j|Xn = i,Xn−1, . . . , X0) = 1i∼j
ωij(n)∑

k,k∼i ωik(n)
. The local

conductance ωe(n) ≥ 0 across the edge e = (ie, je) at time n is given by ωe(n) =
ω(ie,je)(n) = ω(je,ie)(n) = ae +Te(n), where ae ≥ 0 is a fixed parameter and Te(n)
is the numnber of crossings of the edge e up to time n. The conductance is linear
in the local time Te(n).

1.2. Vertex Reinforced Jump Process (VRJP) [3, 4, 5]. This is a continuous
time jump process (Yτ )τ≥0 on Λ. At each time τ , conditioned on (Ys)s≤τ , the

process jumps from i to a neighbor j with rate ωij(τ) = βije
Ti(τ)+Tj(τ), where

βe = βieje = βjeie ≥ 0 is a fixed parameter and Ti(τ) is the total time spent by the
process at the vertex i up to time τ . Note that in the original definition the rate
was linear ωij(τ) = βij [1+Tj(τ)]. Here we use a time changed version, introduced
in [5]. A discrete time version is obtained by taking Zn = Yτn , n ∈ N, where τn is
the instant of the n− th jump.

1.3. Special features. In both processes the transition probability (resp. jump
rate) depends the previous history and is larger for edges (resp. vertices) that have
already been visited many times. The parameters ae, βe characterize the strenght
of the reinforcement: large/small ae, βe correspond to weak/strong reinforcement.
For the particular scheme of reinforcement defined above the two processes (Xn)n
and (Zn)n are random walks in a random environment (mixture of reversible
Markov chains) . More precisely

PZ
Λ,0[·] =

∫
dµβ,Λ(t)P

W (t,β)
Λ,0 [·], PX

Λ,0[·] =

∫
dγa(β)dµβ,Λ(t)P

W (t,β)
Λ,0 [·]

where: (a) PZ
Λ,0 (resp.PX

Λ,0) is the probability associated to the process Z (resp. X)

on Λ, starting at the vertex 0; (b) P
W (t,β)
Λ,0 is the probability associated to a Markov

chain with weights We(t, β) = βiejee
tie+tje ; (c) the field t : Λ → R has probability

measure dµβ,Λ(t); (d) in the last equation the parameters βe are independent
gamma distributed random variables βe ∼ Γ(ae). The mixing measure dµβ,Λ(t) is
given by

dµβ,Λ(t) = e−
∑

i∼j βij(cosh(ti−tj)−1)e−β0δ(cosh t0−1)
√

det(D + ǫ)
∏

j

dtje
−tj

√
2π

where D = −∆W (t,β) is the discrete Laplacian with local conductance Wij(t, β)
and ǫij = δijδi0β0δe

t0 . Finally δ is an auxiliary point (not in the lattice) that is
connected only to the vertex 0.

1.4. Some criterions for transience/recurrence. Let e0 be an arbitrary edge
attached to the origin 0 and e any other edge.
Transience. Let d ≥ 3.

EΛ

[
We0 (t,β)

We(t,β)

]
≤ const unif. in Λ, e, e0 ⇒ transience.
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Positive recurrence. Let d ≥ 1. If ∃0 < α ≤ 1 and c > 0 such that

EΛ

[(
We(t,β)
We0 (t,β)

)α]
≤ e−c|e|

uniformly in Λ, then the process is positive recurrent.

1.5. Transience for weak reinforcement.

Theorem 1 (D., Spencer, Zirnbauer [6]). If d ≥ 3 and β = infe βe ≫ 1 then
∫
dµβ,Λ(t) (cosh(ti − tj))

m ≤ 2

for all i, j ∈ Λ, m ≤ β1/8, uniformly in Λ.

Theorem 2 (D., Sabot, Tarrès [7]). Let dµ̃a,Λ(t) be the marginal t of the measure
dγa(β)dµβ,Λ(t). Then, if d ≥ 3 and a = infe ae ≫ 1 we have

∫
dγa(β)dµβ,Λ(t) (cosh(ti − tj))

m =

∫
dµ̃a,Λ(t) (cosh(ti − tj))

m ≤ 2

for all i, j ∈ Λ, m ≤ a1/8, uniformly in Λ.

Using the criterions above, these results imply transience in d ≥ 3 for ERRW
and VRJP. The proof uses a relation between the mixing measures and a non-linear
sigma model introduced in the context of random matrix models for quantum
diffusion.

2. Relation with non linear sigma models

A non linear sigma model can be seen as a statistical mechanical model where the
spin takes values on some non linear manifold and the measure is of gradient type.
Here we consider the so calledH2|2 model [8] on Λ, where the spin φ : Λ → M takes
values on a real Grassmann algebra. Precisely φj = (x, y, z, ξ, η)j , where x, y, z are
even elements and ξ, η are odd elements in a real Grassmann algebra. We introduce
the (non-positive definite) scalar product 〈φ, φ′〉 = xx′+yy′−zz′+ξη′−ηξ′. Adding
the constraint 〈φ, φ〉 = −1 our spin is restricted to the (non compact) non linear
manifold parametrized by z2 = 1 + x2 + y2 + 2ξη. We consider the following two
measures

dρβ,Λ(φ) = e−
1
2β0δ〈(φi−h),(φi−h)〉

∏

i∼j

e−
1
2βij〈(φi−φj),(φi−φj)〉

∏

j

dφjδ (〈φj , φj〉 + 1)

dρ̃β,Λ(φ) = 1
(1+〈(φi−h),(φi−h)〉)a0δ

∏

i∼j

1
(1+〈(φi−φj),(φi−φj)〉)aij

∏

j

dφjδ (〈φj , φj〉 + 1)

where h = (0, 0, 1, 0, 0) plays the role of a magnetic field and is necessary to ensure
the integral is finite.
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2.1. VRJP, ERRW and H2|2. After performing the change of coordinates
(x, y, ξ, η) → (t, s, ψ̄, ψ) defined by

x = sinh t+ et
(
s2

2
+ ψ̄ψ

)
, y = ets, ξ = etψ̄, η = etψ

the mixing measure dµβ,Λ(t) is the t marginal of dρβ,Λ(φ), while dµ̃β,Λ(t) is the t
marginal of dρ̃β,Λ(φ).

2.2. Proof of theorems 1 and 2. Both measures ρβ,Λ(φ) and ρ̃β,Λ(φ) are in-
variant under global rotations φj → φ′j = Rφj , that leave the scalar product
invariant. Some of these rotations mix even and odd elements in the Grassmann
algebra. As a result we obtain a family of (highly non trivial) identities for the
measures µβ,Λ(t), µ̃β,Λ(t).

The proof uses a special family of such identities plus an inductive argument
on the distance |i− j|.
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A random Schrödinger operator associated with the Vertex
Reinforced jump Process and the Edge Reinforced Random Walk

Christophe Sabot

(joint work with P. Tarrès, X. Zeng)

1. Abstract

The ERRW and the VRJP are self-interacting processes that have been shown
to be related to a supersymetric sigma field investigated by Disertori, Spencer
and Zirnbauer. In this talk we construct a random Schrödinger operator, with a
1-dependent potential, and show that some of its spectral properties at ground
state are related to the behavior of the VRJP and ERRW. We deduce from this
a functional central limit theorem for the ERRW and the VRJP in dimension
d ≥ 3 at weak disorder, and recurrence of the ERRW in dimension d=2 for any
choice of initial constant weights, hence answering a longstanding open question
of Diaconis.

2. Introduction

2.1. The Edge Reinforced Random Walk (ERRW) and the Vertex Rein-
forced Jump Process (VRJP). The ERRW is famous linearly reinforced pro-
cess introduced by Diaconis and Coppersmith in the 80’s [2]. Important progress
have been done in the understanding of this process in the last years, in particu-
lar it has been proved in [7, 1], that ERRW is positive recurrent on graphs with
bounded degree at strong reinforcement. A phase transition has been shown in
[4], in dimension d ≥ 3 : more precisely, it has been shown that the ERRW is
transient on Zd, d ≥ 3, when the reinforcement is weak.

The VRJP has been introduced by Davis and Volkov and suggested by Werner.
Let us recall its definition. Assume that G = (V,E) is a non-directed connected
graph with finite degree at each site. Consider (We)e∈E some positive conduc-
tances on the edges. The VRJP is the continuous time process (Ys) that, condi-
tionally on its past at time s, jumps from i to j ∼ i with rate Wi,j Lj(s) where
Lj(s) = 1 +

∫ s

0
1Yu=jdu. It has been investigated for some time independently of

the ERRW, but in 2011, [7], it has been shown to be closely related to the ERRW.
More precisely, the ERRW corresponds to a VRJP with random conductances,
(Wi,j), independent at each edge with Gamma distribution of parameters (ai,j),
the initial weights of the ERRW. Hence, for a large part, the analysis of the ERRW
and of the VRJP are equivalent.

The main consequence of the forthcoming theorem 4 is the following.

Theorem 1 ([8, 9]). i)The ERRW is recurrent in dimension d=2, for all initial
constant weights. (This part uses also crucial estimates from [6].)

ii) On Zd, d ≥ 3, the ERRW (resp. the VRJP) at weak reinforcement, i.e.
with constant weight ae = a for a large enough (resp. with constant conductances
We = W for W large enough), satisfies a functional central limit theorem with
non-degenerate diffusion matrix.
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2.2. Relation with a supersymetric σ-model. In [7], it was proved that, after
some time change, the VRJP can be represented as a mixture of Markov Jump
processes, with a mixing law which is a marginal of a supersymmetric σ-field inves-
tigated by Diserori, Spencer, Zirnbauer, [5]. Results of localization/delocalization
which have been proved in [3, 5], can be translated in results on positive recur-
rence/transience of the VRJP, and with some extra work, [4], also of the ERRW.
Nevertheless, the question of the behavior of these processes on Z2 at weak rein-
forcement was open. We give below a new representation of the VRJP in terms of
the Green function of a random Schrödinger operator. This represention can be
non-trivially extended to infinite graphs.

3. Main Results

3.1. A (new) exponential family. Let, as before, G = (V,E) be a non-directed
graph with conductances (We)e∈E . Let ∆ = (∆i,j)i,j∈V be the discrete Laplacian

∆i,j =

{
Wi,j , if i ∼ j, i 6= j

−Wi, if i=j,

with Wi =
∑

j∼iWi,j . For (βj)j∈V ∈ RV , we set

Hβ = −∆ + 2β

where β is the operator of multiplication by (βj)j∈V . If V finite, we write Hβ > 0
when it is positive definite. In this case (Hβ)−1 has positive coefficients (it is an
M -Matrix).

Lemma 2 ([8]). Assume G is finite. The following distribution on RV

νW (dβ) = 1Hβ>0
e−

∑
i∈V βi

√
|Hβ |

∏
i∈V dβi√
2π

|V |

is a probability with Laplace transform

∫
e−λ·βνW (dβ) =

e
1
2

∑
i∼j Wi,j(

√
1+λi−

√
1+λj)

2

∏
i∈V

√
1 + λi

In particular β|V1
and β|V2

are independent if distG(V1, V2) ≥ 2.

Theorem 3 ([8]). Let β ∼ νW (du), and set G = (Hβ)−1. Define u(i, j) by

eu(i,j) =
G(i, j)

G(i, i)

Then the (time changed) VRJP starting from (i0) is a mixture of Markov jump
processes with jumping rate

1

2
Wi,je

u(i0,j)−u(i0,i) =
1

2
Wi,j

G(i0, j)

G(i0, i)
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This representation has several advantages compared to the representation of
section 2.2. Firstly, it gives a representation of the VRJP by the Green function of
a random Schrödinger operator. Secondly, it couples the mixing laws of the VRJP
starting from different points.

3.2. Representation of the VRJP on infinite graphs. The aim is now to
extend the representation of theorem 3 to infinite graphs. Take for simplicity
V = Zd and Wi,j = W constant. It is rather easy to prove that (βj)j∈V can
be defined on infinite graphs by Kolmogorov extension theorem, with the same
properties of independence at distance larger or equal to 2. We can thus define
Hβ = −∆ + β, the associated random Schrödinger operator. Then Hβ ≥ 0 and
the limit

Ĝ := lim
ǫ→0,ǫ>0

(Hβ + ǫ)−1

exists a.s. and 0 < Ĝ(i, j) <∞. We come now to the main theorem.

Theorem 4 ([9]). i) We construct a β-measurable function (ψ(i))i∈V , as a mar-
tingale limit, such that

• ψ = 0 when the VRJP is recurrent,
• ψ(i) > 0 for all i ∈ V when the VRJP is transient, ψ is stationary ergodic

and Hβψ = 0

ii) Let γ be an Gamma(12 ) random variable indep. of β. Set

G(i, j) = Ĝ(i, j) +
1

2γ
ψ(i)ψ(j).

Then VRJP starting at i0 is a mixture of Markov jump processes with jump rates

1

2
Wi,j

G(i0, j)

G(i0, i)

The stationarity and ergodicity of ψ is the key ingredient in theorem 1.
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Graphical representations for quantum spin systems

Daniel Ueltschi

1. Introduction

Random loop approaches to quantum spin systems offer an elegant and differ-
ent perspective to quantum correlations. They find their origin in Feynman-Kac
representations of quantum lattice systems. In 1993, Tóth introduced a represen-
tation of the S = 1

2 ferromagnetic Heisenberg model that is based on the random
interchange model [2]. A similar representation was introduced shortly afterwards
by Aizenman and Nachtergaele for the S = 1

2 antiferromagnet model and cer-
tain models with higher spins [1]. It allowed them to relate the one-dimensional
quantum chain to two-dimensional Potts and random cluster models, yielding new
insights on the quantum spin chain.

A synthesis of these two representations was proposed in [3]. In the case S = 1
2 ,

it applies to models that interpolate between the Heisenberg ferromagnetic and
antiferromagnetic models such as the quantum XY model. It also applies to
certain SU(2)-invariant models of spin 1. Thanks to this representation, the exis-
tence of spin nematic long-range order was established in the model with S = 1
in dimension d ≥ 3 [3]. In this report, we review the derivation of these graph-
ical representations for the partition function and correlations of quantum spin
systems. We restrict ourselves to the case S = 1

2 .

2. Quantum spin models

Let (Λ, E) be a graph, with Λ the (finite) set of vertices and E the set of edges.
Given S ∈ 1

2N, the Hilbert space is HΛ = ⊗x∈ΛC
2. The spin operators are

denoted Si
x, with x ∈ Λ and i = 1, 2, 3. They satisfy the commutation relations

[S1
x, S

2
y ] = iδx,yS

3
x, and further relations obtained by cyclic permutations of the

indices 1, 2, 3. Recall that “classical configurations” σ ∈ {− 1
2 ,

1
2}Λ form a basis of

HΛ where the operators S3
x are diagonal: Using Dirac’s notation, S3

x|σ〉 = σx|σ〉.
We consider the two operators Txy and Qxy on H{x,y} (and their extensions on

HΛ by identifying Txy with Txy ⊗ IdΛ\{x,y}, etc...):

• Txy is the transposition operator, Txy|a, b〉 = |b, a〉.
• Qxy is the operator with matrix elements 〈a, b|Qxy|c, d〉 = δa,bδc,d.

We consider the following family of Hamiltonians indexed by the parameter
u ∈ [0, 1]:

H
(u)
Λ = −

∑

{x,y}∈E

(
uTxy+(1−u)Qxy−1

)
= −2

∑

{x,y}∈E

(
S1
xS

1
y+(2u−1)S2

xS
2
y+S3

xS
3
y− 1

4

)
.

The case u = 1 is the Heisenberg ferromagnet. The case u = 1
2 is the quantum

XY model. If the graph is bipartite, the case u = 0 is unitarily equivalent to the

Heisenberg antiferromagnet. Let Z(u)(β,Λ) = Tr e−βH
(u)
Λ denote the correspond-

ing partition functions.
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3. Random loop models

We now describe the models of random loops. At each edge {x, y} ∈ E is attached
the interval [0, β] and a Poisson point measure where “crosses” occur with intensity
u and “double bars” occur with intensity 1−u. Let ω denote a realisation and ρ(dω)
denote independent Poisson point processes on E × [0, β]. To a given realisation ω
of the Poisson point measure corresponds a set of loops, denoted L(ω). The loops
consist of vertical lines connected by crosses or bars. This is best understood by
looking at pictures, see Fig. 1. A mathematically precise definition can be found
in [3]. We define the partition function as Y (β,Λ) =

∫
2|L(ω)|ρ(dω). The relevant

measure for the model of random loops is given by 1
Y (β,Λ) 2|L(ω)| ρ(dω).

Λ

Λ

ββ

Figure 1. Graphs and realisations of Poisson point measures,
and their loops. In both cases, the number of loops is |L(ω)| = 2.

4. Relations with quantum spin models

The first result is a formula for the Gibbs operator in terms of the Poisson point
measure. To a realization ω corresponds a sequence (A1, t1), . . . , (An, tn) where
0 < t1 < · · · < tn < β are the times for the occurrence of events in ω, and Aj is
the operator Txy if the event of time tj is a cross at {x, y} ∈ E , or the operator
Qxy if the event of time tj is a double bar at {x, y}.

Lemma 1. We have e−βH
(u)
Λ =

∫
ρ(dω)AnAn−1 . . . A1.

The proof proceeds by discretising the time interval [0, β], linearising the Poisson
point measure, grouping terms wisely and invoking the Trotter product formula.

Theorem 2. For all u ∈ [0, 1], we have Z(u)(β,Λ) =

∫
2|L(ω)|ρ(dω).

For the proof we need the concept of space-time configurations. These are
functions σ : Λ × [0, β] −→ {− 1

2 ,
1
2} such that σx,t is piecewise constant in t, for

any x. Given a realisation ω of the Poisson point measure, let Σper(ω) denote the
set of space-time spin configurations that take constant values along each loop.
See Fig. 2 for an illustration. Notice that |Σper(ω)| = 2|L(ω)|. We use Lemma 1
and we insert the resolution of the identity Id =

∑
σ |σ〉〈σ| on the left of each

transition Aj . By the definitions of Txy and Qxy, we get Theorem 2 using

(1) Tr e−βH
(u)
Λ =

∫
ρ(dω)

∑

σ∈Σper(ω)

1.
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Figure 2. Illustration for a realisation of the measure ρ and a
compatible space-time spin configuration.

The loop correlations are given by just three events: (i) E+
x,y is the set of all

realizations ω such that x and y belong to the same loop, and with identical
vertical direction at these points; (ii) E−

x,y is the set of all ω such that x and y
belong to the same loop, and with opposite vertical directions at these points; (iii)
Ex,y = E+

x,y ∪ E−
x,y is the set of all ω such that x and y belong to the same loop.

These events are illustrated in Fig. 3. Let P(·) denote the probability with respect
to the random loop measure 2|L(ω)|ρ(dω)/Z(u)(β,Λ).

0 x

(b)(a)

0 x

Figure 3. Illustration for (a) the event E+
0,x; (b) the event E−

0,x.

Theorem 3. For x 6= y, the two-point correlation functions are given by

〈Si
xS

i
y〉 =

{
1
4P(Ex,y) if i = 1, 3,
1
4 [P(E+

x,y) − P(E−
x,y)] if i = 2.

This theorem can be proved as Theorem 2 with an expansion in space-time spin
configurations. We refer to [3] for details.

References

[1] M. Aizenman, B. Nachtergaele, Comm. Math. Phys., 164, 17–63 (1994)
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Deconstructing Brownian loop-soups

Wendelin Werner

(joint work with Wei Qian)

Background. Recall that when D is a simply connected domain in the plane,
there exist two very natural measures on Brownian paths that do not require to
choose any reference (or starting) point in the domain. These are on the one hand
the Brownian loop-measure (introduced in [1] – this is a measure on unrooted
Brownian loops) and on the other hand the Brownian excursion measure (this is
a measure on Brownian excursions in D – these are paths that start and end on
different non-prescribed points in ∂D and stay in D inbetween). Both these mea-
sures µD and νD are conformally invariant (under any conformal transformation
from D onto itself, and the images of µD and νD under a conformal transforma-
tion from D onto D′ are µD′ and νD′) when one views paths up to monotone
time-reparametrization.

This makes it possible for each positive c and β to define a Poissonian cloud of
Brownian loops with intensity cµD (this is the Brownian loop-soup with intensity
c) and also a Poissonian cloud of Brownian excursions in D with parameter β.
The laws of these random collections of paths are conformally invariant (because
of the conformal invariance of their intensity measure).

It turns out that the structure of the Brownian loop-soups in two dimensions
is particularly interesting. One can for instance study the loop-soup clusters (two
loops b and b′ will be in the same cluster if one can find a finite chain of other loops
b1, . . . , bn−1 in the soup so that if one puts b0 = b and bn = b′, then bj ∩ bj−1 6= ∅
for all j ≤ n). It has been proved in [9] that all loops form a single dense cluster
when c > 1, but that when c ≤ 1, there are countably many disjoint clusters.
Furthermore (see again [9]), the outer boundaries of these clusters are loop-variants
of Schramm’s SLEκ curves where κ ∈ (8/3, 4] and c are related by the formula
c = (3κ − 8)(6 − κ)/2κ (more precisely, the outer boundaries of the outermost
loop-soup clusters form a CLEκ — a conformal loop-ensemble with parameter κ).

Note that both the loop-soup with intensity c = 1 and CLE4 can be coupled
with a Gaussian Free Field: Miller-Sheffield [5] have shown that CLE4 can be
viewed as the set of level lines of the GFF with zero boundary conditions in D
(building on earlier work by Schramm, Sheffield and Dubédat that relate the GFF
to SLE4 curves). In a different direction, Le Jan [2] has shown (and this is not
specific to two dimensions) that one can interpret the (properly defined) square
of the GFF as the (properly renormalized) total occupation time measure of a
Brownian loop-soup with intensity c = 1. Note the previous result on loop-soups
shows that there is also a coupling between the c = 1-loop-soup with CLE4.

Statement and some remarks. In [7], we derive a decomposition of the Brow-
nian loop-soups with c = 1, that can be described as follows. When one conditions
a loop-soup cluster (say the outermost loop-soup cluster that surrounds the origin
in a loop-soup in the unit disc) on its outer boundary γ (which is a CLE4 loop),
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Figure 1. Sketch of the outermost loop-soup clusterK surround-
ing the origin in a loop-soup in the unit disc, and its outer bound-
ary γ in bold. On the right, a magnification of γ and of the loops
in K that touch γ.

one can consider the loops in the loop-soup that are inside of γ. There are two
type of such Brownian loops – those that do not touch γ and stay in the open
set O(γ) encircled by γ, and on the other hand, those that do touch γ (but stay
in O(γ)). While (conditionally on γ) the former form a Brownian loop-soup in
O(γ) with c = 1 which is not surprising, the trace of the latter in O(γ) coincides
with that of a Poisson point process of Brownian excursions in O(γ) with intensity
β = 1/4.

Figure 2. Sketch of a sample of a SLE4 loop (which is distributed
like the outer boundary γ of a loop-soup cluster K), and then
of a Poisson point process of excursions inside γ. The obtained
picture is distributed exactly like the picture on the right of the
first Figure (i.e. like the union of the Brownian loops in K that
touch the outer boundary of K.

This result can look at first fairly surprising, as one might have guessed that
because these excursions away from γ have to hook up into loops, they should not
be independent (as in a Poisson point process).

In the course of the proof, we use and relate the previously mentioned three
couplings of the GFF, the loop-soup and CLE4, and prove that they can be made
to coincide (the outer boundary of the loop-soup clusters define the same CLE4

as the GFF φ, while the occupation time of this loop-soup is exactly the square of
φ). Other instrumental tools in the derivation of our decomposition are Dynkin’s
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isomorphism theorem, Titus Lupu’s recent construction of the GFF associated to
a loop-soup, via the use of cable-systems [4, 3].

This result sheds some new light on the relation between the GFF, loop-soups
and CLE4, their Markovian properties, and it does also give an approach via
the loop-soups to ideas developed by Schramm, Sheffield and Miller in the GFF
context, such as the definition of local sets in [8, 6]. Details about motivations and
implications of this result and about its proof can be found in [7].
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Hyperbolic planar maps

Omer Angel

(joint work with Tom Hutchcroft, Asaf Nachmias, Gourag Ray)

1. A dichotomy for unimodular planar maps

The classical Uniformization Theorem for Riemann surfaces (Koebe, Poincare,
1907), states that every simply connected, non-compact Riemann surface S is
conformally equivalent to either the hyperbolic plane or the Euclidean plane. This
dichotomy manifests itself in several different ways, relating to analytic, geometric
and probabilistic properties of surfaces. In particular, either

S is conformally equivalent to the plane, admits a Riemannian met-
ric of constant curvature 0, does not admit non-constant bounded
harmonic functions, and is recurrent for Brownian motion,

or else

S is conformally equivalent to the hyperbolic plane, admits a
Riemannian metric of constant curvature −1, admits non-constant
bounded harmonic functions, and is transient for Brownian motion.



Scaling Limits in Models of Statistical Mechanics 2355

A discrete counterpart to this dichotomy appeared in the seminal work of He and
Schramm [11, 10]. They proved that every plane triangulation can be circle packed
in either in the unit disc or in the plane, but not both, calling the triangulation
CP hyperbolic or CP parabolic accordingly.

In the case of triangulations with bounded degrees, they also connected the CP
type to recurrence of the random walk. Benjamini and Schramm [6, 7] proved that
every bounded degree, infinite planar map admits non-constant bounded harmonic
functions if and only if it is transient for simple random walk, and in this case also
admits non-constant bounded harmonic functions of finite Dirichlet energy.

Most of this theory fails without the assumption of bounded degrees. The goal
of this work is to develop a similar theory for unimodular random rooted maps,
without the assumption of bounded degree. A rooted map is a map together with
a distinguished root vertex, and a random rooted map is said to be unimodular if it
satisfies the mass-transport principle, which, in a precise sense, can be interpreted
as meaning that ‘every vertex of the map is equally likely to be the root’, even when
the maps in question are infinite. This theory applies to several maps that have
been studied before, including the hyperbolic uniform triangulations [9] and the
Poisson-Voronoi maps [5]. (A form of this dichotomy for triangulations appeared
in earlier work [2].)

Theorem 1 (The Dichotomy Theorem). Every unimodular random rooted planar
map is either hyperbolic or parabolic. The type of the map is determined by its
average curvature, and determines many of its properties.

The curvature is defined by constructing a manifold from a map. This is done
by taking some manifold which is a topological disc for each face of the map,
and gluing them together along edges. This can be done (not uniquely) is such a
way that the manifold is flat except at the vertices. The average curvature is the
expected curvature at the root ρ.

A more precise formulation of the theorem, is that for a unimodular rooted
planar map (M,ρ), the following are almost surely equivalent:

(1) (M,ρ) has average curvature zero.
(2) (M,ρ) is invariantly amenable.
(3) (M,ρ) is a Benjamini-Schramm limit of finite planar maps.
(4) The Riemann surface associated to M is conformally equivalent to the

plane C or the punctured plane C \ {0}.
(5) M does not admit any non-constant bounded harmonic functions.
(6) M does not admit any non-constant harmonic functions of finite Dirichlet

energy.
(7) The laws of the free and wired uniform spanning forests of M coincide.
(8) The wired uniform spanning forest of M is a.s. connected.
(9) Two independent random walks on M intersect infinitely often a.s.

(10) The wired and free minimal spanning forests of M have the same law.
(11) Bernoulli(p) bond percolation on M a.s. has at most one infinite connected

component for every p ∈ [0, 1].
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Figure 1. The logical structure, with new implications in red.

(12) M is vertex extremal length parabolic.
(13) Every bounded degree subgraph of M is recurrent.
(14) Every bounded degree subgraph of M is amenable.
(15) Every tree in M is recurrent almost surely.
(16) Every tree in M is amenable almost surely.

Maps where these properties hold are called parabolic, and maps where they
do not are hyperbolic.

2. Soficity of unimodular planar maps

The local topology on rooted graphs is generated by the metric d(G,G′) = e−R

where R is maximal such that the balls BR(G, ρ) = BR(G′, ρ′) are isomorphic.
A random rooted graph (G, ρ) is the Benjamini-Schramm limit of a sequence
of (possibly random) finite graphs Gn if, letting ρn be a uniform vertex of Gn

for each n ≥ 1, the random rooted graphs (Gn, ρn) converge weakly in the local
topology to (G, ρ) as n tends to infinity. Benjamini-Schramm limits of finite maps
and networks are defined similarly. A random rooted graph that is a limit of finite
graphs in this way is called sofic.

Every finite graph with uniformly random root is unimodular, and unimodu-
larity is preserved under weak limits, so every sofic graph is unimodular. It is a
major open problem to determine whether the converse holds, that is, whether
every unimodular random rooted graph is sofic (see [1]). We answer this question
positively for simply connected unimodular random maps.

Theorem 2. Every simply connected unimodular random rooted map is sofic.
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The variance of particle positions in the hard disk model

Thomas Richthammer

A system of interacting particles may arrange itself into a regular pattern such
as a lattice-like structure and thus may form a solid state. This phenomenon
is usually referred to as crystallization. We restrict our attention to the case of
two-dimensional systems. Here this phenomenon is expected to occur in a wide
variety of models, provided that the temperature is sufficiently low or the particle
density is sufficiently high. Indeed this behaviour can be observed in simulations,
but so far there is no rigorous proof for crystallization in any realistic model. For
two-dimensional systems the phase transition corresponding to crystallization is
conjectured to be due to a breaking of rotational symmetry; i.e. two-dimensional
solids exhibit directional order. In a simplified model this has been shown in [4].
In contrast, it is known that translational symmetry is not broken (see [6]); i.e.
2D solids can never exhibit positional order.

We would like to quantify the latter: If a 2D solid forms a lattice-like structure,
then what can we say about the fluctuations of particle positions? For the 2D
harmonic crystal the work of Peierls (see [5]) shows that the mean square dis-
placement of a particle from its ideal lattice position is of order logn if n is the
size of the system. We show a lower bound of the same size for more realistic
models such as the hard disk model.
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In the hard disk model the interaction between particles is a pure hard-core
repulsion, i.e. any two point particles are forced to keep a distance of > 2r but do
not interact otherwise. Besides r the only parameter of the model is the activity
z regulating the particle density. Such a model can be described in terms of a
Gibbsian point process. In finite volume Λ it is obtained by prescribing a certain
deterministic configuration of particles outside of Λ and generating a random con-
figuration of particles inside of Λ by means of Poisson point process with intensity
z, conditioned on any pair of particles to keep distance > 2r. Due to its simplicity
the hard disk model is a good starting point for investigations. Simulations show
(e.g. see [2]) that for an increasing value of z there is a phase transition from no
order to orientational order. However, not much is known rigorously for the hard
disk model apart from the result on the conservation of translational symmetry
(see [6]) and a result on the percolation of disks with percolation distance > 3r
(see [1]).

Unlike in the harmonic crystal, in the hard disk model there is no a priori
labelling of particles that would allow to pinpoint a specific particle and investigate
the fluctuations of its position. Instead, we describe the fluctuations of positions
in terms of a certain transformation of particle configurations with the following
properties:

• The transformation shifts all particles of a given configuration in a prede-
fined direction. The amount by which a particle is shifted may depend on
its position and the positions of other particles of the configuration.

• Particles near the boundary of a box of size 2n×2n are kept fixed. Particles
near the center are shifted by an amount of order

√
logn.

• The translation amount for particles in between is chosen so that locally
the transformation almost preserves the relative position of particles.

• After the transformation all particles still keep a distance > 2r.
• The transformation is bijective and only has a mild impact on the proba-

bility measure describing the hard disk model.

We note that the above conditions are in conflict for configurations of particles
that are densely packed. Thus we define a set of good configurations (controlling
the size of regions of the box where particle are densely packed) and proceed to
give an explicit recursive construction of a transformation of the above type. We
then are able to show that our construction has the following properties:

• Configurations are good with high probability if n is large.
• The transformation has all the above properties at least in case of good

configurations.

If there is an a posteriori lattice structure by which we are able to identify a single
particle, we show that the above construction implies that the fluctuations of the
position of the particle are at least of order

√
logn. For more details on our result

we refer to [7].
A construction similar to the one described above was the main tool used in [6]

for showing the absence of positional order. In [3] the method was adjusted to a
lattice setting and used to show a delocalization result for the random Lipschitz
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surface model, including a lower bound on fluctuations of order
√

logn. We use
improvements and refinements of the construction from [3] and adjust them back
to the continuous setting of the hard disk model to obtain our result on fluctuations
of positions in the hard disk model. We note that our result can be extended to
fairly arbitrary interactions.
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Superdiffusion in the periodic Lorentz gas

Bálint Tóth

(joint work with Jens Marklof)

1. Extended Abstract

We prove a superdiffusive central limit theorem for the displacement of a test
particle in the periodic Lorentz gas in the limit of large times t and low scatterer
densities (Boltzmann-Grad limit). The normalization factor is

√
t log t, where t is

measured in units of the mean collision time. This result holds in any dimension
and for a general class of finite-range scattering potentials.

The periodic Lorentz gas is one of the iconic models of “chaotic” diffusion in
deterministic systems. It describes the dynamics of a test-particle in an infinite
periodic array of spherically symmetric scatterers. The main results characterizing
the diffusive nature of the periodic Lorentz gas have to date been mainly restricted
to the two-dimensional setting and hard-sphere scatterers. The first seminal result
on this subject was the proof of a central limit theorem for the displacement of
the test particle at large times t for the finite-horizon Lorentz gas by Bunimovich
and Sinai [2]. In the case of the infinite-horizon Lorentz gas, Bleher [1] pointed
out that the mean-square displacement grows like t log t when t→ ∞, as opposed
to a linear growth in the finite-horizon case. The superdiffusive central limit
theorem suggested in [1] was first proved by Szász and Varjú [7] for the discrete-
time billiard map. Dolgopyat and Chernov [4] provided an alternative proof, and
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established the central limit theorem and invariance principle for the billiard flow.
Both aforementioned results are valid in two dimensions only.

In the present work we prove an unconditional superdiffusive central limit the-
orem for the periodic Lorentz gas in any dimension d ≥ 2, valid in the limit of low
scatterer density (Boltzmann-Grad limit) and for a general class of finite-range
scattering potentials.

In the present paper we prove unconditional superdiffusive central limit theo-
rems and invariance principles for the periodic Lorentz gas in any dimension d ≥ 2,
valid in the limit of low scatterer density (Boltzmann-Grad limit) and for a general
class of finite-range scattering potentials. That is, instead of fixing the radius r
of each scatterer and considering the long time limit as in the above cited papers,
we consider here the limit r → 0 and then the limit of long times, where time is
measured in units of the mean collision time. It remains a major interesting open
problem to consider the two limits r → 0, t→ ∞ jointly.

The precise setting is as follows. Let L ⊂ Rd be a fixed Euclidean lattice of
covolume one (such as the cubic lattice L = Zd), and define the scaled lattice
Lr := r(d−1)/dL. At each point in Lr we center a sphere of radius r. We con-
sider a test particle that moves along straight lines with unit speed until it hits
a sphere, where it is scattered elastically. The above scaling of scattering radius
vs. lattice spacing ensures that the mean free path length (i.e., the average dis-
tance between consecutive collisions) has the limit ξ̄ = 1/vd−1 as r → 0, where

vd−1 = π
d−1
2 /Γ(d+1

2 ) denotes the volume of the unit ball in Rd−1.
In the case of the classic Lorentz gas the scattering mechanism is given by

specular reflection, but as in [5] we will here also allow more general spherically
symmetric scattering maps.

The position of our test particle at time t is denoted by

x(t) = x(t, x0, v0) ∈ Kr := Rd \ (Lr + rBd
1),

where x0 and v0 are position and velocity at time t = 0, and Bd
1 is the open unit

ball in Rd centered at the origin.
We consider the time evolution of a test particle with random initial data

(x0, v0), distributed according to a Borel probability measure Λ on Rd × Sd−1
1 .

The following superdiffusive central limit theorem and invariance principles, valid
for small scattering radii and large times, are the main results of this work.

Theorem 1. Let d ≥ 2 and fix a Euclidean lattice L ⊂ Rd of covolume one. As-
sume (x0, v0) is distributed according to an absolutely continuous Borel probability

measure Λ on Rd × Sd−1
1 . Then, for any bounded continuous f : Rd → R,

lim
t→∞

lim
r→0

Ef

(
x(t) − x(0)

Σd

√
t log t

)
=

1

(2π)d/2

∫

Rd

f(x) e−
1
2 |x|

2

dx,

with

Σ2
d :=

21−dvd−1

d2(d+ 1)ζ(d)
,

where ζ(d) :=
∑∞

n=1 n
−d denotes the Riemann zeta function.
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The above result generalises to a functional central limit theorem, or, invariance
principle. That is, for the same random initial data as in Theorem 1 the random
curve

t 7→ XT,r(t) :=
x(T t) = x(0)

Σd

√
t log t

converges in distribution in C0([0, 1]) to the standard Brownian motion t 7→W (t) ∈
Rd.

Theorem 2. Under the conditions of Theorem 1, taking first r → 0 and then
T → ∞, we have

XT,r(·) ⇒W (·),

where ⇒ denotes weak convergence of probability measures in C0([0, 1]).

The starting point of our analysis is the paper [5], which proves that, for ev-
ery fixed t > 0, the first (inner) limit r → 0 Theorem 1 exists and is given by
a continuous-time Markov process. The main objective of this work is therefore
to prove a superdiffusive central limit theorem and invariance principle for these
Markov processes. This is realized by a sophisticated conditional Lindeberg argu-
ment.
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Aging of the Metropolis dynamics of the Random Energy Model

Jiř́ı Černý

(joint work with Tobias Wassmer)

1. Introduction

In his influential paper [1], Bouchaud proposed a simple toy model suggesting a
mechanism to understand the aging in low-temperature dynamics of spin glasses.
This toy model, compared to dynamics of an actual spin glass model, introduces
three main simplifications: (a) the state space of the spin glass is replaced by
a complete graph, (b) the energies of states are taken to be a collection of i.i.d.
random variables, and (c) the dynamics is very simple, the rate of jump from
state x to state y does not depend on the energy of y, this dynamics is now called
Random Hopping time (RHT) dynamics.

Starting with [2, 3], many authors tried to verify that Bouchaud’s model pre-
diction are valid for the dynamics of of mean-field spin glasses, removing some
subsets of these simplification. In [4], it was observed that this essentially con-
sists of proving that certain additive functional of an accelerated version of the
dynamics, so called clock process, converges to a stable Lévy process; the aging as
in Bouchaud’s model can be then deduced from the classical arc-sine law. This
observation allowed for a systematic treatment of the RHT dynamics of many
spin-glass and related models in the last decade.

The RHT dynamics is however often attaced to be ‘non-realistic’. It was thus a
long-standing open problem in the field to show aging for if a ‘realistic’ dynamics
of a spin glass model, like e.g. Metropolis dynamics.

Recently, some progress has been achieved in the context of the simplest mean-
field spin glass model, the Random Energy Model (REM). First, in [5], the so called
Bouchaud’s asymmetric dynamics have been considered in the regime where the
asymmetry parameter tends to zero with the size of the system. Second, the
Metropolis dynamics have been studied in [6] for a truncated version of the REM.
The purpose of the weak asymmetry assumption of [5] and the truncation of [6] is
to to recover certain features of the RHT dynamics. In particular, they simplify
considerably the ‘local’ estimates needed for proving the clock process convergence.

2. Results

The talk in Oberwolfach presents the recent work [7] with Tobias Wassmer, proving
the clock process convergence of the Metropolis dynamics of the non-modified
REM.

The REM is the simplest mean-field spin glass model whose state space is the
N -dimensional hypercube ΣN = {−1, 1}N , and its Hamiltonian is a collection
(Ex)x∈ΣN

of i.i.d. standard Gaussian random variables on some probability space
(Ω,F ,P). Its (non-normalized) Gibbs measure at inverse temperature β > 0 is
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given by τx = eβ
√
NEx . The Metropolis dynamics on the REM is the continuous-

time Markov chain X = (Xt)t≥0 on ΣN with transition rates

rxy = e−β
√
N(Ex−Ey)+1x∼y =

(
1 ∧ τy

τx

)
1x∼y, x, y ∈ ΣN ,

where x ∼ y means that x and y differ in exactly one coordinate. Obviously, the
Gibbs measure τ is reversible for the Metropolis dynamics.

The Metropolis chain X is compared with its accelerated version Y = (Yt)t≥0

whose transition rates are

qxy =
τx ∧ τy
1 ∧ τx

1x∼y, x, y ∈ ΣN .

Since rxy = (1 ∨ τx)−1qxy, X can be written as a time change of Y ,

X(t) = Y (S−1(t))

with the clock process S being given by

S(t) =

∫ t

0

(1 ∨ τYs
)ds.

Finally, for a fixed environment τ = (τx)x∈ΣN
, let P τ denote the law of the process

Y started from its stationary distribution. The main result of [7] is the following

Theorem 1. Let α ∈ (0, 1) and β > 0 be such that

1

2
<
α2β2

2 ln 2
< 1,

and define

gN = eαβ
2N (αβ

√
2πN)−

1
α .

Then there are random variables RN which depend on the environment (Ex)x∈ΣN

only, such that the rescaled clock processes

SN (t) = g−1
N S(tRN ), t ≥ 0,

converge in P-probability as N → ∞, in P τ
ν -distribution on the Skorohod space

equipped with the M1-topology, to an α-stable Lévy process. The random variables
RN satisfy

lim
N→∞

logRN

N
=
α2β2

2
, P-a.s.

This theorem confirms Bouchaud’s predictions, at least at the level of the clock
process scalling. The deterministic scale gN is the same as in [4], and the random
scale RN has the same exponential asyptototics as the corresponing scale rN of [4].
That means that the scaling of the Metropolis dynamics is essentially the same
as of the RHT dynamics, which can be interpreted as ‘long-time’ irrelevance of
microscopic transition rules.

The techniques of [7] circumvent the necessity of ‘local estimates’ needed in
previous papers, making, however, the verification of more precise aging state-
ments (in terms of two-point functions or age process) difficult. This, as well as
considering correlated mean-field spin glasses are interesting open questions.
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[7] J. Černý, T. Wasmer, Aging of the Metropolis dynamics on the Random Energy Model,
arXiv:1502.04535 (2015).

The Toom Interface Via Coupling

Nick Crawford

(joint work with Nick Crawford, Gady Kozma, Woijcech de Roeck)

We consider a one dimensional interacting particle system which describes the ef-
fective interface dynamics of the two dimensional Toom model at low temperature
and noise. This model was first considered in [4]. The interest there (ultimately
discarded) was due to the possibility of having a nontrivial, non-KPZ fluctuating
hydrodynamics when the motion is symmetric with respect to the two particle
types. More recently, in [1], the particle system was shown to be exactly solvable
when only one of the two types of particles is allowed to actively move. The au-
thors use the exact solvability to verify KPZ-type asymptotics, which are generally
expected to hold for any bias between the rates of the two particle types.

In our work, we undertake a systematic study of the model for arbitrary choice
of bias. First we consider the dynamics on a finite interval [1, N), bounding the
mixing time from above by 2N . Then we consider the model defined on Z. Due to
infinite range interaction, this is a non-Feller process that we can define starting
from product Bernoulli measures with density p ∈ (0, 1) but not from arbitrary
measures. We then give a number of regarding the constructed dynamics. First
of all, under modest technical conditions which guarantee the existence of the
dynamics started from a putative invariant measure, we show the measure must
be a (mixture of) product Bernoulli measures.

It was known from the models definition in [4] that for each choice of bias, there
is a unique stationary measure ν∞ on N. It is possible to couple the dynamics
on N starting from ν∞ with the dynamics on Z starting from a product Bernoulli
measure. We use this coupling to further show that ν∞ converges weakly product
Bernoulli on Z as the boundary of N shifts to −∞. Finally, on Z we consider func-
tional CLTs of various observables including additive functionals of local functions,
currents across a fixed vertex and the motion of a tagged push-particle.
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All of our results are based on a coupling construction which is rather similar to
what is known as the basic coupling for exclusion processes. The main additional
tool we have here, which is not present for exclusion processes, is the observation
that discrepancies (which are quasi-particles of the coupling) move monotonically
and ballistically to ∞.

Unfortunately, we have been unable to settle the most interesting questions and
conjectures raised in [4]. Of these, lets us mention two. First, one may ask what
is the variance of the sum of spins SN of the first N vertices under the stationary
measure νN on {−1, 1}[1,N ]. According to simulation, [4] predicts

VarνN (SN ) ∼
{
N2/3 if there is a bias,

N1/2 log1/4N for no bias.

Currently our best estimate, obtained by combining the results of [2, 3], is of the
order NPoly(logN). The second interesting issue we wish to mention here (and
suggested by the first conjecture) is as follows. A heuristic suggested in [4] is that
the measure ν∞ should be related to the fluctuating hydrodynamics of the process
on Z. Making this heuristic precise would represent considerable progress in our
understanding of this model’s behavior.
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Critical behaviour of spin systems and weakly self-avoiding walk in
dimension 4

Gordon Slade

(joint work with Roland Bauerschmidt, David C. Brydges, Alexandre Tomberg)

1. Continuous-time weakly self-avoiding walk

For weakly self-avoiding walk, let p ≥ 1 and consider p independent continuous-
time simple random walks on Zd started from the origin. We write this as a vector
X(T ) = (X1(T1), . . . , Xp(Tp)) with T = (T1, . . . , Tp) ∈ R

p
+. The intersection local

time is

Ip(T ) =

p∑

k,l=1

∫ Tk

0

∫ Tl

0

1{Xk(s)=Xl(t)}ds dt.

Let g > 0, ν ∈ R. The p-star network is defined by

S(p)(g, ν) =

∫

R
p
+

E0(e−gIp(T ))e−ν‖T‖1dT,
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and the p-watermelon network is defined by

W
(p)
0x (g, ν) =

∫

R
p
+

E0(e−gIp(T )1{Xk(Tk)=x ∀k})e−ν‖T‖1dT.

These are networks of p weakly self- and mutually-avoiding walks. The two-point

function is W
(1)
0x (g, ν). A simple subadditivity argument implies the existence of

νc ≤ 0 such that the susceptibility χ(g, ν) := S(1)(g, ν) =
∑

xW
(1)
0x (g, ν) obeys

χ(g, ν) <∞ if and only if ν > νc.
Let

(
p
2

)
denote the binomial coefficient, with

(
1
2

)
= 0.

Theorem 1. For d = 4, g > 0 small, p ≥ 1, as ε = ν − νc ↓ 0 or as |x| → ∞,

χ(g, ν) ∼ Agε
−1(log ε−1)1/4,

S(p)(g, ν)

χ(g, ν)p
∼ Ag,p

1

(log ε−1)
1
4 (p

2)
,

W
(p)
0x (g, νc) ∼ Cg,p

1

|x|2p
1

(log |x|) 2
4 (p

2)
.

2. The |ϕ|4 spin system

Related results are obtained for the n-component |ϕ|4 spin system, for all n ≥ 1.
The model is first defined as the Gibbs measure on a finite torus Λ = ΛN =
Zd/(LNZd) with L > 1 fixed (large):

〈F (ϕ)〉g,ν,N =
1

Zg,ν,N

∫

(Rn)Λ
F (ϕ)e−Vg,ν,N (ϕ)dϕ.

Here Zg,ν,N is a normalisation constant, dϕ is Lebesgue measure on (Rn)Λ, and

Vg,ν,N (ϕ) =
∑

x∈Λ


1

4
g|ϕx|4 +

1

2
ν|ϕx|2 +

1

4

∑

e:‖e‖1=1

|∇eϕx|2

 ,

with g > 0 and ν ∈ R. The susceptibility is defined by

χ(g, ν) = lim
N→∞

∑

x∈ΛN

〈ϕ1
0ϕ

1
x〉g,ν,N ,

where ϕ1
x is the first component of the vector ϕx ∈ Rn.

Theorem 2. For d = 4, g > 0 small, n ≥ 1, there exists νc < 0 such that as
ε = ν − νc ↓ 0 or |x| → ∞,

χ(g, ν) ∼ Ag,nε
−1(log ε−1)(n+2)/(n+8),

〈ϕ1
0ϕ

1
x〉g,ν,N ∼ Cg,n

1

|x|2 .

Related results are also obtained for energy correlations.
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3. Method of proof

The proof uses a rigorous renormalisation group argument. An interesting aspect
of the proof is that the weakly self-avoiding walk can be treated as the n = 0
version of the spin model, via a supersymmetric integral representation.
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The 2D Coulomb gas at the Kosterlitz–Thouless transition: the work
of Pierluigi Falco

Roland Bauerschmidt

1. Pierluigi Falco

Pierluigi Falco (born 1977) died in April 2014 from cancer. I present the result of
his last work [5, 6], completed in November 2013.

2. 2D Coulomb gas

Let Λ = Zd/RZd denote the two-dimensional discrete torus of side length R. Let
Ω0

n denote the space of neutral n particle configurations on Λ. Such a configuration
ω ∈ Ω0

n is given by (xi, σi), i = 1, . . . , n, where the xi ∈ Λ are the positions of the
particles and the σi ∈ {±1} the signs of the charges; the neutrality condition is∑

i σi = 0. The Coulomb energy for such a configuration is defined by

(1) Hn(ω) =
1

2

n∑

i=1

σiσj(−∆)−1(xi − xj) =
1

2
(f, (−∆)−1f), f =

n∑

i=1

σiδxi
,

where ∆ is the discrete Laplace operator whose inverse has kernel (−∆)−1(x−y) ∼
1
2π log 1

|x−y| if applied to neutral change configurations.

The grand canonical partition function for activity z and inverse temperature
β is defined by

(2) ZΛ(z, β) =

∞∑

n=0

zn

n!

∑

ω∈Ω0
n

e−βHn(ω).
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For η ∈ (0, 1), the fractional charge correlation function is defined by

(3) ρη(x − y) = lim
Λ↑Z2

Zp1,p2

Z
,

where Zp1,p2 denotes the partition function of a charge configuration in which two
additional fractional charges p1 = (x,+η) and p2 = (y,−η) have been added.

3. Kosterlitz–Thouless transition

✽� ❜0

z

Figure 1. Kosterlitz–Thouless phase diagram

Berezinskii [1] and Kosterlitz–Thouless [9, 8] conjectured the phase diagram
for the 2D Coulomb gas shown in Figure 1. In the diagram, the curves represent
parameters (z, β) with the same long-distance behaviour in the sense of critical
exponents. The curve through (0, 8π) is called the Kosterlitz–Thouless transition
line and separates a high temperature phase from a low temperature phase. The
high temperature phase (or screening phase) is characterized by exponential de-
cay of fractional charge correlation functions (see [2, 11]). In the low temperature
phase (or dipole phase or Kosterlitz–Thouless phase), typical configurations consist
of changes bound together into dipoles or multipoles, and fractional charge corre-
lation functions decay algebraically. The existence of the low-temperature phase
was proved in [7]. More precisely, in [7], it was proved that the fractional charge
correlation functions are bounded from above and below by functions decaying
algebraically in |x− y| if β is sufficiently large. The parameter region for algebraic
decay was extended in [10], and an alternative renormalisation group approach to
the problem was initiated in [4, 3].

The main result of [5, 6] is the following theorem, which is the first result that
applies directly on the Kosterlitz–Thouless transition line.

Theorem 1. Fixed η ∈ (0, 1), there exist an L0 ≡ L0(η) > 1, a z0 ≡ z0(η) > 0
and an inverse temperature βBKT (z) ≥ 8π such that if L ≥ L0, 0 < z ≤ z0 and
β = βBKT (z), the limit (3) exists with R = LN , N → ∞ and:
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(1) If η 6= 1
2 , then

(4) ρη(x) = ρ(a)η (x) + ρ(b)η (x),

where, for x-independent fa, fb, f ,

ρ(a)η (x) =
e8πη

2cE + fa

|x|4η2 (1 + f ln |x|)2η2 (1 + o(1)) ,

ρ(b)η (x) =
fb

|x|4(1−η)2 (1 + f ln |x|)2(1−η)2
(1 + o(1)) .(5)

(2) If η = 1
2 , then, for x-independent fa, f ,

(6) ρ 1
2
(x) =

1

2

e2πcE + fa
|x| (1 + f ln |x|) 1

2 (1 + o(1)) .

In the above formulas, o(1) are vanishing terms for |x| → ∞; f = cz for c > 0,

fb = c(η)2z2(1 + f̃b) for c(η) > 0; fa, f̃b are vanishing in the limit z → 0. Besides
z0(η) is such that, for every [a, b] ⊂ (0, 1), one has inf{z0(η) : η ∈ [a, b]} > 0.
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Universality in interacting Ising and dimer models

Alessandro Giuliani

(joint work with R. Greenblatt, V. Mastropietro, F. Toninelli)

In the last few years, the methods of constructive Fermionic Renormalization
Group (RG) have successfully been applied to the study of the scaling limit of
several two-dimensional (2D) statistical mechanics models at the critical point, in-
cluding the 2D Ising with finite range interactions at the critical temperature and
the close-packed interacting dimer model. Different instances of universality have
been proved in these contexts, such as: universality of the energy-energy critical
exponents and of the central charge in interacting Ising models; massless Gaussian
free field (GFF) fluctuations of the height field in the interacting dimer model.
Both results are briefly reviewed in the following.

1. The interacting Ising model

The class of Ising models we consider is defined by the Hamiltonian HΛ =

−J∑<x,y> σxσy − λ
∑

x,y σxv(x − y)σy ≡ H
(0)
Λ + λWΛ, where J is a positive

constant, Λ ⊂ Z2 is a finite rectangular box with periodic boundary conditions,
σx = ±1, the first sum runs over nearest neighbor pairs of sites in Λ, while in the
second sum the interaction potential v(x − y) is rotation and reflection invariant
and has finite range. As an illustrative example to keep in mind, v(x − y) could
be a next-to-nearest-neighbor interaction (of either signs).

At λ = 0 (nearest neighbor case), the model is exactly solvable in a very strong
sense: one can compute closed formulas for the free energy per site in the thermo-
dynamic limit, as well as for the correlation functions. The truncated correlations
decay exponentially to zero at large distance for all but one value of the inverse
temperature, βc, where correlations decay polynomially, with specific decay expo-
nents. Correlations can be rescaled so that they admit a finite limit as the lattice
mesh tends to zero. The collection of multipoint limiting correlations at the criti-
cal point are believed to define a Conformal Field Theory (CFT), corresponding to
the so-called minimal model with central charge c = 1/2. The parameter c charac-
terizes certain commutation relations among the fundamental fields of the theory,
as well as the finite-size effects induced by the presence of a boundary or a finite
box. Essentially all these properties have been rigorously proved, starting from the
Onsager solution, dating back the mid 1940s, until very recent times, in particular
with the ground-breaking works of Smirnov and collaborators, which finally sub-
stantiated the theoretical physics predictions about the existence, structure and
conformal invariance of the critical scaling theory.

Both at a qualitative and quantitative level, the features of the model are be-
lieved to be robust under analytic changes of the Hamiltonian, in particular they
should remain valid at λ 6= 0: the model should still admit a single critical tem-
perature separating a high from a low temperature phase. Critical correlations at
βc(λ) should decay polynomially, and their scaling limit should be the same as the
λ = 0 case. This is a (strong) instance of the so-called universality hypothesis in
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statistical mechanics, which is still wide open from a rigorous, mathematical, point
of view. In this talk, I present two results that rigorously prove two instances of
this hypothesis at λ 6= 0 for the class of Ising models above.

The first concerns the scaling limit of the multipoint energy correlations: let-
ting ej(x) := a−1σxσx+aêj be the energy observable on a rescaled lattice with
mesh a, we compute explicitly the scaling limit as a→ 0 of the multipoint energy
correlations at the interacting critical point, for λ sufficiently small. The limit-
ing m-point correlations are the same as the λ = 0 case, up to an overall factor[
Z(λ)

]m
, with Z(λ) an analytic function of λ, which can be interpreted as a renor-

malization factor of the energy operator. Our result provides the first construction
of the “energy-sector” of the critical scaling theory, and proves that it coincides
as expected with the corresponding sector of the minimal model with c = 1/2.

Our second result concerns the universality of the sub-leading finite size cor-
rections to the critical pressure. We prove that in a rectangle Λ of lattice mesh
a = 1 and sides L≫ ℓ≫ 1, the critical pressure at βc = βc(λ) is 1

Lℓ logZ(βc,Λ) =

−βcf(βc) + 1
ℓ2

π
12 up to lower order corrections in the limit L ≫ ℓ ≫ 1. Remark-

ably, the dominant term −βcf(βc) is a non-trivial analytic function of λ, while
the first sub-leading correction is exactly independent of λ. From the factor π

12
one can read again the value of the central charge: in fact, CFT predicts that this
factor should in general be equal to cπ/6, with c the central charge.

Both results are proved by: (i) mapping exactly the model in an interacting
2D fermionic theory; (ii) computing the fermionic functional integral by rigor-
ous renormalization group methods. An important fact is that the interaction of
such an effective fermionic theory is irrelevant in the RG sense. For the precise
statements of the results and their proofs, we refer to the original publications
[1, 2].

2. The interacting dimer model

The second class of models we consider are interacting dimer models on Z2, de-
fined as follows. Take a finite box Λ ⊂ Z2 with periodic boundary conditions,
and consider the configuration space MΛ of dimer coverings of Λ. We shall assign
every dimer covering M ∈ MΛ a non-uniform statistical weight, proportional to
eλWΛ(M), with WΛ(M) a translational invariant interaction, obtained by translat-
ing over Λ a finite range, rotational and reflection invariant, interaction among
dimers. In particular, the partition function of the interacting dimer model is
ZΛ(λ) =

∑
M∈MΛ

eλWΛ(M). As an illustrative example to keep in mind, WΛ(M)
could be the number of plaquettes in Λ occupied by two parallel dimers.
ZΛ(λ) can be thought of either as a model of densely packed anisotropic mole-

cules, or as model of random interfaces. The random interface interpretation is
based on the following definition of height function: given a dimer covering M ,
two faces of Λ centered at x and y and a path Cx→y from x to y with trivial
winding around the torus Λ, the height difference between x and y is defined as
hx − hy =

∑
b∈Cx→y

(
1b(M) − 1

4

)
σb where σb = ±1 depending on whether Cx→y

crosses b with the white site on the right/left.
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In complete analogy with the Ising model considered above, at λ = 0 the dimer
model is exactly solvable: one can derive exact formulas for the free energy and
for correlation functions, which decay polynomially at large distances. The height
fluctuations are asymptotically Gaussian at large distances, with logarithmically
divergent variance. If properly rescaled, all the correlations admit a limit as the
lattice mesh is sent to zero. In particular, the height field correlations tend to
those of the massless 2D GFF. The collection of limiting correlations defines a
critical scaling theory, which is conformally invariant, with central charge c = 1.
Essentially all these properties have been rigorously proved, starting from the
Kasteleyn solution, dating back the early 1960s, until the recent works of Kenyon
and collaborators, which finally substantiated the predictions about the existence,
structure and conformal invariance of the critical scaling theory.

Our main result concerns the scaling limit of the height field at λ 6= 0. Re-
markably, while the multipoint dimer correlations are not universal, and are char-
acterized by critical exponents continuously changing with λ, the height fluctu-
ations are. More precisely, if λ is sufficiently small, the infinite volume height

correlation verifies 〈(hx − hy)2〉 = K(λ)
π2 log |x − y|, up to lower order corrections

at large distances. Here 〈·〉 denotes the infinite volume interacting state, and
K(λ) is an analytic function such that K(0) = 1. The higher order truncated
correlations are bounded uniformly in |x − y|. At large distances, the coarse
graining of hx converges to the GFF, in the sense that, if α ∈ R and f is
a smooth, compactly supported function on R2 with

∫
R2 f(u)du = 0, one has

〈exp
{
iαǫ2

∑
x∈Z2 hxf(ǫx)

}
〉 ǫ→0−→ exp

{
Kα2

4π2

∫
f(u)f(v) log |u− v|dudv

}
, where ǫ−1

represents the coarse-grain scale, to be sent to infinity after the thermodynamic
limit.

Also in this case, the result is proved by first mapping the model in a lattice
model of interacting fermions, and then by analyzing the latter by constructive
RG methods. The analysis here is much more subtle, in that the interaction is
marginal, rather than irrelevant, in a renormalization group sense. Universality of
the height field emerges as a combined effect of hidden Ward Identities and lattice
path invariance of the height difference. Once again, for the precise statement of
the result and its proof, we refer to the original publications [3, 4].
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Ising model from the Random Current perspective

Michael Aizenman

(joint work with H. Duminil-Copin; related prior works also with D. Barsky, R.
Fernandez, and V. Sidoravicious)

The random current (RC) representation [1] (which was presented in the talk)
yields stochastic geometric insight on the phase transition in the Ising model, and
the structure of its correlation functions at criticality. Mentioned here are:

A) General results of the Ising phase transition and its critical behavior on
transitive graphs (seasoned works with D. Barsky, R. Fernandez), condi-
tions for the continuity of the spontaneous magnetization in the amenable
case (with H. Duminil-Copin, and V. Sidoravicious).

B) High dimensional results: mean-field critical exponents and asymptotically
gaussian structure of the correlation functions in dimensions d > 4.

C) Results specific to the low dimension d = 2: new insights on the ori-
gins of the fermionic Wick rule for certain correlation functions, and the
emergence of planarity at the critical points of two dimensional Ising spin
systems with finite range interactions (work in progress with H. D-C).

The theorems are asserted here in natural generalizations of their original versions.

Theorem A.1 [3] For any Ising model on a transitive graph with homogeneous
ferromagnetic couplings for which

∑
x∈G J0,xe

+εdist(0,x) <∞ for some ε > 0 there
exists a critical temperature Tc ∈ [0, ‖J‖] such that:

i) Along the line h = 0, the spontaneous magnetization satisfies

M(T )

{
= 0 for all T > Tc

> 0 for all T < Tc

ii) The high temperature exponential decay of corrections extends throughout
the regime T ∈ (Tc,∞). In particular, for h = 0 and any T ∈ (Tc,∞) the
two point correlation function decays exponentially

〈σxσy〉T,0+ ≤ Ae−dist(x,y)/ξ

with some A(T ), ξ(T ) <∞. [The summed version of the decay also holds].

iii) In the vicinity of the critical point the model exhibits the following singular
behavior (with C a generic symbol for J dependent constants):

(a) For h = 0, T ց Tc: χ(T ) ≥ C
(T−Tc)γ̂

with γ̂ = 1

(b) For h = 0, T ր Tc: M(T ) ≥ C

(T−Tc)β̂
with β̂ = 1/2

(c) For T = Tc, hց 0: M(T, h) ≥ C h1/δ̂ with δ̂ = 3.

Given the monotonicity properties of M which are implied by the GHS and
FKG inequalities, these statements can be deduced from the following pair of
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non-linear partial-differential inequalities [2, 3]:

M ≤ h
∂

∂h
M + ‖J‖Mn−1 ∂

∂β
M + Mn(1)

∂

∂β
M ≤ ‖J‖M ∂

∂h
M .(2)

At different values of the power n these relations hold for both homogenous Ising
models, at n = 3, and for independent percolation models (with suitable extension
of its notions to h ≥ 0) at n = 2 [2]. The proof relies on stochastic geometric
representations of the quantities involved.

More recently, a natural extension of the RC representation to infinite graphs
was instrumental in proving that in all dimensions for the n.n. models on Zd:

(3) m∗(Tc) = 0 .

The most elusive case has been d = 3, for which until recently the proof of (3)
remained an open challenge. This was done though a clarification of the relation
between the following two order parameters:

m∗(Tc) := 〈σ0〉Tc−0 = lim
TրTc

M(T ) the residual magnetization

MLRO := lim
dist(0,x)→∞

√
〈σ0σx〉Tc+0 the long range order parameter

The two provide information on the equilibrium states just below and just above
TC . For the latter, the infrared bound [9] allows to conclude that MLRO(Tc) = 0
for the n.n. models on Zd at d > 2. The open question was thus settled by:

Theorem A.2[5] For any Ising model on a transitive amenable graph (in partic-
ular on Zd for any d ∈ (1,∞)) with homogeneous ferromagnetic couplings:

m∗(Tc) = 0 ⇐⇒ MLRO(Tc) = 0 .

The graphs accompanying the derivations of (1) indicate relations of the Ising
model to Φ4 and of percolation to Φ3 field theories. Consistently with that, through
reversed versions of (a)-(c) it was possible to prove that for the n.n. Ising models
the three critical exponents stabilize above duc = 4 (and duc = 6 for percolation
models, with certain caveats [7, 11]), settling on their mean-field values:

Theorem B.1[1,3] For the nearest neighbor Ising model on Zd in d > 4 dimen-
sions, the three bounds in Theorem A.1 part (iii) are valid also in the reversed
direction (with different values of C) at the exponent values

(4) γ = 1, β = 1/2, δ = 3 .

Essential input for the reverse inequalities is provided by suitable ‘infrared
bounds’ on the two-point function 〈σxσy〉T,0+. Such bounds are provided by the
reflection positivity method [9], when it is applicable, and alternatively, for spread
enough interactions, the lace expansion [7]. Related to the above is:
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Theorem B.2[1] For the n.n. Ising models on Zd in d > 4, if for some κ(δ) → ∞
the scaled correlation functions converge (pointwise for x1, ..., x2n ∈ Rd)

(5) S2n(x1, ..., x2n) = lim
δ→0

κ(δ)2n〈
2n∏

j=1

σ[xj/δ] 〉Tc

then the limiting functions satisfy the (Gaussian) Wick rule:

(6) S2n(x1, ..., x2n) =
∑

pairingsπ

n∏

j=1

S2(xπ(2j−1), xπ(2j))

The RC representation played an essential role in both proving the above re-
sult, and in explaining why it does not hold in d = 2 dimensions. Recently the
RC representation was recognized to offer a new perspective on the emergence
of fermionic structures such as appear in the exact solution of the model on Zd.
Following is an example of such (more will be presented in [4]).

Theorem C.1[4] Let 〈−−〉 be an equilibrium state of a ferromagnetic Ising model
on a planar graph with a connected boundary segment Γ. Then, for any collection
of boundary sites {x1, ...., x2n} ⊂ Γ, ordered cyclicly along Γ:

(7) 〈
2n∏

j=1

σxj
〉 =

∑

pairingsπ

ε(π)

n∏

j=1

〈σxπ(2j−1)
σxπ(2j)

〉

where ε(π) = ±1 is the pairing’s parity.
The RC representation provides a stochastic geometric insight on the emergence

of such relations in critical 2D models even in the non-planar case [10, 4].
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Crossing probabilities for Voronoi percolation

Vincent Tassion

One of the reasons that planar percolation has been studied so successfully is
the fact that the large-scale connectivity properties of percolation clusters can be
encoded through so-called “crossing probabilities”. A fundamental tool in this
approach is the box-crossing property at criticality. It was proved by Kesten for
Bernoulli percolation on a lattice with a non-trivial rotation. But the original
proof does not extend to models with dependencies.

We discuss a new proof and a generalization of the box-crossing property in
the framework of Voronoi percolation [6]. Then, we present a joint work with
Ahlberg, Griffith and Morris in which we prove a conjecture of Benjamini, Kalai
and Schramm concerning the quenched crossing probabilities for Voronoi percola-
tion [1].

1. Box-crossing property for planar Voronoi percolation

1.1. Voronoi percolation. First introduced in the context of first passage per-
colation, planar Voronoi percolation has been an active area of research, see [4] for
an introduction. It is defined by the following two-step procedure. First, consider
a Poisson Point Process in R2 with intensity 1, and form its associated Voronoi
tiling. Then, color independently each cell of the tiling black with probability p,
and white otherwise. Bollobás and Riordan [3] proved that the critical value for
this model is pc = 1/2.

1.2. Box-crossing property. Given a rectangle R = [a, b] × [c, d], write HR for
the event that there exists a path of black cells from left to right in R. The first
result we discuss here is the box-crossing property for Voronoi percolation, proved
in [6].

Theorem 1 (Box-crossing property). Consider critical Voronoi percolation in the
plane (meaning for p = 1/2). For every ρ > 0, there exists a constant c = c(ρ) > 0
such that, for every n large enough,

c < P[HR] < 1 − c, where R = [0, ρn] × [0, n].

The central ingredient is a new Russo-Seymour-Welsh result, based on a renor-
malization procedure (similar to the one invented in [3]). The proof is very robust,
and shows that the box-crossing property holds for a large class of planar perco-
lation processes.

The box-crossing property has been instrumental in many works on Bernoulli
percolation on a lattice, and has numerous applications. Therefore, we expect
these applications to hold also for Voronoi percolation, as consequences of The-
orem 1. These include Kesten’s scaling relations, bounds on critical exponents
(e.g. polynomial bounds on the one-arm event), the computation of the universal
exponents and tightness arguments in the study of the scaling limit, to name a
few.
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2. Quenched Crossing probabilities

In this second part, we present a quenched version of the crossing probabilities for
Voronoi percolation. In other words, we freeze a realization of the point process
and then, we study the crossing probabilities conditioned on this realization.
Main Theorem. We focus here on a finite volume version of the Voronoi perco-
lation process at criticality. Consider a set η of n points in the square S = [0, 1]2,
each chosen independently and uniformly at random. Then form the Voronoi
tiling associated to η inside the square S. Finally, color independently each tile
black with probability p = 1/2, and white otherwise. As above, HS denotes the
event that S is crossed horizontally by a black horizontal crossing. Note that
P(HS) = 1/2, by symmetry.

Theorem 2. Let η be a set of n independent uniformly chosen points in S. As n
tends to infinity, the quenched crossing probability P

(
HS | η

)
converges to 1/2.

Sketch of proof. We identify the set {−1, 1}η with the possible coloring of the
tiling of η. Let fη : {−1, 1}η → {0, 1} be the function such that fη(ω) = 1 if and
only if HS holds. The proof is divided into three steps.

• We first prove the following Efron-Steif type bound on the variance of the
probability of the crossing event in terms of the influences of fη, which
can be viewed as a random Boolean function:

Var
(

P
(
HS | η

))
≤

n∑

m=1

E
[
Infm(fη)2

]
.

Recall that the influence Infm(fn) of the mth variable of a Boolean function
fn : {−1, 1}n → {0, 1} is defined to be the expected absolute change in fn
when the sign of the mth variable is flipped, i.e.,

Infm(fn) = P
(
fn(ω) 6= fn(ω′)

)
,

where ω is chosen uniformly, and ω′ is obtained from ω by flipping the
mth variable.

• Then, we use a ‘randomized algorithm method’ introduced by Schramm
and Steif [5] in order to bound

∑n
m=1 Infm(fη)2 in term of a geometric

estimate related to the one-arm event.
• Finally, we derive from Theorem 1 a quenched version of the box-crossing

property in order to bound the “one-arm” estimate mentioned above.
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First passage percolation on random planar maps

Nicolas Curien

(joint work with Jean-François Le Gall)

In the recent years, there has been much effort to understand the large-scale geom-
etry of random planar maps viewed as random metric spaces for the usual graph
distance on their vertex set. A major achievement in the area is the construction
and study of the so-called Brownian map, which has been proved to be the univer-
sal scaling limit of many different classes of planar maps equipped with the graph
distance (see [6, 7] and more recently [1, 2, 4]). In this work, we replace the graph
distance by other natural choices of distances on the vertex set or on the set of
faces, and we show that in large scales these new distances behave like the original
graph distance, up to a constant multiplicative factor.

Modified distances. If m is a rooted (finite or infinite) planar map, we let
V(m),E(m) and F(m) denote respectively the set of vertices, edges and faces of m.
The set V(m) is usually equipped with the graph distance, which is denoted by
dgr. We will consider the following modifications of the graph distance.

Case 0: First-passage (bond) percolation. Assign i.i.d. positive ran-
dom variables w(e) to all edges e ∈ E(m). Assume that the common dis-
tribution of the “weights” w(e) is supported on [κ, 1] for some κ ∈ (0, 1].
The associated first-passage percolation distance is defined on V(m) by
setting for any x, y ∈ V(m)

dfpp(x, y) = inf
γ:x→y

∑

e∈γ

w(e),

where the infimum runs over all paths going from x to y in the map m.
Case 1: Dual graph distance. Consider the dual map m†, whose vertices

are the faces of m, and each edge e of m corresponds to an edge of m†

connecting the two (possibly equal) faces incident to e. We may then
consider the graph distance on V(m†) = F(m), which we denote by d†

gr.

Case 2: Eden model. This is the first-passage percolation model on m†

corresponding to exponential edge weights. More precisely, we assign in-
dependent exponential random variables with parameter 1 to the edges
of m† (or equivalently to the edges of m) and the associated first-passage

percolation distance on F(m) = V(m†) is denoted by d†
Eden

We consider these new “modified distances” when m = Tn is a random planar map
chosen uniformly in the set of all rooted plane triangulations with n+ 1 vertices.
In each of the previous cases, we are able to prove that the modified distances
behave in large scales like a deterministic constant times the graph distance on
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V(Tn). More precisely, there exist constants c0, c1 and c2 in (0,∞) such that we
have the following three convergences in probability

n−1/4 sup
x,y∈V(Tn)

∣∣dfpp(x, y) − c0 · dgr(x, y)
∣∣ −−−−→

n→∞
0,(1)

n−1/4 sup
x,y∈V(Tn), f,g∈F(Tn)

x⊳f and y⊳g

∣∣d†
gr(f, g) − c1 · dgr(x, y)

∣∣ −−−−→
n→∞

0,(2)

n−1/4 sup
x,y∈V(Tn), f,g∈F(Tn)

x⊳f and y⊳g

∣∣d†
Eden(f, g) − c2 · dgr(x, y)

∣∣ −−−−→
n→∞

0,(3)

where we used the notation x ⊳ f to mean that the vertex x is incident to the
face f . Since the convergence of rescaled triangulations to the Brownian map [6]
implies that the typical graph distance between two vertices of Tn is of order n1/4,
convergence (1) shows that in large scales dfpp(x, y) is proportional to dgr(x, y). In

fact (1) implies that the set V(Tn) equipped with the metric n−1/4dfpp converges in
distribution to (a scaled version of) the Brownian map, and that this convergence
takes place jointly with that of (V(Tn), n−1/4dgr) proved in [6].

In case 0., the constant c0 depends on the distribution of the weights and seems
hopeless to explicitly compute. However in cases 1. and 2. (dual graph and Eden
model) the constants can be computed exactly and we have

c1 = 1 + 2
√

3 and c2 = 2
√

3.

The reason why these models are more tractable than the case 0. is that the
metric exploration of the dual graph distance or the Eden model can be performed
algorithmically using a peeling procedure of the underlying random map. These
peeling explorations have been studied in details in the case of the Uniform Infinite
Planar Triangulation (UIPT) in [5].

Results for the UIPT. We can also state versions of our results on the UIPT, the
random infinite lattice first discussed by Angel & Schramm [3]. The UIPT, which
will be denoted by T∞, is the local limit of uniformly distributed triangulations
with n faces when n → ∞. We can equip the vertex set of the UIPT with the
usual graph distance dgr or with a modified distance as above. To simplify, let
us only consider the first-passage percolation distance dfpp defined as previously
from i.i.d. edge weights (case 0.). For every r > 0, write Br(T∞) for the planar
map obtained by keeping only those faces of T∞ that contain at least one vertex
at graph distance strictly less than r from the root vertex, and define Bfpp

r (T∞)
analogously, replacing the graph distance by the first-passage percolation distance.
Under the same assumptions on the weights, we prove that for the same c0 as above
and for every ε > 0,

(4) lim
r→∞

P

(
sup

x,y∈V(Br(T∞))

∣∣dfpp(x, y) − c0 · dgr(x, y)
∣∣ > εr

)
= 0.

It follows that the inclusions

(5) B(1−ε)r/c0(T∞) ⊂ Bfpp
r (T∞) ⊂ B(1+ε)r/c0(T∞)
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hold with probability tending to 1 as r → ∞. In other words, large balls for the
first-passage percolation distance are close to balls for the graph distance. Similar
results hold for the graph distance or the Eden distance on the dual of the UIPT.
The particular case of the Eden model answers a question raised by Miller &
Sheffield which served as a heuristic for the definition of the Quantum Loewner
Evolution of parameter (83 , 0), [8, Question 9.14].
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Metastability for continuum interacting particle systems

Sabine Jansen

(joint work with Frank den Hollander)

1. Setting

We consider a system of point particles living on a finite torus Λ in R2, d = 2,
and interacting with each other through a pair potential v(r) that has a hard-core
repulsion, a finite range, and a unique attractive minimum. The configuration
space Ω consists of the finite subsets ω = {x1, . . . , xn} ⊂ Λ, with N(ω) = #ω the
number of particles. The energy of such a configuration is

U(ω) =
∑

1≤i<j≤n

v(|xi − xj |)

when there are at least two particles, and U(ω) = 0 when N(ω) = 0 or 1. Particles
are randomly created and annihilated according to a Metropolis dynamics, with
the outside of the torus acting as an infinite particle reservoir with a fixed chemical
potential µ. Once on the torus, particles cannot move. Let

H(ω) = U(ω) − µN(ω).
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The infinitesimal generator is

(
Lf
)
(ω) =

∫

Λ

b(x, ω)
[
f(ω ∪ x) − f(ω)

]
dx+

∑

x∈ω

d(x, ω)
[
f(ω \ x) − f(ω)

]
.

The unique reversible measure is the grand-canonical Gibbs measure P = Pβ,µ,Λ,
which is absolutely continuous with respect to the Poisson point process Q with
intensity 1 on Λ. The Radon-Nikodým derivative is

dP

dQ
(ω) =

1

Ξ
e−βH(ω),

with Ξ = Ξβ,µ,Λ =
∫
Ω

e−βH(ω)Q(dω) a normalization.
The chemical potential is chosen such that the system is metastable: starting

from the vacuum configuration where the torus is empty, the system wants to
nucleate (i.e., fill up the torus with particles in the ground state lattice), but in
order to do so it has to overcome an energetic threshold, namely, it has to create a
critical droplet that is large enough to trigger the nucleation. We are interested in
the nucleation time and in the size and shape of the critical droplets in the limit
as the temperature tends to zero.

Subject to four assumptions on the energy landscape, we compute the average
nucleation time, show that the nucleation time divided by its average is exponen-
tially distributed, and identify the set of critical droplets. The average nucleation
time follows the Arrhenius law with an activation energy given by the grand-
canonical energy of the critical droplets and a prefactor that depends in a delicate
way on the temperature, the chemical potential, and the shape of the pair poten-
tial near its minimum. Our proof of the Arrhenius law uses the potential-theoretic
approach to metastability [2].

Our results extend earlier work for lattice system [1]. The problem with working
in the continuum is that it is hard to control the energy landscape, especially in
the vicinity of the set of critical droplets. We rely on properties derived in the
literature for minimal energy configurations at fixed particle numbers [3, 4]. Our
four assumptions on the energy landscape are expected to be true for a large class
of pair potentials, but as yet can be proven only for a particular pair potential in
d = 2, called the soft disk potential [3]. It is given by

v(r) =





∞, 0 ≤ r < 1,

−1 + 24(r − 1), 1 ≤ r ≤ 25
24 ,

0, r > 25
24 .

For this potential every k-particle minimizer of the energy is a subset of a triangular
lattice of spacing 1, with energy [3]

Ek := min{U(ω) | N(ω) = k} = −3k + ⌈
√

12k − 3⌉.
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2. Results

Let µ ∈ (−3,−2). Write µ = −3 + h and assume that h−1 /∈ 1
2N. Let ℓc = ⌊h−1⌋,

kc =

{
3ℓ2c + 4ℓc + 2, h ∈

(
(ℓc + 1)−1, (ℓc + 1

2 )−1
)
,

3ℓ2c + 2ℓc + 1, h ∈
(
(ℓc + 1

2 )−1, ℓ−1
c

)
.

and kp = kc − 1. Then k 7→ Ek − kµ has the unique maximizer k = kc. Every k-
particle ground state with protocritical number of particles k = kp is a hexagon of
side-length ℓc (containing 3ℓ2c+3ℓc+1 particles) for which a side bar has either been
removed or added, i.e., a quasi-hexagon. We call these the protocritical droplets.
Adding a particle to the longest side of the protocritical quasi-hexagons we obtain
the set of critical droplets C.

Let N ⊂ {N(ω) ≥ 2kc}. This target set satisfies the no-deep-well property of
the potential-theoretic approach [2] and has communication height to the vacuum
state vac ∈ Ω, N(vac) = 0 given by

Γ = Ekc
− kcµ.

Write Pvac, Evac for the law and expectation of the process (Xt)t≥0 with infinitesi-
mal generator L started in the vacuum, and τA = inf{t ≥ 0 : Xt ∈ A, ∃s ∈ (0, t) :
Xs /∈ A} to denote the first hitting time of A after the starting configuration has
been left. Pick any β → ε(β) strictly positive such that limβ→∞ ε(β) = 0 and
limβ→∞ βε(β) = ∞, and define

C(β) = {ω ∈ Ω: dH(ω, C) ≤ ε(β)}.
with dH the Hausdorff distance. This set of near-critical configurations turns out
to play an important role in our analysis of the nucleation time.

Theorem 1. [Scaling of the average nucleation time]
(i) There exists a Kstab(µ) ∈ (0,∞) such that

lim
β→∞

(24β)−(2kc−3) e−βΓEvac(τstab) =
Kstab(µ)

2π|Λ| ,

(ii) There exists a χ ∈ R such that

lim
µ↓−3

(µ+ 3)2 logKstab(µ) = χ.

Theorem 2. [Exponential limit law for the nucleation time]
limβ→∞ Pvac(τstab/Evac(τstab) > t) = e−t for all t ≥ 0.

Theorem 3. [Gate for the nucleation]
limβ→∞ Pvac

(
τC(β) < τstab

)
= 1.
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Asymptotics Ferromagnetic Ordering of Energy Levels for the
Heisenberg Model on Boxes

Shannon Starr

(joint work with Bruno Nachtergaele, Wolfgang Spitzer)

1. Description of the Result

1.1. Definition of the Model. Given a finite graph G = (V,E) , let ΩV =
{+1,−1}V be the set of all σ : V → {+1,−1}. Let HV = ℓ2(ΩV ), and, for each

x ∈ V , define operators S
(1)
x , S

(2)
x and S

(3)
x on HV as

S(3)
x f(σ) =

1

2
σ(x)f(σ) , S(1)

x f(σ) =
1

2
f
(
(−1)δx,·σ(·)

)
,

S(2)
x = −i(S(3)

x S(1)
x − S(1)

x S(3)
x ) .

Two other important operators are S+
x and S−

x , defined as S±
x = S

(1)
x ± iS

(2)
x :

S±
x f(σ) = δσ(x),∓1f

(
(−1)δx,·σ(·)

)
.

Then the quantum Heisenberg ferromagnetic Hamiltonian is HG : HV → HV

HG =
∑

{x,y}∈E

(
1

4
I − S(1)

x S(1)
y − S(2)

x S(2)
y − S(3)

x S(3)
y

)
,

where I is the identity operator on HV . The interaction may also be written as
1
4 I − S

(3)
x S

(3)
y − 1

2

(
S+
x S

−
y + S−

x S
+
y

)
.

1.2. Symmetries of the model. The Hamiltonian commutes with each of the

three components of the total spin operator, S
(1)
V , S

(2)
V and S

(3)
V where S

(a)
V equals∑

x∈V S
(a)
x , for a ∈ {1, 2, 3}. Hence it also commutes with S+

V and S−
V with are

S±
V =

∑
x∈V S

±
x = S

(1)
V ± iS

(2)
V . It also commutes with the total Casimir operator

CV =
(
S
(1)
V

)2
+
(
S
(2)
V

)2
+
(
S
(3)
V

)2
=
(
S
(3)
V

)2
+

1

2
S+
V S

−
V +

1

2
S−
V S

+
V .

Moreover, the Casimir operator commutes with the three components of the total
spin operator. Recall ⌊x⌋ = max{k ∈ Z : k ≤ x}, for each x ∈ R. The spectrum
of CV is

spec(CV ) =

{
s(s+ 1) : s ∈

{
1

2
|V | − n : n ∈

{
0, . . . ,

⌊
1

2
|V |
⌋}}}

.
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1.3. The “Ferromagnetic Ordering of Energy Levels Property”. For each
n ∈ {0, . . . , ⌊ 1

2 |V |⌋}, we may define the minimum energy of HG among eigenvectors

with total spin s = 1
2 |V | − n:

λmin(G,n) = min

{ 〈f,HGf〉
‖f‖2 : f ∈ ker(CV − s(s+ 1)I) \ {0}

}
for s =

1

2
|V |−n .

Then, it follows from a small part of a famous theorem of Lieb and Mattis [3] that

(1) λmin(G, 0) ≤ λmin(G,n) ,

for all n > 0. In [4], we defined the property “FOEL-n” for the graph G to be the
property that

λmin(G,n) = min {λmin(G,m) : m ∈ {n, . . . , ⌊|V |/2⌋}} .
The letters FOEL stand for “ferromagnetic ordering of energy levels.” This prop-
erty is supposed to be a ferromagnetic version of a property proved by Lieb and
Mattis for antiferromagnets and ferrimagnets in the same reference [3].

It is known that the FOEL-n property need not hold for all graphs G and all n ∈
{0, . . . , ⌊|V |/2⌋}. However, from (1), it is known that FOEL-0 holds for all graphs.
Moreover, in a remarkable result, Caputo, Liggett and Richthammer proved a re-
sult that does imply that FOEL-1 holds for all graphs G [1]. (Their result is a
stronger result for the interchange process on arbitrary graphs, which verified a
conjecture of Aldous.) The counterexamples reported on in [6] are that for an even
cycle G = C2n = ({1, . . . , n}, {{1, 2}, {2, 3}, . . . , {2n− 1, 2n}, {1, 2n}}), it appears
that FOEL-(n−1) is violated when n > 2 because λmin(C2n, n) < λmin(C2n, n−1).
(This was numerically verified for n = 3, . . . , 8.) These counterexamples were an-
ticipated in [1] because Caputo, Liggett and Richthammer’s “octopus inequality”
becomes an equality for C4, and indeed λmin(C4, 2) = λmin(C4, 1). Given all this,
it is useful to know whether the FOEL-n property is generally true for some im-
portant family of graphs. Our main theorem is this:

Theorem 1. For each d, L ∈ {1, 2, . . .}, let Bd(L) denote the graph whose vertex
set is {1, . . . , L}d ⊂ Zd and with the induced edge set, inherited as a subset of Zd.
Then, for each d, n ∈ {1, 2, . . .}, there exists an L0(d, n) ∈ {1, 2, . . .} such that the
graph Bd(L) satisfies the FOEL-n property for all L ≥ L0(d, n).

The preprint containing the proof of this theorem has been posted to the arXiv.
See [5].

2. Overview of the method

2.1. Relation to a paper of Correggi, Giuliani and Seiringer. For d = 3,
this result may be deduced from two lemmas in [2]. Firstly, they proved a Poincaré
type inequality, which implies that there exists some c > 0 such that

λ(Bd(L), n) ≥ cn

L2
,
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for all d, n, L ∈ {1, 2, . . .}. This inequality follows from Proposition 5.2 in their
paper. But, by some other results in their paper (Theorem 1.1, Lemma 5.4 and
equations (5.32) and (5.33)), one may deduce that for d = 3 and each n, one has

λmin(B3(L), n) − π2n

2L2
= O(L−3) .

More generally, this result holds, trivially, for each d ≥ 3, and with a small effort,
one may adapt their arguments to also conclude that λmin(B2(L), n) ∼ π2n/(2L2)
as L → ∞. For d = 1, one needs a different argument, which is actually the
argument we included in our preprint.

2.2. The Toth Graph. For each n ∈ {0, . . . , |V |}, let Θn(G) = (Θn(V ),Θn(E))
be the graph where Θn(V ) = {(x1, . . . , xn) ∈ V n : |{x1, . . . , xn}| = n} and where
Θn(E) consists of all pairs {(x1, . . . , xn), (y1, . . . , yk)} ⊂ Θn(V ) such that there is
some k ∈ {1, . . . , n} such that {xk, yk} ∈ E, and xj = yj for all j ∈ {1, . . . , n}\{k}.
Let ΩV,n ⊂ ΩV denote the set of all σ’s such that |σ−1({−1})| = n. Then ℓ2(ΩV,n)
is an invariant subspace of HG, and, when restricted to this invariant subspace,
it is unitarily equivalent to − 1

2∆Θn(G) , when restricted to symmetric functions

f ∈ ℓ2(Θn(V )), where −∆Θn(G) is the graph Laplacian

−∆Θn(G)f(x1, . . . , xn) =
∑

(y1,...,yn)∈Θn(V )
{(x1,...,xn),(y1,...,yn)}∈Θn(E)

[f(x1, . . . , xn)−f(y1, . . . , yn)] .

This is the graph such that symmetric exclusion process with n particles on G is
the graph Laplacian of Θn(G). This equivalence was first found by Toth [7] who
used it to obtain bounds on the pressure, which Correggi, Giuliani and Seiringer
later improved.

By basic Sobolev inequality type techniques, one may prove that there is a
constant c such that, for any function f ∈ ℓ2(Θn(Bd(L))) with average 0

∑

(x1,...,xn)∈Θn({1,...,L})
∃1≤j<k≤n , {xj ,xk}∈E(Bd(L))

|f(x1, . . . , xn)|2 ≤ c
(
〈f,−∆Θn(G)f〉

)d/2
.

This shows that the effect of magnon collisions may be neglected in dimensions
d ≥ 3, as L → ∞. In fact after a simple argument shows they may also be
neglected in d = 2 if one only keeps track of the first K energy levels for any fixed
K as L → ∞. For d = 1 one needs to “fill-in” the function on the diagonal by
taking an average of nearby points. For symmetric functions, then, the energy on
the diagonal of the filled-in function may be neglected for the first K energy levels
as L→ ∞. All this shows that λmin(Bd(L), n) ∼ nπ2/(2L2) for all d, n as L→ ∞.
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Mean-field behavior for nearest-neighbor percolation in d > 10

Remco van der Hofstad

(joint work with Robert Fitzner)

We investigate nearest-neighbor percolation in Zd with d large, where we set each
bond {x, y} ∈ Zd × Zd, with x and y nearest-neighbors, occupied, independently
of all other bonds, with probability p and vacant otherwise. The corresponding
product measure is denoted by Pp with corresponding expectation Ep. We write
{x ↔ y} for the event that there exists a path of occupied bonds from x to y.
For x ∈ Zd, the set C (x) := {y ∈ Zd : y ↔ x} is called the cluster of x. It is
the size and geometry of these clusters close to criticality that we are interested
in in high-dimensions. Our main result is the infrared bound for the percolation
two-point function, as well as the existence of many critical exponents it implies.

We define pc, the critical value of p, as

(1) pc(d) = sup {p : Ep[|C (0)|] <∞} .
We let the two-point function be given by

(2) τp(x) = Pp(0 ↔ y),

and τ̂p(k) is its Fourier transform. Our main result is as follows:

Theorem 1 (Infrared bound). For nearest-neighbor percolation with d ≥ 11, there
exists a constant A(d) such that, uniformly for p ≤ pc(d),

(3) τ̂p(k) ≤ A(d)

1 − D̂(k)
.

Our proof also implies good bounds on pc(d) and A(d) in Theorem 1:

Theorem 2 (Bounds on critical value and amplitude). For nearest-neighbor per-
colation with d ≥ 11, the following upper bounds hold:

d 11 12 13 14 15 20
(2d− 1)pc(d) ≤ 1.0132 1.00861 1.006268 1.0048522 1.00391 1.00179

A(d) ≤ 1.02476 0.995 0.986 0.98243 0.98088 0.98115
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Since (2d− 1)pc(d) ≥ 1 by a comparison to branching processes, the bound on
pc(11) is provably at most 1.32% off the real value.

Our results further prove the existence of several percolation critical exponents.
For example, it is predicted that

(4) c1(p− pc)
β ≤ Pp(|C (0)| = ∞) ≤ c2(p− pc)

β as pց pc,

for some β > 0, which we will write as Pp(|C (0)| = ∞) ∼ (p − pc)
β . Then, we

obtain the existence and values of the following critical exponents:

Theorem 3 (Critical exponents). For nearest-neighbor percolation with d ≥ 11,

Pp(|C (0)| = ∞) ∼ (p− pc)
1 as pց pc;(5)

Ep[|C (0)|] ∼ (p− pc)
−1 as pր pc;(6)

Ppc
(|C (0)| ≥ n) ∼ n−1/2 as n→ ∞,(7)

that is, β = γ = 1, δ = 2. Further, η = 0 in x-space, i.e., there exists a constant
A(d) such that, as |x| → ∞,

(8) τpc
(x) =

adA(d)

|x|d−2
(1 + O(|x|−2/d)), with ad =

dΓ(d/2 − 1)

2πd/2
.

The statements in Theorem 3 are direct consequences of Theorem 1, and several
key results in the literature. Aizenman and Newman [1] proved that γ = 1 when
the so-called triangle condition holds. The triangle condition states that

(9) △(pc) =
∑

x,y∈Zd

τpc
(0, x)τpc

(x, y)τpc
(y, 0) <∞.

Barsky and Aizenman [2] in turn show that, under the same condition, β = 1 and
δ = 2. By the Fourier inversion theorem and the fact that △(pc) is the three-fold
convolution of τpc

with itself, the infrared bound in Theorem 1 immediately implies
that the triangle condition holds. Hara [8] proves that (8) holds for d ≥ 19, and
his proof can be adapted to our setting. Finally, Kozma and Nachmias [12, 13]
further identify two one-arm critical exponents.

It is now 25 years ago that Hara and Slade proved their seminal result [9] that
percolation displays mean-field behavior for sufficiently high dimension for the
nearest-neighbor model, and for d > 6 for so-called spread-out models, where all
edges between x and y with ‖x − y‖ ≤ L are allowed for a sufficiently large L.
By universality, it is believed that d > 6 is also enough for the nearest-neighbor
model, but this is yet unproven. In 1994, Hara and Slade [11] reported that
d ≥ 19 is enough in the nearest-neighbor setting. This was achieved by adapting
their seminal result for self-avoiding walk (SAW) proving that SAW is diffusive in
d ≥ 5, which is optimal, since in d = 4 there are logarithmic corrections, see the
talk by Slade in this conference and the work by Bauerschmidt, Brydges and Slade
[3]. The proof is computer assisted, since it relies on computing several random
walk integrals. The Hara-Slade proof is a perturbation analysis, and thus needs a
small parameter, which for the nearest-neighbor setting is 1/d. Thus one needs
to take d large to make the analysis work. For percolation, their methodology
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worked to d ≥ 19 in 1994, and, Hara has been able to improve the analysis since
to d ≥ 15. These proofs have never been published. Also, the proof needs the
finiteness of the heptagram, which holds when d > 14, so, in this sense, the proof
is optimal.

The perturbation analysis makes use of the lace expansion, a perturbation of
the two-point function τp(x) around the random walk’s Green function. The lace-
expansion analysis currently only works when the coefficients present in the anal-
ysis are sufficiently small, which in turn needs that the triangle diagram is small.
Thus, while the Aizenman-Barsky-Newman result β = γ = 1, δ = 2 require the
triangle diagram to be finite, we can only prove that it is small, which is bound
to only be true when the dimension is sufficiently higher than 7.
Our proof. Also our proof in [6] relies on the lace expansion and is computer-
assisted. The main innovation resides in our expansion, which expands the two-
point function τp(x) around non-backtracking walk (NBW) rather than simple
random walk. A NBW is a simple random walk that is not allowed to traverse the
edge it has last traversed. This expansion is called non-backtracking lace expansion
or NoBLE. NoBLE removes the largest contribution in the perturbation analysis,
which explains why it makes it possible to extend the analysis to lower dimensions
compared to the Hara-Slade proof. The computer-assisted nature is again due to
the need to compute various simple random walk integrals, which we perform in
an identical was as Hara and Slade who prove rigorous bounds on such integrals
using a representation in terms of integrals over powers of Bessel functions.

The necessary computations are performed in Mathematica notebooks that are
available from Robert Fitzner’s webpage. We then apply the general analysis in
[5] to complete the proof. The fact that all the necessary Mathematica-notebooks
are publicly available makes the proof as transparent as possible.
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The random interchange process on the hypercube

Piotr Mi loś

(joint work with Roman Kotecký, Daniel Ueltschi)

1. Abstract

The interchange process is defined on a finite graph. With any edge is associated
the transposition of its endvertices. The outcomes of the interchange process
consist of sequences of random transpositions and the main questions of interest
deal with the cycle structure of the random permutation that is obtained as the
composition of these transpositions. As the number of random transpositions
increases, a phase transition may occur that is indicated by the emergence of
cycles of diverging lengths involving a positive density of vertices.

The most relevant graphs are regular graphs with an underlying “geometric
structure” like a finite cubic box in Zd with edges between nearest neighbours.
But the problem of proving the emergence of long cycles is out of reach for now
and recent studies have been devoted to simpler graphs such as trees [2, 5] and
complete graphs [6, 3, 4]. (Note also the intriguing identities of Alon and Kozma
based on the group structure of permutations [1].) The motivation for the present
article is to move away from the complete graph towards Zd. We consider the
hypercube {0, 1}n in the large n limit and establish the occurrence of a phase

transition demonstrated by the emergence of cycles larger than 2(
1
2−ε)n. Our proof

involves the recent method of Berestycki [3], which was used for the complete graph
but is valid more generally, with an estimate of the rate of splits that invokes the
isoperimetric inequality for hypercubes.

2. Main result

Let Gn = (Qn, En) be a graph whose N = 2n vertices form a hypercube Qn =
{0, 1}n with edges joining nearest-neighbours—pairs of vertices that differ in ex-
actly one coordinate, En = {{x, y} : x, y ∈ Qn, |x− y|1 = 1}, |En| = Nn

2 .
Let Ωn be the set of infinite sequences of edges in En. For t ∈ N by Fn,t we

denote the σ-algebra generated by the first t coordinates. Further, for t ∈ N we
use Ωn,t to denote the set of sequences of t edges e = (e1, . . . , et), where es ∈ En



2390 Oberwolfach Report 40/2015

for all s = 1, . . . , t. The σ-algebra Fn,t will be identified with the total σ-algebra
over Ωn,t. For an event A ∈ Fn,t we set

Pn(A) = |A|
(

2
Nn

)t
,

i.e. edges are chosen independently and uniformly from En. Here and after for
any finite set A by |A| we denote its cardinality.

Using τe to denote the transposition of the two endvertices of an edge e ∈ En,
we can view the sequence e ∈ Ωn,t as a series of random interchanges generating
a random permutation σt = τet ◦ τeT−1 ◦ · · · ◦ τe1 on Qn. For any ℓ ∈ N, let Vt(ℓ)
be the random set of vertices that belong to permutation cycles of lengths greater
than ℓ in σt.

We start with the straightforward observation that only small cycles occur in
σt when t is small. It is based on the fact that the random interchange model
possesses a natural percolation structure when viewing any edge contained in e as
opened.

Theorem 1. Let c < 1/2 and ǫ > 0. Then there exists n0 such that

Pn(|Vt(κn)| = 0) > 1 − ǫκ−3/2

for all t ≤ cN , all κ ≥ 2 ln 2
(1−2c)2 , and all n > n0.

Our main result addresses the emergence of long cycles for sufficiently large t.
We expect that cycles of order N occur for all large times; here we prove a weaker

claim: cycles larger than N
1
2−ε occur for a “majority of large times”.

Theorem 2. Let c > 1 and a < 1
2 (1− 1

c ). Further, consider a sequence of positive
numbers (∆n) such that limn→∞ ∆nn/ log(2n) = ∞. Then there exists n0 such
that for all n > n0 and all T > cN , we have

1

∆nT

⌊(1+∆n)T⌋∑

t=T+1

En

( |Vt(Na)|
N

)
≥ 1

2 (1 − 1
c ) − a.

We can choose ∆n ≡ ∆ > 0, rather than a sequence that tends to 0. In this
case, Theorem 2 takes a simpler form, which perhaps expresses the statement ‘long
cycles are likely’ more directly.

Corollary 3. Let a ∈ (0, 1/2), ∆ > 0, and ǫ1 ∈ (0, 12 −a). Then there exists c > 1
and ǫ2 > 0 such that for n large enough we have

1

∆nT

⌊(1+∆n)T⌋∑

t=T+1

Pn

( |Vt(Na)|
N

≥ ǫ1

)
≥ ǫ2

for all T > cN .
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Electrical resistance of the critical branching random walk

Asaf Nachmias

(joint work with Antal A. Járai)

We study the electrical resistance of the trace of oriented critical branching random
walk (BRW) in low dimensions. This trace is obtained by drawing a critical
Galton-Watson tree T conditioned to survive forever and randomly mapping it
into Zd × Z+ in the following manner: we initialize by mapping the root of T to
(o, 0) and recursively, if V ∈ T was mapped to (x, n) and U ∈ T is a child of V ,
then we map U to (y, n+ 1) where y is chosen according to a symmetric random
walk distribution (we assume that this distribution has an exponential moment).
Denote by Φ : T → Zd × Z+ this random mapping. The trace we consider in this
paper is the graph induced by set of edges {Φ(V ),Φ(U)} for every edge {U, V } of
T .

It follows from the work of Barlow, Járai, Kumagai and Slade [1, Example
1.8(iii)] (who studied the much more difficult model of critical oriented percolation
(OP)) that when d > 6, the electrical resistance between the root and generation
n in the BRW is linear in probability. This enabled them to calculate various
exponents describing the behavior of the simple random walk on the trace. In
particular, they show that the mean hitting time of graph distance n is Θ(n3),
that the spectral dimension equals 4/3 and more, see [1].

They asked [1, Section 1.4, Example 1.8 (iii)] whether the resistance of the
critical BRW is still linear in n in dimensions 4 < d ≤ 6, that is, in any dimension
above the critical dimension 4 of OP [2, 3, 4, 5]. Here we answer their question by
showing that the resistance is O(n1−α) when d ≤ 5.

Theorem 1. Let R(n) denote the expected effective resistance between the origin
and generation n of a branching random walk in dimension d < 6 with progeny dis-
tribution that has mean 1, positive variance and finite third moment, conditioned to
survive forever. Assume that the random walk steps are symmetric, non-degenerate
and have exponential tails. There exists a universal constant α > 0 such that

R(n) = O(n1−α) .
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Unlike our firm understanding of anomalous diffusion in high dimensions, ran-
dom fractals in low dimensions are not (stochastically) finitely ramified. That is,
we do not see pivotal edges at every scale. This makes their analysis more chal-
lenging, even in the case of the critical BRW which is one of the simplest models
of statistical physics. Our argument heavily relies on the built-in independence
and self-similarity of the model to obtain recursive inequalities for the resistance.
We first show that intersections within the trace occur at every scale; these in-
tersections exist only when d < 6. Secondly, we show that the branches leading
to each intersection are themselves distributed as BRW, allowing us to bound the
electrical circuit using the parallel law and to form recursive estimates. There are
additional technical difficulties to overcome. For instance, when intersections do
not occur, the resistance is stochastically larger than it is unconditionally and one
needs to get adequate bounds on it. Calculating the precise polynomial exponent
which determines the growth of R(n) when d < 6 remains a challenging open
problem.

As mentioned before, it is believed that OP in d = 5 behaves similarly to BRW
hence we expect an analogue of Theorem 1 to hold. Presumably, the general setup
and proving existence of intersections can be done for OP (based on results of
[2, 3]). However, due to the lack of distributional self-similarity in OP it seems
difficult to obtain recursive bounds. Furthermore, we do not know whether the
exponent determining the growth of the resistance in OP in d = 5 should be the
same as the one for BRW (assuming they both exist).

It is easy to see (and stated in [1]) that the volume up to generation n of the
BRW trace is of order Θ(n2) in probability. Hence, Theorem 1 together with
the commute time identity shows that the mean exit time of the simple random
walk on the BRW trace from the ball of radius n in graph distance is at most
O(n3−α), i.e., much faster than the Θ(n3) in dimensions d > 6, see [1]. In fact, if
one calculated the exponent determining the growth of the resistance, then many
other random walk exponents (such as the spectral dimension, walk dimension
etc.) could be determined. In particular, if the resistance exponent exists, it fol-
lows from our results that the spectral dimension is strictly larger than 4/3.
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Band Permutations

Ron Peled

(joint work with Nayantara Bhatnagar, Alexey Gladkich, Mathew Joseph and
Partha Dey)

We consider two models of random permutations whose graph lies mostly within a
diagonal band - the Mallows model and the band-Poisson model. For the Mallows
model, we find the transition point for the emergence of macroscopic cycles and
prove that the cycle structure converges to the Poisson-Dirichlet law above the
transition point. Additionally, we provide a law of large numbers for the length
of the longest increasing subsequence. For the band-Poisson model we prove a
transition in the behavior of the longest increasing subsequence from a Tracy-
Widom to a Gaussian regime.
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Université Paris Sud (Paris XI)
Batiment 425
91405 Orsay Cedex
FRANCE

Prof. Dr. Frank den Hollander

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
2300 RA Leiden
NETHERLANDS

Prof. Dr. Margherita Disertori

Institut für Angewandte Mathematik
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Dr. Julien Dubedat

Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
UNITED STATES

Prof. Dr. Hugo Duminil-Copin
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SWITZERLAND

Prof. Dr. Nikolaos Zygouras

Department of Statistics
University of Warwick
Coventry CV4 7AL
UNITED KINGDOM


