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Inverse determination of glass viscosity and heat transfer coefficient
by industrial testing
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In the numerical optimization of a new robotized glass blowing method, convection coefficient and glass viscosity are considered
as parameters most influential in the forming process. Consequently, two tests in the industrial framework have been developed. In
the first, the temperature is measured by a pyrometer on a glass ingot moved in rotation by the robot. In the second one, the robot
holds the glass ingot vertically and the lengthening of the glass is recorded by video camera. In both cases, numerical modelling
coupled with the inverse method completes the identification procedure. Finally, the integration of the identified properties in the
modelling of the elongation of the glass considerably improves the representation of the real glass flow.

1. Introduction

To answer an increasing need for glass product manufac-
turing in both small and medium series, the first glass-
blowing robot has recently been developed by the
French company Cyberglass Robotics. This first speci-
men, used in production since July 2000 in crystal glass
manufacturing in Slovenia, gives a very high degree of
flexibility and authorizes the manufacturer to produce a 
wide range of articles, pushing away the current limi-
tations on weight and shape. The robotized forming pro-
cess consists of three stages:
 reheating of the glass ingot at the furnace exit,
 parison forming,
 final blowing in a product-shaped mould.

In the face of this new technology, which particularly
interests crystal glass-makers, experiments remain the
main decision-making element for the design of the ro
botized forming process. To reduce the adjustment time,
a numerical approach based on the finite element models
of the new technique glass blowing has been developed
[1 and 2].

First of all, a sensitivity analysis is performed in or-
der to find the parameters most influential in the blow-
ing success, which is expressed as a glass distribution in
the final product in agreement with the designer's speci-
fications. According to the numerical sensitivity analysis,
the coefficient of convection between the hot glass and
the ambient air and the glass viscosity law are among
the most influential material properties.
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For a long time, industrial and academic research
has been done in different fields of glass forming. In
1925, Vogel, Fulcher and Tammann were the first to
quantify the thermal dependence of the glass viscosity
rj(^) in a temperature range from 500 to 1400°C [3].
They used a logarithmic law, well-known as VFT (Vogel/
Fulcher/Tammann) equation:

\g(rj) =-A + 
B

{T- To) 
(1)

where A, B and are constants depending on the na-
ture of glass. Thereafter, this model has been used to
identify the viscosity of various kinds of glasses for other
temperature ranges according to experimental processes:
 by falling-ball viscosimetry between 700 and 900 °C

[4],
- by fibre elongation [5] or cone-plate rheometry be-

tween 530 and 800 °C [6],
 by cylinder compression between 580 and 660 °C [7].

In addition to the temperature, viscosity strongly de
pends on the glass composition. Lakatos et al. studied
this dependence and determined a relation between the
A, B, To constants and the percentage of elements which
composed a sodacalcic [8] and a crystal glass [9 to 11].

Heat exchange in glass is the second point on which
many studies have been undertaken. As with the vis-
cosity, the thermal parameters are dependent on the
glass composition and the temperature. In 1951, Sharp
and Ginther showed this dependence for the specific
heat [12] in the temperature range of 0 to 1300°C. On
the one hand, real conductivity can be given only for a 
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temperature range from 0 to 600°C [13]. Beyond that,
the radiation can not be considered as negligible. So the
real conductivity is replaced by the effective conductivity
determined from the diffusivity measurement [14].

During the forming process, glass cooling varies de
pending on time in the ambient air and contact with the
moulds. For these exchanges by convection and conduc-
tion, two effects are combined:
a) cooling following the contact of the two bodies and
very significant at high temperatures,
b) heating caused by the thermal radiation of the glass.

In the case of the glass exposed to ambient air, an
equivalent convection coefficient can be used to couple
these two effects [15]. It evolves linearly and is obtained
by adding the heat quantity lost by convection and radi-
ation. The total heat quantity is then dependent on the
air temperature, the glass surface temperature and the
equivalent convection coefficient. In the case of contact
between the glass and a mould, the thermal heat is de-
pendent on the temperature of the two bodies, but also
on the contact surface quality and the nature of the
materials. In 1961 IVIcGraw established a law for this
heat transfer as a function of the contact time [16].

Based on an inverse method applied to the identifi-
cation of the properties of materials (viscoplastic prop-
erty of an alloy aluminium [17], rheological property of
a steel [18], hardness estimation by a tension test [19],
elastic property of a cyhndrical inclusion [20]), the
identification tools were first of all extended to the deter-
mination of the rheological properties of glass used in
the numerical modelhng of tempering [21]. Thereafter,
this method was used to identify the optimum adjust-
ment parameters of glass forming processes. Such optim-
izers can now be used for a wide range of industrial ob-
jectives to:
 obtain a state of internal stress after the tempering of

a flat glass [21],
- determine the optimum geometry of a parison to ob-

tain a thickness distribution at the end of the robot-
ized forming process [22].

In this paper, we present two tests developed in the
industrial framework for the identification of the proper-
ties of convection and glass viscosity The identification
procedure is achieved by numerical modelling of the
tests coupled with the inverse method.

2. Industrial testing of the convection

To determine the coefficient of convection with the am-
bient air, the temperature evolution on the ingot surface
is taken. The robot brings the glass ingot to a horizontal
position with a continuous rotation of its arm which pre-
vents the flowing of the glass (figures la and b).

The experimental procedure is broken down into a 
phase of transfer between the furnace and the position

Figures la and b. Principle and method of measurement for the
industrial testing of the convection coefficient; a) measurement
principle, b) acquisition system.

of measurement, followed by a phase of cooling without
ingot deformation. A pyrometer TXG5 (AS Technologic
Langlade (France)) is used to take the temperature
measurement. This pyrometer has a wavelength of 5 )im
which allows one to take the temperature measurement
on the glass surface. The pyrometer is connected to an
acquisition station (A.O.I.P. SA 70). With a frequency
of acquisition of 0.14 s, seven readings are taken each
second. Each data collection lasts 6 min 30 s, in order to
cover the temperature field (500 to 850 °C).

With an arm rotation speed of 40 rpm, the same
point of the ingot periphery has an appearance cycle in
front of the pyrometer of 1.5 s with a measurement cycle
of 3 s. We can observe a slight temperature fluctuation 
due to the transfer of the ingot between the furnace and
the measurement point. The curves of figures 2a and b 
give the cooling on the surface of the ingot during the
tests. From these curves, we extract an average tempera-
ture evolution which represents the objective of the
identification.

To get several initial temperatures of the ingot at the
furnace exit, tests are carried out for various heating
times from 4 to 10 s. For each heating time, only one
acquisition is made per ingot, except for 8 and 10 s of
heating, where two tests are carried out. In order to
identify the convection coefficient, cooling is simulated
by a nonstationary I D axisymmetric thermal model
using the finite difference method in explicit formulation

-

-



Figures 2a and b. Acquisidon of the surface temperature of an
ingot; a) complete acquisition, b) appearance cycle in front of
the pyrometer (section 100 to 120 s as marked in a)).

[23]. The material properties for this modelling are listed
in section 7.1. The glass ingot's diameter is 0.07 m. The
finite difference model is composed of 11 nodes distrib-
uted regularly with a gap of AR  0.0035 m between
each of term (figures 3a and b).

The total cooling time varies from 396 to 400 s. The
numerical simulation begins with a transfer phase from
the furnace to the reading position and a period from 5 
to 9 s where the acquisition station begins reading. Dur-
ing this first phase, the ingot is in heat exchange with
the ambient air for a period of time varying from 15
to 19 s.

The aim of the identification is to determine three
parameters:
 i^init: initial temperature of the glass ingot,

 a and b: parameters describing the convection coef-
ficient h(d^) by a linear law: a^+b [15].

The identification of these parameters A^=3 is
undertaken to reduce the difference between the result of
the finite difference model and the temperature readings.

The number of comparison points M is 128, which
largely respects the conditions for use of the identifi-
cafion method, i.e. a number of comparison points M 
superior or equal to the number of parameters Â .

The identification is carried out by minimization of
the error function ¿"(i^init, a, b) defined by:

1 ^ 
£ ( # , , , t , a^b) - ^ { d i (# , , , t , b)  (2)

^  s  l 

with  i ^ ( # i n i t , ^, b) the response of the numerical simu-
lation for the surface node at the moment t^, and the
experimental reading of the surface temperature at the
same moment.

Selected initial values to start the identification
method are:
 initial temperature #init = 1000°C,
 a  0.22 W m -2 K^^ and 64 W m ' ^ K \ val-

ues deduced from the evolution of the convection co
efficient h(t) proposed by César De Sa [15].
At the beginning of the identification, the coefficient

of sensitivity and the Levenberg-Marquardt param-
eter  X are 0.01 and 0.1, respectively.

The idendfication of ^ini t ,  a and b, for each acqui-
sition, requires between four and five iterations. Table 1 
recapitulates the results obtained for each test. The aver-
age gap A^* which represents the average error between
the solution of the simulation with the identified param-
eters, and the experimental reading, is calculated by:

A ^ i ^ i n i t , a, b)  . (3)
\ \ M J 

The average gap gives a better representativeness of the
identification quality than the error function. For the

Figures 3a and b. Glass ingot for the industrial testing of the convection; a) real view, b) axisymmetric thermal finite difference model.
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Table 1. Identifieation results of a, b, i^inu

heating time in s 4 5 6 8test 1 8test 2 lOtest 1 1 0 t e s t 2

flin W m - 2 K - 2 0.128 0.135 0.142 0.151 0.141 0.112 0.112
/7in W m - ^ K - i -18.04 -23.40 -27.18 -30.70 -26.44 -13.06 -15.89
^mh in ° C 940 950 945 945 954 942 949
error 196 167 220 248 210 231 268
iterations 5 4 4 4 4 4 4
average gap AE in K 1.76 1.62 1.86 1.98 1.82 1.91 2.05

heating time in s : 

Figure 4. Evolutions of identified eonveetion coefficients ac
cording to the model /z a • d + ¿7 for the tests and average
convection coefficient  fl^ " ^ + ^ a -

various tests, the identification of each convection coef-
ficient gives an average gap lower or equal to 2 K (table
1), which corresponds to an average error of 0.4% for
an average temperature at the end of the reading of
518 °C. The different evolutions from each coefficient
identified are due to the modifications of the measure-
ment conditions and also to an ingot temperature which
is not perfectly homogeneous.

To be able to use the convection coefficient for the
numerical modelling of the robotized blowing [2], an av
erage convection coefficient is deduced from the pre-
vious identification (table 1) and the evolution of this
average convection coefficient k^(^) (figure 4) is de
scribed by the linear law given as:

K i ^ )  a.^  ^+ b.^  0.1328 • ^  22.06 (4)

with «a ^nd /?a as average parameters describing the
linear dependency of / / a (^ ) in regard to the temperature
# (figure 4).

With this average convection coefficient, an identifi-
cation of the initial temperature is carried out for all
tests. Then, according to the average convection coef-
ficient identified, determination of the initial glass tem-
perature is carried out a second time for each heating
time. Indeed, for this identification, the heating tempera-
tures are the same (4, 5 and 6 s).

The identification of the initial temperatures gives
the determination of the relation between the heating
time and the initial temperature. Thus it is possible to

identify the initial temperature according to the heating
time included in the interval of identification of 4 to 10 s.
The values of initial temperature used for the viscosity
identification are:
 #,nh(4s)  936°C,
 An.t(5s)  940°C,
 #,n,t(6s)  943°C.

3. Industrial testing of the glass viscosity

For the viscosity identification, the glass ingot is put in
a vertical position after heating, to be able to lengthen
it under its own weight. In this case, the experimental
procedure consists of a phase of transfer between the
furnace and the creep position, followed by a lengthen-
ing phase of the ingot without rotation of the robot arm.
To measure the lengthening, a video camera is placed in
front of the ingot during the vertical creep (figure 5).
The video recordings are digitalized in order to be able
to extract:

 the shape of the ingot before creep,
 the lengthening of the lowest point of the ingot.

The first information is used to define the initial geo-
metry of the ingot for the finite element model. The se
cond information provides the objective of the identifi-
cation.

For each heating time, the lengthening of the glass
ingot is read at the lowest point according to time. Three
phases of lengthening evolution (phase 1: acceleration,
phase 2: stabilization and phase 3: deceleration) are
found for the three different heating times (figure 6). The
temperature increase only influences the lengthening
levels obtained.

Thus the same modelling is used for the three types
of tests and only the initial temperature of the ingot is
modified. The lengthening test is simulated by an axi-
symmetric thermomechanical finite element model using
Abaqus software. The finite element mesh is composed
of 900 elements with four axisymmetric nodes and four
integration points (figure 7).

There are two stages to the simulation:
 the first one simulates the transfer between the fur-
nace and the position of measurement with only heat
transfer phenomena,
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Figure 5. Principle and
method of measurement on a 
glass ingot for the rheological
tests of the glass viscosity.
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Figure 6. Lengthening of the glass ingot measured for various
heating times.

 the second one reproduces the lengthening of the
glass ingot in complete thermomechanical coupling.

The various material properties for the finite element
model are listed in secfion 7.1. The inifial temperature
and the average convection coefficient given in equation
(4) are used.

The viscosity identification is carried out on vis-
cosity/temperature couples To avoid large differ-
ences between viscosities (2.91 • lO^Pas with 1000°C,
7.26 • 10+^ Pa s with 600°C), the idenfificafion is made
for three fields of temperatures in each phase observed
on the lengthening curves (figure 6) to get a good rep
resentativeness of the glass viscosity law. The error func-

Embedding and heat
insulation

Heat
insulation

/-Convection

4

Figure 7. Meshing of the glass ingot and boundary conditions
of the finite element model for the viscosity identification.

dons minimized for the three lengthening phases are
given by:

phase 1:

phase 2:

— 
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s  l 
(6)

phase 3:

EAne. rji, rjs, rjg) Zi " s * ( ^ 6 , ^ 7 , ^ 8 , rjg) u, (7)

where u* is the solution to the finite element simulation
in terms of lengthening of the lowest point of the ingot,
and Ws the lengthening measured at the same moment
ts. The inverse method (section 7.2) is now adapted to
minimize the error functions Ei (5), E2 (6) and £"3 (7).

The temperature values used for each phase of the
identification are:
 phase 1: # i=950°C, ^2  925°C, 1̂ 3  900 °C and

# 4  870°C, for a length of 27.5 s and  10 com
parison points,

 phase 2:^4  870 °C,  820 °C and  770 °C, for
a length of 50 s and M2  24 comparison points,

 phase 3: i^6  770°C, i^7  720°C, # 8  700°C and
1̂ 9  670 °C, for a length of 85 s and M3 33 com-
parison points.

The last temperature of a field is the first of the fol-
lowing phase to ensure the continuity between the
phases. For phase 3, the viscosity at 500 °C, calculated
by the VFT law (table 5, see section 7), is added to limit
the effect of the boundary values.

For the different identifications, the Levenberg-Mar-
quardt parameter is worth 10 and the sensitivity coef-
ficient is equal to 0.05 for phase 1, 0.5 for phase 2, and
0.1 for phase 3. For each phase, with large differences
between viscosities, different values for each sensitivity
coefficient must be used.

For each heating time, three identifications of the
couples (^i,  i^i) are used. For the first identification
phase, the initial values of the four couples (rj^, d^^) are:
 for the first identification (heating time of 4 s) calcu-

lated from the VFT law (table 5, see section 7),
 for the second identification (heating time of 5 s)

given by the first identification,
 for the third identification (heating time of 6 s) given

by the second identification.

For phase 2 ihQ A, B and parameters of the VFT
law (equation (1)) are determined thanks to the couples
(^i,  i^i) identified by the first phase. The initial values of
the three couples (rj^, #i) of phase 2 are calculated by
extrapolating the determined VFT law at the tempera-
ture  i ^ i . For phase 3, the same determination is carried
out by the calculation of the initial values of the four
couples (rji,  i^i) to be identified. The identification con-
verges to a good solution after a number of iterations.
All results obtained are recapitulated for the three
phases in tables 2, 3 and 4, respectively. For heating
times of 4, 5 and 6 s, the average gap AE (equation (3))
is respectively 1.32, 1.65 and 3.22 mm. The final length-

Table 2. Identification results for phase 1, field 1 

heating time in s 

viscosity in Pa 1 
^3

V4

4.84  • 10̂  5.71 • 10̂  7.65 • 10̂

error
iterations
average gap AE in mm 1.49

1.41 • 10̂
2.50  • 10̂
5.87  • 10̂
1.12  • 10-^
25

1.35  • 10̂  1.45  • 10^
2.34  • 10̂  2.38 • 10^
5.31 • 10̂  5.04  • 10̂
1.27  • 10"^ 2.19- 10-5
19 20
1.59 2.09

Table 3. Identification results for phase 2, field 2 

heating time in s 

viscosity in Pa s 
7̂4

^5

^6
error
iterations
average gap A "̂ in mm

5.34
7.03
2.37
2.87
34
1.55

10̂
10̂
105
10-5

4.83
6.74
2.49
4.02
32
1.83

10̂ 10^4.69
10̂  6.15 • 10^
105 2.25 • 105
10-5 4.76-10-5

56
1.99

Table 4. Identification results for phase 3, field 3 

heating time in s 

4 5 6

2.15 105 2.19 105 1.89 105
viscosity in Pa s fli 7.14 105 4.22 105 3.74 105

^8 2.23 106 6.63 10̂ 3.94 106
3.51 10̂ 6.59 10̂ 4.06 106

error 2.88 10-5 4.53 10-5 1.72- 10-^
iterations 24 26 21
average gap A^  in mm 1.32 1.65 3.22

ening for 4 s of heating time is 158 mm, for 5 s of heating
time 225 mm and for 6 s of heating time 294 mm. The
relation between this final lengthening and the average
gap is 0.8, 0.7 and 1.1% for 4, 5 and 6 s of heating time,
respectively. These variations are very small and figure 8 
clearly shows that the lengthenings, calculated by the f i -
nite element simulation with the identified viscosities,
are very close to the experimental lengthenings.

Figure 9 shows the identified viscosities and the aver-
age viscosity computed from tables 2, 3 and 4 for each
temperature level. The differences between the identified
values for the different tests at a temperature above
750X are low (inferior to 24.05 • 10̂  Pa s). Below this
temperature, the variation increases specially for the vis-
cosity identified in phase 3, where lengthening is stabi-
lized. As the working temperature range of glass is
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Time in s Time in s 
1,0 20 30 40 5,0 60 70 8,0 90

heating time in s : 

4

experimental lengthening
numerical lengthening

Figure 8. Lengthenings calculated by the finite element simu-
lation with the identified viscosities, and experimental lengthen-
ings.
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Figure 10. Experimental lengthening and lengthening calcu-
lated by the finite element model with the average viscosities
and the viscosities given by the VFT law.
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Figure 9. Identified viscosities for various heating times and
average viscosity.

higher than 800 °C, average viscosity can be used in the
modelling of the robotized glass blowing.

To check that this average does not generate large
errors, lengthening for the three tests is recomputed with
the finite element model. The same calculation is im
plemented with the viscosity given by the V F T law (table
5, see section 7) to determine whether the identification

improves the simulation or not. Figure 10 shows that the
lengthening obtained with the average viscosity better
reproduces the experimental lengthening. The average
gap AE (equation 3)) is divided by 5.6 for 4 s of heating
time, 13 for 5 s of heating time, and 3.2 for 6 s of heating
time, respectively.

Identification significantly reduces the error between
the numerical and experimental results. The finite ele-
ment models are considerably improved to optimize a 
forming process for example.

4. Conclusions

For the identification of two glass properties, convection
with air and viscosity law as functions of temperature,
two original tests have been developed in the industrial
framework employing a blowing robot.

For the first test, using the inverse method and finite
difference modelling, the average convection is identified
by means of pyrometer measurements. For the second
one, in which the inverse method is applied to thermo-
mechanical finite element modelling and which is based

Table 5. Glass material properties and respective values

material properties symbols values

density in kg/m^ 2494

specific heat in J kg~ ^ K~ ̂  2.9353 • 10-3 ^ 2 + 4 .0209 • # + 699.05
(0.00146 • 

1.01 1.45 1.94

conductivity in W m~^
600 °C 0 300 600

conductivity in W m~^
4.53 9.35 20.7 42.03

. i^> 600°C 700 900 1100 1300

viscosity in Pa s Igto) -1.9458 + 
5407

{ê- 174.5)

convection/air coefficient in W m"^ 0.22  • d  64

-

= 
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on video camera recording, the average glass viscosity
law is clearly identified. Finally, the integration of the
identified properties in the modelling of the elongation
of the glass ingot has considerably increased the rep-
resentation of the real glass flow.
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6. Appendices

6.1 Set of material properties for the numerical modelling of
the industrial tests

The set of glass material properties used for the process model-
ling are listed in table 5. This set of properties are proposed by:
 Sharp for specific heat [12],
 Primenko and Van-Zee for conductivity [13 to 14],
 Scholze for the viscosity law [8],
 Cesar De Sa for the coefficients of convection with the ambi-

ent air [15].
The initial mould temperature is 150°C.

6.2 Inverse method and identification procedure for the tests

The identificadon method used is based on an iterative diagram
in three stages. The aim is to determine N parameters p, in order
to reduce the difference between the objective solution / and
the numerical soludon/*(/?], /?2, Pn)- The error function E, 
to be minimized, is expressed by:

1 ^ 
E{pi,P2, ...,Pn) ^ S  0's{P\,P2. ....Pn)f (8)

with

(9)r , ( /7 , , /?2 , ....Pn) =J?(P\,P2, -.Pn) fs 

a n d / = l ,

where  M is the number of comparison points.
The resolution uses an iterative algorithm developed by Lev-

enberg-Marquardt [20]. At iteration k, the corrections dp, on
the parameters /?, are obtained by the resolution of the follow-
ing system:

[{J'^y  + ' I] dpj'  (J^y (10)
where  X is the Levenberg-Marquardt parameter and / is the
idendty matrix with terms only on the diagonal equal to 1. The
jacobian matrix J of the error funcdon Eip^, p2, ...,Pn) is expo-
ressed by:

^ Or,  dff 

dp, dp, 

with s=\,...,M and / = ! , . . . , # .

(11)

-
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-
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Lsi, the terms of the jaeobian matrix, are approximated by finite 
differences. A sensitivity coefficient Sp is added to the algorithm
for the calculation of the partial derivative of each parameter:

^riPuPl. •••,Pn) fiP^^APi) -riPuPl. -^Pn) 

Api
(12)

with Apj  Pi Sp . 

The Levenberg-Marquardt parameter  X simultaneously de
termines the direction and the size of the correction dp. Mar-
quardt has shown that if this parameter tends to the infinite,
the direction will take the greatest slope and the correction will
be smaller.

The complete algorithm for the minimization of the error
function £(/?!, /?2, Pn) (equadon (8)) is:
 determination of the initial values of the parameters pt^\ the

sensitivity Sp and the Levenberg-Marquardt parameter A^^ ;̂
 calculation of the numerical solution of the problem

PiP\^ Pi^ Pnf^"^^ and determination of the error function
E{puP2. -.PnY^h 

 for an iteration k > \: 
a) calculation of the jaeobian matrix /̂ ^^ by solving an approxi-
mation by finite differences;
b) determinadon of the parameter correcdons d;?/̂ ^ by the res-
oludon of the relation (10) and computadon of /?/̂ "̂ ^̂  ^ 

+  d/7/^>;

c) calculation of the numerical solution of the problem/^(/^j,
P2, ...,pn)^^^^^ and the error function E(pu Pi, Pnf^^^l
d) verification of the convergence of the solution E{p\, P2, 
pJ'^'^<Eip,,P2, ...,pj'': 

 if the convergence is checked and the error is lower than the
stop criteria, the identification is finished, 
 if the convergence is checked and the error is higher than

the stop criteria, the identification continues (stage / ) ,
 if the convergence is not checked, multiply the Levenberg-

Marquardt parameter X^^^ by 10 and begin again at stage c);
f) reduction of the Levenberg-Marquardt parameter X^^^; 
increment k io I, 
begin again at stage a).

Contact:
Prof D. Lochegnies
LAMIH
Université de Valenciennes
Le Mont Houy
F-59313 Valenciennes Cédex 9 
E-mail: dominique.lochegnies@univ-valenciennes.fr

-

= 

-

-

-

-
-

-




