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For (semi)transparent glass, i t is suggested to distinguish between an active and a passive thermal conductivity. Essentially, the latter
is attached to the heat transfer through long-range photons most o f which are both emitted and absorbed outside the glass volume,
the former to the heat transfer through phonons and short-range photons which have an intense energy exchange w i t h the glass.

As the temperature distribution in the glass volume can be influenced only by the heat exchange in which the glass is actively
involved, i t is determined by the active thermal conductivity. The sum o f the active and the passive thermal conductivity, which is
identical to the so-called apparent thermal conductivity, indicates the overall heat flux through the glass.

Like the apparent thermal conductivity, the active thermal conductivity can be obtained from the prototype o f thermal conduc-
t ivi ty measurements where the heat flux through a sample between two heat reservoirs o f different temperatures is measured. The
apparent thermal conductivity follows from the usual reduction o f the measurement data, the active thermal conductivi ty is derived
via  a differentation rule. Comparing the calculation and the measurement o f the temperature inside  a cooling block o f glass, this
differentiation rule is verified.

Aktive Wärmeleitfähigkeit heißen Glases
Es wi rd vorgeschlagen, bei (halb)transparenten Gläsern zwischen einer aktiven und einer passiven Wärmele i t fäh igke i t zu unterschei-
den. Letztere beschreibt i m wesenthchen den W ä r m e t r a n s p o r t durch Photonen mi t langer freier Weglänge, die zum g r ö ß t e n Teil
auße rha lb des Glases emittiert und absorbiert werden, erstere den W ä r m e t r a n s p o r t durch Phononen und Photonen m i t kurzer freier
Weglänge, die mit dem Glas intensiv W ä r m e austauschen.

Die aktive Wärmelei t fähigkei t beschreibt die Temperaturverteilung i m Glas, da diese nur von dem W ä r m e a u s t a u s c h bee inf luß t
werden kann, an dem das Glas aktiv teilnimmt. Die Summe aus aktiver und passiver Wärmele i t fäh igke i t , die mi t der sogenannten
anscheinenden Wärmelei t fähigkei t identisch ist, gibt den gesamten W ä r m e f l u ß durch das Glas an.

Wie die anscheinende Wärmelei t fähigkei t kann auch die aktive Wärmele i t fäh igke i t aus dem prototypischen M e ß a u f b a u für
Wärmelei tfähigkeiten gewonnen werden, bei dem der Wärmef luß durch einen P r o b e n k ö r p e r gemessen w i r d , der sich zwischen zwei
Wärmereservoi rs unterschiedlicher Temperatur befindet. Die anscheinende Wärmele i t fäh igke i t folgt aus der üb l ichen Auswertung
der Messung, die aktive Wärmelei t fähigkei t über eine Differentiationsregel. Durch den Vergleich zwischen der berechneten und der
gemessenen Temperatur i m Inneren eines abkühlenden Glasblocks w i r d diese Differentiationsregel verifiziert.

1. Introduction
Usually, the thermal conductivity is defined as the physi-
cal quanfity measured by the following experiment (fig-
ure 1): Two opposite sides of a sample are held at differ-
ent temperatures, at T a n d at r + AZ: By lateral thermal
insulation, it is cared for that the resulting temperature
gradient in the sample is uniform over each cross-sec-
tion. The resulting heat flux is measured. With most
materials, one finds a linear proportionality between the
temperature gradient AT/Az, Az being the sample thick-
ness, and the heat flux density j . The constant of pro-
portionaHty is called the thermal conductivity  K [1,
p. 214],

J=
AT

Ä7 (1)

With this linear proportionality given, heat transfer
problems can be characterized by a differential equa-
fion, the heat transfer equafion. It is derived from the
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microscopic equation corresponding to equation (1),
j  —K'VT, and the continuity equation V y  

 Q  Cp  dT/dt  (Q: mass density, c^: specific heat at con
stant pressure, t: time) [1, p. 215]:

Q- Cp 
dT

dt
 -V '(K  VT) . (2)

This equation can also be used as the starting point for
thermal conductivity measurements, e.g. measurements
by heat pulse methods [2]. Being the prototype of ther-
mal conductivity measurements, the steady-state method
already described, however, is better suited for principal
considerations and will always be referred to in the fol-
lowing.

In glass, there are two mechanisms which contribute
to the total heat transfer, the phononic thermal conduc-
tion and the heat transfer via thermal radiation. In
(semi)transparent glasses, the particular features of the
latter affect both the interpretation of the thermal con-
ductivity measurement and the applicability of the result
to heat transfer problems. To a certain extent, however,
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Figure 1. Principal set-up o f a thermal conductivi ty measure-
ment.
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Figure 2. Microscopic mechanism o f thermal conduction. I t is
assumed that the energy coming from each interaction point is
equally distributed among the six directions indicated.

these difficulties may be overcome if one distinguishes
between an active and a passive thermal conductivity, as
suggested in this paper.

In the following, the characterization of both the
phononic contribution to the thermal conductivity and
the radiative heat transfer in opaque glasses will be re-
capitulated first. Considering the particular features of
the radiative heat transfer in (semi)transparent glasses,
the distinction between the active and the passive ther-
mal conductivity will be introduced.

2. Phononic contribution to the thermal
conductivity
For the phononic contribution, which is the major one
at temperatures below about 400 °C, the microscopic the-
ory of Debye gives [3]:

'̂ phononic ^  <̂V ^   ^ ? (3)

where cy is the specific heat at constant volume, / and t»s
are the (mean) free path length and the (mean) velocity
of the phonons, respectively.

To arive at this equation, one has to consider that
the thermal energy of a solid is carried by vibrational
excitations or phonons, which are capable of a wave-like
motion through the glass volume. Due to the regular
scattering and other interaction processes the phonons

are subjected to, this motion is a drift process. (The in
teraction processes bring about a re-arrangement of the
phonon distribution. Any deviation from the equal dis-
tribution of the thermal energy among all types of
phonons is thus corrected. So these processes are re
sponsible for the local thermal equihbrium.)

The distance a phonon may cover before it is sub
jected to the next interaction is called the free path
length /. In the following, it is assumed that / is a con
stant number and that the interaction processes take
place at fixed points in space.

To calculate the resulting heat flux density in the di
rection of the temperature gradient, one has to consider
the net phonon flux density passing one interaction
point  X (figure 2) . It is the difference of the flux densities
coming from the two neighbouring interaction points
X- Tz and x + l-z. f is the unit vector with the direc
tion of the temperature gradient. As all directions are
equal at an interaction point, it can be assumed that
both from x-Tz and from x + / -z , one sixth of the
phonons moves towards f. With mix-l-z) and
mix + l-z) being the corresponding phonon densities,
the resulting net flux density is {m{z + l)l6 
- m{z-I)l6)'V,  - m-dmldz-l-v^. 

As  m is proportional to the local energy density
\/3-dm/dz' I'Ds is equivalent to an energy flux density

j l/3-deldz-l'v, m-deldT-dTldz-l-v,. With
Q-Cy  de/dT (e denotes the energy per volume, whereas
Cy denotes the specific heat per mass; so  Q has to be
introduced in this equation), the resulting expression for
yis:

1 ; dT 

3 dz 

This corresponds to equation (3).

(4)

3. Radiative heat transfer in opaque glass
In an opaque glass, the radiative heat transfer is similar
to the phononic thermal conduction and may anal-
ogously be characterized by a radiative thermal conduc-
tivity. The thermal conductivity measured with the
prototypical experiment (figure 1)  the effective ther-
mal conductivity  is the sum of the phononic and the
radiative contribution:

'̂ effective '̂ phononic r̂adiation • (5)

With the same argument as for the phononic thermal
conductivity, the following expression can be obtained
for the radiative thermal conductivity [4]:

r̂adiation
16

3
(6)

where n is the refractive index, cr is the Stefan-Boltzmann
constant, and is the Rosseland mean for the absorp-
tion coefficient (see equation (8)) .
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To derive this expression, one starts considering the
energy flux density which is given by a similar expression
as in section 2., j 1/3  • deldz -I'Vi/n. This time,  e is
the density of the energy stored in the radiation field
- as photons - , / is the inverse of the absorption co-
efficient k, and Vi/n is the velocity of hght (vacuum
velocity of hght divided by the refractive index). Usually,
the absorption coefficient depends on the wavelength
X so that the energy flux density has to be calculated
separately for each: j \ 1/3 • de/dz  • • v\ln 

 1/3  • de/dz  • \lk{X)  • Vi/n (the wavelength dependence
of  n is suppressed). The integration over all wavelengths

00
gives the total radiative energy flux density j j jx dA.

0

Due to the intense exchange of energy through ab
sorption and emission in opaque glasses, there is strong
coupling of the atomic vibrations - the phonons - and
the radiation field - the photons  and thus local
thermal equilibrium of both. Therefore, e^ is given
by 471 times Planck's expression [5, p. 22] for the equilib-
rium spectral intensity over the velocity of light, i.e.
4 7 1 -^ (2 , T)/(vx/ny 

(The spectral intensity / indicates the amount of
radiation energy moving in a certain direction, per unit
wavelength interval, per unit solid angle, per unit area
normal to this direction, per time. The energy density
is obtained from this through division by the velocity of
light and integration over the whole solid angle. Because
of the local thermal equilibrium, / is identical to
Planck's function BJ(...,x,y,z)  B(X,T(z)), and,
consequently, e^(z)  An-B{X,T(z))l{v\ln) is valid. Be-
cause of the coupling of temperature and radiation, a 
temperature gradient gives rise to a gradient of / , which
results in a preferred direction of the energy transfer
through alternating photon emission and absorption.)

With the relation ex{z)  An-B{X,T{z))l{pxln) and
dBldz  dB/dT'dT/dz, the total radiative energy flux
density j is:

471 . ^1 7j dB(X,T) 
3 n 

1

dT
(7)

1

vi/n k{X) 
dX

dT

~d^

With the Rosseland mean

0 dT  0 dT k{X) 
(8)

and the identity

n- ^B(X,T) äl n^-a-T\ 
0

the expression for j can be rewritten as:

(9)
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Figure 3. Internal spectral transmission o f D U R A N ® glass,
sample thickness 3 m m , at an intermediate temperature (500 C)
o f the described cooling experiment (solid line). To indicate the
spectral range o f interest, Planck's function at the in i t i a l tem-
perature (570 C) o f this experiment is also given (dashed Une).
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This corresponds to equation (6) for the radiative ther-
mal conductivity.

As it has been said at the beginning of this section,
the effective thermal conductivity is the phononic plus
the radiative term:

1 , 16 , (J
/Ceffective ^ ' Cy  Q ' • I +  • ' 

3  3 / : R
T \ (11)

Due to its last factor ( r ^ ) , the radiative term is strongly
temperature-dependent. As it has been already said, it is
less important than the phononic term at temperatures
below about 400 °C, but equal or more important than
that at higher temperatures.

4. Radiative heat transfer in transparent g lass
In the following it will be shown that considering glass
which is transparent for a part of the electromagnetic
spectrum (figure 3), i.e. glass where the free path length
of those photons is bigger than the dimension of the
glass volume, it is helpful to distinguish between an ac
tive and a passive thermal conductivity.

Essentially, the active thermal conductivity shall de
termine the heat flux, which is actively transferred via
phonons or photons with a short free path length.
(These photons are subsequently emitted and absorbed
in the glass volume so that the latter is actively involved
in the transfer of them.) The passive thermal conduc-
tivity shall indicate the flux of the photons with a long
free path length which therefore may pass the glass with-
out interaction, being both generated and deleted out-
side the glass volume. The sum of the active and the
passive contribution corresponds to what has been
called apparent thermal conductivity [6]. (To match the
nomenclature of section 3., the term "effective thermal
conductivity" could always be used when the sum of the
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phononic part and a radiative contribution is addressed.
This would lead, however, to long expressions like
"apparent effective thermal conductivity".)

It is the latter quantity which comes out of the proto-
typical thermal conductivity measurement (figure 1) if
the data are evaluated as usual. As it cannot be affected
by those photons which are neither emitted nor ab
sorbed in the glass, the temperature distribution in a 
piece of glass, however, is determined by the active ther-
mal conductivity only. This is especially important for
cooling processes.

Provided that measurements at samples with differ-
ent thicknesses Az, Az ± dz have been made, this quan-
tity may be determined via the prototypical experimental
set-up also. As it will be shown, the active thermal con-
ductivity is then obtained from the different heat fluxes
y,y ± d/by:

1

A r 1 \ 
(12)

\ Az / 

As it has been mentioned, the apparent thermal conduc-
tivity follows from an as usual"-data reduction:

'̂ apparent
A r / A z

(13)

The passive thermal conductivity is given by the differ-
ence of the apparent and the active thermal conductivity.

Equation (12) can be derived considering how the
various components of the heat flux in the prototypical
thermal conductivity measurement depend on the
sample thickness Az. For this derivation, it will first be
assumed that with respect to the sample thickness Az,
the absorption coefficient k{X) is either close to zero or
almost infinite, i.e. either k(k)- Az < 1 or k(X)'Az  > 1 
is valid. The wavelengths for which the first equation is
true will be indexed with t (At, as transparent), the others
with  o ( y l o , as opaque).

Implicitly, this assumption has already been made,
when the distinction between photons with a short free
path length and photons with a long free path length
was made. As it has been said, the temperature distri-
bution inside a piece of glass will then be exactly deter-
mined by the heat transfer equation (2) with K  K^ctWe,
i.e. inserting the active thermal conductivity.

I f photons with a medium free path length are in
volved also, the exact calculation will require a lot more
of mathematical effort. In contrast to the photons with
a long free path length, these photons have a non-negli-
gible effect on the temperature distribution. In contrast
to the photons with a short free path length, their local
intensity is not determined by the local temperature be
cause the coupling between them and the phonon field
(to which the local temperature refers) is too small. So
their intensity has to be calculated separately, which in
cludes the solution of an integro-differential equation

[7]. If this is to be avoided, a suitably defined thermal
conductivity is required, which when inserted in the heat
transfer equation will at least lead to a good approxi-
mation of the exact temperature distribution. Later it
will be shown that the active thermal conductivity is
a reasonable quantity in this case also, not only on
the present assumption that either k{X)'Az  < 1 or
k(X)  • Az ^ 1 is valid.

For the wavelengths for which k{X)-Az> 1 is vaHd,
the consideration leading to equation (7) for the flux
density is again vahd:

J AO

4K dB(X^, T) 1 áT

k(Áo) dz
(14)

In contrast to equation (14), the existence and the inten-
sity of a photon flux with wavelengths for which the
glass is transparent cannot be derived from the glass
properties and the temperature distribution but depend
on the boundary conditions. If, for instance, the glass
sample is sandwiched between two black bodies, the cor
responding flux density is given by [5, p. 21]

=-(K  B { X , , T+AT)-n- B(X,, T)) 

dB(Á,, T) . áT (15)
- TC • -

dT
•Az

dz

i.e., the difference of the surface radiations of the two
black bodies. (To calculate the surface radiation, the
spectral intensity has to be projected on the normal to
the surface (cosine law) and integrated over the half
sphere. Reflexion effects at the surface are suppressed.)
In the second (approximate) equation, ATlAz has been
replaced by d77dz on the right side which is exactly true
for a linear temperature profile T{z) only.

Remarkably, the expression for j ^ , almost equals the
expression for jx^ if the sample thickness Az is inserted
as free path length.

So the active thermal conductivity is given by:

1
^active  Cy'Q'V,'l + 

^ 4 7 1  , dBjKT) 1 ^ .
+ • aA ; 

3  i dT k{X)

(16)

J means the integration over all wavelengths for which

the glass is opaque.

For black bodies as boundaries, the passive thermal
conductivity amounts to:

^passive  71  • Az • J 
dB{X, T) 

It dT 
dA, (17)

/ means the integration over all wavelengths for which
At

the glass is transparent.

The sum of both the active and the passive contri-
bution is the apparent thermal conductivity:
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1 4n , dB{X,T) 
âpparent Cy'Q ' • I + ^ \ 

ST (18)

k(X) i dT 

As it has been already said, it is this apparent thermal
conductivity which is measured by the prototypical
experiment if the latter is evaluated according to equa-
tion (13). To obtain the active thermal conductivity, the
measurement data have to be evaluated according to the
differentiation rule (equation (12)). This follows from the
relation of the heat flow j and the sample thickness Az:

1 AT 4n 

3 Az 3 

dB{k, T) 1
-d/l

L l ST 

from which follows

1

k{X)

AT,

1

A r

 K- (19)

A r 1

3 2o

Az/

dB{X,T)

(20)

dT k{X)

So under the condition that either k{X)' Az < 1 or
k(l)- Az > 1 is valid, the following two theses are true:
First, the temperature distribution in a piece of glass de
pends on the phonons and the photons with a short free
path length only, the effect of which is exactly charac-
terized by the active thermal conductivity. Second, the
active thermal conductivity can be determined from the
experiment of figure 1 via the differentiation rule (equa
tion (12)).

Strictly speaking, neither statement may be made if
radiation is involved the absorption coefficient of which
has the order of magnitude of the sample thickness, i.e.
k{X) • Az ~ 1 is valid. As it has been said, the transfer
of this radiation has to be calculated separately for
an exact solution of the heat transfer problem. The
latter will have particular features in most cases. In case
of a glass which fulfills the condition that either
k(X}  • Az <̂  1 or /c(/l) • Az > 1 is valid, the temperature
profile of a coohng glass plate, for instance, has a para-
bolic shape. If a significant amount of radiation with
k(yi)' Az  1 has to be taken into account, it is closer to
a higher-order power law profile ẑ "", a > 1 [8], (figure 4).

As it has been said also, the computational effort
necessary for an exact solution of the heat transfer prob-
lem is immense. To avoid it, a suitably defined thermal
conductivity is required which when inserted in the heat
transfer equation will at least lead to a good approxi-
mation of the exact temperature distribution.

glass cube:

cold surface

intermediate zone

hot centre

parabolic
temperature distribution

 non-parabolic
temperature
distribution

Figure 4. Temperature distr ibution i n a cooling glass cube (the
shading intensity inside is proport ional to the temperature). I f
the heat transfer inside is exactly characterized by the active
thermal conductivity, the temperature distr ibution is parabolic.
I f not, the temperature distr ibution has "temperature j u m p s " at
the surface and a flat shape in the centre, bo th typical features
o f radiative heat transfer i t photons are involved the free path
length o f which has the same dimension as the cube geometry.

transparent

intermediary
1/mm to  1/m

\
\ opaque

1 / A z

Figure 5. Normal ized flux density versus inverse sample thick-
ness for the different contributions to the heat transfer.

Remarkably, the differentiation rule (12) gives a 
reasonable quantity for that purpose so that the term
"active thermal conductivity" may be attached to the
result of equation (12) in general, not only on the as
sumption that either k(X) • Az <^ I or k(X) • Az > \ is
valid. This is not clear a priori and, therefore, a remark-
able fact. It can be made plausible considering the way
how the various parts of the heat flux depend on the
inverse sample thickness 1/Az (figure 5).

As it has been explained, both the phononic heat
flux, y'phononic, ^ud the radiative heat flux at wavelengths
for which the glass is opaque, ŷ ,̂ are proportional to
ATlAz. With the temperature difference AT having a 
constant value, this is equivalent to a linear relation be
tween these two contributions and 1/Az. In contrast to
this, the radiative heat flux at wavelengths for which the
glass is transparent, y^j, is independent of Az or 1/Az (see
[9] for comparison). The latter, however, is true only as
long as the condition k{X)  • Az <̂  1 is valid. For samples
with the thickness Az being bigger than \lk{X)  it is
assumed that k{X) is not exactly equal to zero, which
will never be the case in real glass  almost the whole
corresponding radiation will be completely absorbed at
least once on its way through the sample. Even if the
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Figure 6. Thermal conductivity o f D U R A N ® glass versus tem-
perature for sample thicknesses 37.5 m m and in f in i ty

whole energy involved were re-emitted at the original
wavelengths (in reality, the absorbed energy is distrib-
uted among the vibrational modes and, according to
Planck's law, the whole radiation field), only one half
would move on in the original direction. Because of the
re-emission being isotropic, the other would be sent back
to where it came from. Therefore, is not independent
of the sample thickness for very large values of the latter.
(The classification as opaque or transparent refers to
technically relevant values of Az.) In the limit of infinite
sample thickness, there is always a similar linear re
lationship to 1/Az as for In the diagram, this
results in a saturation curve with the bending point at
Az(X)  l/k(A). 

In the intermediate case, the bending point of the
saturation curve lies in the region of the technically rel-
evant values of Az, i.e. k(X)- Az  1 is valid for them.
The corresponding flux density is indexed with "i" for
intermediate: j ; , . .

According to the differentiation rule (12), the slope
of each of these curves is proportional to the corre-
sponding contribution to the active thermal conduc-
tivity. The constant of proportionahty is the temperature
difference A T which according to the presupposition has
a constant value for all experiments. It can be eliminated
by introducing the normalized flux density y , which is
the quotient of the heat flux density  j and the tempera-
ture difference  A J ! So the active thermal conductivity is
given by:

Az

(21)

At low values of 1/Az and high values of Az, respectively,
the differentiation rule yields the sum of all zero point
slopes as active thermal conductivity. (The sum of all
zero point slopes is equal to the radiative thermal con-
ductivity so that the latter is characteristic for all glasses

if the thickness is infinite.) This corresponds to the fact
that above a certain thickness, the glass is opaque for all
wavelengths. In the opposite limit, the differentiation
rule sifts the phononic contribution from all the radia-
tive ones. This in return corresponds to the fact that be
low a certain thickness, the glass is transparent for all
wavelengths.

At the intermediate values of Az  the technically
important ones , the differentiation rule counts the full
zero point slopes of both y'phononic and As j \ has a 
constant amount, it is not taken into account. For
the differentiation rule yields an intermediate value. Ob
viously, the latter is more reasonable than any alterna-
tive. Calculating the contribution to the thermal conduc-
tivity from the difference quotient jxJ{\IAz) instead of
the differential quotient djyd{\IAz) means proceeding
according to the definition of the apparent thermal con-
ductivity and will lead to an overestimation of the effect
of j % . Calculating the contribution of j% from the equa-
tion jx  -4n/3-dB(X,T)ldz  • l/kiX) (which comes to
calculating with the radiative thermal conductivity as de
fined by equation (6)) will even lead to a higher value if
l/k{X) > Az is valid. On the other hand, it is not justified
to neglect this radiation completely.

An obvious lack of this concept is its being derived
from a one-dimensional consideration. However, this is
of practical importance only in those cases when the ac
tive thermal conductivity strongly depends on the exact
value of the dimension Az. Above that, the heat transfer
aspect is close to that of a glass plate in most practical
cases.

5. Verification of the concept of the active
thermal conductivity by a cooling experiment
Figure 6 shows the active and the apparent thermal con
ductivity of D U R A N ® glass (Schott Glaswerke, Mainz
(Germany)) for sample thicknesses 37.5 mm and infinity
(where both are equal and identical to the phononic
thermal conductivity plus the radiative thermal conduc-
tivity as defined by equation (6)).

The necessary measurements have been carried out
according to the principle given in figure 1. For a techni-
cal realization, the test specimen was sandwiched be
tween two identical reference samples the thermal con-
ductivity of which was known (comparative heat flux
technique). This stack was placed between a heat source
and a heat sink. After reaching thermal equihbrium,
there was a constant heat flux through the sandwich
(there were two reference samples to make sure that this
was really the case) and a corresponding temperature
distribution which was measured with thermocouples.
From the temperature gradient along the reference
samples and the thermal conductivity of them, the heat
flux was calculated.

For the coohng experiment, a glass plate ( D U R A N ®
glass, 75 mm thickness) was installed in an oven with a 
sapphire window, equilibrated at 570 °C and sub
sequently cooled down at 20Kyh. Figure 7 shows the
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experimental set-up and figure 8 the difference between
the maximum and the minimum temperature in the
plate, A r , as well as the surface temperature as a func-
tion of the time after the start of the cooling. The three
theoretical curves for A r have been calculated on the
basis of the different thermal conductivities from figure
6, i.e. the active thermal conductivity, the apparent ther-
mal conductivity, and the sum of the phononic thermal
conductivity and the radiative thermal conductivity as
defined in equation (6).

The experimental curve for A T was determined with
a spectral radiometer (grating instrument) measuring the
radiation emitted from the middle of the glass plate per-
pendicular to the surface. This radiation was recorded at
both a wavelength for which the glass is opaque (3.6 pm)
and a wavelength for which the glass is semitransparent
(2.5 pm). At a typical temperature for the coohng ex-
periment (500 °C), the corresponding absorption co-
efficients of D U R A N ® are k(3.6[im)  16cm'^ and
/c(2.5pm)  0.56 cm"^ respectively.

Consequently, the intensity measured at 3.6 pm
(̂ 3.6 [im) exclusively derived from the glass surface. So the
following equation holds:

h.e^m  fs.e^m  ' ^(^surface, 3.6 pm) (22)

/3.6|im is a cahbration factor allowing for the reflexion
losses of the radiation at the emergence from the glass
and at the sapphire windows, for the sensitivities of both
the monochromator and the detector of the spectral
radiometer, for the spot size measured, and for the solid
angle involved. It was derived from  a measurement in
the equihbrated state before the cooling which must re-
produce the temperature of 570 °C measured by the ther-
mocouples of the oven control. From the subsequent
measurements at 3.6 pm, the formation of the surface
temperature during the cooling is derived.

If one assumes that the temperature distribution in
the glass along the axis of observation is given by a pa-
rabola with  a crown height AT, and if one takes into
account, first, that the intensity of the locally emitted
radiation is given by the product of the absorption coef-
ficient and Planck's function, and, second, that the
intensity emitted towards the spectral radiometer is at-
tenuated by e"̂ ^̂ *̂̂ "̂̂ '̂̂  with  z being the distance be-
tween the point of emission and the glass surface, the
intensity measured at 2.5 pm must be given by:

oven

/2.5mn=/2.5nm-^(2.5pm)-

• / B{Tiz), 2.5 pm) • Q-k(2.5^m)-z ^ 
0

(23)

e.g.

B(T{0),...)  + k{2.5m) 
dB

dT (24)
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Figure 7. Set-up o f the cooling experiment.
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Figure 8. Experimental and calculated values for the difference
between maximum and m i n i m u m temperature o f a cool ing
glass plate (AT: solid lines) as well as the surface temperature
measured (dashed line). Approximately 500 s after the start o f
the experiment, the surface temperature decreases synchron-
ously w i t h the oven temperature. For A r , the time offset after
which  a steady state is reached amounts to about 3000 s. This
steady state is not characterized by a constant value o f A T but
a shgthly increasing one, reflecting the decreasing value o f the
thermal conductivity (whatever definit ion for the thermal con-
ductivity is taken).

D is the thickness of the glass plate (75 mm). The cali-
bration factor was again derived from an advance
measurement at the equilibrated glass when AT 0 was
valid. From the subsequent measurements of /3.611m and
h.5\x.ra^ the formation of A T with time was determined.

For the theoretical curves, the temperature profile
along the axis of observation was calculated with the
surface temperature measured as boundary condition.
As expected, the correspondence between the exper-
imental curve and the theoretical curve calculated with
the sum of the phononic thermal conductivity and the
radiative thermal conductivity is least. The correspond-
ence with the theoretical curve calculated with the ap
parent thermal conductivity is not satisfactory also. The
best fitting theoretical curve is derived with the active
thermal conductivity.
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6, Conclusion
For glass which is completely transparent for a part of

the electromagnetic spectrum and completely opaque for

the rest of it, the temperature distribution is exactly de

termined by the active thermal conductivity, which can

be obtained from a differentiation rule. Remarkably, the

active thermal conductivity determined via this differen-

tiation rule leads to a good approximation of the tem

perature distribution inside the glass even if there are

spectral bands where the coefficient of absorbance has

the same order of magnitude as the inverse geometrical

dimension of the glass.

Strictly speaking, the characterization of the heat

transfer problem by a single parameter  however de

fined  is not possible in this case. On the other hand,

the active thermal conductivity determined via the dif-

ferentiation rule gives  a good result if one only needs an

approximate temperature information.

The authors wish to thank M r . T. K o r b and M r . H . Krümmel ,
Schott Glaswerke, Mainz , for their experimental support.

7. Symbols

B Planck's function
Cp specific heat at constant pressure
Cv specific heat at constant volume
e energy density
ex derivative o f the energy density o f the radius wi th

respect to the wavelength
/ spectral intensity
j heat flux density
7^ normalized heat flux density
7phononic phononic heat flux
jx derivative o f the radiative heat flux w i t h respect to

the wavelength
jx^ radiative heat flux at wavelengths for which the glass

under consideration is neither opaque nor trans-
parent

jx^ radiative heat flux at wavelengths for which the glass
under consideradon is opaque

jxy radiative heat flux at wavelengths for which the glass
under consideration is transparent

k absorption coefficient
/TR Rosseland mean for the absorption coefficient
/ free path length
m density o f either phonons or photons
n refractive index
T absolute temperature
Dx vacuum velocity o f light
Us mean phonon velocity

X, y, z spatial coordinates
X, y, z unit vectors in the direcdon o f the spatial coordinates
X radius vector

K thermal conductivity
'̂ active active thermal conductivity o f a (semi)transparent

glass
'̂ apparent apparent thermal conductivity of a (semi)transpar-

ent glass
'̂ effective effective thermal conductivity of an opaque glass
'̂ passive passive thermal conductivity o f a (semi)transparent

glass
'̂ phononic phonon contribution to the thermal conductivity
^radiation radiation contribution to the thermal conductivity of

an opaque glass
(optical) wavelength
wavelength for which the glass under consideration
is neither opaque nor transparent

K wavelength for which the glass under consideradon
is opaque

K wavelength for which the glass under consideradon
is transparent

Q density
o Stefan-Boltzmann constant

A r temperature difference
Az difference in sample thickness
d/dx operator o f total differentiation wi th respect to the

variable x 
operator o f partial differentiation wi th respect to the
variable x 

V Nabla operator
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