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Comparison of the diffusion approximation and the discrete 
ordinates method for the investigation of heat transfer in glass 
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Heat transfer by combined conduction and radiadon has been investigated in a one-dimensional glass layer. The layer is semitrans­
parent to radiadon and the dependence of the absorption coefficient on wavelength is accounted for. The discrete ordinates method 
and the diffusion approximation are used to analyze radiative transfer. The differencing scheme for the discrete ordinates method 
has been investigated to obtain the constant total heat flux distribution across the glass layer as required by the energy conservation 
equation, and the best uniformity is obtained with the diamond scheme. The results predicted by the discrete ordinates method are 
in good agreement with those based on the exact (integral) equation formulation of radiative transfer. The diffusion approximation 
greatly underpredicts the temperature and heat flux distributions in the glass layer when the thickness or the opacity of the layer is 
small. The predictions of the diffusion approximation are only reasonable for thick glass layers. This approximation should be used 
with extreme caution to obtain quantitatively accurate results. 

Vergleich des Diffusionsansatzes und der Methode der diskreten Ordinaten zur Untersuchung des Wärmetransports in Glas 

Die Wärmeübertragung durch Leitung und Strahlung wird in einer eindimensionalen Glasschicht untersucht. Die Schicht ist semi­
transparent gegenüber der Wärmestrahlung, die Abhängigkeit des Absorptionskoeffizienten von der Wellenlänge ist bekannt. Die 
Methode der diskreten Ordinaten und der Diffusionsansatz werden angewandt, um die Wärmeübertragung durch Strahlung zu 
analysieren. Das Differenzenschema für die Methode der diskreten Ordinaten wurde untersucht, um die konstante gesamte Vertei­
lung des Wärmeflusses über die Glasschicht zu erhalten, wie es die Energieerhaltungsgleichung verlangt. Die beste Übereinstimmung 
wird mit dem „diamond"-Schema erreicht. Die nach der Methode der diskreten Ordinaten vorausgesagten Ergebnisse stimmen gut 
mit denjenigen überein, die mit der exakten (integralen) Gleichung der Wärmeübertragung durch Strahlung erhalten werden. Der 
Diffusionsansatz unterdrückt die Temperatur- und die Wärmeflußverteilung in der Glasschicht zu stark, wenn die Dicke oder die 
Lichtundurchlässigkeit der Schicht klein ist. Die Voraussagen dieses Ansatzes sind nur für dicke Glasschichten aussagekräftig; er 
sollte mit großer Vorsicht angewendet werden, damit man quantitativ richtige Resultate erhält. 

1. Introduction 
In the manufacturing and processing of glass it is 
necessary to predict the temperature for process design 
and control purposes. Since glass is a semitransparent 
(translucent) material at high temperatures, radiation 
can become an important or dominant heat transfer 
mechanism. Exact and approximate formulations for 
radiative transfer in glass are available [1 and 2]. Prob­
ably, the simplest approach is to consider radiation to 
be a diffusion process and to introduce the concept of 
the radiative conductivity which is analogous to the 
phonon thermal conductivity. However, serious ques­
tions have been raised about the validity of the 
approximation near interfaces and for glass of small 
spectral opacity. 

The discrete ordinates method (DOM) has recently 
become populär and is commonly used for predicting 
radiative transfer in participating media [3], because it 
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is compatible with the finite-difference or finite-volume 
methods used in computational fluid mechanics and 
heat transfer. However, the DOM does not appear to 
have been applied to predict the temperature distribution 
and heat transfer in hot glass when the spectral absorp­
tion coefficient ranges over almost three Orders of mag­
nitude in the spectral region between 0.4 to 5.0 pm [4]. 

The purpose of the present paper is to examine the 
DOM and the diffusion approximation for predicting 
radiation transfer in a layer of glass and particularly 
near interfaces. Α simple one-dimensional physical Situ­
ation is considered which allows for a very critical as­
sessment of these two methods by comparing the tem­
perature distributions and heat transfer results based on 
these two approaches with those based on the exact for­
mulation of radiative transfer [1]. Clear float and green 
glass are taken as typical examples, and spectral absorp­
tion coefficients reported in the literature [4] are used in 
the calculations. The requirement to predict accurately 
the temperature distribution and heat transfer near the 
boundaries and the need to identify an accurate and 
computationally efficient method for radiative transfer 
have motivated the work reported in the paper. 
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Figure 1. Schematic of the physical model and coordinate 
S y s t e m . 

2, Analysis 
2.1 Model equation 

Consider heat transfer weithin a plane layer of glass 
shown in figure 1. On the bottom the glass is in contact 
with an opaque material which is taken to be a diffuse 
reflector and emitter of radiation. The glass is heated 
from above with high-temperature combustion gases. 
This is intended to simulate the conditions in a glass 
melting furnace, refmer or forehearth [2]. It is assumed 
that the top surface of the glass is optically smooth and 
specularly reflecting. At the free surface the glass layer 
is heated by convection from hot combustion gases and 
by radiation from the gases and hot refractory surfaces. 
Heat transfer by convection is estimated by specifying 
the convective heat transfer coefficient h, and the refrac­
tive index of combustion gas is assumed to be unity. 
Heat transfer through the opaque boundary at the bot­
tom is calculated by specifying the overall heat transfer 
coefficient U. Heat transfer within the glass layer is by 
combined conduction and radiation; advection is neg­
lected. The glass is assumed to be a homogeneous, ab­
sorbing and emitting material, and scattering is neg­
lected in comparison with absorption. In addition, the 
following assumptions are made in the analysis: a) the 
medium is at local thermodynamic equilibrium for 
which Planck's and Kirchhoff's laws are valid; b) the 
spatial dimensions of the medium are much larger than 
the wavelength of radiation for the semitransparent 
band, i.e., the coherence effects are neghgible; c) the re­
fractive index of the medium does not depend on the 
temperature in the considered ränge. 

Under the physical Situation considered, the one-di­
mensional energy equation in the glass layer is 

_d_ 

dz 

or 

dz 

-k — + F = constant. 
dz 

(1) 

This equation states that the sum of the conductive 
(-kdT/dz) and the radiative fluxes (F) is constant at 
any horizontal plane in the layer. The divergence of the 
radiative flux is obtained by integrating the divergence 
of the spectral flux over the part of the spectrum in 
which the glass is considered to be semitransparent to 
radiation, 

. _ ^ C U t j - ^ c u t 

= J -j^dX= J KA^nnlhdnz)]-G,(z)}dX (2) dz 

where the cut-off wavelength y^cut indicates the wave­
length for which the medium is considered to be opaque 
to radiation. The spectral radiative flux and the spec­
tral irradiance θχ are defined as 

F,(z) = 2n J h{zφ)μdμ 
- 1 

and 

G,{z) = 2n ί ΙλΜ^μ 
- 1 

(3 ) 

(4) 

respectively. In these equations Ιχ{ζ,μ) denotes the spec­
tral radiation intensity which is a function of the direc­
tion μ (=cos Θ) at any position z. The divergence of the 
radiative flux defined in equation (2) is obtained by solv­
ing the radiative transfer equation (RTE) within the 
semitransparent (absorbing and emitting) medium [2]. 

To solve the energy equation (1), boundary con­
ditions are required at each interface of the glass layer. 
These conditions are obtained from energy balances. 
The interface energy balance provides the following re­
lation for the top surface of the layer. 

-k 
dT 
dz 

+ β ο ρ π 

= h[T(z = H)-T^ 

( 5 ) 

where Cop is the emissivity for the spectral ränge where 
the glass is considered to be opaque to radiation. 

At the bottom of the layer, the boundary condition 
can be expressed as 

dr 
dz 

U[T(z = 0)-T,^^] 

' ^ c u t - ^ c u t 

/ π4Λ [Γ(ζ = 0 ) ]αΑ- ; F f (ζ = 0) d l 
0 0 

(6) 

where is the emittance of the opaque bottom, which 
is assumed to be diffuse and gray. 

2.2 Radiative transfer model - discrete ordinates 
method 

The radiative transfer equation (RTE) for a spectrally 
absorbing-emitting medium can be written as [2] 



^ = κΑη}^Α[ηζ)]-Ι,(ζ,μ)} 
dz 

(7) 

where Ιχ{ζ,μ) is the spectral intensity of radiation, which 
is a function of position, direction and wavelength, and 

is the spectral intensity of blackbody radiation 
given by Planck's function. The boundary condition for 
equation (7) at an optically smooth free surface from the 
interface conditions between the glass and the bounding 
entity is written as 

Ι,{Η,μ) = [1 - Q,i4i)\ N L I ^ U R ) + QÄ(M) Ιχ{Η,μ') · (8) 

The direction cosines μ and μ' are related through Snell's 
law. The interaction of radiation at the smooth interface 
between two dielectric media is governed by Fresnel's 
law [2]. The directional reflectivity, ρχ{μ), of the interface 
between two dielectric media of different refractive indi­
ces is obtained by combining Fresnel's equation for re­
flection and Snell's law for refraction. 
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Figure 2. Speetral absorption eoefficients for soda-lime float 
glasses. 
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where Ρ χ = Vi -ηΙ{\ -μ^) and μ^ήι is the critical angle 
given by Snell's law [3]. The boundary conditions at the 
opaque surface of the bottom is similarly written as 

7,(0,//) = ε^/ι|4,[Γ(ζ = 0)] + (1 -eJ/,(0,//') . (10) 

The radiative transfer equation, equation (7), for a spec­
trally emitting and absorbing medium along a specified 
discrete direction μ^ can be expressed as 

Equation (12) is applicable to the case where μ"^ is either 
positive or negative. 

Α differencing scheme was introduced in order to re­
duce the number of the unknowns in equation (12). The 
spectral radiative intensity, /5j>, at the center of the con­
trol volume can be related to the intensities at the con­
trol surfaces (I^^, /Ĵ J by 

/rp = (l-/z)^?u+/z/rd. (14) 

The value of the weighting factor must be restricted 
within the ränge of 0 < < 1. Taking/^ = 0.5 yields 
the diamond or central differencing scheme proposed by 
Carlson and Lathrop [5], and taking f, = 1 yields the 
step or upwind differencing scheme. In addition, positive 
[6] and exponential [5] schemes are tested to check the 
sensitivity of the results to the differencing scheme. 

dir 
dz 

= KAnIhÄinz)]-IT} . 

This ordinary differential equation must be solved for 
every direction μ^ to determine the spectral radiation 
field Ι,(ζ,μ). 

The spatially discretized radiative transfer equation 
in terms of the radiative intensities on the control sur­
face can be obtained by integrating over the control vol­
ume, and the fmal form of both directionally and spati­
ally discretized algebraic equation is expressed as 

_ \μ^\ΐυ/. + ηΙκ,ΑζΙ^,^ρ  

\μ^\^f,^κ,Az 

where 

Δζ = |zu-Zd| . 

(11) 2.3 Thermophysical and radiative properties of 
glass 
The soda-lime glass is widely used and is taken as an 
example for the purpose of the present study. The ther­
mal conductivity of the soda-lime glass is given by an 
empirical relation by Mann et al. [7]. 

The refractive indices and the absorption coefficients 
of the soda-lime glasses reported by Rubin [4] are used. 
Figure 2 shows the absorption coefficients for two types 
of glasses. The absorption coefficient κχ of clear float 
glass is relatively small in the visible and near infrared 
parts of the spectrum. Float glass has a good trans-

(12) mission in this spectral region. Green glass has relatively 
higher values of the absorption coefficient. Both glasses 
are considered to be opaque to radiation for wavelengths 
larger than the cut-off wavelength Acut, which is assumed 
to be 5 pm. The emissivity in the opaque spectral region 

(13) (A ^ Aeut) is βορ = 0.9. 
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Figure 3. Effective thermal conductivity for soda-lime glasses. 

2.4 Radiative transfer nnodel - diffusion 
approximation 

Rigorous analysis of radiative transfer is rather complex 
and requires considerable Computer resources. Thus, in 
order to simplify the analysis, a number of approximate 
approaches have been suggested [1, 8 to 10]. The Rosse­
land diffusion approximation is the simplest and the 
most commonly used approach. It has been known to 
glass scientists and technologists for a long time. Using 
this approximation, the radiative flux in a one-dimen­
sional plane layer can be expressed as 

dT 
dz 

(15) 

where k^ is the radiative conductivity of the material 
defmed as 

4n nlldh άλ 
\ dT 

dl. (16) 

This conductivity is known as the Rosseland radiative 
conductivity. Even though the diffusion approximation 
is very simple it breaks down in the vicinity of the 
boundary and/or when the opacity of the material is not 
sufficiently large. 

The effective thermal conductivity is the sum of the 
phonon thermal conductivity and Rosseland thermal 
conductivity given by equation (16). The spectral ab­
sorption coefficients reported by Rubin [4] are used to 
calculate k^. Figure 3 shows a comparison of the calcu­
lated effective thermal conductivity and the measured 
data [9 and 10]. The effective thermal conductivities cal­
culated for the float and green glasses are in good agree­
ment with measured results and, therefore, are used in 
the present analysis. 

2.5 Method of Solution 
Since the energy equation is nonlinear when radiative 
transfer has been included, the Solution is obtained 
numerically. The finite volume method is used to solve 
the thermal energy equation. Both the diffusion approxi­
mation and the discrete ordinates method are used to 
calculate the radiative transfer as described in subsec-
tions 2.4 and 2.2, respectively. 

The accuracy of the discrete ordinates method de­
pends on the choice of the quadrature set. Although the 
choice is arbitrary, a completely Symmetrie quadrature 
is preferred in order to preserve geometric invariance of 
the Solution [11]. IVIoreover, the di rect ional dependence 
of specularly reflecting boundaries is affected by the 
choice of the quadrature set to be used, because the 
weight represents a part of the area on a unit sphere for 
each ordinate direction, and the average value of re­
flectivity within the ränge of a weight varies with the 
type of the quadrature set. Thus, the dependence of re­
flectivity on quadrature sets was examined [12], and the 
level Symmetrie odd (LSG) q u a d r a t u r e was found to 
yield improved results for larger refractive index 
{n = 1.50). In the present study, an average value of the 
refractive index over the whole spectrum is used 
(n = 1.49), and the Sg LSG quadrature is adopted. 

For a one-dimensional problem, the integral (exact) 
Solution of the radiative transfer equation is available 
[1 and 13], but it requires much Computer time to evalu­
ate the exponential integral functions numerically and 
accurately. Since the integral functions include spectral 
radiative properties [1], the number of numerical inte-
grations required greatly increases with the opacity of 
the medium. In order to obtain the results using the inte­
gral formulation [1 and 13], an accurate numerical Inte­
gration scheme is needed. The ten-point Gaussian quad­
rature is used for the numerical Integration by dividing 
the interval between the two nodes into ten uniform seg­
ments. The Gaussian quadrature is adopted for the small 
interval of each segment. 

The grid spacing used is nonuniform and is more 
compact near the bounding interfaces. This was done in 
order to resolve the steep spatial changes in the physical 
variables expected in these regions. Α sensitivity test for 
the grid size has been carried out, and a 51 nonuniform 
grid has been found to be enough to obtain accurate 
numerical results using the discrete ordinates method 
with the diamond scheme. Thus, the 51 nonuniform grid 
is preferably used. Otherwise, it will be mentioned. 

The Variation of the spectral absorption coefficient 
of the soda-lime glass with wavelength is not a smooth 
function and must be approximated. The most straight­
forward procedure is to use a band approximation. In a 
band model approach, a series of finite spectral intervals 
is used where the absorption coefficient is assumed to be 
constant at the average value in each interval. An eight 
spectral band model is used employing the data reported 
by Rubin [4]. 



Table 1. The Computer time and the number of iterations when 51 grid is used for float glass; values i n parenthesis indicate the time 
elapsed on an IBM W o r k s t a t i o n RS6000 

Hinm 

diffusion DOM integral 

Hinm CPU time in s no. of iterations CPU time in s no. of iterations CPU time in s no. of iterations 

O.Ol 0.02 12 1.31 84 0.17 84 
(17.97) (143.73) (12432.13) 

0.1 0.03 17 14.75 898 1.33 901 
(18.12) (1521.88) (8338.56) 

1.0 0.17 102 454.25 15069 61.37 16001 
(18.55) (50998.97) (39452.22) 

The energy equation is solved iteratively until the 
relative error in temperature and radiative intensities be­
tween two sequential iterations is less than 1 · 10"^. 
Thus, the constant total flux distribution over the glass 
layer as required by the energy equation (1) is obtained. 

3. Results and discussion 
3.1 Description of pinysical nnodel 

There are a large number of model parameters, thermal 
conditions, etc., that describe the glass layer and its 
physical Situation; therefore, it is necessary to be selec­
tive. The dimensions of the layer considered here and 
the temperature conditions are as follows: 

thickness: 
gas temperature: 
surrounding temperature: 
ambient temperature: 
convective heat transfer 
coefficient: 
overall heat transfer coefficient: 

Η = O.Ol, 0.1, 1.0 m, 
T g a s = 1800 K, 

T s u r = 1800 K, 

7 ;^b = 300 K, 

h = 100 W / ( m 2 K), 
U = 100 W / ( m 2 K). 

The surroundings are also assumed to be black and at 
the same temperature as combustion gas (T^^j. = T g a s ) . 

The spectral incident intensity is evaluated using 
Planck's function, / b / i ( ^ s u r ) - The emissivity of the opaque 
bounding wall may be chosen arbitrarily; but, the wall 
is assumed to be black for the sake of simphcity The 
opaque boundary may be the surface of a thick wall, 
and the heat loss through it is expressed in terms of the 
overall heat transfer coefficient U. In glass melting Sys­
tems this coefficient is a function of temperature and can 
be calculated from the knowledge of the refractories and 
their thicknesses. 

3.2 Model Validation 
Table 1 shows the Computer time and the number of 
iterations required for a nonuniform grid of 51 nodes for 
float glass. For the diffusion approximation the Com­
puter time and the number of iterations are relatively 
small. For the exact integral equation formulation [1 and 
13] for radiative transfer, they are relatively large due to 
the numerical Integration. Moreover, to obtain the accu­

rate Solution with the integral formulation, 51 grids are 
not sufficient, particularly when the layer thickness is 
small or large. As the layer thickness increases, the inter­
val between the two Integration limits also increases, and 
the numerical accuracy decreases. As the layer thickness 
decreases, the exponential integral function [3] varies 
sharply and a more accurate evaluation of integral is re­
quired. The results based on the integral formulation re­
ported in the paper were obtained with a finer grid Sys­
tem, resulting in the increase of Computer time greater 
than a factor of two or three. These results are not in­
cluded in table 1. When the DOM is used, the Computer 
time and the number of iterations are moderate for rela­
tively thin ( / / = O.Ol or 0.1 m) layers, but they are much 
larger ΐοΐ Η = 1.0 m. 

The discrete ordinates method is used to solve the 
radiative transfer equation (7) and to calculate the radi­
ative flux from equation (3). The flux obtained is used 
to solve the overall energy equation (1). As already men­
tioned, the energy equation (1) states that the total heat 
flux is constant at any plane in the layer. For the results 
obtained using the diffusion approximation, the total 
heat flux is constant over the layer regardless of the layer 
thickness and the grid size. However, the same is not 
always true for the results obtained using the discrete 
ordinates method. Figures 4a and b show heat flux dis­
tributions with various spatial differencing schemes. 
Only the total flux calculated with the diamond scheme 
is constant over the layer thickness as shown in figure 
4b. This is due to false scattering which is artificially or 
numerically introduced by the spatial differencing 
schemes in the discrete ordinates method [14]. The con­
ductive fluxes are nearly the same for the different 
schemes used as shown in figure 4a. Chai et al. [14] 
showed that the step scheme produces greatly smeared 
intensity fields by false scattering, whereas the diamond 
scheme produces less smearing. When the diamond 
scheme is used, however, some of the control surface 
intensities are negative and this is physically unrealistic. 
Thus, in general, to prevent the intensities from being 
negative, the resulting negative intensities are set to zero 
by the negative intensity modification ("fix-up") pro­
cedure [5]. The control surface intensities are set to zero 
to reduce the extent of false scattering. Regarding the 
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Figures 4a and b. Heat flux distributions with differencing 
schemes for float glass with Η = 1.0 m and 51 grid; a) conduc­
tive and radiative heat fluxes, b) total heat fluxes. 

term "false scattering", Jessee and Fiveland [15] have 
suggested and used the term "numerical smearing" in­
stead of the former. From now on the phrase numerical 
smearing is employed in the paper. 

Figures 4a and b reveal that the total fluxes obtained 
with the step scheme are highly nonuniform. The weight­
ing factors of the positive or exponential schemes have 
values between 0.5 and 1.0, i.e., between the weighting 
factors of the diamond and step schemes. Thus, these 
two schemes also induce the numerical smearing and 
produce the nonuniform total flux distributions. 

Table 2 shows that the total heat fluxes calculated 
with the diamond scheme are constant to within six or 
seven digits, but the fluxes with other schemes are con­
stant only to within two or three digits even though the 
grid used is fme. Of the spatial differencing schemes ex­
cept for the diamond scheme, the relative error for the 
positive scheme is the least and the relative error for the 
step scheme is the largest. With regard to the uniformity 
of total heat flux, the positive scheme is acceptable for 
Η = O.Ol m, but the accuracy is not sufficient for the 
thick layers. For Η = 1.0 m, only the diamond scheme 
exhibits a good total heat flux uniformity. 

When the spatial differencing scheme is used, grid 
refmement results in an improved uniformity of the 
total heat flux distributions as shown. An example for 
Η = 1.0 m is illustrated in figure 5. The positive scheme 
with a grid larger than 401 nodes exhibits an acceptable 
uniformity of the total heat flux, but for the exponential 
scheme a grid larger than 501 nodes is needed. However, 
for the thick layer (H = 1.0 m), the uniformity of total 
heat flux can not be obtained even with 501 grid and the 
positive scheme. If the opacity of the layer increases (i.e., 
as would for a green glass), a much greater number of 
nodes is required to obtain a constant total heat flux 
with the positive or exponential schemes. Therefore, even 
though the uniformity obtained by the positive scheme 
is gradually improved as the grid size increases, figure 5 
shows that the diamond scheme is the best choice to 
obtain the constant total heat flux distributions. 

In order to obtain the constant total flux distri­
bution, the diamond scheme is used to obtain the results 
reported in this paper. However, the negative intensities 
caused by the diamond scheme at some control surfaces 
cause another problem. If the negative intensities are 
eliminated or not amplified during the Iteration, con-
verged Solutions are obtained. Otherwise, the calculation 
scheme diverges. Even though converged results are ob­
tained, the Solutions can be distorted due to the oscil­
lations caused by the undershoots (negative intensities) 
and the overshoots (intensities higher than the incident 
intensity) [16]. This is also unreaUstic. In the present 
study, the distorted Solutions do not appear. However, 
as indicated by Chai et al. [16], the fine grid can not be 
used, parücularly for thick layers, because the negative 
intensities cause the Iteration scheme to diverge. When 
Η = 1.0 m, a grid larger than 51 nodes causes the calcu­
lations to diverge. 

3.3 Tennperature distributions 

The temperature distributions calculated using the dif­
fusion approximation, the discrete ordinates method and 
rigorous integral equation formulation for radiative 
transfer are shown in figures 6 to The temperature 
distributions predicted by DOM and the integral formu­
lation are nearly identical and are not distinguishable 
from each other in the figures shown in the paper. Fig­
ures 6a to f show that the difference between the tem­
perature distributions obtained with the diffusion 
approximation and the discrete ordinates method is 
large. The difference is primarily due to the fact that 
the long-range energy transport by radiation cannot be 
predicted by the diffusion approximation, particularly 
when the opacity of the glass layer is small. It is well-
known that the predictions of the diffusion approxi-

2̂  Note that in figures 6 through 8 the temperature distributions 
obtained using DOM fall practically on top of those based on 
the integral (exact) formulation, and separate curves could not 
be clearly indicated in the figures. 



Table 2. Uniformity of total heat flux in kW/m^ with differencing schemes for float glass; values in parenthesis represent the percent 
errors relative to the flux obtained with the diamond scheme 

Η mm differencing schemes (- (-

O.Ol diamond 135.989 135.989 
step 136.029 (0.029) 134.116 (1.377) 0.5000 
positive 135.990 (0.001) 135.983 (0.004) 0.3455 
exponential 135.991 (0.002) 135.933 (0.041) 0.4373 

0.1 diamond 119.088 119.088 
step 120.659 · (1.319) 109.261 (8.252) 0.4686 
positive 119.164 (0.064) 118.628 (0.386) 0.4373 
exponential 119.280 (0.161) 117.851 (1.039) 0.4373 

1.0 diamond 31.400 31.400 
step 53.662 (70.90) 25.873 (17.60) 0.4686 
positive 39.389 (25.44) 28.539 (9.11) 0.3159 
exponential 42.131 (34.18) 27.721 (11.72) 0.4063 

(~̂t)max occurs at Z/H = 0 or 1. (-̂t)min occurs at Z/Hl^I^. 
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Figure 5. Heat flux distributions with grid size for Η = 1.0 m. 

mation become closer to the exact Solutions as the opac­
ity of the medium increases [1]. The difference is larger 
for the float glass than for the green glass. 

The temperature distributions predicted by the dif­
fusion approximation for the two glasses are nearly lin­
ear (figures 6a and b). Since the layer thickness is small 
and the temperature ränge is small (i.e., about 1181 to 
about 1221 Κ for float glass and about 1140 to about 
1248 Κ for green glass), the effective conductivities can 
be assumed to be constant. The temperature gradient is 
smaller for float glass than for green glass, because the 
effective conductivity is large, and thus the thermal re­
sistance to heat conduction is small compared to the 
green glass. Accordingly, the heat flux is larger for the 
float glass compared to the green glass (see tables 3 and 
4), and this is due to the larger effective conductivity of 
float glass. 

For Η = 0.1 m (figures 6c and d) the temperature 
distribution predicted by the diffusion approximation 
become closer to that obtained by DOM when com­
pared to that of the thin layer {H = O.Ol m), especially 
for the green glass layer. However, the difference between 
the temperature distributions is still significant. For the 
float glass layer, the temperature predicted by DOM in­
creases a little near the free surface (z/H = 1 ) and de­
creases in the vicinity of the opaque surface as shown in 
figures 6c and d. Thus, the temperature gradients at the 
surfaces greatly differ from those obtained by the dif­
fusion approximation (table 3). For the green glass layer 
(table 4), the difference between the temperature distri­
butions decreases, especially near the opaque surface, 
and the gradients are closer to each other than for the 
float glass. 

For Η = 1.0 m, the temperature distributions pre­
dicted by the diffusion approximation become much 
closer to those predicted by DOM as shown in figures 
6e and f The difference between the temperature distri­
butions predicted by the two methods still exists, but it 
is much smaller in comparison to the thinner layers. For 
the green glass, the temperature differences at ζ = 0 and 
ζ = Η = 1.0 m are 5.0 Κ and 61.5 K, respectively The 
difference between the temperature gradients at each 
surface for the float glass layer is a littie larger, but for 
the green glass layer the gradients are nearly the same, 
and the errors are within 10 % as shown in table 4. 

3.4 Heat transfer 
Figures 7a to f show the heat flux distributions. The role 
of conduction and radiation for heat transfer across the 
glass layer is clearly shown in these figures. As the layer 
thickness increases, the opacity of the layer increases and 
radiative transfer plays a much more important role in 
the transfer of heat. 
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perature distributions 
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Table 3. Total heat flux and temperature gradients for float glass 

- ^ t in kW/m^ άΤ/άζΙ^ο in K/m dr/dzU^ in K/m 

Η inm diffusion DOM integral diffusion DOM integral diffusion DOM integral 

O.Ol 88.098 135.989 
0.1 70.184 119.088 
1.0 24.190 31.400 

135.9045) 
118.998^) 
31.093^) 

4264.9 12310.5 
6679.8 12614.9 

16227.7 16365.7 

12171.45) 
12685.2^) 
16265.5^) 

3742.6 6012.9 
2086.7 4677.8 

349.4 1161.2 

6135.55) 
4748.9^) 
1197.6^) 

5)101 grid. 6)201 grid. 7) 301 grid. 

Table 4. Total heat flux and temperature gradients for green glass 

-q, in kW/m2 άΤ/άζ\,=ο in K/m dr/dzU^ in K/m 

7/ in m diffusion DOM integral diffusion DOM integral diffusion DOM integral 

O.Ol 84.006 132.849 
0.1 49.654 81.223 
1.0 10.505 11.093 

132.7855) 
81.042^) 
10.531^) 

12571.4 21478.4 
20696.6 25273.1 

8526.6 8979.6 

21522.65) 
25330.8^) 

8548.5^) 

9456.3 6322.2 
3333.6 3632.4 
437.0 473.4 

6382.95) 
3680.5^) 
488.7^) 

5)6)7) See table 3. 

For the thin layer (H = O.Ol m), the opacity is rela­
tively small, and the temperature varies in a smaller 
ränge than for the thicker layers (figures 6 to 8). Hence, 
the conductive transfer is relatively important when con­
sidering the results obtained by DOM. The ratio of the 
conductive flux to the total (conductive plus radiative) 
flux is in the ränge of about 7.1 to about 18.2% and 
about 9.7 to about 32.1 % for the float and green glass, 
respectively. The ratio is small near the semitransparent 
surface and large near the opaque boundary. The inci­
dent radiation is absorbed much more strongly near the 
free surface, and the radiant energy transmitted toward 
the opaque boundary decreases as the opacity of the 
glass layer increases. Thus, phonon conduction is more 
important near the opaque boundary. For thicker layers 
this trend is clearly shown in figures 7c to f On the other 
hand, the total flux calculated by the diffusion approxi­
mation is underestimated by factors of 1.54 and 1.58 for 
the float and green glass layers of Η = O.Ol m, when 
compared to the flux calculated by DOM (figures 7a and 
b, tables 3 and 4). The radiative flux is nearly constant 
over the entire layer for the float and green glasses. This 
is due to the fact that the diffusion approximation does 
not properly resolve the characteristics of the longrange 
energy transport by radiation. Thus, it is clear that the 
diffusion approximation fails for a medium of small 
opacity. 

As the layer thickness increases, the role of radiation 
becomes more important. Figures 7c and d show that 
the role of radiation in the float glass is larger than in 
the green glass. The maximum ratio of the radiative flux 
to the total flux calculated by DOM is 97.1 % in the 
float glass and 90.8 % in the green glass, even though 
the total flux is smaller in the green glass due to the large 

opacity The maximum radiative flux ( - i O m a x occurs in 
the core of the layer, and the radiative flux at the free 
surface is smaller than the maximum even though the 
temperature at the free surface is higher. This is due to 
the Volumetrie nature of emission and absorption of 
radiation and is clearly shown in figure 7c. The incident 
radiation is absorbed more strongly in the core than near 
the free surface. When heat transfer is only by radiation, 
there is a temperature discontinuity in the immediate 
vicinity of the surface [3]. However, in the presence of 
conduction the temperature continuity is insured. In the 
present Situation, the radiative flux decreases and the 
conductive flux increases towards the surface. Moreover, 
the total heat flux across the layer must be constant. 
This is more clearly evident when the opacity of the me­
dium is small and can be easily noted by comparing fig­
ure 7c with figure 7d. 

For Η = 1.0 m (figures 7e and f), the maximum radi­
ative flux occurs in the region very close to the free sur­
face. The maximum flux occurs at z/H = 0.965 in the 
float glass layer and at z/H = 0.991 in the green glass 
layer. The maximum radiative flux is much closer to the 
total flux. The incident radiation is almost entirely ab­
sorbed in the core and phonon conduction predominates 
over radiation near the opaque boundary At the opaque 
boundary, the ratio of the conductive flux to the total 
flux is 70.5 % in the float glass, but the ratio is 99.2 % 
in the green glass. For the green glass, the incident radi­
ation is primarily absorbed in the core region and little 
is transferred to the opaque boundary. The total flux 
predicted by the diffusion approximation is also much 
closer to the total flux predicted by DOM. The radiative 
flux distribution is qualitatively similar to that calculated 
by DOM except for the region near the free surface. The 
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Figures 7a to f. Heat 
flux distributions for: 
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ratio of the total flux predicted by the diffusion approxi­
mation to that predicted by DOM is 77.0 % in the float 
glass and approaches 94.7 % in the green glass. Thus, 
for the green glass layer 1.0 m thick the accuracy of the 
diffusion approximation may be acceptable. 

The diffusion approximation can underpredict the 
temperature and the flux even for the thick layer 
{H = 1.0 m). The difference in the fluxes predicted by 
the diffusion approximation and DOM is very small in 
the green glass layer of 1.0 m in thickness, but the differ­
ence is relatively large (23.0 %) for the float glass. For 
the thinner layer the difference is much larger as shown 
in tables 3 and 4. Thus, the diffusion approximation 
should be used with extreme caution. 

4. Conclusions 
Heat transfer by combined conduction and radiadon has 
been investigated in a one-dimensional glass layer. The 
discrete ordinates method and the diffusion approxi­
mation are used to analyze the radiative transfer. Glass 
is semitransparent to radiation, and the spectral depend­
ence of the absorption coefficient on wavelength has 
been accounted for. Based on the numerical results ob­
tained, the following conclusions are drawn: 

a) When the diamond scheme is used in the discrete or­
dinates method, the best uniformity of the total heat flux 
could be obtained even with the relatively coarse grid. 
However, the diamond scheme may result in the negative 
intensities and thus may restrict the grid refmement. 

b) The results predicted by the discrete ordinates method 
with the diamond scheme are in good agreement with 
those obtained by the rigorous integral formulation of 
radiative transfer. However, the diffusion approximation 
greatly underpredicts the temperature and flux distri­
butions through the glass layer when the layer thickness 
or the opacity of the layer is small. 

c) Only for the green glass layer {H = 1.0 m), the results 
predicted by the diffusion approximation are in good 
agreement with those calculated by DOM. For the float 
glass, the total heat flux predicted by the diffusion 
approximation reveals large differences compared to the 
fluxes calculated by DOM even for the thick layer 
{H= 1.0 m). 

d) The behavior of the temperature and the flux pre­
dicted by the diffusion approximation become closer to 
that by DOM as the glass layer thickness increases, but 
the diffusion approximation does not approximate cor­
rectly the long-range nature of radiation near the free 
surface even when the layer thickness is large. 

e) The temperature distributions predicted by the dif­
fusion approximation are qualitatively reasonable for 
optically thick layers, but the approximation should be 
used with extreme caution to obtain quantitatively accu­
rate heat transfer predictions near the interfaces. 

5. Nomenclature 

5.1 Symbols 

fz weighting factor, see equation (14) 
F local radiative heat flux in W/m^ 
Ρχ net spectral local radiative heat flux defined by equation 

(3) in W/(m2 pm) 
Ρχ backward spectral local radiative heat flux defined by 

F,-(z) = 1π]ΐχ{ζφ)μάμ in W/(m>m) 
1 

Οχ spectral irradiance defined by equation (4) in W/(m^ μm) 
h convective heat transfer coefficient in W/(m2 K) 
Η thickness of the glass layer in m 
Ιχ spectral radiative intensity in W/(m^ pm sr) 
Ι^χ spectral blackbody intensity in W/(m^ pm sr) 
k thermal conductivity in W/(m K ) 
k^ Rosseland thermal conductivity in W/(m K ) 
ηχ refractive index 
Ρ λ function defined as ^\-ηΙ{\-μΥ 
qc conductive heat flux in W/m^ 

total heat flux in W/m^ 
Τ temperature in Κ 
Tamh ambient temperature in Κ 

T g a s gas temperature in Κ 

T s u r surrounding temperature in Κ 

U overall heat transfer coefficient in W/(m^ K ) 
ζ coordinate in m 
β ο ρ emissivity in the opaque spectral region at ζ = / / 
fiw emissivity in the opaque surface (z = 0) 
κ χ spectral absorption coefficient in m~^ 
λ wavelength in m 
ßcrii direction cosine of the critical angle, / / c r i t ^ c o s ^ c r i t 

A c u t cut-off wavelength in μm 
μ direction cosine, μ = cos θ 
ρχ reflectivity at the smooth interface (z = H) 

5.2 Subscripts and superscript 

d refers to value at the control surface of the downstream 
Ρ refers to value at the center of control volume 
u refers to value at the control surface of the upstream 

m discrete directions of intensity 
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