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In organizing this conference the organizers have tried to adopt the general Oberwolfach
style, which is meant to concentrate on fewer talks, leaving as much time as possible for
joint collaborations. All participants, even those who could not present a paper this way,
seemed to enjoy this experience, since this also left ample time for discussions at the end of
each talk, allowing everybody – including the younger researchers – to actively participate.

The format itself consisted of three morning sessions with two one hour lectures each,
which were delivered by invitation, and further sixteen half hour talks most of which were
appointed on the eve of the conference at the institute. There were large breaks from
noon to 4pm to allow discussions, and there have been obvious interactions between the
participants until late in the evening. In addition there was one tutorial lecture on photonic
crystals on Tuesday night, introducing the audience to an area not directly in the main
theme of the conference but with high potential for applications. This lecture was as well
attended as the other talks, and generally thought to be an excellent idea, one which should
be continued at future meetings.

The invitation list had been made intentionally wide to achieve a good mixture of well
established colleagues as well as very young people (there has even been one very interesting
talk by a graduate student about her preliminary results towards a phD). The breakdown
was approximately even with ten participants each from Germany, the other European
countries, and the US, but there have also been participants from Tunisia, Israel, Korea,
and Japan.

In selecting speakers the intention was to get a broad range of areas represented, rather
than focussing on one particular subarea. There have been talks on theoretical results and
on numerical analysis, as well as on new applications and their mathematical modelling,
including the use of statistical models.

About one third of the talks was devoted to uniqueness results, namely the characteriza-
tion of the minimal information required to recover the unknown quantities. For example,
it is a long-standing conjecture in inverse scattering theory that one single incident wave
with a full far-field measurement is sufficient to determine the shape of an obstacle. Over
the years there have been incremental results reducing the restrictions on the obstacle
that allow global and/or local uniqueness. This particular result also gained a significant
amount of time in the discussions at the conference, since three of the talks were devoted
to this topic and led to further substantial improvements. At the end, some participants
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even raised the idea to apply for a later miniworkshop at the Oberwolfach institute to join
forces and work on a general proof of this conjecture.

A second theme was the question of stability. This is a critical issue because all the
problems considered in this conference are ill-posed, that is, the object to be found does
not depend continuously on the data. Therefore, it is a particularly difficult question to
quantify the achievable error for a given amount of data, or vice versa, to specify the least
precision in the measurement data to allow for a certain resolution in the reconstruction.
As an alternative to determistic estimates, two talks discussed the potential of statisti-
cal methods in certain applications to model the uncertainty in the solution and in the
reconstruction. This may well open a door to a lot more applications in the future.

Numerical algorithms were treated by quite a number of people. As compared to previous
meetings on inverse problems, pointwise reconstruction methods (such as the sampling
method or the factorization method) seem to have gained substantial interest because
these methods do not require any a priori information about the number of scatterers or
inclusions, and also are much faster than iterative methods and therefore suitable for real-
time computations. Another alternative are level-set methods which share at least the first
of the two aforementioned advantages. There was quite a lot of discussion and also some
controversy about the relative merits of either of these methods, and of the competing
iterative methods that are still in use.

There was a wide range of applications including a session on ultrasound imaging (and
appropriate mathematical models for it) and diffraction gratings, which is of enormous im-
portance in optical sciences. On the last day of the conference there was also one talk of the
potentials in combining (static) MRI data with (dynamic) impedance tomography tech-
niques. People were curious to learn that Korea has funded an interdisciplinary institute
to work on this project for a total of nine years.

Last but not least, excellent talks were given by two of the pioneers in analytic methods
for inverse scattering problems, David Colton and Rainer Kress. It has been publicly
acknowledged at the meeting that the contributions of these two outstanding individuals
have influenced directly and indirectly many of the participants.

The staff in Oberwolfach has maintained their usual high standards of support, even
though Monday has been an Easter holiday in Germany. Everybody enjoyed the wonderful
Müsli, the general healthful menu, and the nice landscape around the institute. The great
library and the many possibilities to sit together in small groups to work on a problem
contributed to create a wonderful and inspiring atmosphere. If there is any complaint
to make, however, it should be adressed to the organizers who made a miscalculation in
the inverse problem of determining the optimal time for the hike given the weather data
from Monday and Tuesday. The numerical methods that seem to have been used failed to
predict the heavy shower on Wednesday around three o’clock on the most exposed part of
the ridge.
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Abstracts
Lipschitz stability for the inverse conductivity problem

Giovanni Alessandrini

(joint work with S.Vessella)

We consider the basic inverse boundary problem of electrical impedance tomography. It
is well known, [1], that if one assumes an a-priori regularity bound (of finite order) on the
conductivity γ, then the dependence of the conductivity γ on the Dirichlet-to-Neumann
map Λγ is controlled by a logarithmic modulus of continuity. In fact, after an example of
Mandache, [2], it is also known that logarithmic stability is best possible when an a-priori
regularity bound of any finite order is available.

This situation is evidently prejudicial to the effectiveness of any reconstruction proce-
dure. In order to circumvent such difficulty two different strategies might be attempted:

(1) To introduce stronger, but still physically acceptable, a-priori assumptions on the
conductivity which enable to prove better stability results.

(2) To identify few, maybe finitely many, parameters associated to the conductivity,
which are physically significant, and at the same time depend in a stable fashion
on the Dirichlet-to-Neumann map.

We shall show some positive results in the direction of the strategy (1) and shall propose
some open problems related to (2).
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The factorization method for scattering by diffraction gratings

Tilo Arens

(joint work with Dr. N. Grinberg, Prof. Dr. A. Kirsch)

The two dimensional problem of scattering a plane wave by a sound soft periodic surface
differs considerably from the corresponding problem for a bounded obstacle: in the far field,
only a finite number of plane waves propagating away from the surface are observable.
Additionally, the scattered field consists of an infinite countable number of evanescent
modes which decay exponentially with distance from the surface. The expansion of the
scattered field in this series of plane and evanescent waves is known as the Rayleigh series.

It is proposed to reconstruct the scattering surface from the knowledge of the coefficients
in the Rayleigh series for all incident plane waves which are quasi-periodic (i.e. periodic
up to a phase-shift) with the same parameter with respect to the horizontal direction.
This set of data can be thought of as forming a discrete linear operator on the space l2

which we term Near Field Operator. It is the idea of the Factorization Method to derive a
factorization of this operator which makes it possible to reconstruct the scatterer from the
operator’s spectral data alone. The main ingredients in this theory are an appropriately
defined Herglotz operator and coerciveness of the single-layer operator for the periodic
surface with a Dirichlet half-space Green’s function as its kernel for small enough wave
number. Numerical experiments indicate that for surface features of the order of the wave
length a reconstruction is only possible if data from both incident and scattered evanescent
modes are taken into account.
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Inverse Scattering Methods in Optical Tomography

Simon R. Arridge

Optical Tomography seeks to recover spatially varying optical absorption and scattering
functions in the interior of a domain Ω from measurements of transmitted light on the
boundary ∂Ω. In one commonly used model the propagation of light is modelled as a
second order elliptic PDE, with Robin boundary conditions and measured Nemuann data:

−∇ · κ∇u + (µ + iω)u = 0

u + α∂νu = = f

∂νu = g

With this model the measured data can be described as a linear Robin-to-Neumann map-
ping g = Λf .

In this talk we apply a singular value decomposition to the change in the mapping Λ1−Λ0

induced by a change in functions κ, µ in the interior. Analysis of this decomposition leads
naturally to an iterative reconstruction algorithm that minimises the Frobenius norm of
Λ1 − Λ0. Simulations in 2D for complex data reveal the ability to reconstruct both µ and
κ from relatively few input patterns f .

A point-source method for inverse scattering by rough surfaces

Simon Chandler-Wilde

We consider the problem of 2D electromagnetic scattering in TE polarization by an un-
bounded perfectly conducting surface which is the graph of a C1,1 function f . We consider
specifically the case where the incident field is that due to a point source. The direct
problem is to compute the scattered field given the C1,1 function f. This is a Dirichlet
problem for the Helmholtz equation. The inverse problem we consider is to obtain f from
measurements of the total field on a finite horizontal line above the scattering surface. We
describe and analyse a point source method for this inverse scattering problem, inspired
by the point source method for inverse scattering by bounded obstacles of Potthast (IMA
J. Appl. Math 61, 119-140 (1998)). The method reconstructs the field above the surface
and then locates the surface as the zero level curve of the modulus of the total field. For
monofrequency waves we prove an error estimate for the reconstructed total field. We
present numerical results showing the reconstructed total field in the time domain and
frequency domain and reconstructions of the position of the scattering surface.

The Inverse Electromagnetic Scattering Problem for Partially Coated
Obstacles

David Colton

We consider the inverse scattering problem of determining the shape and surface impedance
of a partially coated obstacle in R3 where on an (unknown) part of the obstacle the field
satisfies a perfectly conducting boundary condition and on the other (also unknown) por-
tion of the obstacle the field satisfies an impedance boundary condition. We asume that
the incident field is an electromagnetic plane wave at fixed frequency in the resonance re-
gion and use the linear sampling method to determine the shape of the (possibly multiply
connected) obstacle.We then use a variational method and the solution of the far field
equation to determine the L infinity norm of the surface impedance. Numerical examples
are given of reconstructions.
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A level set method for shape reconstruction in medical and geophysical
imaging

Oliver Dorn

Recently, the level set method for describing propagating fronts has become quite popular
in the application of medical or geophysical tomography. The goal in these applications
is to reconstruct unknown objects inside a given domain from a finite set of boundary
data. Mathematically, these problems define nonlinear inverse problems, where usually
iterative solution strategies are required. Starting out from some initial guess for the
unknown obstacles, successive corrections to this initial shape are calculated such that the
so evolving shapes eventually converge to a shape which satifies the collected data. Since
the hidden objects can have a complicated topological structure which is not known a
priori, the shapes usually undergo several topology changes during this evolution before
converging to the final solution. Therefore, a powerful and flexible tool for the numerical
description of these propagating shapes is essential for the success of the inversion method
of choice. In the talk, we present a recently developed shape reconstruction method which
uses a level set representation of the shapes for this purpose. Numerical results will be
presented for three different practically relevant examples: cross-borehole electromagnetic
tomography using a 2D Helmholtz model, surface to borehole 3D electromagnetic induction
tomography (EMIT) using a model based on the full 3D system of Maxwell’s equations,
and diffuse optical tomography (DOT) for medical imaging using a model based on the
linear transport equation in 2D.

Inverse Problems for Diffraction Gratings: Uniqueness Results

Johannes Elschner

(joint work with G. Schmidt and M. Yamamoto)

We mainly consider the scattering of monochromatic plane waves by a 2D perfectly
reflecting diffraction grating in an isotropic lossless medium, which is modeled by the
Dirichlet problem (transverse electric polarization) or the Neumann problem (transverse
magnetic polarization) for the periodic Helmholtz equation. The inverse problem consists
in determining the profile function from the knowledge of one wave number, one incident
direction and the total field measured on a straight line above the grating. Excluding
the case of parallel half planes and the Rayleigh frequencies, we prove uniqueness for this
inverse problem within the class of polygonal grating profiles. We also present a first
uniqueness result for the inverse TE transmission problem.

Regularization of nonlinear statistical inverse problems

Thorsten Hohage

(joint work with N. Bissantz and A. Munk)

We consider nonlinear inverse problems described by operator equations F (a) = g in
Hilbert spaces in the following statistical framework: Suppose we have a finite number n of
measurements, which are modelled by random variables Yi = g(Xi)+ εi, i = 1, . . . , n. Here
the measurement errors are described by independent, identically distributed random vari-
ables εi with some unknown distribution satisfying Eεi = 0. g belongs to some L2-Hilbert
spaces, and the measurement points Xi are either random variables (random design) or
fixed, depending on n (deterministic design). A statistic ân for the unknown parameter
a is constructed using a modified preconditioning technique of Mair and Ruymgaart and
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nonlinear Tikhonov regularization. We establish consistency in the sense that the mean
integrated square error E‖ân − a‖2 (MISE) tends to 0 as n → ∞ under reasonable as-
sumptions. Moreover, if a satisfies a source condition, we show a convergence rate result
for the MISE. Our theoretical results are confirmed by numerical experiments with inverse
scattering problems.

On nearfield acoustical holography

Victor Isakov

(joint work with Tom DeLillo, Nicolas Valdivia, Lianju Wang and Sean Wu)

We consider the problem of identifying the source of the acoustical noise and the normal
velocity of the sound on the surface Γ of a three-dimensional domain Ω. The acoustical
field u of frequency k in Ω satisfies the Helmholtz equation

(1) ∆u + k2u = 0 in Ω ( or in Ωe = R3 \ Ω)

The application we are interested in deals with Ω which is a cabin of an aircraft or of
a car. A solutions to (1) in Ωe are assumed to be satisfying the Sommerfeld radiation
condition. Such u are called radiating solutions. The acoustical sensors are located on a
surface Γ0 inside or outside the cabin. They can measure the field u and the problem is to
recover from these measurements u inside Ω and in particular the so-called normal velocity
v = ∂νu on Γ = ∂Ω. Here ν is the unit exterior normal to ∂Ω. We will show that there
is a unique representation of u in Ω by the single layer potential

(2) u(x) = SΓϕ(x) =

∫
Γ

K(x, y)ϕ(y)dΓ(y), x ∈ Ω ( or x ∈ Ωe)

where K(x, y) is the free space radiating fundamental solution to the Helmholtz equation.
Now our problem is reduced to solving the linear integral equation

(3)

∫
Γ

K(x, y)ϕ(y)dΓ(y) = u(x), x ∈ Γ0

Given ϕ in the interior problem one can find the normal velocity from the standard formula
which follows from (2) and the jump relations for the normal derivative of single layer
potentials. This approach in principle allows to handle general domains Ω while most
of existing methods are applicable to very special (rotationally symmetric Ω) when the
Green’s function of the Neumann problem for the Helmholtz equation can be found quite
explicitly. In the paper [1] we considered a two-dimensional version of the interior problem.
In the paper [2] we handle the complete three-dimensional case.

In a popular approach one uses the represenation by single and double layer potentials
(the Helmholtz-Kirchhoff system). We show that this approach has no advantages over the
single layer method.

The results were obtained together with Tom DeLillo, Nicolas Valdivia, Lianju Wang,
and Sean Wu. The research is in part supported by the NSF grants DMS-9803816 and
ITR/ACS 0081270.
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Electrostatic imaging via conformal mapping

Rainer Kress

We present the solution of an inverse boundary value problem for harmonic functions arising
in electrostatic imaging through conformal mapping techniques. The numerical method
consists of two parts. In a first step, by successive approximations a nonlinear, nonlocal
ordinary differential equation is solved to determine the boundary values of a holomorphic
function on the outer boundary circle of an annulus. Then in a second step an ill-posed
Cauchy problem is solved to determine the holomorphic function within the annulus. We
discuss a convergence result for the iteration procedure and through numerical examples
we illustrate the feasibility of the method.

Photonic crystals

Peter Kuchment

A photonic crystal (or a photonic band gap (PBG) material) is a composite medium
which consists of a periodically modulated dielectric. The idea is that if the materials
and geometry are chosen appropriately, PBG materials can exhibit with respect to light
properties similar to the ones of semi-conductors with respect to electrons. In particular,
band gaps, or prohibited ranges of frequencies of EM waves can arise. PBG materials
promise a wide variety of applications ranging from lasers, efficient light sources, memories,
optical integrated circuits, efficient optic cables, etc. This are a of research involves a wide
variety of complex and interesting mathematical problems, resolving which requires usage
of many techniques from PDEs, to spectral theory, to numerical analysis, to optimization,
... The talk provides a brief survey of the problems and techniques involved.

Semi-smooth Newton methods for BV-regularized inverse problems

Karl Kunisch

(joint work with Dr. M. Hintermüller)

We show that, while the Fenchel dual of BV-regularized problems has an extremely difficult
structur, its pre-dual can be elegantly characterized in a Hilbert space setting as a bilater-
ally constrained optimization problem. For the latter we propose and analyse semi-smooth
Newton methods for their efficient numerical realisation.

Inverse scattering problem for Schroedinger operator with random potentials

Matti Lassas

(joint work with L.Päivärinta, E.Saksman)

In these talk we consider high-frequency scattering from random media and the inverse
problem for it. More precisely, we study the problem how the stochastical properties of a
random scatterer can be determined from scattered fields on high frequencies. Motivation
for this kind of problems is evident: As a practical example, consider scattering from a
surface, where the macro-scale structure of surface is smooth but in very small scale, the
surface is rough. If we forget the micro-scale roughness, and approximate the surface with
a smooth surface, on the high frequencies waves scatter according to Kirchoff law, that is,
like from a mirror. This contradicts with many everyday experiences. So, for a valid model
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one has to include the roughness of the micro-structure in the goal of inverse problem is
to find the functions describing the properties of the micro-structure.

In this talk we consider high-frequency scattering for Schrödinger equation

(∆ + q + k2)u(x, y, k) = δy

with a random potential q(x). The potential q(x) is assumed to be a Gaussian random
function that defines a Markov random field. We show how realizations of the scattered
field us(x, y, k) can be used to determine stochastical properties of q, for instance the
properties of covariance function E(q(x)q(y)). In physical terms, this corresponds to e.g.
determination of typical sizes of particles in random medium.

In contrast to applied literature, we approach the problem with methods that do not
require approximations, for instance linearization the problem. In technical point of view,
we analyze the scattering from the random potential by combining methods of harmonic
and microlocal analysis to stochastic, in particular to theory of ergodic processes and
Wiener chaos.

Using interior elastic wave displacement data to create images of stiffness
variation in tissue

Joyce R. McLaughlin

(joint work with Lin Ji, Jeong Rock Yoon and Dan Renzi)

Using extensions of Doppler ultrasound techniques and time reversal methods (Diffraction
field of a low frequency vibration in soft tissues using transient elastography, Catheline,
Thomas, Wu, Fink, IEEE Trans. Ultrasonics, Ferroelectrics and Control, 1999) the time
and space dependent interior displacement of a propagating shear wave can be measured.
This shear wave propagates at 1 to 3 meters/second in normal tissue and can travel more
than twice that speed in abnormal tissue. This substantial change in the shear wave speed
motivates our considerations of using shear wave speed images to detect abnormalities.

The data is time and space dependent displacement and the experiment begins with the
tissue at rest and a boundary or locally confined interior excitation. So we consider several
problems of which we list two here:

(1) Find µ/ρ or µ and ρ separately in the wave equation

5 · (µ5 u) = ρ utt, x
∼
∈ Ω, 0 < t < T,

ut(x∼
, 0) = u

∼
(x
∼
, 0) = 0, x

∼
∈ Ω,

µ
du

dn
= f(x, t), x

∼
∈ ∂Ω, 0 < t < T.

(2) Find µ/ρ given λ or find µ and ρ separately given λ in

ρ u
∼tt

= 5(λ5 · u
∼
) +

1

2
5 ·(µ(5u

∼
+ (5u

∼
)T )), x

∼
∈ Ω, 0 < t < T,

ut
∼

(x
∼
, 0) = u

∼
(x
∼
, 0) = 0, x

∼
∈ Ω,

f = [λ5 ·u
∼
I + µ(5u

∼
+ (5u

∼
)T )] · n

∼
x
∼
∈ ∂ Ω, 0 < t < T.

8



For each of these models we present new uniqueness theorems for two coefficients utilizing
this rich data set. A major simplifying feature of the proof results from using the fact that
the solution of each equation set has a propagating front. We note here that the data is
nearfield data.

In addition we show the results of two new algorithms. One utilizes a Hankel function
expansion for the case where the data is confined to displacements in a plane and the
boundary source is nearly a point source. Prior to this, when the boundary source can be
approximated by a plane wave source, a geometric optics expansion was utilized to develop
a differential algebraic equation set that forms the basis of a reconstruction algorithm. A
heuristic reason for why this succeeds in this nearfield inverse problem is that the geometric
optics expansion is exact for some special cases. For the point source problem in two
dimensions the geometric optics expansion is a good approximation only in the far field.
Hence we utilize a Hankel function expansion that is exact in the nearfield for some special
cases.

The result is a (different) differential algebraic equation set that forms the basis of this
new reconstruction algorithm. Numerical calculations will be presented; robustness with
respect to noise will be exhibited.

Our second new set of results for a completely different algorithm utilizes the fact that the
solution has a propagating front. This front, called the arrival time surface, is extracted
from the displacement data using level set methods. To utilize this front, we establish,
using unique continuation, that when the arrival time surface is C2 it satisfies the eikonal
equation. The eikonal equation is then used to compute the solution of the inverse problem
which is the spacial variation in the shear wave speed.

Phase space analysis in tomography

Victor Palamodov

The phase space analysis is a method of microlocal operating with functions. Gabor’s
’elementary signal’ is the same as coherent state in physics. A coherent state is a function
(halfdensity) which is maximally localized and the x- and ξ-representation simultaneously.
An arbitrary function in free space having finite energy admits an integral representation
by means of the family of coherent states when the support point (x, ξ) runs through the
phase space. This provides a tool for featuring its microlocal properties.

An inverse problem is typically non-linear and ill-posed and only partial information
can be stably recovered from real data. This is the case for the acoustic equation in
inhomogeneous medium. The boundary measurements done for a fixed time frequency are
used for estimating of Gabor coefficients of the refraction coefficient in the frame of rigorous
theory. An explicitly shaped domain in the phase space is shown to be the stability domain
for reconstruction of the refraction coefficient. For a small perturbation of the velocity this
domain is the union of local ”Ewald balls” of variable radius depending on the background
velocity.

In the method of electric impedance imaging the admittivity coefficient γ in a domain
D is reconstructed from series of measurements of voltage and current on ∂D. A modified
Gabor system is fabricated by means of the action of the linear conformal group to blow up
a neighborhood of ∂D. The elements of this system shows to be close to the eigenfunctions
of the sensitivity operator which is the linearization of the operator: from γ to the Dirichlet-
to-Neumann operator on ∂D. The estimates for action of the sensitivity operator on the
Gabor functions show the zone in the phase space, where a perturbation of γ can not
be stably reconstructed. This zone is defined by an upper bound for the product of the
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distance from x to ∂D and of the scalar frequency |ξ|. The linear envelope of Gabor
functions that belong to the zone can be tested as a reasonable subspace of admittivities
where the inverse problem has a stable solution. No standard regularization machinery is
needed.

Solving time-dependent inverse acoustic scattering problems

Roland Potthast

Over the last seven years several non-iterative methods for the reconstruction of obstacles
or the shape of media have been proposed. We outline the basic ideas of these methods
and describe their difference. In particular, we introduce the no-response test by Luke and
the author, which uses test domains and special incident waves which are small on the test
domain to find the unknown scatterer and its shape. Then, the point-source method (PSM)
for the reconstruction of time-dependent waves from remote measurements for one incident
wave is described. The PSM reconstructs the scattered and total field by backprojection
and, then, uses the boundary condition for reconstructions. It is shown how a singular
sources scheme can be developed with the same tools as used for the PSM. This singular
sources scheme does not need to know the boundary condition, but it needs measurements
for many incident waves. We relate these methods to the schemes of Colton-Kirsch, Kirsch
and Ikehata and to the range test of Potthast-Sylvester-Kusiak.

Finally, we numerically demonstrate the power of the point-source method by recon-
structing a full time-dependent wave from remote measurements (produced by simula-
tion).

Uniqueness for the determination of non-smooth scatterers

Luca Rondi

We present a uniqueness result for the determination of finitely many sound-soft scatterers
by a finite number of acoustic far-field measurements.

The class of admissible scatterers is very large and includes non-smooth obstacles (that is
a scatterer which is the closure of a domain) and, more notably, non-smooth open surfaces.

The possible presence of scatterers whose interiors are empty requires an argument which
is different from the classical one by Schiffer, and its extension due to Colton and Sleeman,
which dealt with the case of obstacles. However, a careful study of the nodal set of the total
field, using an optimal estimate of decay of the solution to the direct problem and a char-
acterization of the level sets of harmonic functions due to Alessandrini and Di Benedetto,
allows us to recover a situation in which Schiffer’s argument is applicable. Therefore we
obtain unique determination of non-smooth (and possibly with empty interiors) scatterers
by a finite number of far-field measurements. Even if we consider a quite larger class of
admissible scatterers, the result is completely analogous to the one by Colton and Sleeman
for obstacles. The only price we have to pay for allowing scatterers represented by open
surfaces is that we might need more measurements than those needed to identify obstacles.
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Electrical Impedance Tomography in the half space

Birgit Schappel

Let Ω = R3
+ be the upper half space in R3 and Γ = R2 its boundary. For a nonnegative

scalar conductivity σ the electrostatic potential u inside Ω fulfills the PDE∇·(σ∇u) = 0. If
a current density f 6= 0 is induced on the boundary Γ the potential u fulfills the Neumann
boundary condition σ ∂u

∂ν
= f on Γ. Assuming that Ω is homogeneous except for some

inclusions D with conductivities smaller than the background conductivity our aim ist the
reconstruction of D from the knowledge of the Neumann-to-Dirichlet operator Λσ. Using
suitable weighted Sobolev spaces we show that this operator is compact and self-adjoint.
Denoting bei Λ1 the Neumann-to Dirichlet operator for the domain without inclusions we
obtain that Λσ − Λ1 is positiv and give a characterization of the range of the operator
(Λσ − Λ1)

1/2. Using this we show that the trace of a function gz which is essentially
the restriction of the fundamental solution of the Laplace equation onto the boundary Γ
belongs to R((Λσ−Λ1)

1/2) iff z is a point lying in the inclusion. Using the Picard criterion
as well as the eigenvalues and eigenfunctions of Λσ − Λ1 this can be tested numerically.

Inversion with transducer of laser generated waves

Otmar Scherzer

(joint work with R. Kowar)

In material testing with ultrasound for non-destructive evaluation a wave is generated at
the surface of the material to be tested. From measurement data of the wave field on the
surface of the material defects are recognized and reconstructed.

We are simulating waves propagating through inhomogeneous media. The waves are
generated by common transducers or lasers. Transducers such as commonly used in medical
imaging generate a focused wave, which gives good spatial resolution near the focal point.
In industrial processes laser generated ultrasound is used for contactless evaluation of
materials, such as investigation of hot metal sheets.

The governing model is a wave equation for the pressure field. In medical applications
the wave is initiated by a transducer. It consisting of piezo crystals which strike a body
and initiate a wave. Mathematically this can be modeled as harmonic forcing terms with
small support, which are initiated at exactly specified locations and time. Lasers generate
waves are smooth initial functions (typically Gaussians).

Under suitable assumptions the wave equation can be transformed into a nonlinear
integral equation of the first kind. The data (right hand side of the integral equation) is
the measured pressure field on the investigated material. The kernel function very much
depends on the initiated wave, i.e., it depends on the construction and control of the
transducer, and on the density of the material, which eventually should be recovered.

The Born-Neumann approximation linearizes the nonlinear integral equation. The re-
sulting integral equation is linear with respect to the density. The kernel function depends
on the design and control of the transducer. For modern complex transducers the simula-
tion of the kernel function (of the linear integral equation) is extremely computationally
expensive. Once the Born-Neumann approximation of the kernel function is calculated it
can be used for the recovery of the density with the same transducer. The Born-Neumann
approximation just models single reflections in the material; multiple scattering is ne-
glected. We show that the Born-Neumann approximation can be iterated, which eventually
approximates the nonlinear integral equation. Laser generated waves result in smoother
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kernel functions and consequently the recovery problem for the density is considerably
more unstable.

Several numerical simulations are presented showing the calculation of the kernel func-
tion. Moreover, we compare simulated and measured waves for nondestructive evaluation
of aluminum sheets.

Magnetic Resonance Electrical Impedance Tomography (MREIT)

Jin Keun Seo

Numerous experimental findings have shown that different biological tissues in the human
body have different electrical properties at the frequency range of tens of Hz to several
MHz. The electrical conductivity and permittivity of a biological tissue change with cell
concentration, cellular structure, molecular composition, membrane capacitance, and so
on. Therefore, these properties manifest structural, functional, metabolic, and patholog-
ical conditions of the tissue providing valuable diagnostic information. Cross-sectional
imaging of electrical conductivity distributions within a human body has been a research
goal in Electrical Impedance Tomography (EIT). However, EIT suffers from the ill-posed
characteristics of the corresponding inverse problem due primarily to nonlinearity and low
sensitivity. In order to overcome this technical difficulty, we started looking at internal
information so that we can transform the ill-posed problem into a well-posed one. This
initiated the new research area called Magnetic Resonance Electrical Impedance Tomog-
raphy (MREIT). In MREIT, we use a Magnetic Resonance Imaging (MRI) scanner to
measure the induced magnetic flux density due to an injection current. We address the
image reconstruction problem in MREIT as a well-posed inverse problem taking advan-
tage of this additional internal information. We first describe a three-dimensional forward
solver as a basic tool in experimental design and verification as well as implementation
of image reconstruction algorithms. For image reconstruction algorithms, we summarize
the J-substitution algorithm where we use the internal current density obtained from the
induced magnetic flux density. The main drawback of this method is the requirement of
subject rotations to measure all three components of the induced magnetic flux density. We
introduce two other algorithms that utilize only one component of the induced magnetic
flux density thereby removing the subject rotation procedure. Once we have reconstructed
images of conductivity distributions, we can produce images of internal current density dis-
tributions for any given injection currents. Showing numerical and experimental results in
MREIT, we suggest MREIT for static imaging of cross-sectional conductivity distributions
leaving EIT for dynamic imaging and lesion detections.
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Some inverse problems associated with acoustic propagation in dispersions

Brian Sleeman

(joint work with O.G. Harlen, M.J.Holmes, M.J.W.Povey, Y.Qiu. Supported by EPSRC.)

Ultrasound techniques for the characterization of colloidal systems are gaining wide ac-
ceptance and many new ultasound instruments have recently appeared on the market. The
majority of these instruments claim to accurately measure colloidal particle size distribu-
tion. They all determine particle size from a measurement of ulrasound attenuation as a
function of frequency, together with thermophysical data for the continuous and dispersed
phases such as thermal diffusivity. The claims depend on an accurate model of acoustic
scattering in such systems. Recently we have developed a low frequency theory (i.e for
small acoustic wave number K and small thermal wave number L) based on a potential
theory idea of Kleinman. A theory has also been developed for small K and large L based
on a novel combination of the potential theory and the geometrical theory of diffraction.

Characterisation of soft solid systems depends on a number of features, i.e.

(i) The structure of the gel, which is described by the particle distribution. The
structure may range from a nearly homogeneous distribution, to a sparse, fractal
network of interlinked clumps of particles.

(ii) Weak, long-range interactions between particles. These interactions are involved in
the flocculation/aggregation processes and determine the network structure.

(iii) The elastic properties of the soft solid. These properties depend on the structure
and interactions of the system.

The fundamental inverse problems are to determine the effect on ultrasound of each of
the above features and hence to determine what features of the underlying microstructure
can be ascertained from ultrasound measurements.

These problems form a large area of research. We describe progress on understanding
the direct problem as a precursor to attacking the inverse problems.
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The Scattering Support for Inverse Source and Inverse Scattering Problems

John Sylvester

(joint work with R.Potthast, S.Kusiak)

I will give an introduction to scattering and inverse scattering for the Helmholtz equation,
emphasizing the connection between the Paley-Wiener theorems, the integral equations of
scatttering theory (Lipmann-Schwinger equation), and the classical expansions of the far
field (asympotic representation of the solution) in terms of Bessel and Hankel functions.

Inserting these functions into the right hand side of Green’s identity yields a series of
inequalities which we can use to find what we call the convex scattering support of a far
field. This set must be a subset of the support af any source that could possibly produce
that far field.

I will describe methods for computing the scattering support (joint work with Steve
Kusiak) based on special functions and other methods based on characterizing the range
of certain integral operators (joint work with Roland Potthast and Steve Kusiak).

Uniqueness in inverse scattering problems with a single incident wave

Masahiro Yamamoto

(joint work with J.Cheng)

Let D ⊂ R2 be a bounded domain and k ∈ R. For x ∈ R2, we set r = |x|. We consider
a scattering problem with sound-soft obstacle:

(1) ∆u + k2u = 0 in R2 \D

(2) u = 0 on ∂D

(3) lim
r→∞

√
r

(
∂

∂r
uS(x)− ikuS(x)

)
= 0.

Henceforth we consider d ∈ S1 ≡ {x ∈ R2 ; |x| = 1} and let

uS(x) = u(x)− eikx·d,

which is called the scattered field, while u is called the total field. We consider d ∈ S1 and
k ∈ R respectively as the direction of the incoming plane wave (i.e., eikx·d) and the wave
number given by the medium in R2 \D.

Condition (3) is the Sommerfeld radiation condition. Under suitable conditions on D,
for k ∈ R and d ∈ S1, there exists a unique H1-solution u(x) = u(D)(x) to (1) - (3), and
we can define the far field pattern u∞(D)

(
x
r

)
:

(4) uS(D)(x) =
eikr

√
r

{
u∞(D)

(x

r

)
+ O

(
1

r

)}
as r −→∞.

Inverse scattering problem: Determine D from the far field pattern u∞(D) for
given k and d (possibly by changing them).

This inverse problem is also physically significant and has been studied by many authors.
We refer for example to Colton and Kress [1].

The first basic topic for this inverse problem is the uniqueness: Does

(5) u∞(D1)(x) = u∞(D2)(x), |x| = 1

(for possible several d and k) imply D1 = D2?
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There is a classical uniqueness result within smooth D1, D2 if (5) holds for an infinite
number of d ∈ S1, which is proved based on Schiffer’s idea (see Theorem 5.1 in [1]).

For the uniqueness by means of a finite number of d ∈ S1, see Colton and Sleeman
[2], Theorem 5.2 in [1]. Moreover the uniqueness is known with a single d, provided that
D1, D2 are contained in a ball of radius ρ such that kρ < π. See Corollary 5.3 in [1], [2].

An important open problem is the uniqueness in the inverse scattering problem with a
single (d, k). This problem is interesting from the theoretical point of view, because the
far field patterns with many d are overdetermining data for determination of D and we
can expect the uniqueness with a single far field pattern. Moreover the formulation with
a single (d, k) is helpful for justification of numerical reconstruction of D, because one can
usually use far field patterns observed by taking a single or a finite number of d.

The purpose of this presentation is to give a positive answer to the uniqueness within
polygonal (but not necessarily convex) obstacles.
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