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Introduction by the Organisers

The workshops focusing on Material Theories take place in Oberwolfach for more
than 30 years. This year workshop was organized by Sergio Conti (Bonn), Antonio
DeSimone (Trieste), Stephan Luckhaus (Leipzig), and Lev Truskinovsky (Paris).
It was well attended with over 50 participants covering a broad geographic area.

The goal of this series of workshops is to bring together mechanicians, physicists
and mathematicians and to expose in this way the applied mathematics commu-
nity to new and exciting developments in the fields of material science, statistical
physics and even biology. At the 2017 workshop the main emphasis was placed
on contributions attempting to bridge the gap between discrete and continuum
approaches, focusing on the multi-scale nature of physical phenomena, and most
importantly requiring new and nontrivial mathematics. The workshop created
new possibilities for the synergistic interaction between different disciplines which
should potentially lead to new progress in the understanding of material behavior.

The range of topics at the workshop was very broad, from the new ways of
selecting weak solutions of Euler equations (Brenier), stochastic homogenization
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of random composites (Otto, Zeppieri) and exact results in the theory of nonequi-
librium steady states (Redig) to the study of the relation between quasi-convexity
and rank one convexity (Grabovsky) and new approaches to solitons in lattices
(Vainchtein). A particular focus was on the description of plastic behavior of crys-
talline and amorphous materials at the mesoscopic scale accounting for marginal
stability and criticality (Wyart, Lerner). A series of talks was devoted to shells
and plates, including those with embedded incompatibility (Agostiniani, Lewicka,
Sharon) and to rigorous results in the description of distributed dislocations by non
Riemanian geometry with torsion (Kupferman). Dislocational structures were also
discussed in the context of energy minimization in nonconvex variational problems
(Garroni, Scardia). New mathematical problems in fracture mechanics were dis-
cussed as well (Chambolle, Francfort). Other subjects included cloacking (Yavari),
trapping of elastic waves by obstacles (Smyshlyaev), topological defects in liquid
crystals (Kamien), crystallization and the Cauchy-Born rule (Alberti, Schmidt,
Stefanelli). Considerable attention was given to the problems of biomechanics and
mechanics of active matter including the talks on growth induced buckling dur-
ing development (Ciarletta), cell motility (Giomi, Preziosi) and active rheology
(Clement). The format of the workshop has again proved to be very successful,
furnishing new problems to the applied mathematics community and building new
interdisciplinary collaborations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Randall D. Kamien in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Heterogeneous elastic plates with lateral modulation of the target

curvature

Virginia Agostiniani

(joint work with A. Lucantonio, D. Lučić)

Inspired by the modelling of nematic elastomer ribbons and of thin gel sheets,
we consider a general framework which accounts for thin sheets of a material
characterised by heterogeneous spontaneous stretches. In the 3D mathematical
description, these spontaneous stretches are the minimisers of a (heterogeneous)
energy density, are a perturbation of order h (= the small thickness thickness
parameter) of the identity, and depend on both the planar and the thickness
variables. The corresponding 2D Kirchhoff model, which is constrained to the
set of isometric immersions of the mid-plane into R

3, penalises deviations of the
second fundamental form associated with a deformation from a target curvature
tensor. We then characterise isometries which minimise the 2D energy functional
by minimising the integrand pointwise, in the case when the target curvature is
piecewise constant.

The initial value problem for the Euler equations of incompressible
fluids viewed as a concave maximization problem of optimal transport

type

Yann Brenier

Solving initial value problems by convex minimization techniques is definitely not
a new idea, in particular in the framework of linear evolution PDEs, as illustrated
by the classical least square method. For instance, in the case of a linear transport
equation such as ∂tu+ ∂xu = 0, one can try to minimize

∫ ∫

(∂tu+ ∂xu)
2dxdt, u(0, ·) = u0,

where u0 is the initial condition. This typically leads to (degenerate) space-time
elliptic problems. In the framework of nonlinear equation, similar strategies can
be used but usually lead to non-convex ill-conditioned minimization problems. In
this abstract, we discuss a somewhat different strategy for the class of systems of
conservation laws with a strictly convex entropy [4], namely

∂tU + ∂i(F
i(U)) = 0, ∂tE(U) + ∂iQ

i(U) = 0,

where U = U(t, x) ∈ Rm, x ∈ D ⊂ Rd, t ∈ [0, T ], F,E,Q, being respectively the
flux, entropy and entropy-flux functions, with appropriate boundary conditions
(for simplicity, we restrict ourself to the periodic case, when D = (R/Z)d). This
class contains many classical models in continuum mechanics and material sciences
(Euler equations of hydrodynamics, Elastodynamics with polyconvex energy, ideal
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Magnetohydrodynamics, etc...[4]). In our talk, we have focused on the borderline
case of the Euler equations of incompressible inviscid fluids for which rigorous
results have been recently established [3], but we will expose here the strategy for
the more general framework of conservation laws with convex entropy. Let us start
with the min-max problem

I = inf
U

sup
W

∫ T

0

∫

D
E(U)− ∂tWαU

α − ∂iWαF
αi(U) dxdt −

∫

D
Wα(0, x)U

α
0 (x)dx,

where W = W (t, x) ∈ R
m are smooth test functions, vanishing at t = T . This

amounts to look for a weak solution U of our system of conservation laws with
initial condition U0 that minimizes the time integral of its entropy. A priori, this
sounds silly since we already assume U to be a solution and we know (at least for
smooth solutions) that the entropy is conserved in time, depending only on the
initial condition U0, so that there is a priori nothing to minimize. However, for
a fixed initial condition, weak solutions may not be unique and the conservation
of entropy is generally not true. (This is now well established in the case of the
Euler equations, in Hydrodynamics, through the results of Scheffer, Shnirelman,
De Lellis-Székelyhidi Jr. [7, 8, 5, 10].) Concerning the min-max problem, let us
now exchange the infimum and the supremum in the definition of I and get the
lower bound

J = sup
W

inf
U

∫ T

0

∫

D
E(U)− ∂tW · U −DW : F (U) dxdt−

∫

D
W (0, ·) · U0 dx

(with obvious abridged notations), which can be reduced to

J = sup
W

∫ T

0

∫

D
−K(∂tW,DW )dxdt−

∫

D
W (0, ·) · U0 dx,

where W is still subject to W (T, ·) = 0 and K is the convex function defined by

K(A,B) = sup
U∈Rm

AαU
α +BαiF

αi(U)− E(U), A ∈ R
m, B ∈ R

m×d.

This concave maximization problem is very similar to the Monge optimal mass
transport problem with quadratic cost in its so-called ”Benamou-Brenier” for-
mulation [2, 1, 9]. Its numerical treatment in the style of [2] is currently under
investigation. The simplest example of such a maximization problem is provided
by the (so-called) inviscid Burgers equation:

∂tU + ∂x(
U2

2
) = 0, U = U(t, x) ∈ R, x ∈ R/Z, t ∈ [0, T ],

where it reads

J = sup
W

∫ T

0

∫

D
− ∂tW

2

2(1− ∂xW )
dxdt −

∫

D
W (0, ·) · U0 dx,
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with W =W (t, x) ∈ R subject to ∂xW ≤ 1 and W (T, ·) = 0.
In [3], we have studied the (borderline) case of the Euler equations of incompress-
ible fluids

∂tU +∇ · (U ⊗ U) +∇p = 0, ∇ · U = 0, U = U(t, x) ∈ R
d, p = p(t, x) ∈ R.

Then, the maximization problem reads:

sup
A,∇φ

−
∫ T

0

∫

D
(∂tA+∇φ)· (Id −∇A−∇AT )−1

2
·(∂tA+∇φ)dxdt−

∫

D
A(0, ·)·U0 dx

where A = A(t, x) ∈ Rd is a divergence-free vector field that vanishes at t =
T , while φ is an additional scalar field needed to enforce the incompressibility
condition. We have obtained the following results [3]:
i) for all initial data U0 ∈ L2, there is always an optimal solution A with ∂tA ∈ L2

and ∇A+∇AT ∈ L∞;
ii) any smooth solution of the Euler equations U(t, x) can be recovered for short
enough times (more precisely, as long as

(1) (T − t)−1
Id + (∇U +∇UT )(t, x)

stays positive, as a symmetric matrix, for all x ∈ D and t ∈ [0, T ], which is remi-
niscent of the Ponce regularity criterium for the Euler equations -see [6]).
In addition, the maximization problem can be related to the theory of sub-solutions
to the Euler equations which has recently attracted a lot of interest after the cele-
brated work of De Lellis and Székelyhidi [5] in the framework of Convex Integration
theory.

References
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Phase-field approximations of Griffith energies and crack
non-interpenetration

Antonin Chambolle

(joint work with S. Conti, G. Francfort)

The variational approach to fracture [12, 5] is an extension of Griffith’s classi-
cal theory for the modelling and study of crack growth, where, in a quasistatic
setting, a crack evolution is computed by successive (global) minimisations of an
energy consisting of a “bulk” (linearised elasticity) part and a “crack” term which
penalises the length or surface of the discontinuity of the displacement. Namely,
given a boundary datum U0 on a part of ΓD ⊆ ∂Ω, Ω ∈ Rd (d = 2, 3 in general),
and a “time”-step δt > 0, one finds at each step k ≥ 1 a minimiser (u,K) of

(1) min

{∫

Ω

Ce(u) : e(u)dx+Hd−1(K) : u = (kδt)U0 on ΓD,K ⊃ Kk−1

}

.

The tensor C is the Hooke’s law, typically Ce(u) = 2µe(u) + λTr e(u)Id and
e(u) = (Du + DuT )/2 is the symmetrised gradient of the displacement, here a
function u ∈ H1

loc(Ω \K;Rd).
In practice, one need to relax a bit this problem (for which existence remains

unknown, see [14, 9] for recent results) in the class “[G]SBD” [1, 4, 11] of functions
u such that Du + DuT is a bounded Radon measure, which is decomposed into
a part e(u)dx absolutely continuous with respect to Lebesgue’s measure, and a
(d− 1)-dimensional “jump” part [u]⊙ νuHd−1 Ju, where the countably (d− 1)-
rectifiable set Ju is defined as the set of points x where there exists (a normal unit
vector) νu and (two different displacement values) u± such that, as ρ→ 0,

y 7→ u(x+ ρy)
L1(B1)−→ u+χ{y·νu≥0} + u−χ{y·νu<0}

(the blowup of u at x converges to a function taking two values). Then, [u] =
u+ − u− and [u]⊙ νu = ([u]⊗ νu + νu ⊗ [u])/2.

Numerical methods to tackle this problem are typically based on phase-field
approximations in the spirit of [2], see [5]. One important issue with this model,
is that it is symmetric with respect to a change of sign of the external loading
U0 → −U0: hence “physical” deformations with opening cracks can easily be
turned into “non-physical” experiments where the crack is collapsing into itself,
and interpenetrating. Quite a few models have been proposed to solve this issue,
see [3, 15, 13, 16], in the framework if phase-field approximations.

Our paper [7] shows, in dimension 2, that the simulations presented in these
papers are coherent with a limiting model with non-interpenetration. For instance,
consider the most simple linearised non-interpenetration constraint, which requires
that [u]·νu ≥ 0 almost everywhere on the jump (the angle between the opening and
the normal to the jump is acute). In terms of the measure Eu = (Du +DuT )/2,
it is equivalent to requiring that

(2) Esu = [u] · νuHd−1 Ju ≥ 0
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(the singular part of the measure Eu is nonnegative). In other words, (div u)− ∈
L2(Ω).

The adaption of [2] to tackle this model reads [3]:

Eε(u, v) =
∫

Ω

(ηε + v2)(Ce(u) : e(u)− k((div u)−)2) + k((div u)−)2)dx

+

∫

Ω

ε|∇v|2 + (1− v)2

4ε
dx

where k > 0 is any number such that CS : S ≥ k(Tr(S))2 for all symmetric tensors
S. Here, v is a field which will go to 1 almost everywhere but on the jump of u,
as ε→ 0. The parameter ηε = o(ε) is just here to make the problem well-posed in
H1 and is not strictly necessary.

For k = 0, it is known that Eε (with an additional global L∞ constraint on the
displacements u) Γ-converges to the energy in (1) as ε→ 0 [6].

Our main theorem states that in dimension 2, for k > 0, Eε Γ-converges, as
ε → 0, to the same energy plus the additional constraint (2). The “liminf” part
of the convergence is clear, as the energy for k > 0 is larger than for k = 0, and
forces (div u)− to remain bounded in L2.

The difficulty is to build a correct recovery sequence. One cannot rely on an ap-
proximation result such as in [2, 6], which is far from clear with the constraint (2).
Our proof, built upon a result in [8] which shows that SBD fields with small jump
set and e(u) ∈ L2 can be approximated with L2 functions, consists in building a
recovery sequence uε by

(i) convolving u with a smoothing kernel ρε (uε = ρε ∗u) near the “big” parts
of the jump Ju (this obviously maintains a global L2 bound on (div uε)

−,
if (div u)− ∈ L2);

(ii) appropriately approximate u with a uε locally, where the jump set Ju has
a low density, using the techniques developed in [8];

(iii) appropriately glue together the two such obtained approximations uε.

It is this last point which we cannot really solve, in dimension larger than 2. We
do not really solve it in dimension 2 either, the construction being even simpler:
In this case, thanks to a result in [10], we observe that at each scale ε > 0, we can
replace u (with a control of the energy) by a function u′ which has the property
that in a “strip” between the two regions corresponding to points (i) and (ii) above,
it has no jump at all. In that case, the constructions (i) and (ii) provide exactly
the same approximation uε, so that point (iii) is not even required.
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Patterning through instabilities in soft solids

Pasquale Ciarletta

(joint work with Davide Riccobelli, Matteo Taffetani)

Classical works in engineering sciences almost exclusively analyze the possibility
of instability as a predictive tool to be used in order to avoid the onset of ma-
terial failure in structural applications. A multidisciplinary research community
has been recently coalescing, focused on the idea that instabilities may also be
used positively to guide the design and fabrication of new materials [1]. This
guiding principle has been employed in designing novel elastic structures, where
instabilities provide simple mechanisms through which to generate a switchable
morphology, with original applications such as self-folding machines, stretchable
electronics and smart textiles. Indeed, the recent technical possibility to generate
extreme deformations in complex matter opens the way to unexplored instability
regimes, associated to non-trivial phenomena. In fact, the combination of both
geometrical and material nonlinearities can prompt the occurrence of intricate
morphological changes after multiple bifurcations, often leading to unconventional
(or, even, counter-intuitive) behaviors.
This talk is centered on the physical understanding of two classes of instabilities
in soft elastic solids.
The first system model proves the possibility to fabricate morphable miniaturized,
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very soft elastic filaments, in which the capillary forces are of the same order of
the bulk elastic stresses. Whilst the surface tension in a thin fluid filament triggers
the formation of droplets, which spontaneously break down, a soft elastic cylinder
is always stable if subjected to a homogenous uniaxial extension. The capillary
break-down can be therefore stabilized by the elastic effects in a very soft gel with
a sufficiently small radius, thus creating either a beaded or a pearled pattern [2].
The pattern formation is provoked by a phase transformation due to the loss of
convexity of the total energy induced by capillary effects. In summary, it is possi-
ble to tune the filament morphology by simply controlling either the applied axial
strain or the capillary tension in a well-identified range [3].
The second system model concerns the shape transition in soft solids due to the ef-
fect of gravity. Considering a body composed by two heavy elastic layers, attached
to a rigid surface and only subjected to the bulk gravity force, the selection of dif-
ferent patterns as well as their nonlinear evolution is well characterized, unveiling
the interplay between elastic and geometric effects for their formation. Unlike
similar gravity-induced shape transitions in fluids, as the Rayleigh Taylor insta-
bility, the nonlinear elastic effects are proved to saturate the dynamic instability
of the bifurcated solutions, displaying a rich morphological diagram where both
digitations and stable wrinkling can emerge [4].
In both cases, it is shown that, like in biological materials, the robustness of the
morphological control can be enforced by the redundancy of its actuating mecha-
nisms.
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Active bacterial fluids : from individual effort to team work

Eric Clement

(joint work with Anke Lindner, Carine Douarche, Harold Auradou)

Bacteria swimming in a fluid induce very deep changes in the macroscopic trans-
port properties and in the constitutive relations of the suspension. We are inter-
ested in understanding the hydrodynamics of those bacterial fluids. We currently
study various phenomena associated with the swimming activity such as the acti-
vated Brownian motion, the emergence of collective motion, the viscous response
and the hydrodynamic dispersion. We will discuss how a sheared suspension of
bacteria may display a viscosity decreasing with concentration and how at large
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concentration, it undergoes a transition to a “superfluid” regime of zero macro-
scopic viscosity.
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Fracture with healing: a toy model for cavitation?

Gilles A. Francfort

(joint work with A. Giacomini, O. Lopez-Pamies)

In the footstep of A.N. Gent & P.B. Lindley [3], cavitation in rubber was
viewed for a long time as a purely elastic phenomenon. In essence incipient point
defects would expand into spherical cavities under deformations of the form x/|x|.
This was recast in the mathematical universe by J.M. Ball [1]and his contribution
was followed by a great number of promising mathematical studies.

Yet it had already been remarked early on, most notably by M.L. Williams

& R.A. Schapery [8] that doing so resulted in unrealistically high elastic strains
along the boundary of the cavity. They had suggested that one should complement
the Gent-Lindley picture by accounting for possible breakage of the crosslinks,
hence introducing a modicum of fracture into the model. This was largely ignored
by the “rubber” community until it was picked up by O. Lopez-Pamies at the
modeling level and by K. Ravi-Chandar on the experimental end; see e.g. [5].

Actually the resulting picture, which does show a better fit with data, has to
be somewhat amended because of the apparent presence of a healing process for
the crack even during a loading phase as demonstrated in [7].

Here we report on the first attempt at introducing a dual fracture/healing mech-
anism in a rational description of fracture evolution. Admittedly, we can only do
so in the most simplistic (oversimplistic?) setting, that of a e.g. two-dimensional
scalar field with quadratic internal energy; further we assume that both crack-
ing and healing are rate independent and that the corresponding loss, or gain of
surface energy is proportional to the length of the added, or reduced part of the
crack. This is clearly too naive on several grounds: first we have thrown away the
all important impact of finite deformation and, even more so, of incompressibility.
Then, it is highly dubious that either the cracking, or the healing process can be
viewed as truly rate-independent in rubber.

In any case, within this framework – which is akin to a A.A. Griffith-type
model [4]– we demonstrate the existence of a well posed quasi-static energetic
evolution à la A. Mielke [6] under the further topological restriction that the
cracks be continua of finite length (compact connected, or maybe with a preset



Material Theories 2059

number of connected components). This is an existence result in the spirit of the
original 2d existence result for fracture evolution by G Dal Maso & R. Toader

for fracture only [2].
The precise result is as follows:

Theorem 1 (Quasi-static evolution). Let Ω ⊆ R2 be open and bounded. Let

c1 ≥ 0, c2 > c3 > 0, T > 0,

and let g ∈ AC([0, T ];H1(Ω)) be such that

sup
t∈[0,T ]

‖g(t)‖∞ < +∞.

Let finally (u0,K0) with K continuum, u0 ∈ H1(Ω \K) and u0 = g(0) on ∂Ω \K
be a globally stable configuration (i.e., satisfy property (1) below).

Then there exists a mapping {t 7→ (u(t),K(t)) : t ∈ [0, T ]} such that

(u(0),K(0)) = (u0,K0)

and also such that, for every t ∈ [0, T ], the following items hold true.

(a) Global stability: For every (v,Γ) with Γ continuum and v ∈ H1(Ω \ Γ),
v = g(t) on ∂Ω \ Γ,

(1) E(u(t),K(t)) ≤ E(v,Γ) + (c1 − c2)H1(Γ \K(t)),

where E(v,Γ) :=
∫

Ω |∇v|2 dx+ c2H1(Γ).

(b) Energy balance: E(u(t),K(t)) +Diss(0, t) = E(u(0),K(0)) + 2
∫ t

0 ∇u(τ) ·
∇ġ(τ) dx with

Diss(a, b) := (c1 − c2) sup

{

n
∑

i=0

H1(K(si+1) \K(si)) :

a = s0 < s1 < · · · < sn+1 = b} .
The method of proof is well known by now: perform a discretisation of size δ

in time of the interval of study, write a sequence of minimization problems for the
discrete times, interpolate the minimizers with piecewise constant functions and
pass to the limit in the size δ of the discretisation. However several hurdles stand
in the way of the proof. We will just mention here the lack of monotonicity of
the mapping t 7→ Kδ(t) for the inclusion which prevents application of any kind
of Helly type theorem that would establish the existence of a subsequence δn of δ
such that Kδn(t) → K(t) for some K(t) for all t’s as nր ∞.
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[5] V. Lefèvre, K. Ravi-Chandar, and O. Lopez-Pamies. Cavitation in rubber: An elastic insta-
bility or a fracture phenomenon? Int. J. Fracture, 192: 1–23, 2015.

[6] A. Mielke. Evolution of rate-independent systems. In A. Dafermos and E. Feireisl, edi-
tors, Evolutionary equations. Vol. II, Handb. Differ. Equ., pages 461–559. Elsevier/North-
Holland, Amsterdam, 2005.
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Microstructure of dislocations in 3D

Adriana Garroni

(joint work with S. Conti, A. Massaccesi, S. Müller, M. Ortiz)

The motion of dislocations is considered the main mechanism responsible for plas-
tic flow. Several analytical results describe dislocation dynamics in 2D, i.e., as-
suming dislocations to be infinite straight lines in a cylindrical domain, and hence
considering point singularities in two-dimensional domains. With this simplifying
assumption the problem reduces to the study of the evolution of particles interact-
ing through a logarithmic potential (the so called discrete dislocation dynamics).

In the fully three-dimensional description instead, a leading contribution in the
motion of dislocations is played by the line-tension energy, and hence the geometry
of the dislocations enters into play and produces relevant effects. In their motion
these lines create complex microstructure, as network structures, that influence
the effective plastic behavior of the body. The modeling of such microstructures
still needs to be understood.

We consider the classical line-tension energy, per unit length, for an infinite
straight dislocations (the so called pre-logarithmic factor of the elastic distortion
induced by the dislocation). With an asymptotic analysis we then provide a vari-
ational formulation the line-tension energy density, ψ(b, t). This depends on the
multiplicity b, the Burgers vector, which belongs to the (discrete) set of admissible
Burgers vectors B (e.g., Z3 if the underlining lattice is cubic), and on the direction
t of the line.

A given distribution of dislocations in a domain Ω can be represented by a
divergence-free matrix-valued measure supported on curves, i.e. a measure of the
form

(1) µ = θ ⊗ τ H1 γ ,

where θ : Ω ⊂ R3 → B is the multiplicity, γ is a 1-rectifiable set and τ its tangent
vector, satisfying divµ = 0, i.e.

∫

Ω ϕdµ = 0 for all ϕ ∈ C1
0 (Ω,R

3).
In [3], by means of an asymptotic analysis in terms of Γ-convergence of the

regularised scaled elastic energy we deduce the line tension energy associated to a
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Figure 1. Multiscale relaxation of the dislocation energy. (a) shows

a macroscopic dislocation line, whose energy per unit length is char-

acterized by ψrel. (b) illustrates a blow-up of a small portion of that

dislocation, which - in this example - exhibit a microstructure. These

lines are very close on the scale of the sample, so that they are not

distinguished in (a). A single line at the scale of (b) are two separate

dislocation lines at the scale of the lattice in (c), which illustrates a

further blow-up.

given distribution of dislocations

(2)

∫

γ

ψrel(θ, τ) dH1 .

The local effective line tension energy density ψrel is obtained through a relax-
ation procedure that may lead to the formation of microstructure as illustrated in
Figure 1 (see also [2]).

The next step is to start from the line tension energy and deduce a macroscopic
energy depending on a density of dislocations which is obtained in the limit as
the number (or total length) of dislocations increases (tends to infinity). To this
end we restrict our attention to the case in which all line dislocations are confined
to a given slip plane. This simplification allows to represent dislocations in an
alternative framework, to that of two-dimensional Caccioppoli partitions ([1]),
interpreting them as discontinuities of a phase field u ∈ BV (Σ,Z2), with Σ ⊆ R2,
representing the slip along Σ, and hence the line tension energy reads

(3) E(u) =

∫

Ju

ψrel([u], ν⊥u ) dH1 ,

where [u] := u+−u− denotes the jump of u and νu the normal to the jump set Ju
of u. We therefore introduce a small parameter σ > 0 and consider the following
rescaled energy

(4) Eσ(v) =

∫

Jv

σψrel

(

[v]

σ
, ν⊥v

)

dH1 , v ∈ BV (Σ, σZ2) .
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In [4] we prove that the Γ-limit of this energy is the following effective macroscopic
model for plasticity

(5) E0(v) =

∫

Σ

g

(

Dv

|Dv|

)

|Dv| , v ∈ BV (Σ,R2) ,

where the plastic slip field v has lost the crystallographic constraint. The energy
density g is determined by a cell-problem formula and it is obtained by means of a
further relaxation process. In the case of cubic crystals with isotropic elasticity, for
instance, we show that complex microstructures may form, in which dislocations
with different Burgers vector and orientation interact with each other to reduce
the total self energy (as illustrated in Figure 2).

Figure 2. Sketch of the microstructure for the cubic lattice and the

average dislocation distribution A = e1 ⊗ e2 − e2 ⊗ e1 and a finite u

which take the values 0,
(

σ

0

)

, etc. Reprinted from [5, Fig. 6] with

permission from Elsevier.

Starting from a vectorial phase-field Nabarro-Peierls model introduced by Ortiz
and coworkers [6, 7], in the limit of small lattice spacing, we show that, in a scaling
regime where the total length of the dislocations is large, the phase-field model
reduces to a simpler model of the strain-gradient type. The limiting model contains
a term describing the three-dimensional elastic energy and a strain-gradient term
describing the energy of the geometrically necessary dislocations, characterized
by the tangential gradient of the slip v. The energy density appearing in the
strain-gradient term is exactly the function g given by (5) which may give rise to
dislocation network-like structures.
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Construction of rank-one convex non-quasiconvex functions of high
symmetry

Yury Grabovsky

A central concept in modern Calculus of Variations is quasiconvexity, introduced
by C.B. Morrey in 1952 [10] as a criterion of sequential weak-* lower semi-continui-
ty. The same condition is also a necessary condition for a vector field u(x) to be
a strong local minimizer of the energy functional

E[u] =

∫

Ω

W (∇u)dx.

This condition is Jensen’s inequality but only for gradients
∫

Rd

{W (F +∇φ)−W (F )}dx ≥ 0

for every φ ∈ C∞
0 (Rd;Rm).

An early attempt to understand the true meaning of this concept was to de-
cide if it was equivalent to rank-one convexity. The question remained opened
until Šverák settled it in 1992 [11], giving an example of a Lagrangian defined on
3x2 matrices, that is rank-one convex, but not quasiconvex. The example is a
polynomial function with no apparent symmetries.

There is also a parallel question about the effective behavior of composite ma-
terials, whether every composite can be mimicked by a laminate made with the
same set of constituent materials. This question has also been answered in the
negative, by Milton [9, Sections 31.8–9], who exploited Šverák’s construction and
a well-known connection between G-closed sets and quasiconvex functions and L-
closed sets (sets containing effective tensors of all laminates made from materials
taken from that set) and rank-one convex functions.
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Exploiting the relation with the theory of composites in the opposite direction
is seemingly more difficult, as we place more restrictions on possible density func-
tions W (F ). In this talk a new example of a rank-one convex, non-quasiconvex
function with a very large group of symmetries is constructed. This example comes
from the theory of exact relations - formulas that hold for effective tensors of all
composites made with a given set of materials, regardless of the microstructure.
The algebraic nature of the theory, developed in collaboration with Graeme Milton
[6], is responsible for the aesthetic beauty of the new example. In this example
the vector field u is defined on R

2 with values in R
8, represented as a direct sum

of two copies of quaternions H: R8 ∼= H2. So that

(1) W (∇u) =

√

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

H2

∥

∥

∥

∥

∂u

∂y

∥

∥

∥

∥

2

H2

−
∣

∣

∣

∣

(

∂u

∂x
,
∂u

∂y

)

H2

∣

∣

∣

∣

2

,

This function is rank-one convex, but not quasiconvex: QW (I2) < W (I2), where
I2 is the quaternionic 2× 2 identity matrix. Compared to Šverák’s 3× 2 example,
this 8 × 2 example is higher-dimensional. Instead, it has a very large group of
symmetries

• W (λF ) = λ2W (F ), ∀λ ∈ R

• W (FR) =W (F ) ∀R ∈ O(2,R)
• V (GQ) = V (G) ∀Q ∈ Sp(2) ∼= U(2,H) = {Q ∈ H2×2 : QQH = I2}

In order to produce such an example we consider 2D multifield periodic com-
posite materials, whereby n curl-free fields (∇φ1, . . . ,∇φn) are coupled to n,
divergence-free fields (j1):

∇ · L
(x

ǫ

)

∇φ = 0,

where L(z) is [0, 1]2-periodic L∞ tensor fields with values in Sym+(Rn×2). A
submanifold M ⊂ Sym+(Rn×2) of positive codimension is called an exact relation,
if the effective tensor L

∗ of an arbitrary composite made with materials taken
from M must necessarily be in M. The idea is to test this property by laminar
microstructures. This results in a surprisingly beautiful algebraic characterization
of all such submanifolds [6, 5]. Specifically, they are diffeomorphic images of Jordan
A-multialgebras—subspaces Π in Sym+(Rn×2) closed with respect to a family of
Jordan multiplications, parametrized by a subspace A:

(2) K1 ∗A K2 =
1

2
(K1AK2 + K2AK1) ∈ Π, ∀{K1,K2} ⊂ Π, A ∈ A.

In our context A = {In ⊗ A : A ∈ Sym(R2), TrA = 0}. The final fun-
damental ingredient is supplied by an algebraic condition that is necessary of
Π to correspond to an exact relation, but which is not a consequence of (2).
This condition, discovered in [4] (see also [5, 3]) is called the 3-chain condition:
K1A1K2A2K3+K3A2K2A1K1 ∈ Π, for any {K1,K2,K3} ⊂ Π and {A1,A2} ⊂ A. An
analogous 4-chain condition is sufficient for Π to correspond to an exact relation.
It is a theorem of Cohn [2] that 2,3 and 4-chain properties are equivalent to “re-
flexivity” of the Jordan multialgebra. Namely, a reflexive Jordan multialgebra Π
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is exactly the set of all symmetric operators in a smallest associative multialgebra
Π′, containing Π.

The guidance for identifying non-reflexive algebras was obtained by examining
reflexivity of all Jordan subalgebras in Sym(Rn), characterized in [1]. It turns
out that all the nonreflexive Jordan subalgebras in Sym(Rn) are “spin factors”
[8], whose explicit construction is based on the algebra of quaternions. Once, one
knows what to look for, the non-reflexive example in Sym(R4×2) is easy to find,
where n = 4 corresponds precisely to the identification of R4 with the algebra
of quaternions. The non-reflexive algebra Π gives rise to a submanifold M that
contains all effective tensors of laminates made with material in M, but is not an
exact relation. Using variational formulation of the theory of composite materials
[7], we produce a family of rank-one convex, non-quasiconvex functions, of which
(1) is an example. For full discussion see [3].
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The Topological Character of Smectic Liquid Crystals

Randall D. Kamien

Though the systematic use of topology to understand defects in ordered matter
is now nearly 50 years old, the original work failed to completely characterize
systems with broken translational order, i.e., crystals. Smectics are the simplest
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Figure 1. Converting a + 1
2 disclination into a − 1

2 disclination.
The top center shows a toric focal conic domain inserted into an
otherwise unperturbed smectic. Topologically, it is point defect in
the center surrounded by a + 1

2 disclination loop. The cylindrical
region can attach to equally-spaced planes going off to infinity.
If we cut this into four by slicing through a vertical plane and
a perpendicular horizontal plane, we can use the quarter toric
domain to attach a + 1

2 disclination into − 1
2 disclination as shown

on the bottom left and right.

example of crystals and we have employed new mathematical tools to study and
classify the allowed point and line defects in them. The theory reduces to the time-
honored homotopy theory if we ignore the periodic order of the smectic but offers
a refinement – though the smectic can support all the defect structure and algebra
of the nematic phase that sits above it, the defects have further structure that
we have uncovered. This has allowed us to understand previously open puzzles,
including the nature of composite dislocations in smectics.

In particular, dislocations are, by their nature, not only topological but geo-

metrical: by definition, they only occur in systems with broken translational order
and therefore they must induce strain in the crystal or liquid crystal that host
them [1, 2, 3]. These strains can grow quite large and often require a cutoff at the
core to keep the energy finite. In exchange, the core melts into a higher-symmetry
phase bringing with it the higher energy of the uncondensed condensate. Screw
dislocations are especially troublesome because of a geometric consequence of their
topology. Namely, the helicoidal layer structure that makes up the screw disclo-
cation is not measured at its core [4], that is, all the layers come together on the
centerline. It follows that the compression energy must diverge there [5, 6]. The
symmetry of the smectic phase allows the core regions of a dislocation to be re-
placed by disclination pairs, for both edge and screw [7, 8, 9, 10] dislocations. We
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will discuss the necessary topology of how an edge dislocation becomes a screw
dislocaton through allowed topological and geometrical moves [11].
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A geometric theory of homogenization of singular defects

Raz Kupferman

(joint work with Cy Maor)

The modeling of defects in solids has a long ongoing history. One approach,
which goes back to the early 1900s, views defects as geometric singularities in
locally-Euclidean manifolds. Another approach, dating from the 1950s, models
continuously-distributed defects as smooth manifolds endowed with extra fields
representing the defects. In this lecture, the two approaches are reconciled. It
will be shown that the continuum models of defects are genuine limits of singu-
lar defects as their density tends to infinity. By introducing a notion of weak
convergence, we show how torsion arises as a homogenization limit of manifolds
with distributed singular dislocations, and similarly, how non-metricity arises a
homogenization limit of manifolds with distributed point defects.
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Nonlinear plastic modes

Edan Lerner

Understanding the yielding transition observed upon deforming a glass beyond
its elastic limit requires the proper identification of the micro-mechanical objects,
akin to dislocations in crystals, that carry plastic flow. In my talk I will introduce
a theoretical framework [1] within which a robust, micro-mechanical definition of
precursors to plastic instabilities in glassy solids, often termed ‘soft-spots’, natu-
rally emerges. They are shown to be collective displacements π̂, referred to here
as ‘plastic modes’, that lead to transitions over energy barriers in the glass. I
will demonstrate how plastic modes can be calculated without resorting to con-
ventional harmonic eigenmode analyses, but instead by properly accounting for
nonlinearities of the potential energy landscape. I will then show how a heuris-
tic search for nonlinear plastic modes in athermally deformed glassy solids can
a-priori detect the locus and geometry of imminent plastic instabilities with re-
markable accuracy, at strains as large as γc − γ ∼ 10−2 away from an instability
strain γc. Finally, I will introduce the theoretical framework [2] which allows for
the rigorous derivation of an equation of motion that describes both the coupling
of plastic modes to external deformation, and the resulting mechanical destabi-
lization process, and validate these using numerical simulations of model glasses.
These findings suggest that the a-priori detection of the soft-spots field in model
glasses can be effectively carried out by a nonlinear plastic modes analysis.
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Effective multipole expansion in random media

Felix Otto

(joint work with Peter Bella, Arianna Giunti)

Given a heterogeneous medium as described by a uniformly elliptic (symmetric)
coefficient field a(x) in d-dimensional space Rd, and a vector field g supported
in the unit ball B1(0) around the origin, we are interested in the Lax-Milgram
solution u of

−∇ · a∇u = ∇ · g.(1)

Is it possible to predict the field −∇u|B1(y) in the neighborhood of some far-away
point y (i.e. with |y| ≫ 1) without knowing the medium away from 0 and y?
In full generality, this is of course not possible. In case of a well-behaved random
medium, this however is possible to some extent: For d = 3, an effective dipole and
quadrupole, but not octupole, can be inferred to high precision just knowing the
realization a of the medium in a large, but order-one neighborhood of 0 and y. By



Material Theories 2069

well-behaved, we understand that the ensemble is like in quantitative stochastic
homogenization: stationary with correlations of integrable tails.

In case of a homogeneous medium, i.e. a constant coefficient a ≡ ah, by ex-
panding the fundamental solution Gh in the representation formula, i.e.

u(y) = Gh(y)

∫

fdx−∇Gh(y) ·
∫

xfdx+
1

2
∇2Gh(y) :

∫

x⊗ xfdx+ · · ·

where f := ∇ · g, the far-field behavior of u in terms of the monopole Gh, the
dipole ∇Gh, the quadrupole ∇2Gh etc, can be inferred from the corresponding
moments

∫

fdx = 0, −
∫

xfdx =
∫

g etc.
In case of a heterogeneous medium, the substitute for the multipoles are the

quotient spaces of decaying a-harmonic functions (i.e. functions satisfying −∇ ·
a∇u = 0):

Yk :=

{

u a-harmonic in R
d \B1(0) : lim sup

|y|↑∞
|y|(d−1)+k

(∫

B1(y)

|∇u|2
)

1
2

<∞
}

;

we note that in the homogeneous case, Y h
k /Y

h
k+1 is indeed spanned by the k-th

derivatives of Gh. Furthermore, the substitute for the (homogeneous) polynomials
defining the moments are (quotient) spaces of growing a-harmonic functions:

Xm :=

{

v a-harmonic in R
d : lim sup

|y|↑∞
|y|−m+1

(∫

B1(y)

|∇v|2
)

1
2

<∞
}

;

we note that in the homogeneous case, Xh
m/X

h
m−1 is described by the spherical

harmonics of degree m. There is a natural pairing between Xm and Yk given by

〈v, u〉 :=
∫

∂BR

ν · (va∇u − ua∇v),

an expression that is independent of R ≥ 1. It is folklore that in the homo-
geneous case, 〈·, ·〉h provides an isomorphism between Y h

k+1/Y
h
m+1 and the dual

space (Xh
m/X

h
k )

∗ for all m ≥ k ≥ 0.
This isomorphism is a re-expression of the multipole expansion: Indeed from

(1) we infer 〈v, u〉h =
∫

∇v · g for all v ∈ Xh
m so that

−∇ · g ∈ (Xh
m/X

h
0 )

∗ ∼= Y h
1 /Y

h
m+1 ∋ u.

Turning to the special case of m = 2, this means that the dipole and quadrupole
moments of −∇· g determine an element of (Xh

2 /X
h
0 )

∗, which by the isomorphism
identifies an element of Y h

1 /Y
h
3 , which in turn is the multipole expansion of u up

to quadrupoles. Our main result is that if ah is the homogenized coefficient, we
may construct two isomorphism between Xh

2 /X
h
0 and X2/X0 and between Y h

1 /Y
h
3

and Y1/Y3 that are canonical in the sense that the pairing 〈·, ·〉h turns into the
pairing 〈·, ·〉.
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Theorem 1. [2] Let d > 2 and consider a well-behaved ensemble of uniformly
elliptic coefficient fields. Then for almost every realization a, there exist two iso-
morphisms

vh ∈ Xh
2 /X

h
0 7→ X2/X0 ∋ v, uh ∈ Y h

1 /Y
h
3 7→ Y1/Y3 ∋ u s.t. 〈vh, uh〉h = 〈v, u〉.

More precisely, the first isomorphism is of the form

v = (1 + φi∂i + ψij∂ij)vh (with summation convention)(2)

and the second isomorphism is characterized by

lim
|y|↑∞

|y|(d−1)+1+β

(∫

B1(y)

|∇(u− (1 + φi∂i + ψij∂ij)uh)|2
)

1
2

= 0

for any 1 < β < min{ d
2 , 2}.

A few remarks are in place: A) (2) means that the random functions {φ}i=1,··· ,d
and {ψij}i,j=1,··· ,d are the first and second-order correctors, respectively, in the
language of homogenization.
B) Coming back to (1); it can be shown that u ∈ Y1, so that by the theorem there
exists uh ∈ Y h

1 such that the (second-order) two-scale expansion is close to order
β in the sense of

∇u = ∇((1 + φi∂i + ψij∂ij)uh)(1 + o(|y|−β)) on B1(y)

and uh ∈ Y h
1 /Y

h
3

∼= (Xh
2 /X

h
0 )

∗ is characterized by

∀ vh ∈ Xh
2 /X

h
0 〈vh, uh〉h = 〈v, u〉 =

∫

B1(0)

g · ∇(1 + φi∂i + ψij∂ij)vh.

Hence in order to infer ∇u|B1(y) (to order β), we only need to know the first and
second-order correctors in B1(y) and B1(0). Those can be approximately inferred

by solving d + d(d+1)
2 elliptic equations in two representative volume elements

around y and 0. Hence indeed, there is no need to know the realization of the
medium far away from these two points.
C) An example of a well-behaved ensemble is the following: Given a realization
{Xn}n ⊂ Rd of the Poisson point process of unit density, consider the isotropic
coefficient field a that has value 1 on ∪nB 1

4
(Xn) and value 1

2 on the complement.

D) Why is there a limitation to Y1/Ym with m = 3, i.e. to quadrupoles, in d = 3?
This relies on the growth of the correctors: As a rule of thumb, the k-th order

corrector grows, up to logarithmic terms, as |y|max{k− d
2 ,0} (very much like the

Brownian motion, which can be seen as a first-order corrector in d = 1, grows

as |y| 12 ). This means that the order of the homogenization error, no matter how
many orders of correctors are included into the two-scale expansion, is limited to
β < d

2 . Therefore, d = 2 is critical for quadrupoles, d = 4 is critical for octupoles
etc.

The proof relies on stochastic arguments from [1] establishing that for d > 2,
φi is stationary and that ψij grows no more than |y|2−β. It further relies on
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deterministic arguments yielding Yk+1/Ym+1
∼= (Xm/Xk)

∗, building upon [3]. The
crucial novel part is the argument that 〈v, u〉 = 〈vh, uh〉h, which easily reduces to

lim
R↑∞

∫

∂BR

ν ·
(

(va∇ũ− ũa∇v)− (vhah∇uh − uhah∇vh)
)

= 0,(3)

with ũ := (1 + φ∂i + ψij∂ij)uh and (2). Since vh grows as |y|2 and uh decays only
as |y|−d+1, we need more than one order of cancellation. A crucial tool consists
in complementing the correctors φi, ψij by flux correctors σi = {σijk}j,k=1,...,d,
τij = {τijkℓ}k,ℓ=1,...,d, which are skew-symmetric tensor fields characterized by

a(∇φ+ ei) = ahei +∇ · σi, a∇ψij = (φia− σi)ej + Chij +∇ · τij ,
with Ch a deterministic (1,2)-tensor, and can be shown to have the same growth
as φi and ψij , respectively. These allow for the representation of the flux

a∇ũ = ah∇uh + ∂ijuhChij +∇ · (∂juhσj + ∂ijuhτij) + (ψija− τij)∇∂ijuh,
from which together with (2) we get to first order (but in a weak topology),

va∇ũ ≈ vhah∇uh + φi∂ivhah∇uh + vh∂ijuhChij − ∂ivh∂juhσj(ei +∇φi).
Thanks to the normalization of the expectation 〈φi〉 = 〈σijk〉 = 0 we have Chijk =
ej · 〈(σi∇φk − σk∇φi)〉, so that as a consequence of ergodicity

(va∇ũ − ũa∇v)− (vhah∇uh − uhah∇vh)
≈ (vh∂ijuh − uh∂ijvh)Chij + ∂ivh∂juhChi·j .

The limit (3) then follows via a Null-Lagrangian structure of the above rhs coming
from the skew-symmetry of Chijk in (i, k).
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The Role of Nucleus Stiffness in the Physical Limit of Cell Migration

Luigi Preziosi

(joint work with Chiara Giverso)

The acquisition of the ability of cells to move in the network of fibers they live in
and across membranes is a fundamental step not only in cancer invasion and in
the spread of metastasisis, but also in physiological processes like wound healing.
Therefore, understanding the relevant mechanisms underlying this process has
important consequences on conceiving possible actions on the one hand to hamper
cancer invasion and on the other hand to speed up healing processes.



2072 Oberwolfach Report 33/2017

For this reason recently many experiments have been performed to under-
stand the mechanisms of cell migration but they were mainly done on flat two-
dimensional surfaces. Differently, cell motility in vivo takes place in three-dimen-
sional environments, of course, and biological tests on three-dimensional migration
indicate that in such more realistic set-ups cell motion can substantially differ from
migration on two-dimensional substrates, since the geometric microscopic charac-
teristics of the extra-cellular matrix (ECM) the cell live in and the cellular lining
the cell encounter along their way may constitute steric obstacles to their motion
[7, 11, 20].

Indeed, in many cases, the openings in the three-dimensional extracellular envi-
ronment might be substantially smaller than the cell diameter and therefore when
cells encounter such constrictions in the interstitial space, migration requires sub-
stantial cellular deformations, to adapt the shape of the cell to the only slightly
bendable fibrillar network. In many cases migration even requires the activation of
a proteolytic program involving the production of enzymes named matrix metallo-
proteinases (MMPs) that are able to degrade the fibers of the extra-cellular matrix
widening the size of the pores.

Looking more in detail, experiments show that whilst the cytoplasm is very
flexible and is able to accommodate nearly any pore size, the cell nucleus is an order
of magnitude stiffer than the surrounding cytoplasm and, with a typical diameter
of 3-10 µm, might be larger than the spacing among fibers in the ECM [5]. So, stiff
nuclei might not be able to squeeze through the narrow pores, defining a critical
pore size below which cells remain trapped. This critical pore cross-section was
estimated to be in the order of 10% of the original nucleus cross-section and was
defined as the physical limit of migration [20].

Therefore, in order to penetrate energy need be spent mainly to deform the
cell nucleus, so that it is able to pass through the narrow pores. This energetic
cost is irrelevant when the cell is migrating in three-dimensional networks with
typical distances among fibers larger than the nuclear dimension and, of course it is
absent when the cell is crawling on two-dimensional substrata. On the other hand,
it increases considerably in realistic three-dimensional set-ups when the spacing
available among the fibers is much smaller than the dimension of the nucleus, even
becoming prohibitive. In this case nuclear deformation becomes a limiting factor
to cell migration [21].

In [8] we estimated the energy required to deform the elastic nuclear membrane
and the internal genetic material, described as a neo-Hookean elastic solid, whereas
the cytoplasm is treated as an inviscid liquid that can easily adapt to fit any
channel size, so that the energetic contribution related to the deformation of the
cellular membrane and of its cytoplasm can be neglected. Then we compared this
energy with the work that can be performed by the cell to pull itself within the
pore network. This energy might be provided both by the cell myosin-actin-focal
adhesion machinery and by stress passively acting on the cell (i.e., fluid flow in
microfluidic devices or the pressure of surrounding cells in growing multicellular
aggregates).
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The basic assumption is that, in order to have a cell entering inside a mi-
crochannel, the energy needed to deform the nucleus and its membrane should be
smaller than the work that could be actively generated by the cell (i.e., through
the integrin-mediated cytoskeletal contraction) and passively exerted on the cell
(i.e., through stresses acting on the cell). Denoting respectively with Wactive and
Wpassive these two contributions, the criterium for cell entrance inside a channel
reads

(1) Wactive +Wpassive > WS +WV ,

where we distinguished the energy related to membrane extension, WS , and the
one related to bulk compression WV .

In order to compute the energy required to deform the nucleus some assump-
tions need be made on the shape acquired by the nucleus to pass through narrow
ECM restrictions. Experimental evidences [20] suggest that, when the cell is forced
to cross microchannels of sterically limiting geometries, the nucleus acquires an
elongated shape oriented along the cell long-axis direction, that resembles an ellip-
soid or a sigar with a cylindrical inner part ending with two spherical caps. In [9] it
was shown that the difference of energy required to achieve the two configurations
is negligible. So, in [8] the initial spherical nucleus of radius Rn is taken to deform
into a prolate ellipsoidal nucleus, with minor semi-axes equal to the radius of the
channel pore, Rp, preserving the total volume of the nucleus.

Regarding the surface contribution, following [6] the energy that is required to
deform the surface area was taken to be

(2) WS = λ(∆S)(∆S)2 ,

where ∆S is the increase on the surface area passing from an initial spherical
shape to the final ellipsoidal configuration and λ(∆S) can be either constant or an
increasing function of ∆S. Actually, it is found that there is a maximum stretched
area for the nuclear envelope, due to its lamin network layered below the nuclear
membrane. However, more refined relations for the membrane energy might be
considered as well as for the bulk genetic material [10, 17, 18, 19]. Nevertheless,
using (2) and a neo-Hookean law allows to obtain easy analytical computations
and it has been shown to well represent cell behaviour at least in a certain range
of deformations [6].

The other relevant component to be evaluated in Eq.(1) is the work done by
the traction forces that involve both the formation of integrin mediated adhesion
bonds to the extra-cellular matrix (ECM) and actomyosin-mediated contraction to
propel the nucleus forward. What is known by traction force microscopy [1, 2, 12]
is that traction forces are exerted mainly in the regions close to the head and to
the tail of polarized cells and that the traction forces of a single bond is about 10
pN. Thus, in addition to the strength of the traction force F the total force also
depends on the density of expressed and activated integrins, ρb, over the surface
of contact between the cell and the ECM, and on the portion of the surface of
contact composed by ECM ligands, αECM , i.e., the ratio of the channel surface
for which the cell can actually bond to the ECM.
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It is found that a crucial parameter is the dimensionless number G = ρbαECMF/µ
that compares quantities related to the traction forces at the numerator, with the
nucleus stiffness at the denominator. Hence, large G’s correspond, for instance,
to larger traction forces, better ability to adhere to the substratum, or softer cell
nuclei.

In fact, computating the energetic terms in (1) gives the following criterium for
the physical limit of migration

(3) G < Ḡ =
a(R̃p) + 8πβb(R̃p)

c(R̃p)R̃pL(R̃p, R̃c)
,

where

a(R̃p) =
2

3
R̃2

p +
1

3R̃4
p

− 1 , b(R̃p) =





R̃2
p

2



1 +
sin−1

√

1− R̃6
p

R̃3
p

√

1− R̃6
p



− 1





2

,

c(R̃p) =
2

R̃2
p

− 1 +
√

1− R̃6
p ,

L(R̃p, R̃c) =
4R̃3

c − 3R̃2
p − 2R̃3

p − 2 + 2(R̃2
p − 1)

√

1− R̃2
p

3R̃2
p

.

(4)

It can be noticed that the right hand side is a function of the normalized radii
R̃p = Rp/Rn and only through L of R̃c = Rc/Rn, in addition to the dimensionless
parameter β = λ0Rn/µ.

As sketched in Fig. 1, given a cell of radius Rc with a nucleus of dimension Rn

and nuclear mechanical properties, for every diameter ratio R̃p, it is possible to
define the value of G, such that for G < Ḡ cells cannot enter inside a channel of
radius R̃pRn.

Hence, knowing the density of expressed and activated integrins ρb on the con-
tact surface, the portion of the ECM αECM available to form bonds, the cy-
toskeletal traction force F generated by a single bond and, finally, the mechanical
properties of the nucleus (i.e., its shear modulus µ and the surface stiffness β),
moving on the horizontal line in the graph on the left of Fig. 1 it is possible to
identify the minimum cross section of ECM channels that can be penetrated by
the cell.

Conversely, knowing the characteristic dimensions of the pores in the ECM, of
the cell, and of the nucleus, moving on the vertical line in the graph on the right
of Fig. 1 it is possible to identify the minimum value of the parameter G such
that the cell might be able to penetrate into the ECM network. For instance, for
constant adhesion parameters, this means that the nucleus must be soft enough,
i.e., µ below a threshold value, or the traction force must be strong enough, i.e., F
above a threshold value. Furthermore, the criterium shows the possibility of clonal
selection in a population between moving and non-moving cells, for instance on
the basis of the nucleus stiffness or on their traction abilities.
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Figure 1. Schematic representation of the biological interpreta-
tion of the relation between Ḡ and R̃p = Rp/Rn for given cell
radius and β. The dashed region corresponds to the region in the
parameter space for which the cell cannot enter inside the ECM
channel.

This finding is in qualitative agreement with a number of experimental works,
such as [4, 13, 21], where cell migratory capability is associated with nuclear de-
formability. Moreover, it is qualitatively comparable with the results obtained with
individual cell-based model [14, 15, 16], confirming that mechanical properties of
the nucleus can affect the cell entry into channels.

We also mention that the relation (3) can be of great value, for instance, in
scaffold design. Indeed, we can conclude that also in view of the simulations
in [14, 15, 16] the optimal pore size to allow the repopulation of cells involved
in wound healing, such as fibroblasts and keratocytes, is slightly larger that the
dimension of their nucleus.

The same mechanisms outlined in the case of single cell migration inside an
ECM channel characterize and limit the invasion of multicellular aggregates while
growing in dense ECMs [20]. Indeed, the cells at the border of the cellular spheroid
try to penetrate the surrounding fiber network, but, whereas their cytoplasm is able
to protrude in the pores of the ECM as observed for single cells, their nuclei might
remain trapped at the border of the aggregate, depending on the geometrical (in
particular, the typical pore size of the extracellular network) and the mechanical
properties of the cells (mainly, the stiffness of the cells’ nuclei) [20]. In particular,
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when the spheroid is immersed in an ECM network with a pore size that is not
sterically restrictive, the cells at the outer border of the spheroid can invade the
surrounding collagenous environment. On the other hand, when the pore size in
the collagen network is too small (with respect to the nuclear dimension) and the
cells in the multicellular aggregate cannot secrete MMPs, the cells cannot invade
the surrounding tissue, since their nuclei remain trapped at the border of the
spheroid, even though their cytoplasms tend to protrude into the network.

We explicitily mention that it is not the ECM density that plays a role here, but
its microstructure, though the two characteristics are of course related. In fact,
as it can be readily realized conceptually and obtained experimentally by building
the ECM networks at different temperatures, the same ECM density of the fiber
network can be achieved with thinner fibers and smaller spacings among them and
thicker fibers and larger spacings.

Therefore, keeping in mind the penetration criterium discussed before and in
more details in [3] a multiphase model is proposed characterized by the presence
of a motility coefficient

(5) M = α
(Am −A0)+

(

1 + Am−A0

A1

)n ,

relating the velocity of the cellular constituent to the stress tensor.
In (5) (f)+ stands for the positive part of f , Am is the typical cross section of the

pores in the ECM and A0 is the critical cross section related to the physical limit
of migration. Recalling the discussion above, and coherently with experimental
outcomes reported for instance in [20], it is clear that A0 cannot be constant but
should depend on the ratio of the pore size with respect to the nucleus size and
through G on the elasticity of the nucleus and of its membrane, on cell adhesion,
on cell traction and on compression of the cell aggregate.

The model deduced in this way allows to describe the macroscopic invasion
or segregation of multicellular aggregates by thick porous structures, taking into
account the limitations imposed by the nuclear envelope and its solid interior
material. It can be noticed that from the mathematical point of view the model
has an interesting structure because it changes type from parabolic to hyperbolic
according to whether Am is larger than A0 or not, which from the bio-physical
point of view corresponds to the case in which there is penetration in and relative
motion with respect to the extra-cellular matrix or not.
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The equilibrium measure for a nonlocal dislocation energy

Lucia Scardia

(joint work with Maria Giovanna Mora and Luca Rondi)

In this talk I presented the recent results in [5] on the characterisation of the
equilibrium measure for a nonlocal and anisotropic weighted energy describing
the interaction of positive dislocations in the plane.

More precisely, in [5] we consider the interaction energy

(1) I(µ) =

∫∫

R2×R2

V (x− y) dµ(x) dµ(y) +

∫

R2

|x|2 dµ(x)

defined on probability measures µ representing the mesoscopic dislocation density,
where the interaction potential V is given by

(2) V (x) = − log |x|+ x21
|x|2 , x = (x1, x2),

and corresponds to positive edge dislocations with Burgers vector e1, and the
second term in the energy acts as a confinement.

The minimisers of I describe the equilibrium dislocation patterns at the mesoscale.
Although such minimisers have not been characterised analytically so far, neither
at the micro nor at the mesoscale, they are conjectured to be vertical wall-like
structures (see, e.g., [1, 3]). This belief has triggered a considerable interest in
dislocation walls in the engineering and mathematical literature, and interactions,
upscaled behaviour and dynamics of walls have been thoroughly analysed.

In [5] we give a positive answer to the conjecture. We prove that the minimiser
of I exists, is unique, and is given by a one-dimensional, vertical measure, namely
the semi-circle law on the vertical axis

m1 :=
1

π
δ0 ⊗

√

2− x22 H1 (−
√
2,
√
2).

This is the first example of an anisotropic kernel for which the minimiser can be
explicitly computed. Even in the radially symmetric case, the explicit character-
isation of the equilibrium measure has been done only for the Coulomb potential
in any dimension, for the logarithmic potential in dimension one and for power
laws.

In two dimensions the Coulomb potential, namely VC = − log | · |, arises in
a variety of contexts, such as, e.g., Fekete sets, orthogonal polynomials, random
matrices, Ginzburg-Landau vortices, Coulomb gases. For the same confinement
term as in (1), the minimiser is given by the circle law m0 := 1

π
χB1(0) (see, e.g.,

[2, 6], and the references therein). Although the radial component of the potential
in (2) is exactly the Coulomb kernel VC, the presence of the additional anisotropic
term has a dramatic effect on the structure of the equilibrium measure. Unlike
m0, the support of m1 is one-dimensional and its density is not constant.

For the logarithmic potential in one dimension, corresponding to the so-called
Log-gases energy (see, e.g., [4]), Wigner proved in [7] that the semi-circle law is
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the unique minimiser. We note that the functional I in (1) coincides with the Log-
gases energy on measures with support on the vertical axis, since the anisotropic
term vanishes on those measures. Therefore if one could prove that the minimiser
of I is supported on the vertical axis, then the minimality of the semi-circle law
would follow directly.

This is however not the strategy we use in [5]. Our approach consists of two
steps: We first prove the strict convexity of I on the class of measures with com-
pact support and finite interaction energy. Strict convexity implies uniqueness of
the minimiser and the equivalence between minimality and the Euler-Lagrange
conditions for I. As a second step, we show that the semi-circle law satisfies the
Euler-Lagrange conditions and hence is the unique minimiser of I.

The proof of both steps is highly non-trivial. We could not rely on the machin-
ery developed in the classical case of purely logarithmic potentials with external
fields (see [6]), which is heavily based on − log | · | being radially symmetric, and
on it being the fundamental solution of the Laplace operator, since V is neither.
Similarly, although nonlocal energies are widely used and studied in the mathe-
matical community, and the existence of their ground states and their qualitative
properties have received great attention in recent years, the potential is typically
required to be radially symmetric, or the singularity to be non-critical, so V is not
covered by their analysis.
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Existence and Convergence of Solutions of the Boundary Value
Problem in Atomistic and Continuum Nonlinear Elasticity Theory

Bernd Schmidt

(joint work with Julian Braun)

The classical connection between atomistic and continuum models of nonlinear
elasticity is provided by the Cauchy-Born rule: The continuum stored energy
function associated to a macroscopic affine map is given by the energy (per unit
volume) of a crystal which is homogeneously deformed with the same affine map-
ping. In fact, there are two different approaches to a rigorous justification of the
Cauchy-Born rule: Variational methods have been used by Friesecke and Theil
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[6] and further developed by Conti, Dolzmann, Kirchheim and Müller [4] showing
that, under appropriate conditions, the homogeneous Cauchy-Born deformation is
indeed a global energy minimizer for affine boundary conditions. In [2] we have
shown that in this setting one also has a discrete-to-continuum Γ-convergence re-
sult. A different approach has been used by E and Ming [5] (on the flat torus under
rather strong smoothness assumptions) and Ortner and Theil [8] (for the whole
space problem), which also applies to atomic interaction potentials with physically
realistic decay at infinity. The main results in these contributions show that, un-
der appropriate stability conditions, near solutions of the continuum equations of
elasticity there always is a discrete solution of the atomistic system.

The main aim of this note is to report on recent results obtained in [3] on the
rigorous derivation of a passage from equilibrium configurations of atomistic sys-
tems to solutions of the continuum equations of elastostatics for general boundary
value problems.

Atomistic systems.

Let Ω ⊂ Rd be a Lipschitz domain, εZd, ε ≪ 1, be labels for atoms. We consider
atomistic deformations y : Ω ∩ εZd → R

d. For fixed A0 ∈ R
d×d, detA0 6= 0, the

macroscopic material domain is A0Ω with atomic reference positions A0Ω∩εA0Z
d

and reference configuration yA0(x) = A0x.

For a suitable R0 > max{max{|ρ| : ρ ∈ R},
√
d
4 } (see below), we introduce the

following sets of (semi-)interior and boundary atoms, respectively:

• sintε Ω = {x ∈ Ω ∩ εZd : dist(x, ∂Ω) > εR0},
• intε Ω = {x ∈ Ω ∩ εZd : dist(x, ∂Ω) > 2εR0},
• ∂εΩ = Ω ∩ εZd\ intε Ω.

We assume that each atom x ∈ εZd only interacts with neighboring atoms
belonging to x+εR, where the interaction rangeR ⊂ Zd is finite (with span

Z
= Zd

and R = −R). For a given atomistic deformation y, such interactions can only
depend on the matrix of differences

DR,εy(x) =
(y(x+ ερ)− y(x)

ε

)

ρ∈R
(∈ R

{1,...,d}×R ).

For a given body force f : εZd ∩ Ω → Rd and a boundary datum g : ∂εΩ → Rd,
the total energy is assumed to be expressed in terms of a site potential Watom :
(Rd)R → (−∞,∞] (independent of ε) satisfying a (mild) symmetry assumption:

Eε(y; g) = εd
∑

x∈sintε Ω

Watom(DR,εy(x)) − εd
∑

x∈εZd∩Ω

f(x) · y(x),

if y ∈ Aε(Ω, g), where the set of admissible deformations is

Aε(Ω, g) = {y : Ω ∩ εZd → R
d : y(x) = g(x) for all x ∈ ∂εΩ}.

Local minimizers satisfy the equilibrium equations
{

− divR,ε

(

DWatom(DR,εyatom(x))
)

= f(x) in Ω,
y(x) = g(x) on ∂εΩ.
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Here for any M : Ω ∩ εZd → R
d×R we write

divR,εM(x) =
∑

ρ∈R

Mρ(x)−Mρ(x − ερ)

ε
.

Link to continuum systems.

The Cauchy-Born rule associates to Watom the continuum energy density

WCB(A) :=Watom((Aρ)ρ∈R).

The corresponding continuum boundary value problem reads as
{

− div
(

DWCB(∇y(x))
)

= f(x) in Ω,
y(x) = g(x) on ∂Ω.

Stability.

Linearizing the continuous equation at the affine deformation yA0 and setting L =
D2WCB(A0) ∈ Bil(Rd×d), since span

R
R = Rd, the classical Legendre-Hadamard

condition can be written as

λ̃LH(L) = inf
ξ,η∈Rd\{0}

L[ξ ⊗ η, ξ ⊗ η]

|ξ|2 ∑

ρ∈R
(ρη)2

> 0.

With K = D2Watom((A0ρ)ρ∈R) ∈ Bil(R{1,...,d}×R) and

λε(K,Ω) = inf
y∈Aε(Ω,0)

y 6=0

εd
∑

x∈sintε Ω

K[DR,εy(x), DR,εy(x)]

εd
∑

x∈sintε Ω

|DR,εy(x)|2
.

we consider the atomistic stability condition

λatom(K) = inf
ε>0

λε(K,Ω) = lim
εց0

λε(K,Ω) > 0,

which in fact is independent of Ω (cf. also [7]).

Proposition. Assume that Kjρlσ = Klσjρ = Kj(−ρ)l(−σ). Then

λatom(K) = inf
ξ∈Rd\{0}

k∈[0,2π)d\{0}

K[ξ ⊗ c(k), ξ ⊗ c(k)] +K[ξ ⊗ s(k), ξ ⊗ s(k)]

|ξ|2(|c(k)|2 + |s(k)|2) ,

where c(k)ρ = cos(ρk)− 1 and s(k)ρ = sin(ρk).

Remarks.

(1) The proof with Fourier series techniques is not hard.
(2) We recover the well known fact that λatom > 0 (atomistic stability) implies

λLH > 0 (Legendre-Hadamard condition).
(3) This representation applies directly for models considered in [6, 4].



2082 Oberwolfach Report 33/2017

Solving the continuous equations.

Theorem. Let m ∈ N0, d < 2m+ 2 and let Ω ⊂ Rd be an open, bounded set with

Cm+2-boundary. Let r0 > 0 and assume that Watom ∈ Cm+3(Br0((A0ρ)ρ∈R)) with
λLH(A0) > 0. Then there are κ1, κ2 > 0 such that, for ‖g − yA0‖Hm+2(Ω;Rd) < κ1,
‖f‖Hm(Ω;Rd) < κ1, the boundary value problem

− div(DWCB(∇y(x))) = f(x), if x ∈ Ω,

y(x) = g(x), if x ∈ ∂Ω,

has exactly one weak solution with ‖y − g‖Hm+2(Ω;Rd) < κ2.

Discrete-to-continuum passage.

We introduce the following discrete (semi-)norms.

‖u‖h1
ε(sintε Ω) =

(

εd
∑

x∈sintε Ω

|DR,εu(x)|2
)

1
2

, ‖g‖∂εΩ,0 = ‖Tεg‖h1
ε(sintε Ω),

‖u‖h−1
ε (intε Ω) = sup

{

εd
∑

x∈intε Ω

u(x) · ϕ(x) : ϕ ∈ Aε(Ω, 0), ‖ϕ‖h1
ε(sintε Ω) = 1

}

,

where Tεg = argmin
(

‖y‖h1
ε(sintε Ω) subject to y = g on ∂εΩ

)

. We also set f̃(x) =

ε−d
∫

z+(− ε
2 ,

ε
2 )

d f(z) dz for x ∈ z + (− ε
2 ,

ε
2 )

d, z ∈ εZd. Let E be an extension

operator for all Sobolev spaces, ηε standard mollifier. If y ∈ H1(Ω;Rd), write

Sεy(x) = ηε ∗ (yA0 + E(y − yA0))(x) for x ∈ εZd.

Theorem. Let d ∈ {1, 2, 3, 4} and let Ω ⊂ R
d be an open, bounded set with C4-

boundary. Let Watom ∈ C5(Br0((A0ρ)ρ∈R)), r0 > 0, and assume λatom(A0) >

0. There are K1,K2,K3 > 0 such that for every ε ∈ (0, 1], γ ∈ [d2 , 2], f ∈
H2(Ω;Rd) with ‖f‖H2(Ω;Rd) ≤ K1, g ∈ H4(Ω;Rd) with ‖g − yA0‖H4(Ω;Rd) ≤ K1,

fatom : intε Ω → Rd with ‖fatom − f̃‖h−1
ε (intε Ω) ≤ K2ε

γ, and gatom : ∂εΩ → Rd

with ‖gatom − Sεy‖∂εΩ,0 ≤ K2ε
γ, (y being the continuous solution to f and g, cf.

previous theorem) such that:
There is a unique yatom ∈ Aε(Ω, gatom) with ‖yatom − Sεy‖h1

ε(sintε Ω) ≤ K3ε
γ

and

− divR,ε

(

DWatom(DR,εyatom(x))
)

= fatom(x) ∀ x ∈ intε Ω.

Furthermore, yatom is a strict local minimizer of Eε(·, fatom, gatom).
Remark. An extension of this result to the dynamic setting, even for long times,
has recently been obtained by Braun in [1].
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On coercivity of boundary integral functionals in high-frequency
scattering

Valery Smyshlyaev

Fundamentally, mathematical problems coming from high-frequency scattering of-
ten lead to challenges quite similar to those in homogenization and other milti-
scale problems, and often require advanced tools of multiscale analysis. One of
such problems is that of coercivity of certain quadratic integral functionals asso-
ciated with combined boundary integral operators in high frequency scattering.
The problem originates from numerical analysis, but in its own appears a highly
challenging analytical problem.

An obstacle scattering problem is classically stated mathematically as a bound-
ary value problem for Helmholtz equation ∆u+ k2u = 0 in an unbounded domain
Ω+ ⊂ Rd exterior to a bounded obstacle Ω−, with say Dirichlet boundary con-
ditions on Γ := ∂Ω+ and Sommerfeld radiation conditions at infinity for (the
scattered part of) u. This forms a well-posed problem in appropriate functional
spaces with a unique solution.

The above scattering problem in the unbounded domain is often reduced to that
on the boundary Γ via classical Green’s integral representation. Namely, ifGk(x, y)

is the Green’s function (fundamental solution) in Rd ( G = (i/4)H
(1)
0 (k|x − y|)

where H
(1)
0 is Hankel function for d = 2, and G = exp (ik|x− y|)/(4π|x − y|) for

d = 3), then

(1) u(x) = ui(x) −
∫

Γ

Gk(x, y)
∂u(y)

∂n
ds(y), x ∈ Ω+,

where ui is a known incident wave (a solution of the Helmholtz equation in a
neighborhood of Ω−), u = ui + us with us denoting the scattered part. Rep-
resentation (1) allows to reduce the scattering problem to a Boundary Integral
Equation (BIE) for v(x) := ∂u/∂n on Γ in various ways. One is by simply tak-
ing a trace of (1) when x → Γ, which results in a “single layer” BIE: Skv(x) :=
∫

Γ
Gk(x, y)v(y) ds(y) = ui(x) =: f(x). The latter however suffers from loss of

uniqueness when k2 coincides with an eigenvalue λDj of an internal (i.e. in an



2084 Oberwolfach Report 33/2017

unphysical domain Ω−) Dirichlet problem. An alternative is to take a “Neumann
trace”, i.e. to differentiate (1) in n and set x → Γ. Taking account of “jump
conditions”, this results in (adjoint) “double layer” BIE:

(

1

2
I +D′

k

)

v(x) :=
1

2
v(x) +

∫

Γ

∂Gk

∂n(x)
(x, y)v(y) ds(y) =

∂ui

∂n
(x),

which in turn suffers from loss of uniqueness when k2 = λNj , an interior Neumann
eigenvalue.

A way to avoid the loss of uniqueness is by considering a “combined”BIE
(CBIE), e.g. a simple (complex) linear combination of single and double-layer
BIEs:

(2) Akv =

(

1

2
I +D′

k

)

v − i k ηSkv = f =
∂ui

∂n
(x) − i ηk ui(x)

with a ‘coupling constant’ kη, where η > 0 (k → ∞). The CBIE (2), due to
uniqueness for an associated interior ‘impedance’ problem (as well as for the exte-
rior Dirichlet problem), is uniquely solvable for all η > 0 and k > 0, and moreover
(for Lipschitz Γ) is known to have a bounded inverse A−1

k in L2(Γ).
An extensive literature, see e.g. numerous references in [7], has been devoted to

studying properties of Ak and of A−1
k , particularly for large k i.e. at high frequen-

cies. The latter appears to be strongly linked to the notion of non-trappingness
of the obstacle, i.e. loosely to the absence of closed “billiards” in the exterior
Ω+. For trapping domains, at high frequencies, such closed billiards can support
asymptotic “almost eigenmodes”: a geometrical optics type almost-solutions to
the Helmholtz equation localized near these billiards. (These ideas go back to [1];
see, e.g., [2] and the references therein.)

However for purpose of numerical analysis of Galerkin-type methods for CBIE
(2), properties even stronger than the bounds on ‖A−1

k ‖ are required, namely
bounds on the coercivity constant γ(k) > 0 (provided such exists):

(3) |(Akφ, φ)L2(Γ)| ≥ γ(k)‖φ‖2L2(Γ), ∀φ ∈ L2(Γ).

The reason is that á priori error estimates in Galerkin approximations critically
depend, via Lax-Milgram and Cea’s lemmas, on γ(k), see e.g. [3]–[5] for further
details. (Notice that bounds on γ(k) imply bounds on ‖A−1

k ‖, but not other way
round.)

The above motivates efforts on establishing coercivity for various domains, par-
ticularly at high frequencies (for large k). In [3], coercivity with γ = 1/2 for η = 1
and k sufficiently large was proved for a circle or a sphere using Fourier analysis. In
[4] it was proved for Lipschitz star-shaped domains for all k with a constant γ inde-
pendent of k, but for a particularly modified CBIE (the so-called “star-combined”
BIE). Finally, in [5] coercivity for a classical CBIE (2) was proved for uniformly
convex smooth scatterers with γ arbitrarily close to 1/2 for large enough k and
η. The results in [4] and [5] used some non-trivial modifications of “Morawetz
multipliers”, e.g. [6].
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It is reasonable to expect that, for high frequencies, the coercivity property
depends on some form of non-trappingness. Recent work [7], see Remark 6.6,
provides an example of loss of a uniform in k coercivity for some classically non-
trapping domains (which could however still be viewed as trapping in certain
generalized sense). Remaining open question is whether coercivity still holds,
possibly with γ(k) mildly degenerating as k → ∞, for “strongly non-trapping”
(non-convex) domains like e.g. smooth star-shaped ones.

Namely, for a wide class of non-trapping domains, one might hope to prove that
for certain γ0 > 0 and possibly also α > 0 there exists γ > 0, such that for any
vk ∈ L2(Γ), ‖vk‖L2 = 1,

lim inf
k→∞

|(Akvk, vk)| ≥ γ0 k
−α.

One can hope to exploit the fact that, asymptotically for large k, in the quadratic
functional

(Kvk, vk) = (Dvk − iηSkvk, vk) =

∫

Γ

∫

Γ

K(x, y)vk(x)vk(y)dS(x)dS(y),

with oscillatory (compact) kernel K(x, y), the small “elements” vk(x)dS(x) and
vk(y)dS(y) interact only through “billiard-related” frequencies in vk near x and
y. This may naturally suggest that certain tools from multi-scale analysis, such
as e.g. Wigner or H−measures, might be relevant. For example, let vk ∈ L2(Γ)
and ‖vk‖L2 = 1. Then, up to a subsequence kn → ∞, vkn

appropriately (weakly)
converges to a “two-scale” v(x, kx), where v(x, z) has a Fourier transform v̂(x, ξ)
in “fast variable” z. Then one can hope that, asymptotically as k → ∞, the func-
tional Ik(vk) := (Kvk, vk) behaves like a “two-scale” limit functional I∞(v̂(x, ξ)).
The latter might account explicitly for the billiard-type interactions only, which
for non-trapping domains (i.e. in the absence of closed billiards) in turn might
maintain certain coercivity properties by a direct inspection. Realization of such
a program would probably require establishing appropriate version of a key (two-
scale) compactness property, for justifying such a limit passage.
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Carbon nanotubes from the molecular-mechanical viewpoint

Ulisse Stefanelli

Carbon nanotubes are long, hollow structures showing cylindrical symmetry [2].
Their walls consist of a single (or multiple) one-atom-thick layer of carbon atoms
arranged in a hexagonal pattern. Such a specific structure is responsible for the
remarkable properties of these materials in terms of strength, electric and thermal
conductivity, chemical sensitivity, transparency, and light weight. One can visu-
alize a carbon nanotube as the result of rolling up a patch of a regular hexagonal
lattice. Depending on the different possible realizations of this rolling-up, differ-
ent topologies may arise, giving rise to zigzag, armchair, and chiral nanotubes.
These topologies are believed to have a specific impact on the mechanical and
electronic properties of the nanotube, which can go from being highly conducting
to semiconducting.

A variety of models for carbon nanotubes has been set forth, ranging from
purely geometrical descriptions [1, 2] to continuum-mechanical models as rods,
shells, or even solids. Our interest is in modeling such structures within the frame
of Molecular Mechanics: We identify carbon nanotubes with point configurations
{x1, . . . , xn} ∈ R3n corresponding to atomic positions. The atoms are interacting
via a configurational energy E = E(x1, . . . , xn) given in terms of classical potentials
and taking into account both attractive-repulsive two-body interactions, minimized
at a certain bond length, and three-body terms favoring specific angles between
bonds [8]. Specifically, we define

(1) E({x1, . . . , xn}) =
1

2

∑

NN

v2(|xi−xj |L) +
1

2

∑

NN

v3(αijk).

Here, v2 : R+ → [−1,∞) is a smooth two-body potential attaining its minimal
value only at 1 with v2(1) = −1 with v′′2 (1) > 0 and vanishing shortly after 1
and the corresponding sum is taken on nearest neighbors (NN) only. The distance
|xi−xj |L is taken modulo L-periodicity in a fixed direction, representing indeed
the axis of the nanotube. The angle αijk is determined (up to complementarity)
by the segments xj − xi and xk − xj where {xi, xj} and {xk, xj} are nearest
neighbors. The three-body potential v3 : [0, 2π] → [0,∞) is smooth and symmetric
around π with minimum value 0 just at 2π/3 and 4π/3 and with v′′3 (2π/3) > 0.
These choices describe, although to a schematic extent, the phenomenology of
sp2-covalent bonding in carbon, i.e., the bonding model in carbon nanotubes.

Carbon nanotubes are identified with extremizers of the configurational energy,
namely by solving ∇E = 0 in R3n with very large n. The complexity of such a
description can be tamed by restricting to specific subclasses of objective [4], highly
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symmetric configurations. In the zigzag topology, these can be seen as orbits of two
atoms a under the action of a prescribed isometry group generated by a translation
combined with a rotation along the axis and by a simple translation. In other
words, all atoms of an objective nanotube see the same local geometry, which is
in turn completely determined by a small set of scalars (angles and bond lengths).
Correspondingly, the energy of such objective configurations Eobj is defined on a
subset of Rm for m small. Extremizers of such Eobj, i.e. carbon nanotubes which
minimize energy within the class of objective nanotubes, can be easily determined.
Such an optimal objective nanotube geometry is new. In particular, it does not
correspond to the geometric models [1, 2] available.

The question is now how well the optimal objective nanotube describes extrem-
izers of E and how is this approach influenced by mechanics. One can in fact apply
a stretching on configurations by simply modifying the period L in the definition of
the energy. We have analyzed these issues in [3, 5, 6] where we prove the following
facts:

(a) The optimal objective nanotube C∗ is a strict local minimizer of E, namely
E(C) > E(C∗) for all nontrivial and possibly nonobjective small pertur-
bations of C∗.

(b) By imposing a small stretching L + δL, one still finds a unique optimal
objective nanotube. This is strictly locally minimizing EL+δL among all
close (L + δL)-periodic possibly nonobjective configurations.

Note that item (b) proves the so-called Cauchy-Born rule in this setting. As a
matter of illustration of (a)-(b), the result of a Monte Carlo simulation for random
perturbations and different stretchings is reported in Figure 1 below.

-40

-30

-20

-10

 1.4  1.45  1.5  1.55  1.6

E

L

Figure 1. Monte Carlo simulation.

For each given L, the lowermost dot in the Figure 1 is the energy of the optimal
objective configuration and those above it correspond to the energy of random,
nonobjective perturbations. The lower envelope of the cloud in Figure 1 is the
elastic energy of the nanotube as a function of its stretching. A discussion on the
stability for other carbon structures including carbyne, graphene, fullerenes, and
diamond can be found in [7].
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Solitary waves in nonintegrable lattices

Anna Vainchtein

(joint work with L. Truskinovsky, J. Cuevas-Maraver, P. G. Kevrekidis, H. Xu)

The interplay between dispersion and nonlinearity in many physical systems leads
to the formation of solitary traveling waves, localized coherent structures that
carry energy through the system. For example, such waves were experimentally
observed in granular materials [1] and are believed to be responsible for energy
transport in muscle proteins [2]. Much of the interest in these nonlinear waves was
triggered by the pioneering study [3] of the Fermi-Pasta-Ulam (FPU) problem,
which can be written in the rescaled form

(1) ẅn = f(wn+1)− 2f(wn) + f(wn−1).

Here wn is the strain associated with the relative motion of the nth and (n− 1)th
masses in a one-dimensional chain, and f(w) is a nonlinear nearest-neighbor inter-
action force. The subsequent work [4] has revolutionized the nonlinear science by
connecting the FPU problem to the Korteweg-de Vries (KdV) equation that de-
scribes its low-energy quasicontinuum limit and showing that the near-recurrence
of the initial data observed in [3] in this limit can be attributed to formation
and interactions of solitary waves. Such waves have the form wn(t) = w(x),
x = n−V t, where V is the velocity of the wave, and tend to a constant (typically
zero) at infinity. In integrable systems solitary waves, known as solitons, are now
well understood, with one-dimensional Toda lattice [5] being the most prominent
example that has an exact solution covering a broad range of behaviors from delo-
calized low-energy waves in the KdV limit to highly localized high-energy waves.
Most discrete systems, however, are nonintegrable. In this case understanding the
transition from the KdV limit to the strongly discrete waves has mostly relied on
numerical [6] and quasicontinuum [7] approximations.
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In recent work [8] we constructed a nonintegrable analog of the Toda family of
solitons for the FPU problem (1) with a piecewise linear continuous f(w):

(2) f(w) = w, w ≤ wc, f(w) = α(w − wc) + wc, w ≥ wc,

where α > 1 and wc > 0. The obtained exact infinite series solution captures
the entire crossover velocity range between the low-energy limit and strongly lo-
calized waves that involve only one particle moving at a time. Truncation of the
series solution involving progressively smaller characteristic wavelengths produces
a nested set of approximate solutions. Even the simplest solution of this type that
accounts only for the longest wavelengths provides a better overall approximation
of solitary waves than some conventional quasicontinuum models.

Numerical simulations [8, 9] suggest stability of the constructed solutions for
velocities above a certain threshold, where the system’s energy, H, increases with
the velocity V of the solitary wave, and instability for supersonic velocities below
the threshold, where dH/dV < 0. The instability near the sonic limit is an artifact
of the piecewise linear form of (2), as demonstrated in [10], where the problem
with a smoothened f(w) is investigated both numerically and by analyzing the
spectrum of the associated linear operator. In this case, the instability occurs in
a narrow velocity interval with the lower bound strictly above the sonic limit.

The analysis is extended [11] to the case including harmonic second-neighbor
interactions of relative strength measured by the parameter β, with the governing
equations

(3) ẅn = f(wn+1)− 2f(wn) + f(wn−1) +
β

4
(wn+2 − 2wn + wn−2),

where β > −1 is assumed to ensure stability of the homogeneous deformation. We
show that when the interactions are strongly competitive, with −1 < β < −1/4,
the waves must be strictly supersonic, in the sense that solitary wave solutions do
not exist in a velocity gap above the sonic limit c =

√
1 + β and below a certain

β-dependent velocity bound. Solutions with velocities just above the bound have
the form of slowly modulated oscillations. In contrast, there is no such gap for
β ≥ −1/4, and the near-sonic solutions have a monotone decay at infinity [12].

Construction of planar solitary waves wl,m(t) = w(x), x = l cosφ+m sinφ−V t,
for the two-dimensional square lattice problem

(4) ẅl,m = f(wl+1,m) + f(wl−1,m) + f(wl,m+1) + f(wl,m−1)− 4f(wl,m)

with f(w) given by (2) reveals a strong anisotropy in the dependence of the width
and height of the wave on the angle φ of propagation that is well captured by
truncated solutions including sufficiently short wavelengths [13].
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Nonlinear and Linear Elastodynamics Transformation Cloaking

Arash Yavari

(joint work with Ashkan Golgoon)

We formulate the problem of elastodynamics transformation cloaking in both non-
linear and linear elastodynamics. In particular, it is noted that a cloaking trans-
formation is neither a spatial nor a referential change of frame (coordinates); a
cloaking transformation maps the boundary-value problem of an isotropic and
homogeneous elastic body (virtual problem) to that of an anisotropic and inho-
mogeneous elastic body with a hole reinforced by a cloak that is to be designed
(physical problem). The virtual body has a desired mechanical response while
the physical body is designed to mimic the same response outside the cloak using
a cloaking transformation. We determine the constitutive equations of nonlinear
elastic cloaks and the elastic constants of linear elastic cloaks. It is shown that the
elastic constants of a linear elastic cloak are fully symmetric. Finally, we present
an example of a linear elastic cloak.
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Stochastic homogenisation of free-discontinuity functionals

Caterina Ida Zeppieri

(joint work with Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia)

In the Calculus of Variations the terminology free-discontinuity functionals usually
refers to those functionals with competing volume and surface terms. A typical
example is that of an integral functional of the form

(1) E(u) =

∫

A

f(x,∇u) dx+

∫

Su∩A

g(x, [u], νu) dHn−1,

depending on both u : A ⊂ R
n → R

m and on its discontinuity set Su, whose shape
and location are not known a priori. The natural functional setting for E is that
of special functions of bounded variation SBV (A,Rm). Then ∇u denotes the
approximate differential of u, [u] stands for the difference u+ − u− between the
approximate limits of u on both sides of the discontinuity set Su, and νu denotes
the (generalised) normal to Su.

In the last decades the mathematical theory of free-discontinuity problems had
a great development and its manifold applications range from Computer Vision
to Materials Science. In typical applications one has to deal with families of func-
tionals of type (1); i.e., functionals depending on some small positive parameter
ε, whose nature depends on the specific problem under consideration, and try to
establish some emergent properties in the limit of ε → 0. Further, in many rele-
vant applications (such as e.g. the study of composite materials) the integrands f
and g may also vary according to some (spatial) periodicity, or more generally to
some random law. One is then led to consider families of functionals of the form

(2) Eε(ω)(u) =

∫

A

f
(

ω,
x

ε
,∇u

)

dx+

∫

Su∩A

g
(

ω,
x

ε
, [u], νu

)

dHn−1,

where ω belongs to the sample space Ω of a probability space (Ω, T , P ) and labels
the realisations of the integrands f and g, which are now understood as random
variables.

When f and g do not depend on ω and are periodic in the spatial variable the
limit behaviour of Eε can be determined appealing to the classical homogenisation
theory [3]. The latter asserts that, under standard growth and coercivity condi-
tions (and mild regularity assumptions) on f and g the deterministic functionals
Eε behave macroscopically like a homogeneous free-discontinuity functional. Fur-
ther, in the homogenisation process there is no interaction between volume and
surface energy.

In this talk we discuss the asymptotic behaviour of free-discontinuity functionals
as in (2) where the integrands f and g are random variables and their realisations
satisfy the following assumptions. We fix six constants p, c1, . . . , c5, with 1 <
p < +∞, 0 < c1 ≤ c2 < +∞, 1 ≤ c3 < +∞, and 0 < c4 ≤ c5 < +∞, and
two nondecreasing continuous functions σ1, σ2 : [0,+∞) → [0,+∞) such that
σ1(0) = σ2(0) = 0.

The volume integrand f : Rn×Rm×n → [0,+∞) has to satisfy:
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(f1) (measurability) f is Borel measurable on R
n×R

m×n;
(f2) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1)− f(x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(

1 + f(x, ξ1) + f(x, ξ2)
)

for every ξ1, ξ2 ∈ Rm×n;
(f3) (bounds) for every x ∈ Rn and every ξ ∈ Rm×n

c1|ξ|p ≤ f(x, ξ) ≤ c2(1 + |ξ|p).
The surface integrand g : Rn×R

m
0 ×S

n−1 → [0,+∞) satisfies:

(g1) (measurability) g is Borel measurable on Rn×Rm
0 ×Sn−1;

(g2) (continuity in ζ) for every x ∈ Rn and every ν ∈ Sn−1 we have

|g(x, ζ2, ν)− g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(

g(x, ζ1, ν) + g(x, ζ2, ν)
)

for every ζ1, ζ2 ∈ Rm
0 ;

(g3) (estimate for |ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ c3 g(x, ζ2, ν)

for every ζ1, ζ2 ∈ Rm
0 with |ζ1| ≤ |ζ2|;

(g4) (estimate for c3|ζ1| ≤ |ζ2|) for every x ∈ Rn and every ν ∈ Sn−1 we have

g(x, ζ1, ν) ≤ g(x, ζ2, ν)

for every ζ1, ζ2 ∈ R
m
0 with c3|ζ1| ≤ |ζ2|;

(g5) (bounds) for every x ∈ Rn, ζ ∈ Rm
0 , and ν ∈ Sn−1

c4 ≤ g(x, ζ, ν) ≤ c5(1 + |ζ|);
(g6) (symmetry) for every x ∈ R

n, ζ ∈ R
m
0 , and ν ∈ S

n−1

g(x, ζ, ν) = g(x,−ζ,−ν).
The random environment is then described by a group of P -preserving transfor-
mations (τz)z∈Zn defined on the probability space (Ω, T , P ).

For homogenisation to occur we consider only those randomness having some
kind of self-repeating structure. This property can be quantified in terms of
(τz)z∈Zn by requiring that f and g are stationary; i.e., for every z ∈ Z

n and
P -almost surely

(3) f(ω, x+ z, ξ) = f(τzω, x, ξ) ∀(x, ξ) ∈ R
n × R

m×n,

(4) g(ω, x+ z, ζ, ν) = g(τzω, x, ζ, ν) ∀(x, ζ, ν) ∈ R
n × R

m
0 × Sn−1.

The two conditions as above ensure that the statistical properties of the medium
are invariant under translations; this will allow us to reconstruct, in a suitable
statistical sense, the overall limit behaviour of Eε by the knowledge of its local
behaviour on a sequence of increasingly larger “fundamental cells”.

To analyse the limit of Eε we first regard ω as a fixed parameter and study
the limit behaviour of the deterministic (and in general non periodic) functionals
Eε(ω). The convergence of functionals of type Eε(ω) has been recently studied
in [5] where, among other, the homogenisation of free-discontinuity functionals
without periodicity assumptions has been addressed. Specifically, [5, Theorem
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3.8] provides us with a sufficient condition for the Γ-convergence of the family
(

Eε(ω)
)

ε
towards a homogeneous free-discontinuity functional of the form

Ehom(ω)(u) :=

∫

A

fhom (ω,∇u) dx+

∫

Su∩A

ghom (ω, [u], νu) dHn−1,

for suitable Borel functions fhom(ω, ·) and ghom(ω, ·, ·). The aforementioned suffi-
cient condition amounts to the existence and independence of x of the two following
limits

(5) lim
r→0+

1

rn
inf

∫

Qr(rx)

f(ω, y,∇u(y))dy =: fhom(ω, ξ),

and

(6) lim
r→0+

1

rn−1
inf

∫

Su∩Qν
r (rx)

g(ω, y, [u](y), νu(y))dHn−1(y) =: ghom(ω, ζ, ν)

where the infimum in (5) is taken among functions inW 1,p(Qr(rx),R
m) satisfying

u(y) = ξy near ∂Qr(rx), while the infimum in (6) is taken among all functions u
in SBV (Qν

r (rx),R
m) satisfying ∇u = 0 Ln-a.e. in Qν

r (rx) and

u(y) = urx,ζ,ν(y) :=

{

ζ if (y − rx) · ν ≥ 0

0 if (y − rx) · ν < 0
near ∂Qν

r (rx).

Then in a second (stochastic) step we show that the sufficient condition as above
is fulfilled almost surely; i.e., the two limits in (5) and (6) exist for P -a.e. ω ∈ Ω.
As for the case of stochastic homogenisation of volume functionals [6] this step
heavily relies on the stationarity assumption on f and g. Specifically, the almost
sure existence of the limit in (5) follows as in [6] by first proving that, for every
fixed ξ ∈ Rm×n, the map

(ω,A) 7→ inf

{∫

A

f(ω, y,∇u(y))dy : u ∈W 1,p(A,Rm), u(y) = ξy near ∂A

}

defines a subadditive stochastic process on Ω × In (where In denotes the class
of n-dimensional intervals) and then invoking the pointwise subadditive Ergodic
Theorem of Ackcoglou and Krengel [1]. Though the proof of the existence of the
limit in (6) follows a similar strategy as for the volume case, the analysis of surface
random functionals is particularly delicate and requires some additional care. In-
deed, two main differences between volume and surface energies are immediately
apparent from (6). Namely, the latter shows a “mismatch” between the surface
scaling rn−1 and the minimisation problem

(7) inf

{∫

Su∩Qν
r (rx)

g(ω, y, [u], νu)dHn−1 : u ∈ SBV (Qν
r (rx),R

m),

∇u = 0, a.e. in Qν
r (rx), u = urx,ζ,ν on ∂Qν

r (rx)

}
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which is defined on the n-dimensional cube Qν
r (rx). Moreover, the explicit de-

pendence of the boundary datum urx,ζ,ν on the spacial variable x results into an
additional difficulty in the proof of (6). Then, similarly as in [2], we first set x = 0
in (7) and then provide a systematic way to associate to (7) a map defined on
Ω × In−1 (In−1 being the class (n − 1)-dimensional intervals). This map then
turns out to be the sought for (n− 1)-dimensional subadditive stochastic process,
the main difficulty being here the proof of the measurability of the process.

As a final step we show that the choice x = 0 is not “special”; i.e., that the
limit in (6) actually defines a homogeneous random surface-integrand ghom. This
is done appealing to the Birkhoff’s Ergodic Theorem in the spirit of [4], where
a similar issue is solved by proving the translation invariance of a first passage
percolation formula.

Finally, if f and g are ergodic (i.e., they satisfy (3) and (4) for (τz)z∈Zn ergodic)
the homogenisation becomes effective and the functional Ehom is deterministic.
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