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Introduction by the Organisers

The mini-workshop Recent Developments on Approximation Methods for Con-
trolled Evolution Equations, organised by Birgit Jacob (Wuppertal), Enrique
Zuazua (Bilbao) and Hans Zwart (Twente) was held November 1st – 7th, 2015.
This meeting was well attended with 16 participants with broad geographic rep-
resentation.

Systems modelled by linear ordinary differential equations have long been stud-
ied and there exists a wide body of theory and design algorithms dealing with
their control. The state describing such a system lies in a finite-dimensional vec-
tor space. This setting has its limitations, as many systems of interest, from the
point of view of applications to industry and other disciplines, do not fall into
this class. A more interesting generalisation is that to systems with an infinite-
dimensional state space. This class includes delay systems, and systems modelled
by functional differential equations and partial differential equations (PDEs), gen-
erally called evolution equations. This field finds applications in such diverse areas
as aeronautics, mechanical and electrical engineering. Since they appear frequently
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as models in these fields of applications, evolution equations with boundary con-
trol and boundary observation are of particular interest.
One of the key issues when addressing real applications is the effective control
of those systems, which requires of significant effort from the point of view of
mathematical analysis.

The talks where grouped into three main themes:

• Modeling and control of real-live problems

• Numerical analysis of PDE control

• Theoretical aspects of controller design and approximations for systems
described by PDEs

In the first theme the following participants gave talks: Rob Fey, Aitziber Ibañez,
Jarmo Malinen, George Weiss.

Furthermore, Athanasios Antoulas, András Bátkai, Umberto Biccari, Nicolae
Cı̂ndae, Weiwei Hu, Orest Iftime, Kirsten Morris, Timo Reis and Hans Zwart
were the speakers of the second theme.

The last theme was covered by Björn Augner, Birgit Jacob, Felix Schwenninger
and Hans Zwart. Although we have grouped them according to our themes, there
was significant overlap between the approaches which stimulated many productive
discussions.

The organizers and participants thank the Mathematisches Forschungsinstitut
Oberwolfach for providing an inspiring setting for this mini-workshop, which al-
lowed us to concentrate on the mathematics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Model reduction of large-scale dynamical systems: An overview with

applications to evolution equations

Thanos Antoulas

1. MOR and motivating examples

Model order reduction (MOR) seeks to reduce the computational complexity and
computational time in the simulation of large-scale dynamical systems by approx-
imations of much lower dimension that produce nearly the same input/output
response characteristics.

One version of the problem consists of a given physical system described by
known sets of PDEs. These are then appropriately discretized to yield sets of
ODEs (Ordinary Differential Equations). The number of the ODEs is reduced,
which constitutes model reduction. Often the equations (PDEs or ODEs) are
replaced by data, which can be measured or computed by means of DNS (Direct
Numerical Simulation); in this case the reduced system is constructed from the
data. Finally, the reduced system is used for simulation, design, or control.

Three motivating examples were mentioned, two based on equations and one
on measurements. Example I: Viscous fingering in porous media. In this case the
equations of the system are the PDEs (Partial Differential Equations) describing
Darcy’s law and advection diffusion equations. Example II: Thermal treatment
of railroad rails. The equations here are convection diffusion PDEs with inhomo-
geneous Robin boundary conditions. Example III represents a microstrip device.
Such devices consist of thin metallic conductors mounted on a flat dielectric sub-
strate, itself mounted on a ground plate. Common applications are transmission
lines, antennas and filters. Microstrip transmission lines are a common way to con-
nect two devices. Such devices are described by means of measured S-parameters
(Scattering parameter) matrices.

For an overview of MOR methods based on system equations, see [1, 6, 11]. In
the sequel we will be concerned with a specific data-driven MOR method, namely
that based on the Loewner framework. An overview of the Loewner framework in
provided in [5].

2. The Loewner framework

The data-driven MOR framework that we propose is based on the Loewner matrix,
which was introduced by Karel Löwner (later Charles Loewner) in the paper: Über
monotone Matrixfunctionen, Math. Zeitschrift (1934).

Given a row array (µj ,vj), j = 1, · · · , q, and a column array (λi,wi), i =

1, · · · , k, the associated Loewner matrix whose (i, j)th entry is: Li,j =
vi−wj

µi−λj
. If

there is a known underlying function g, then wi = g(λi), and vj = g(µj).
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Main property. Let L be a q × k Loewner matrix built from samples of a
rational function g(s). If q, k ≥ deg g, then rankL = deg g, where the degree of
rational function is the maximum between the degrees of the numerator and the
denominator polynomials.

The exact or the numerical rank of L is thus of central importance in this
approach, depending on whether we wish to recover the original rational function
or an approximant thereof.

2.1. The Loewner framework and generalizations. The Loewner framework
has been worked out for linear systems with multiple inputs and outputs [10, 9, 5,
2]. It has been extended to parametric systems [4, 7, 8] and recently to nonlinear
systems [3].

2.2. Summary. In this talk we presented an approach to data-driven model re-
duction. Key tool is the Loewner pencil and tangential interpolation. Given in-
put/output data, a singular high order model in descriptor form is constructed
without computation; this constitutes a natural way to construct models and re-
duced models. Some features are:

• the SVD of L provides a trade-off between accuracy and complexity;
• the approach does not force the inversion of E;
• the methodology can deal with many input/output ports as well as
parameters and smooth nonlinearities.

The philosophy of this approach is: collect data and extract the desired information.
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Boundary Stabilisation of Port-Hamiltonian Systems

Björn Augner

(joint work with Birgit Jacob)

We are interested in stabilisation and control of beam equations. Quite a large
class of them may be reformulated in the abstract port-Hamiltonian form [5]

∂x

∂t
(t, ζ) =

N
∑

k=0

Pk

∂k(Hx)

∂ζk
(t, ζ) =: (Ax(t))(ζ), t ≥ 0, ζ ∈ (0, 1)

where the states are described by x(t, ζ) ∈ Kd (K = R or C). We assume that
Pk = (−1)k+1P ∗

k ∈ Kd×d are symmetric and skew-symmetric matrices with PN

invertible, and P0 ∈ L∞(0, 1;Kd×d). On the space X = L2(0, 1;K
d) with inner

product 〈·, ·〉X = 〈·,H·〉L2
where H ∈ L∞(0, 1;Kd×d) is coercive as operator in

L(X) we define A on its maximal domain D(A) = {x ∈ X : Hx ∈ HN (0, 1;Kd)}
and also boundary input and output maps B and C, respectively, which depend on
the boundary trace only, i.e. the value of Hx and its derivatives at the boundary,
and assume that the port-Hamiltonian system S = (A,B,C) is impedance passive,
i.e.

ℜ〈Ax, x〉X ≤ ℜ〈Bx,Cx〉KNd .

We then consider the evolution equation in boundary control and observation form

d

dt
x(t) = Ax(t), x(0) = x0

Bx(t) = u(t), Cx(t) = y(t), t ≥ 0

where we couple input and output via a static m-dissipative map φ : D(φ) ⊆
KNd

⇒ KNd and the feedback Bx(t) ∈ φ(Cx(t)) (t ≥ 0) or with an impedance
passive control system, represented by an m-dissipative map Nc : D(Nc) ⊆ Xc ×
KNd

⇒ Xc ×KNd for Xc the state space of the controller, so that
(

d
dt
xc(t)

−yc(t)

)

∈ Nc

(

xc(t)
uc(t)

)

, t ≥ 0.

As it turns out the resulting evolutionary equation is well-posed [4], [1] in the
sense that one obtains m-dissipative operators Aφ := A|D(Aφ) with D(Aφ) = {x ∈
D(A) : Bx ∈ φ(Cx)} or A (defined on the product space X×Xc in a suitable way),
respectively. Then, provided that the resulting operators are dissipating enough
energy, e.g.

ℜ〈A(x, xc), (x, xc)〉 ≤ −κ |(Hx)(1)|
2

for systems with N = 1, when 0 is a uniformly exponentially stable equilibrium
of the control system and the control system is, say, strictly input-passive, then 0
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also is a globally uniformly stable equilibrium of the interconnected system [1], [2],
[3]. Similar result also hold for higher order systems [1], [2], where for N = 2 one

needs a dissipation like |(Hx)(1)|
2
+ |(Hx)′(1)|

2
+

∣

∣(Hx)(j)
∣

∣

2
, but less restrictive

dissipation condition under more structural conditions, e.g. the Euler-Bernoulli
beam structure. Finally we apply the abstract results to the stabilisation of a
1D-wave equation with static nonlinear boundary feedback.
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Operator splitting for dissipative delay equations

András Bátkai

(joint work with Petra Csomós, Bálint Farkas)

The Lie–Trotter product formula and its generalizations to nonlinear semigroups
play a central role in semigroup theory, as witnessed in the seminal monographs
by Goldstein [9] or Engel and Nagel [8]. As it turns out, the Lie–Trotter product
formula is widely used in numerical analysis under the name of operator splitting.

Our aim is to investigate the convergence of the Lie–Trotter product formula
(or operator splitting) for nonlinear partial differential equations with delay.

Partial differential equations with delay play an important role in modeling
physical, chemical, economical, etc. phenomena, since it is quite natural to assume
that past occurrences effect the model. For further motivation see for example the
monographs by Wu [13] or Bátkai and Piazzera [6].

There has been lots of work describing the asymptotic behavior and regularity of
solutions, as well as in the numerical analysis of ordinary differential equations with
delay, see for example the monograph by Bellen and Zennaro [7]. The numerical
analysis of partial differential equations with delay, however, seems to be in its
infancy. We aim to contribute to this topic by analyzing an operator splitting
procedure for nonlinear partial differential equations with delay.

The idea of operator splitting is to decompose the differential equation into
simpler equations which can be solved in an effective way, and then represent the
solution of the original equation using product formulae, like the Lie–Trotter one.
For ordinary differential equations, the theory seems to be quite complete, as wit-
nessed in Hairer et al. [10, Section II.4,5]. There has also been enormous progress
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in the theoretical investigation of splitting procedures for infinite dimensional sys-
tems in recent years, see for example the monograph by Holden et al. [11]. See
also the recent papers by Bátkai et al. [3, 4, 5], where nonautonomous equations
and spatial approximations are also considered. Unfortunately, abstract results
analyzing the order of convergence are rather incomplete, and, as it seems, can be
applied to delay equations only with considerable difficulty.

The idea to apply splitting procedures to delay equations is the following. Con-
sider, e.g., a delayed reaction–diffusion equation of the form

u′(t) = ∆u(t) + g

(

u(t− 1) +

∫ 0

−1

η(σ) · u(t+ σ) dσ

)

.

with some initial and boundary conditions. The delay term appearing here repre-
sents the two main classes of possible delays in applications: point delays corre-
sponding to dependence on a single event in the past, and distributed delays (given
by an integral term with an integrable kernel η) corresponding to dependence on
a whole time period in the past. In our opinion, distributed delays are often more
realistic in modeling, but we will not restrict ourselves to them here.

The nonlinearity g can be chosen from a wide range of functions depending on
applications, for example a rational function in chemical reactions, or a tanh type
function in neural networks, see for example the monograph by Wu [13].

Since the delay term is in a way a “scalar operator” (in the sense that it does
not mix the spatial variables), it is natural to decompose the equation into two
sub-problems: the heat equation

w′(t) = ∆w(t),

and a scalar-valued delay equation

v′(t) = g

(

v(t− 1) +

∫ 0

−1

η(σ) · v(t+ σ) dσ

)

.

Both equations can be solved numerically in an effective way. Note that the
second equation becomes here an ordinary differential equation with delay, hence
the methods described in Bellen and Zennaro [7] can be applied.

Our aim is to put this example in an abstract theoretical perspective explaining
the convergence and analyze the order of convergence in some special cases. The
results obtained will be published in detail in [2].
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Boundary controllability for a one-dimensional heat equation with two

singular inverse-square potentials

Umberto Biccari

Let T > 0 and set Q := (0, 1)× (0, T ). We prove boundary controllability for the
following one-dimensional heat equation on the domain Q

(1)















ut − uxx −
µ1

x2
u−

µ2

(1− x)2
u = 0 in Q

u(0, t) = f(t), u(1, t) = 0 in (0, T )

u(x, 0) = u0(x) in (0, 1)

presenting two singular inverse-square potentials with singularities located on the
boundary. In particular, the main result of this work will be the following Theorem,
presented in [1].

Theorem 1. Let µ1 and µ2 be two real numbers such that µ1, µ2 ≤ 1/4. For any
time T > 0 and any initial datum u0 ∈ L2(0, 1), there exists a control function
f ∈ L2(0, T ) such that the solution of (1) satisfies u(x, T ) = 0.

The upper bound for µ1 and µ2 is required for the well-posedness of the problem,
and is related to a multi-polar Hardy-Poincaré inequality.
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As it is by now classical, for proving Theorem 1 we will apply the Hilbert Unique-
ness Method; hence the controllability property will be equivalent to the observ-
ability of the adjoint system associated to (1), namely















vt + vxx +
µ1

x2
v +

µ2

(1− x)2
v = 0 in Q

v(0, t) = v(1, t) = 0 in (0, T )

v(x, T ) = vT (x) in (0, 1).

(2)

This observability inequality will involve the normal derivative of the solution of
(2) in the point from which we aim to control. In particular, we will prove the
following inequality

∫ 1

0

v(x, 0)2 dx ≤ CT

∫ T

0

[

x2λ1v2x

]

∣

∣

∣

∣

∣

x=0

dt.(3)

where we introduce a weighted normal derivative in order to compensate the sin-
gularity at x = 0. The inequality above, in turn, will be obtained as a consequence
of a Carleman estimate for the solution of (2).
This work extends previous results on the internal controllability for equations of
the type of (1), presented in [2], [3] and [4], to the case of boundary controllability.
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Numerical controllability of the wave equation using time-space

finite elements

Nicolae Ĉındea

(joint work with Carlos Castro, Arnaud Münch)

This talk aims to present some recent results concerning the approximation of con-
trols of minimal L2-norm for the wave equation using a finite elements discretiza-
tion of the space-time domain [2]. More precisely, the following wave equation
with distributed control is considered:

(1)







ytt(x, t)−∆y = v(x, t)1ω(x), (x, t) ∈ Ω× (0, T )
y(x, t) = 0, (x, t) ∈ ∂Ω× (0, T )
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ Ω,
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where Ω is an open domain of Rn and ω ⊂ Ω is an open and non-empty subset of Ω.
The null controllability in time T > 0 consists, for every (y0, y1) ∈ H1

0 (Ω)×L
2(Ω),

in finding a control v ∈ L2(ω × (0, T )) such that

y(x, T ) = yt(x, T ) = 0, ∀x ∈ Ω.

In order to approach such a control, the first step of the proposed method is to
write the optimality condition corresponding to the minimization of the functional
J⋆, which appears in Hilbert Uniqueness Method (HUM), as a mixed formulation.
This is possible by introducing a Lagrange multiplier for tacking into account that
the dual variable ϕ (the functional J⋆ is minimized with respect to ϕ) verifies the
wave equation. The obtained mixed formulation is well posed as a consequence of
the exact observability of the adjoint system associated to (1).

In a second step, the mixed formulation is numerically approximated using the
finite elements method. More exactly, C1 finite elements are employed for the
approximation of the dual variable ϕ and C0 Lagrange finite elements for the
approximation of the Lagrange multiplier λ.

Finally, since the space-time domain is discretized with no differentiation be-
tween the temporal and the spatial variables, this method is very appropriate to
tackle the controllability of the wave equation using controls supported in time-
dependent domains. Several numerical simulations are discussed and confirm the
theoretical analysis of the proposed method. A similar strategy can be employed
for the wave equation with boundary control [1].
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Controlling nonlinear resonances in thin-walled structures: modeling,

simulations, and experiments

Rob H.B. Fey

Thin-walled structures are often used in engineering practice because in their (ax-
ial, in-plane) loading direction, they have a high stiffness-mass ratio and a high
(static) loading capacity. However, in the transversal direction, they may be quite
flexible. Although the structure will be generally designed in such a way that
static buckling will not occur, dynamic periodic base excitation of the structure
still may lead to dynamic buckling (i.e. resonances) of the structure. This may
lead to malfunctioning, fatigue, damage, or even collapse of the structure. In
this work, first, nonlinear resonances of an archetype thin-walled structure will be
studied in the low frequency range, both numerically and experimentally. Subse-
quently, they will be attenuated using control. The structure consists of a vertical
slender beam, which carries a top mass. The beam is loaded statically by the
weight of the top mass, which is below the static buckling load, and dynamically
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by a vertical periodic base excitation. Piezoelectric (PZT) patches are attached on
both sides of the beam, which can locally exert a control moment. The transversal
displacement and velocity halfway the length of the beam are measured by means
of a laser vibrometer. First, a single mode model of the uncontrolled structure
is derived. The transversal displacement field is approximated by an analytical
shape function with a corresponding generalized degree of freedom. This shape
function is fitted to the lowest eigenmode of the system, which is obtained using
finite element analysis. The beam is assumed to be inextensible. This implies
that the axial displacement field and the transversal displacement field are kine-
matically coupled. Furthermore, the beam has a small geometric imperfection. It
is assumed that this imperfection can be approximated by the analytical shape
function mentioned above as well. The model is geometrically nonlinear due to
3rd order Taylor series approximations of the inextensibility constraint and the
beam curvature. After formulating expressions for the kinetic energy, the poten-
tial energy, and the non-conservative forces, the equation of motion of the system
in terms of the generalized degree of freedom is derived using Lagrange’s equa-
tion. Viscous damping is accounted for by a linear and a quadratic term. Now,
branches of periodic solutions are calculated by solving two-point boundary value
problems in combination with path following techniques using the base excitation
frequency as the varying parameter. In the uncontrolled case, the model predicts
a severe 1/2 subharmonic (parametric) resonance, a harmonic resonance, and sev-
eral superharmonic resonances. The largest resonances show softening behavior.
On the periodic solution branches, cyclic fold bifurcations and period doubling
bifurcations are met. The steady-state responses are also measured using stepped
frequency sweep-up and stepped frequency sweep-down experiments. The numer-
ical and experimental responses match very well. Now, a (model-based) feedback
linearizing controller in combination with a linear controller is implemented to
suppress the severe transversal resonances using the PZT patches. The linear con-
troller consists of a gain in combination with a lead filter. Experiments show that
near dangerous base disturbance frequencies, the vibration levels are reduced up to
a factor 300! It can be concluded that the implemented controller very successfully
suppresses all resonances of the uncontrolled system.

Observer-based Feedback Stabilizaiton of a Thermal Fluid

Weiwei Hu

We discuss the problem of designing an observer-based feedback law which locally
stabilizes a two dimensional thermal fluid modeled by the Boussinesq equations.
The investigation of stability for a fluid flow in the free convection problem is
important in the theory of hydrodynamical stability (see [11]). The challenge
of stabilization of the Boussinesq equations arises from the stabilization of the
Navier-Stokes equations and its coupling with the convection-diffusion equation for
temperature. The controllability and stabilizability of the Navier-Stokes equations
and Boussinesq equations have been widely discussed (see [4], [5], [6], [7], [10]). In
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this talk, we consider a boundary feedback stabilization problem. In particular, we
consider a finite number of controls acting on a portion of the boundary through
Robin boundary condition and construct a linear Luenberger observer based on
point observations of the linearized system. The sensor locations for the measure-
ment are determined by the geometric structure of the feedback functional gains
(see [1], [2], [3]). It can be shown that the nonlinear system coupled with the
observer through the feedback law is locally exponentially stabilizable. Numerical
results are provided to illustrate the idea and suggest areas for future research.
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Guidance by repulsion model: analysis, some simulations and optimal

control

Aitziber Ibañez

(joint work with Ramón Escobedo, Enrique Zuazua)

The most usual strategy to find an effective way to solve a guidance problem is
the “Follow me” strategy, which is based on the effect of the attraction that one
agents (or particle) exerts on the others. The major novelty of our work [1] is that
we use a repulsion force (i. e., “move away from me” strategy) to solve a guidance
problem.
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We can find several examples of how different guidance problems can be solved
using the previously mentioned ”Follow me” strategy [2], [3], [4], [5]. Repulsion
forces, like the one used in our work, are mostly used for collision avoidance or
interception, like in [6]. In a very recent work [7] they show how this kind repulsion
force can be used to describe a defender-intruder interaction, where the defender
exerts a repulsion force in the intrude to expel it away from a protected target.

In the recent work [1] we describe a “guidance by repulsion” phenomenom
describing the behaviour of two agents, a driver and an evader. The first one
follows the evader but cannot be arbitrarily close to it, and the evader tries to
move away from the driver beyond a short distance. The driver can display a
circumvention motion around the evader, in such a way that the trajectory of the
evader is modified due to the repulsion that the driver exerts on the evader.

We show how the evader can be guided to any target on the plane or to follow
a sufficiently smooth path by controlling just one parameter which modifies its
behaviour, activating or deactivating the circumvention mode and selecting the
clockwise/counterclockwise direction of the circumvention motion.

We propose different open loop strategies to drive the evader from any given
point to another assuming that both switching the control and keeping it on (i. e.
when κ 6= 0) has a cost, and we end presenting a feedback law which prevents the
excessive use of the circumvention mode with a significant reduction of the cost.
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[1] Escobedo, R., Ibañez, A., Zuazua, E. Optimal strategies for driving a mobile agent in a
guidance by repulsion model. arXiv preprint arXiv:1509.05008. (2015).

[2] Albi, G., Bongini, Cristiani E., Kalise D.. Invisible control of self-organizing agents leaving
unknown environments. (2015)

[3] Borzi A., Wongkaew S. Modelling and control through leadership of a refined flocking system.
Math. Mod. Meth. Apl. Sci. 25 (2015).

[4] Caponigro M., Fornasier M., Piccoli B., Trélat E. Sparse stabilization and optimal control
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Model reduction by moment matching for infinite dimensional systems

Orest V. Iftime

(joint work with Tudor C. Ionescu)

Infinite-dimensional systems are a wide class of systems that stems from modelling
of phenomena and processes. Approximation of infinite-dimensional systems in-
volves finding a finite-dimensional model of the original system with an irrational
transfer function, satisfying appropriate constraints. During the past decades,
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considerable advances have been made in this direction. One popular approach
is based on finite-element methods, resulting in large scale models which are dif-
ficult to analyse and control. Alternatively, model reduction procedures can be
performed directly on the infinite-dimensional systems. One way to approximate
an infinite-dimensional system is to perform modal truncation, i.e., keep a finite
number of terms from the modal decomposition of the transfer function of the
given system. The drawbacks of this method consist of the difficulty of computing
the transfer function and of the fact that the zeros of the given system are lost, see
e.g., [1]. Another method is based on the of the controllability and observability
Gramians, where one can obtain reduced order models by balanced truncation,
optimal or sub-optimal Hankel normapproximations [2, 4]. Balanced proper or-
thogonal decomposition and balanced truncation coincide when using a particular
balanced realization for infinite-dimensional systems [3].

We study the problem of model reduction by moment matching for a class of
infinite-dimensional systems, based on the unique solution of an operator Sylvester
equation [5]. The solution yields a class of parametrized, finite-dimensional, re-
duced order models that match a set of prescribed moments of the given system.
We show that, by properly choosing the free parameters, additional constraints
are met, e.g., pole placement, preservation of zeros. One of the main advan-
tages of this method is the preservation of a finite number of zeros of the given
infinite-dimensional system, yielding better approximations (including the case of
minimum phase systems).
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Optimal actuator and observation location for time-varying systems

on a finite-time horizon

Birgit Jacob

(joint work with Xueran Wu, Hendrik Elbern)

The choice of the location of controllers and observations is of great importance
for designing control systems and improving the estimations in various practical
problems. For time-varying systems in Hilbert spaces, the existence and conver-
gence of the optimal location based on linear-quadratic control on a finite-time
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horizon is studied. More precisely, for an initial-time t0 ∈ [a, b] we consider the
time-varying system described by

xr(t) = T (t, t0)x(t0) +

∫ t

t0

T (t, s)Br(s)u(s)ds, t0 ≤ t ≤ b,

where T (t, s) is a mild evolution operator on a separable Hilbert space H and
Br is a strongly measurable essentially bounded function with B(s) ∈ L(U,H)
a.e., where U is a finite-dimensional Hilbert space. Further we assume that Br

depends on a parameter r ∈ Ω. The linear-quadratic optimal control problem is
the question of finding for x0 ∈ X a control u0 ∈ L2(t0, b;U) which minimizes the
cost functional

Jr(t0, x0, u) = 〈x(b), Gx(b)〉 +

∫ b

t0

‖C(s)x(s)‖2 + 〈u(s), R(s)u(s)〉ds.

As the initial state x0 is not fixed we define the optimal location by

ℓ̂(t0) = inf
r∈Ω

max
‖x0‖=1

min
u∈L2(t0,b;U)

Jr(x0, u),

For time-invariant systems on an infinite time horizon the optimal location problem
has been studied in [1, 2]. In this talk we aim to extend these results to time-
varying system on a finite-time horizon and we tread the problem for stochastical
systems as well. The optimal location of observations for improving the estimation
of the state at the final time, based on Kalman filter, is considered as the dual
problem to the LQ optimal problem of the control locations. Further, the existence
and convergence of optimal locations of observations for improving the estimation
at the initial time, based on Kalman smoother is discussed.
The obtained results are applied to a linear advection-diffusion model with a special
extension of emission rates.
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Non-linear dynamic stabilising control of port-Hamiltonian systems

Yann Le Gorrec

(joint work with Hector Raminez, Hans Zwart)

Port-Hamiltonian systems can be used to describe ordinary and partial differ-
ential equations (pde’s) with control and observation. Since in standard port-
Hamiltonian systems there is no internal damping, the stabilisation has to be
done via the control. For a port-Hamiltonian system described by a pde, linear
damping at the boundary of the spatial domain is well-studied, and there are easy
testable conditions for exponential stability, see e.g. [2, Chapter 9] or [1, 3, 4].
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However, these conditions limit the class of controllers. For instance, these con-
trollers need to have direct feed through. If these controllers don’t satisfy these
conditions, exponential stability cannot be achieved. Furthermore, it is interest-
ing to know if similar results can be obtained when applying non-linear control.
Since any physical controller will have some non-linear behaviour, this question is
also practically relevant. In what follows we consider non linear controllers induc-
ing asymptotic stability. The system we consider is the port-Hamiltonian system
described by

∂x

∂t
= P1

∂

∂ζ
(Hx) , t ≥ 0, ζ ∈ (0, 1)

with boundary condition (homogeneous and control)

WB,1

(

Hx(1)
Hx(0)

)

= 0, WB,2

(

Hx(1)
Hx(0)

)

= u(t),

and boundary observation

WC

(

Hx(1)
Hx(0)

)

= y(t).

The energy is given by E(t) = 1
2

∫ 1

0
xT (Hx) dζ. It is assumed that for u ≡ 0 the

homogeneous systems is governed by a contraction semigroup, and for classical
solutions the following balance equation holds

Ė(t) = uT (t)y(t).

The dynamic, non-linear controller is of the form

ẋc(t) =

(

0 I
−I −R

)(

Ṗ (xc,1)
K2xc,2

)

+

(

0
I

)

uc(t), yc(t) = K2xc,2

where xc =
( xc,1
xc,2

)

∈ Rnc , and R,K2 are symmetric and (strictly) positive. The

energy of this system equals Ec(t) = P (xc,1) +
1
2x

T
c,2K2xc,2. Hence for mechanical

systems, xc,1 would be positions and xc,2 the velocities. It can be shown that

Ėc(t) = −xTc,2(t)Rxc,2(t) + uTc (t)yc(t).

The control system is connected to the port-Hamiltonian system via u = −yc
and uc = y. By doing this it is easy to see that the total energy is bounded, and
among others this shows that the solution of the closed loop system exists globally.
Furthermore, for smooth initial conditions, the solution is classical. Abstractly,
the connected system can be written as ż(t) = Az(t) + N(z(t)), in which N
represents the non-linear part. For smooth initial conditions, we can show that
ż(t) is uniformly bounded. By the above equation, and the fact that A has compact
resolvent, it follows that {z(t), t ≥ 0} is relatively compact. Hence by LaSalle’s

theorem the solution will converges to the largest invariant set contained in Ė(t) ≡
0. A simple observability condition now gives that the closed loop system is
asymptotically stable.
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Webster’s equation in acoustic waveguides

Jarmo Malinen

Long wavelength acoustics in lossy, curved tubular waveguides can be approxi-
mated by the generalised Webster’s model, consisting of the PDE

1

c2Σ(s)2
∂2ψ

∂t2
=

1

A(s)

∂

∂s

(

A(s)
∂ψ

∂s

)

−
2παW (s)

A(s)

∂ψ

∂t
for s ∈ [0, ℓ], t ≥ 0,

together with the appropriate boundary conditions at s = 0, ℓ. Here A represents
the spatially varying intersectional area of the waveguide, the function Σ is a
correction due to curvature, and the function W in the dissipation term is due to
different inner and outer curvature radii of the waveguide. The solution ψ = ψ(s, t)
is the velocity potential, and the acoustic pressure as well as the (perturbation)
velocity can be obtained from it by partial derivatives.

Two problems related to Webster’s model are considered, and their solutions
are presented in the special case α = 0 and Σ(s) = 1. Firstly, the control
A(0)φs(0, t) = i(t) and observation p(t) = ρφt(ℓ, t) are used, and it is shown
that the impedance transfer function from i to p does not have zeroes if A is real
analytic in a neighbourhood of ℓ.

Secondly, first order perturbations are derived for the eigenvalues λ2 of the
resonance problem

(

λ

c

)2

Ψ =
1

A(s)

∂

∂s

(

A(s)
∂Ψ

∂s

)

for s ∈ [0, ℓ]

for small perturbations A = A0 + ǫB of a nominal area function A0. As an
application, local spectral inversion problem is considered. Given (measurement)
data about the some of the eigenvalues λ2j relating to a true area function A (of
which we only have a guess, i.e., A0 ≈ A), how can be find a first order correction
B to A0?

As a practical application of both the problems, modelling of speech acoustics
of vowels is discussed.
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Using approximations in controller design for infinite-dimensional

systems

Kirsten Morris

Many control systems are modelled by partial differential equations (PDE’s). The
state of such systems evolves on an infinite-dimensional space. There are essen-
tially two approaches to controller design for systems modeled PDE’s: direct and
indirect. In direct controller design, the original model is used design the controller.
The resulting controller will often be infinite-dimensional and in a subsequent step,
order reduction is used to obtain a finite-dimensional controller of acceptable or-
der. In indirect controller design, a finite-dimensional approximation of the system
is obtained at the start and controller design is based on this finite-dimensional
approximation.

The chief drawback of direct controller design is that a representation of the
solution suitable for calculation is required. For many practical examples, this
is not possible. For this reason, indirect controller design is generally used in
practice. The hope is that the controller designed using the finite-dimensional
approximation has the desired effect on the original system. That this method is
not always successful was first documented in Balas [1], where the term spillover
was introduced. Spillover refers to the phenomenon that a controller which sta-
bilizes a reduced-order model may not stabilize the original model. Systems with
infinitely many poles either on or asymptoting to the imaginary axis are notori-
ous candidates for spillover effects. Conditions under which the indirect approach
to controller design works have been obtained and are presented. The difference
between approximation of parabolic and of hyperbolic equations is illustrated by
several simple equations.

The performance of controlled partial differential equations depends on the loca-
tion of controller hardware, the sensors and actuators. A mechatronic approach,
where controller design is integrated with actuator location, can lead to better
performance without increased controller cost. The best locations may be differ-
ent from those chosen based on physical intuition. Furthermore, since it is often
difficult to move hardware, and trial-and-error is laborious when there are mul-
tiple sensors and actuators, analysis is crucial. Approximations to the governing
equations, often of very high order, are required and this complicates not only
controller design but also optimization of the hardware locations. Care needs to
be taken in formulating the joint optimization/ controller design problem in order
to obtain correct results. Numerical issues will be briefly discussed.
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Balanced truncation model reduction for infinite-dimensional linear

systems

Timo Reis

(joint work with Mark. R. Opmeer, Tilman Selig, Winnifried Wollner)

Balanced truncation is one of the most popular model reduction methods for finite-
dimensional input-output-systems governed by ordinary differential equations, i.e.,

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. This technique relies on the solution of
the observability and controllability Lyapunov equations

AP + PA⊤ +BB⊤ = 0,

A⊤P + PA+ C⊤C = 0

for positive semi-definite matrices P,Q ∈ Rn×n.
We consider this method for infinite-dimensional systems, i.e., A, B, C, P

and Q are operators acting on Hilbert spaces. Motivated by the ADI method
for the determination of Gramian matrices [1], we develop a numerical scheme
for the finite-rank approximation of the Gramian operators associated to infinite-
dimensional systems. This enables us to determine finite-dimensional approxima-
tions of infinite-dimensional systems. Error bounds in the H∞ norm are provided.
Our results will be illustrated by means of a boundary-controlled heat equation
and delay-differential equations.
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Results around the Cayley Transform Problem

Felix L. Schwenninger

(joint work with Hans Zwart)

This work deals with the infinite-dimensional analogue of the following question.
Are the powers of the matrix

(1) Cay(A) := (A+ I)(A− I)−1

(where I denotes the identity) uniformly bounded if it is assumed that A ∈ CN×N ,
N ∈ N, has a uniformly bounded matrix exponential, i.e., supt≥0 ‖e

tA‖ <∞ ?
This can be rephrased as the question of stability of the Crank–Nicolson scheme.

In the infinite-dimensional situation, A is assumed to be the generator a bounded
C0-semigroup (etA)t≥0 on a Banach space X , which implies that Cay(A) defines a
bounded operator and thus, one can again study whether supn∈N ‖Cay(A)n‖ <∞.

In contrast to the elementary matrix case, the answer is ‘no’ for general Banach
spaces. On the other hand, it is ‘yes’ if (etA)t≥0 is bounded analytic. For Hilbert
spaces X , the question still remains open, but in this case, there are ‘more positive
answers’; e.g., contraction semigroups and uniformly continuous semigroups. See,
e.g., [3] for a detailed overview and references of the mentioned results.
We show that, in order to answer the question for Hilbert spaces, it suffices to
consider exponentially stable C0-semigroups (etA)t≥0 with supt≥0 ‖e

tetA‖ <∞.
It is well known that this problem is strongly related to the Inverse Generator
Problem, i.e., the question if A−1 generates a bounded C0-semigroup, whenever A
generates a bounded C0-semigroup and A−1 exists as a densely defined operator
[1, 2, 4]. We show that both problems are indeed equivalent and can be reduced
to the special case of exponentially stable semigroups. The presented results were
derived in [3].
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Coupled passive systems and strong stabilization of the SCOLE

system using tuned mass dampers

George Weiss

(joint work with Xiaowei Zhao)

Coupled infinite-dimensional systems have attracted much interest in recent years.
From the vast literature, we mention here only the thesis of Villegas [5], the books
of Lasiecka [4] and Jacob and Zwart [3]. In [6] we have developed a theory for the
regularity, controllability and observability of coupled linear systems consisting
of an infinite-dimensional strictly proper subsystem Σd and a finite-dimensional
subsystem Σf connected in feedback. In [6] we assume that the feedthrough matrix
of Σf is invertible and certain (not too restrictive) algebraic conditions hold - this
is relevant for the current work. In this work we study the stability of a feedback
system as in [6] where the subsystems are impedance passive. We are interested in
two main issues: (1) the strong stability of the operator semigroup associated with
Σc, (2) the input-output stability (meaning transfer function in H∞) of Σc. We
show that these properties hold under relatively mild and verifiable assumptions,
that include the approximate observability of both systems.

As an application we tackle a problem that is relevant for the vibration suppres-
sion of wind turbine towers. We demonstrate that a Tuned Mass Damper (TMD)
can be used to stabilize the SCOLE (NASA Spacecraft Control Laboratory Exper-
iment) model. The SCOLE system is a well known model for a flexible beam with
one end clamped and the other end connected to a rigid body. Originally it has
been developed to model a mast carrying an antenna on a satellite, see Littman
and Markus [1, 2]. This framework is suitable also to model wind turbine towers,
since these are typically clamped at the bottom while the upper end of the tower
is linked to the heavy nacelle.

To approach the practical engineering problem of stabilizing a wind-turbine
tower, we should use the natural energy state space for the SCOLE model, where
only strong stability can be achieved (because the control and observation opera-
tors are bounded).

We design and analyze a TMD control system to reduce the vibration of the
SCOLE model. A TMD consists of a large mass, connected to the top of the
structure to be stabilized via springs and dampers. The idea is that the TMD is
tuned to a particular structural frequency and thus will resonate and dissipates
input energy via the dampers when the structure is excited at that particular
frequency. In this paper we analyze this technique in one plane only, so that there
is only spring and one damper, connected in parallel between the rigid body of the
SCOLE system and the mass component of the TMD. This mass component can
be either put on a trolley moving along a rail, or it can be hanged via cables.

The mathematical model of the SCOLE system with a trolley Σc is the following
set of equations:

ρ(x)wtt(x, t) + (EI(x)wxx(x, t))xx = 0, (x, t) ∈ (0, l)× [0,∞),

w(0, t) = 0, wx(0, t) = 0,
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mwtt(l, t)− (EIwxx)x(l, t) = Fe(t) + k1(p(t)− w(l, t)) + d1(pt(t)− wt(l, t)),

Jwxtt(l, t) + EI(l)wxx(l, t) = Te(t),

m1ptt(t) = k1(w(l, t)− p(t)) + d1(wt(l, t)− pt(t)),

where the subscripts t and x denote derivatives with respect to the time t and the
position x. The first four equations are the non-uniform SCOLE model Σd while
the last equation describes the trolley system Σf . Σd and Σf are interconnected
through the transverse speed of the nacelle y = wt(l, t) and the force

u = k1(p(t)− w(l, t)) + d1(pt(t)− wt(l, t))

generated by the trolley system. l, ρ and EI denote the beam’s height, mass
density function and flexural rigidity while w denotes its transverse displacement.
ρ,EI ∈ C4[0, l] are assumed to be strictly positive functions. The parameters
m > 0 and J > 0 are the mass and the moment of inertia of the rigid body. Fe

and Te are the force and torque inputs acting on the rigid body. The state of Σd

at the time t is

z(t) = [z1(t) z2(t) z3(t) z4(t)] = [w(·, t) wt(·, t) wt(l, t) wxt(l, t)].

Its natural energy state space is

Xd = H2
l (0, l)× L2[0, l]× C

2,

where H2
l (0, l) = {h ∈ H2(0, l) | h(0) = 0, hx(0) = 0}. Here Hn (n ∈ N) denote

the usual Sobolev spaces. The natural norm on Xd is (twice the physical energy)

‖z(t)‖2 =

∫ l

0

EI(x)|z1xx(x, t)|
2dx+

∫ l

0

ρ(x)|z2(x, t)|
2dx+m|z3(t)|

2 + J |z4(t)|
2.

In the trolley system Σf , m1 > 0, k1 > 0 and d1 > 0 are the mass, spring
constant and damping coefficient. p and pt are the position and transverse velocity
of the mass component of the trolley. The state of Σf is defined as

q(t) = [q1(t) q2(t)] = [p(t)− w(l, t) pt(t)]

with state space Xf = C2, on which the norm is defined as ‖q(t)‖2 = k1|q1(t)|
2 +

m1|q2(t)|
2. The state space of the SCOLE-trolley coupled system Σc is Xc, the

product of the two state spaces of the subsystems.
Our results are that the SCOLE system with trolley Σc with input [Fe Te], state

[z q] and output [u wxt(l, t) y] is well-posed and regular on the energy state space
Xc and that Σc is strongly stable on Xc.
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Numerical approximations for port-Hamiltonian systems

Hans Zwart

An important subclass of port-Hamiltonian systems are those described by (linear)
partial differential equations with control and observation at the boundary. A
canonical example is the wave equation

ρwtt = div (T grad(w))

on an e.g. two dimensional spatial (bounded) domain Ω. There are two ways in
which this system can be presented as a port-Hamiltonian system, namely using
abstract differential equations on Hilbert spaces or via differential forms. We begin
with the abstract differential equation. For that we take the state

x =

(

ρwt

T grad(w)

)

and write the partial differential equation as

∂x

∂t
=

(

0 div
grad 0

)( 1
ρ

0

0 T

)

x = JHx.

The J clearly gives the skew-symmetric structure associated to the conservation
of energy for the wave. This means that the operator J : e 7→ f is skew symmetric
with respect to the inner product in L2(Ω).
The second representation of the wave equation uses differential forms. Thus x, ẋ,
and Hx are seen as k-forms. The above mentioned J becomes now the mapping

Jdf

(

e1
e2

)

:=

(

0 d
d 0

)(

e1
e2

)

=

(

f1
f2

)

mapping the zero-form e1 and the 1-form e2 to the 2-form f1 and the 1-form f2.
The mapping H is also replaced. The skew-symmetry of Jdf is now with respect
to the wedge product.

There are now two research questions. The first is to understand the precise
relation between these two ways of reformulation the wave equation. A start in
solving this problem is given by Arnold et al in [1]. In this paper we can also
see how the differential forms can be used in numerics. This is also the approach
taken by van der Schaft et al, see e.g. [2]. What is missing is an error analysis.
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