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The generation of permanent stresses in glass spheres by rapid cooling is described, starting with transient stresses that arise during
the tempering process. The utility of tempered glass spheres is briefly considered in the context of the permanent stresses produced.
Two possible effects of transient stresses are: the risk of in-process breakage as a result of excessive tension in an already cold
surface, and bubble formation in — or other distortion of — spheres as a result of high hydrostatic tension in their interior while
that is still hot and fluid. In that connection, the distortion of the edges of tempered glass plates is also briefly considered. The
mathematical model of tempering spheres, on which this discussion is based, is outlined in an appendix.

Vorspannen von Glaskugeln und verwandte Themen

Die durch schnelles Abkiihlen bedingte Erzeugung von dauerhaften Spannungen in Glaskugeln wird beschrieben, angefangen bei
kurzzeitigen, wihrend des Vorspannens entstehenden Spannungen. Der Nutzen von vorgespannten Glaskugeln wird im Hinblick
auf die dauerhaft erzeugten Spannungen kurz dargestellt. Zwei mogliche Auswirkungen von kurzzeitigen Spannungen sind die
Gefahr von Bruch wihrend der Fertigung aufgrund von iiberméBiger Spannung in einer schon abgekiihlten Oberflache, sowie die
Bildung von Blasen — oder anderen Verformungen — in Glaskugeln aufgrund hoher hydrostatischer Spannung in ihrem Inneren,
wihrend dieses noch heill und fliissig ist. In diesem Zusammenhang wird auch die Verformung der Kanten von vorgespannten
Flachglasscheiben kurz betrachtet. Im Anhang der Arbeit findet sich ein Abri3 des mathematischen Modells fiir das Vorspannen

von Glaskugeln, auf dem die Untersuchung beruht.

1. Approach

The authors’ approach to modeling the process of tem-
pering glass spheres is based on the idea of “instant
freezing”, first introduced by Bartenev [1]. Accordingly,
glass is treated as a perfect fluid having zero viscosity
(n = 0) above an empirically determined “glass
(transition) temperature”, 7, and as an elastic solid
(n = o) below this temperature. This approximation is
made useful — for rapidly chilled bodies of glass — by
the very rapid rise in the viscosity of all glasses with
decreasing temperatures.

Bartenev proposed a heuristic model of instant freez-
ing to calculate residual stresses in a tempered glass
plate. Later Indenbom [2] presented a rigorous analysis
of this problem based on the three fundamental prin-
ciples of stress analysis: first, the compatibility of strains,
second, the equilibrium of stresses and third, a constitu-
tive relation connecting stresses and strains. The present
model of tempering glass spheres embodies these same
basic principles. However, it also deals with an aspect of
the “instant freezing model” not encountered in earlier
work on tempered plates. This is discussed in section 7.1.
The derivation of the relevant equations will be found in
section 7.2.

Received January 27, revised manuscript September 3, 1997.

In line with the classic “instant freezing” approach,
it is assumed that a sphere at an initial temperature T}
is subjected to quenching in a cooling medium having a
temperature 7 and a heat transfer coefficient 4. Both
Tc and h are taken to be uniform over the surface of the
sphere and to remain constant until the center of the
sphere has cooled to T,. During this time, a “freezing
front” will have migrated from the surface to the center,
and some stresses will have been generated throughout
the sphere, which is now solid and elastic. Stresses con-
tinue to develop as the sphere approaches room tem-
perature and the temperature distribution existing at the
end of solidification decays. The manner of cooling dur-
ing this last stage is immaterial.

In the past, the instant freezing model was used to
predict residual, i.e. permanent, stresses only. With an
appropriate choice of physical properties and process
parameters, such predictions for tempered glass plates
are known to be very good. In the present work, the
authors are adapting the instant freezing model to
spheres and also using it to calculate transient stresses.

Since the work of Bartenev and Indenbom, other,
more comprehensive models of the generation of stresses
in glass have been developed [3 to 8]. These take account
of viscoelasticity and the glass transition, so that they
are applicable to a wider range of process conditions;
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Figures la and b. Radial distribution of dimensionless tangen-
tial stresses, g¢/G, in a tempered glass sphere, cooled from
Ty = 650°C, with Bi = 8; a) transient stresses during initial
stages of tempering, b) transient stresses during tempering and
the permanent stresses produced. op 4/G are the permanent tan-
gential stresses, attained in an isothermal sphere at room tem-
perature.

indeed, to annealing as well as tempering. They are also
better suited for tracking transient stresses. However,
their application to spheres would have entailed much
more work, and the use of the “instant freezing” model
was deemed adequate for this first look at the tempering
of glass spheres. A further simplification was made by
not explicitly taking account of thermal radiation, using
instead an “effective” thermal conductivity of the glass
[9]. These simplifications yielded results that afford a
good overview of the subject: With fewer variables in-
volved, the results can readily be generalized by being
cast in dimensionless form.

2. Results
2.1 General

The results of the analysis presented themselves in terms
of two dimensionless variables:

a) The Biot number, Bi, encompasses the variables af-
fecting the rate of cooling the glass

Bi = (R h)lk.
b) The dimensionless stress takes the form

olG ,

where G = shear modulus of the glass, and ¢ = stress.
This may be radial or tangential, transient i.e. a function
of time and position in the sphere, or permanent i.e. a
function of position only — as indicated in context and
by subscripts. The temperatures Ty, T, and T are kept
dimensional.

2.2 Range of variables considered

Where quantitative results are given, they assume that
the spheres are made of a glass substantially similar to
plate glass, with properties as given below. Some data on
heat transfer coefficients that may be involved are in-
cluded.

a) Properties of plate glass

G shear modulus

27 GPa (at room temperature)

[= 3.9 - 10° psi],

“effective” thermal conductivity

1.3 W/(m - K)P [= 0.003 cal/(cm - s - K)],

volumetric specific heat

2.5 MJ/(m? - K) [= 0.6 cal/(cm? - K)],

T, = “glass temperature” = 550°C,

= coefficient of expansion of (“solid”) glass
=HIP2E 05 K

= assumed “effective” structural expansivity = f,
(see section 6.1),

v = Poisson’s ratio = 0.22.
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b) Heat transfer coefficients
Orders-of-magnitude of the heat transfer coefficients
that may be of interest here are:
h: or natural convection in air
~ 13 W/(m? - K) [= 0.0003 cal/(cm? - s - K)],
h: for forced convection in air
~ (.13 — 1.3 kW/(m? - K)
[= 0.003 — 0.03 cal/(cm? - s - K)],
h: for quenching in water
~ 6.3kW/(m?- K) [=0.15cal/(cm? - s - K)].
The temperature of the cooling medium, 7T, is taken
as 100°C.

2.3 Generation of stresses — Transient stress
profiles

To begin with, it will be illustrated how stresses arise in
the course of tempering a sphere under a particular set
of conditions. Figures la and b apply to a sphere, cooled
with Bi = 8 from an initial temperature of 650 °C. They
are plots of dimensionless tangential stresses versus di-
mensionless position r within the sphere (r = 0 at the
center, r = 1 at the surface), drawn for different “times”.
Positive and negative stresses denote tension and com-
pression, respectively. Time is represented in dimen-
sionless form by the corresponding position r; of the

D This is approximately 1.5 times the “true” thermal conduc-
tivity, reflecting the fact that radiation plays only a secondary
role when glass is rapidly quenched. For simplicity’s sake k was
also taken as independent of process conditions and the size
of spheres.
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“freezing front”, and it increases as r¢ runs from 1 to 0.
These curves therefore apply to all spheres, regardless
of size, that are cooled from 650°C with Bi = 8. (To
put this in concrete, dimensional terms, these plots
may be thought of applying to a 3.2 mm diameter
sphere quenched in water (A = 6.3 kW/(m?K)) or to
a 96 mm sphere cooled by forced convection in air
(h = 0.2 kW/(m? K)). The actual time intervals between
re = 1 and r; = O for these two cases are 0.5 and 450 s,
respectively.)

Figure la illustrates the initial stages of cooling, at
first the surface and then layers of glass close to the sur-
face “freeze”. As a progressively thicker outer shell of
the sphere becomes “solid”, tensile stresses in the surface
increase. For “times” of r; = 0.95 and r; = 0.85, tensile
forces in the solid outer shell are balanced by hydrostatic
compression in the fluid interior that is, as it must be,
uniform throughout the interior. As the freezing front
penetrates beyond r = (.85, tension in the surface dimin-
ishes, and the shape of stress distributions changes. This
is illustrated for the “time” r; = 0.6. Now tensile forces
in the outermost layers are balanced, for the most part,
by compression in the solid layers nearer the freezing
front. Hydrostatic compression of the interior is corre-
spondingly reduced. As time progresses, all of the solid
region near the surface goes into compression and the
hydrostatic stress in the interior changes to tension, as
shown by the curve for r; = 0.4.

It is interesting to note that — for comparable con-
ditions of cooling — the shape of transient stress profiles
in plates resembles that for r; = 0.6 in figure la, rather
than that for ry = 0.85. The reason for this is that, in a
sphere, the fluid interior is confined within a solid shell,
so that the interior can support hydrostatic tension or
compression. Both kinds of stress profile are therefore
possible. In plates, on the other hand, the fluid interior
is not confined, so that it cannot sustain stresses. Ten-
sion in solid layers near the surface of a plate can there-
fore be balanced only by compression in solid layers
further from the surface. Matters are somewhat different
at the edges of a plate, which freeze as soon as the sur-
faces. This will be touched upon later.

Figure 1b shows stresses from the solidification of
the surface, through solidification of the center, to the
attainment of isothermal conditions at room tempera-
ture. On this scale, the phenomena illustrated in figure
la barely show up. But figure 1b also shows the curve
for r; = 0, which corresponds to the time at which the
freezing front reaches the center of the sphere. The
further development of stresses is due to the decay of
temperature gradients in the now wholly elastic sphere,
and the curve labeled op g/ G represents the final and per-
manent radial distribution of tangential stresses in the
sphere. For this particular combination of Biot number
and (T, — T,), about a third of the permanent surface
stress arose during solidification of the sphere, and two
thirds during the subsequent stage of temperature
equalization.
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Figure 2. Dimensionless permanent surface compression, SC/G,
in tempered glass spheres as a function of Biot number, for
various initial temperatures, 7.

The stress-time history represented in figures la and
b is typical for cooling regimes starting from relatively
low initial temperatures, i.e. low — but not too low —
values of (T — T,). In this case, (T, — T) = 100 K was
chosen to amplify the development of transient tensile
stresses in the surface. Their maximum, at time r; = 0.85,
is 0.0029 - G, i.e. 78 MPa (or 11 000 psi). Transient ten-
sions in the surface of this magnitude pose a small risk
of in-process breakage; although, of course, it is well
known that, if glass is quenched from initial tempera-
tures that are too low, the danger exists that it may frac-
ture as a result of excessive transient tensile stresses in
the surface, or an edge [1 and 5]. More typically, quench-
ing from higher initial temperatures avoids transient ten-
sions in the surface altogether: The surface then goes
directly into compression (see curve for f¢/f; = 1 in
figure 8a), and hydrostatic stresses in the still liquid part
of the sphere are tensile at all times.

2.4 Permanent stresses as a function of process
parameters

Tempered glass is of technical interest mainly because
high compressive stresses in its surface enhance its
strength. For some application it is also important that,
if broken, tempered glass breaks into small, blunt — and
therefore harmless — particles. This latter characteristic
is attributable to high tensile stresses in its interior [10
and 11]. Having considered how temper stresses arise, it
will be next considered how their magnitude and distri-
bution depend on process parameters.

2.5 Surface compression

Figure 2 shows the dimensionless permanent surface
compression (SC/G) as a function of Biot number, for
various initial temperatures, 7,. These were chosen
somewhat arbitrarily: 650 and 750°C for larger, manu-
ally formed spheres; 900 and 1000°C perhaps being ap-
plicable for very small spheres, formed from drops of
liquid glass by surface tension and immediately
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Figure 3. Permanent surface compression as a function of
sphere diameter and heat transfer coefficient, 4, for initial tem-
peratures, 7y, 1000 and 650°C.
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Figure 4. Radial distribution of dimensionless permanent
stresses, ap/G, in tempered glass spheres. Bi = 8, T, in°C.
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Figure 5. Ratio of the permanent surface compression, SC
(= —opgatr = 1), to center tension, CT (= gpg = gp, atr = 0),
as a function of Bi and T,

quenched. The figure shows that — except for the lowest
Biot numbers, i.e. cooling rates — temper stresses dimin-
ish as the initial temperature is reduced.

Figure 3 shows some of the same results in dimen-
sional form, i.e. the permanent surface compression SC,
in MPa, as a function of sphere diameter for various
heat transfer coefficients, 4, and initial glass tempera-
tures, 7. Note that not all combinations of the implied

process parameters are useful or even feasible. Thus, for
example, cooling 0.5 mm spheres from 1000°C in air
produces uninterestingly low stresses, while quenching
them in water (4 = 6.3 kW/(m? K)) should produce sur-
face compressions of the order of 300 MPa (45 000 psi).
On the other hand, much larger spheres can neither be
brought to so high an initial temperature without
risking deformation, nor quenched in water without risk
of fracture. For these T is more likely to be 650°C,
h < 1.3 kW/(m? K), and temper stresses about 100 MPa.

Prince Rupert’s drops are formed by quenching large
drops of liquid glass in water. In falling, they assume
their characteristic tear-drop shape, with a long tail. As
a result of changing shape and of not being quenched
uniformly, their liquid cores are not confined from the
onset of the solidification of the surface. Permanent
stresses in them will therefore be lower than would be
calculated for a sphere having a diameter equal to their
bulbous end. Figure 3 suggests that such spheres, 6 to
10 mm in diameter, might have a surface compression of
about 750 MPa (110 000 psi), which may be regarded as
an upper bound of the surface compression in Prince
Rupert’s drops. Indeed, a recent paper [12] reported
measured surface compressive stresses of 90 to 170 MPa.
If anything, they seem surprisingly low — of the same
order as surface stresses in tempered automotive glass.
Yet, fragile though the tails of Prince Rupert’s drops may
be, their bulbs cannot be broken with a hammer.

To put these results into perspective: In small glass
spheres, 0.5 to 1 mm in diameter, such as are used for
shot peening, it should be possible to produce a surface
compression of 300 to 400 MPa. This may make them
as strong as the bulbs of Prince Rupert’s drops. In any
case, it represents a significant enhancement of their
strength, bearing in mind that the surface compression
in tempered automotive glass is only about 100 MPa.
Tempering may also enhance the abrasion resistance of
small spheres on account of the greater density of the
(compressed) surface layers.

2.6 Stress distributions

The radial distribution of both radial and tangential per-
manent stresses is shown in figure 4 for Bi = 8 and for
two representative values of T|). Note that radial stresses
vanish at the surface of a sphere; while, near its center,
radial and tangential stresses are nearly equal. At the
center they are perfectly hydrostatic.

Figure 5 shows the ratio of surface compression and
center tension as a function of Biot number and initial
glass temperature. For all but the lowest initial tempera-
tures, this ratio at first increases with Bi, passes through
a maximum and then levels off — at about 1.2 for
To = 1000°C and less than 1.0 for 750°C. This is in
marked contrast with the corresponding ratio for plates,
which is exactly 2 for annealed plates (i.e. for plates that
are cooled very slowly) and about 2.2 for tempered
plates, increasing slightly for higher rates of quenching
[5]. This means that, for a given surface compression,
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the center tension is higher in spheres than it is in plates;
which, in turn, suggests that the propensity of tempered
spheres to break into fine particles is greater than that
of tempered plates.

2.7 Bubble formation as a result of tempering?

For all but the lowest initial temperatures, surface
stresses are compressive virtually throughout the tem-
pering process (see curves for f.q/f; = 1 in figures 8a
and b). Correspondingly, hydrostatic stresses in the still
fluid interior are tensile at all times. This prompts the
question whether such tension may cause the nucleation
of bubbles in the glass. For a given composition of glass
and concentration of nucleation sites and dissolved
gases, one might expect that nucleation would be the
more probable the more the hydrostatic tension exceeds
the partial pressure of dissolved gases, the hotter and
less viscous the glass, and the longer the time available.

Even without information on partial pressures, the
authors tried to give this hypothesis a tentative quanti-
tative form. For this they defined a “flow number”, ¢,
as the product of the local hydrostatic tension and the
local fluidity (1/#). Figure 6 is a schematic represen-
tation of ¢ as a function of real time for various posi-
tions in the interior. The probability of bubble forma-
tion, as a result of tempering, in a glass sphere having a
uniform distribution of nucleation sites would then be
expected to be governed by the area under the ¢ versus
time curves. This area is seen to be highest for the center
(r = 0). It would be higher still for spheres of the same
size quenched more rapidly, and it vanishes for positions
r > 0.6. Without relevant experimental data, this remains
a speculation for now.

Bubbles are a common occurrence in Prince Rupert’s
drops. Their formation may involve some mechanism
such as that indicated by figure 6; although, of course,
the temperature- and stress-history of Prince Rupert’s
drops is more complex than that of spheres. In the
course of this work the authors also learned of deco-
rative glass spheres containing bubbles. These spheres
are made of a glass so full of nucleation sites and so
highly saturated with gases that even very gentle cooling
brought about the formation of bubbles. Indeed, once
bubbles started to appear, the spheres were annealed to
prevent breakage. The process resembles annealing with
variable cooling rates, which cannot be analyzed by the
present “instant freezing” approach. It could be treated,
as indeed a variety of annealing schedules were treated
[13 and 14], by taking proper account of the viscoelastic
and structural relaxation processes involved. These are
involved in both annealing and tempering; but they can
be approximated by the instant freezing approach only
in the case of tempering, not the very much slower pro-
cess of annealing.

3. Other effects of transient internal tension

Many years ago, when he started his study of tempering
glass plates, one of the authors (R. Gardon) was in-

position in sphere
r=0 (center)

Flow number —»

Real time —»

Figure 6. Schematic representation of the flow number, ¢, as a
function of time for various radial positions in a sphere.

Figure 7. Interference fringes produced between an optical flat
and the 6 mm wide edge of a tempered glass plate. The edge
was optically flat before tempering.

trigued by the notion of tension in the interior of a glass
plate while its interior was still hot and relatively fluid.
He proceeded to explore experimentally what would
happen if one quenched glass spheres. He found that an
initially more-or-less perfect sphere ended up with a
dimple in it, rather like that in a cherry at the point
where the stem is attached. At the time, he concluded
that the sphere was probably not cooled uniformly and
that the softest part of its “shell” was sucked in by the
interior tension.

To see if that observation was relevant to tempered
glass plates, one edge of a small, 6 mm thick annealed
plate was made optically flat. The plate was then tem-
pered and its edge examined again. It was found to be
minutely deformed, as shown in the interferogram of fig-
ure 7. This suggests a central longitudinal depression
along the edge — perhaps analogous to a dimple in a
sphere — with ridges on both sides, about 1 mm inboard
of the principal surfaces of the plate. This configuration
results from an interesting interplay of transient stresses
in the edge region.

When a glass plate is tempered, its principal surfaces
and edges “solidify” first. Initially, the surfaces also con-
tract more rapidly than the interior. This would tend to
put the still “fluid” interior under compression. Two
other factors tend to put the interior under tension:
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First, the expansion coefficient of the liquid is three
times higher than that of solid glass; and, second, the
rate of cooling of interior layers begins to exceed that of
outer layers while the former are still above T,. In fact,
far from edges of the plate, where there is no resistance
to the movement of the solid outer layers in the normal
direction, the fluid core will not sustain any stress, be-
cause it can maintain its desired volume. Matters are
different near the edges, where movement of the outer
layers is restricted. Adjacent regions of the fluid core are
thus more-or-less confined. The resulting average pres-
sure or tension in these regions causes a distortion of the
initially flat edge, which — though “solid” in the loose
terminology of the instant freezing model — is still de-
formable.

It would seem that, starting the quench from a high
enough initial temperature, the edge bulges outward dur-
ing the first instants of solidification. A very short while
later, the average stress in the confined region of the still
fluid core changes to tension. This tends to pull the edge
inward, but — since the edge has meanwhile cooled some
more — only a narrower, central strip responds. The pro-
file of the tempered edge shown in figure 7 thus results
from the superposition of a narrow, central depression
on an earlier bulge that spans the entire width of the
edge.

The authors now recognize that “dimpling” could
occur even if cooling was ideally uniform over the sur-
face of the sphere. Which of the two phenomena — bub-
ble formation or dimpling — comes into play may well
be determined by the relative rates of increase of the
thickness (or stiffness) of the cold outer shell and of ten-
sion in the still fluid interior. Alternatively, it may also
happen — as for example in glass with a low concen-
tration of dissolved gases — that neither of the above
two phenomena occurs.

4. Summary

The authors have considered both the permanent
stresses produced by tempering glass spheres and the
transient stresses that arise in the course of that process.
For their analysis, they extended the classical “instant
freezing” model of tempering by making some allowance
for partial relaxation of stresses of structural origin,
which is negligible in tempering glass plates but signifi-
cant in the case of spheres.

The principal findings of this analysis are:

a) Apart from the physical properties of the glass, the
permanent stresses produced in a tempered glass sphere
depend primarily on (T, — T,) and the Biot number
(Bi = (R - h)lk) with which the sphere is quenched.

b) The variables R, & or k, individually, affect only the
time scale of the solidification of a glass sphere, which
— in turn — governs the time dependence of transient
stresses.

¢) If one defines a new time scale in terms of when suc-
cessive layers (shells) in the sphere solidify, then transient
stresses also come to depend only on Bi, and not on R,
h or k individually.

d) The probability of fracture during tempering is gov-
erned by the largest transient tensile stress in the surface,
regardless of when during solidification it occurs.

e) Bubble formation in and distortion of a sphere were
also considered, which depend on transient stresses in a
more complex manner.

f) Finally, the genesis and distribution of temper stresses
in spheres and plates are briefly compared.

5. List of symbols

Bi Biot number = (R - h)/k
(5 specific heat capacity of glass in J/(kg K)
co volumetric specific heat capacity of glass in J/(m?® K)
cT permanent center tension in a tempered sphere, i.e. gp,
atr =01in Pa
G shear modulus of glass (at room temperature) in Pa
h heat transfer coefficient for quenching glass in
W/(m? K)
k “effective” thermal conductivity of glass in W/(m K)
K bulk modulus of glass (at room temperature) in Pa
p pressure in Pa
K non-dimensional radial coordinate, 0 at the center of

the sphere and 1 at its surface

re a dimensionless measure of time, corresponding to the
passage of the “freezing front” through the position r.
This time runs from 1 to 0.

(1 —rp an aesthetically more pleasing “dimensionless time”
that runs from 0 to 1

R radius of sphere in m

SC permanent surface compression in a tempered sphere,
i.e. —opgatr = 1inPa

t time in s

T temperature in °C

Tc temperature of coolant in °C

T, glass (transition) temperature in °C

To initial temperature of glass in°C

O n-th root of the trigonometric equation
(o cota + Bi) =1

p coefficient of expansion (S, of (solid) glass, f5 of liquid
glass) in K™!

Ba = (B — By) = structural expansivity

Bs.eft assumed “effective” structural expansivity (see section
7.1)

y actual maximum shear strain, from all sources of de-

formation. Its sources are distinguished by the sub-
scripts “e” for elastic and “v” for viscous.
e actual bulk strain from all sources of deformation
&, €9 actual radial (subscript r) and tangential (subscript 0
strains. The sources ¢, ¢, and & are distinguished by
the subscripts “e” for elastic and “th” for thermal.
viscosity of glass in Pa s
Poisson’s ratio of glass
density of glass in kg/m?3
stress in Pa. Without a subscript, o refers to a transient
stress, i.e. a function of time and position in the sphere.
op permanent stress, i.e. a function of position only
o., og radial or tangential stress. Also, in context,
o = (1/3) - (o, + 20¢) = average stress = —p
T (0, — g¢) = 2 - (maximum shear stress) in Pa

QR =<
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7. Appendices

7.1 Allowing for partial relaxation of structurally induced
stresses in an IFM

As was noted in section 1., the application of the “Instant
Freezing Model” (IFM) to spheres presented a problem not en-
countered with plates. Instant freezing implies that, once the
surface of a sphere is frozen, its liquid core is confined and thus
capable of supporting hydrostatic stresses. With the liquid core
under stress, account must be taken of the fact that liquid glass
has a much higher coefficient of thermal expansion than the
solid outer shell. Viscoelastic models of stress analysis allow for
a partial relaxation of stresses that arise from such structural
heterogeneity. The IFM, by contrast, cannot comprehend par-
tial stress relaxation: By definition, stress relaxation must be
either complete or nonexistent.

The “structural expansivity”, f, is the difference between
the expansion coefficients of liquid and solid glass, respectively,
i.e (f1— ). It has been shown to be equal to about 2 f,. Using
this physically correct value of the structural expansivity in an
IFM would lead to a full build up of stresses of structural origin
without allowing for any relaxation. Using f; = 0 would sup-
press all effects of the different expansivities of liquid and solid
glass, which would be tantamount to complete relaxation
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Figures 8a and b. Dimensionless stresses in the surface of a
tempered sphere, g¢/G at r = 1, as calculated by the instant
freezing model using various assumptions regarding the value
of the effective structural expansivity, fer; drawn for T of
1000 (figure a) and 650°C (figure b). Solidification occurs from
(1 — rr) = 0 to 1. Permanent stresses are arbitrarily shown at
(Lt

of structurally induced stresses. The compromise of taking
Ps.cr = P should allow the IFM to simulate partial relaxation
of structurally induced stresses and yield realistic results. Need-
less to say, there is nothing sacrosanct about taking f ¢/,
equal to 1. One could equally well have assumed it to be 0.8 or
1.3. (This issue could be handled rigorously by taking proper
account of the stress- and structural-relaxation processes in-
volved in generating permanent stresses in glass. The authors
discuss in [3 to 6] the dominant temperature-and-time-de-
pendence of these relaxation processes as they affect the tem-
pering and annealing of glass plates. Mauch and Jackle [8] ex-
tended these analyses by also taking account of the pressure-
and-time-dependence of relaxation. While this probably plays
only a minor role in tempering plates, it may well be more
significant in tempering spheres, in which larger pressures come
into play because their interiors are confined.)

Figures 8a and b show how the assumed value of fi .« affects
the calculated course of the development of stresses in the sur-
face of a sphere. They are plots of dimensionless stresses
(04/G) in the surface of a sphere as a function of dimensionless
time, now represented as (1 — ry), r; being the time at which the
freezing front passes through the radial position r within the
sphere. Thus, stresses at times from 0 to 1 are transient surface
stresses during solidification of the sphere. The dimensionless
permanent surface stress (opg/G), attained when the entire
sphere has reached room temperature, is arbitrarily shown at
time = 1.5.

Figure 8a, for an initial temperature of 1000 °C, shows that
taking f o/, as 1 or 2 gives qualitatively similar results: The
surface is under compression, and therefore the interior under
tension, throughout the tempering process. This is a plausible
result and not strongly dependent on the precise value of f e

126

Glastech. Ber. Glass Sci. Technol. 71 (1998) No. 5



Tempering glass spheres and related topics

It is also in marked contrast with results produced by the less
plausible assumption of f; = 0, which would correspond to
total structural relaxation.

As figure 8b shows, the choice of an effective value of f; is
more critical for low mitial temperatures, such as 650°C. As
before, f; ¢ = 0 is a totally .unrealistic assumption. But now
the choice between f /B, equaling 1 or 2 has a proportion-
ately greater effect on both transient and permanent stresses,
and it also affects the proportion of time, during tempering,
that the still fluid interior is under compression. The predicted
propensity for bubbles to form as a result of tempering would
clearly increase as f; . approaches 2 ff,, i.e. as the method of
calculation, using this modified IFM, allows for less relaxation
of structurally induced transient stresses.

Structural heterogeneity also exists in tempered glass plates
[15], but this is due mainly to the slightly different expansivities
of regions of solid glass cooled at different rates. The very much
bigger difference between the expansivities of liquid and solid
glass is irrelevant because, as was discussed earlier, the fluid
core of a plate is stress-free during tempering, since it is free to
adjust its volume by changing its thickness.

7.2 The instant freezing model of tempering glass spheres

For a point of departure see section 1. The following derivation
of equations is unaffected by section 7.1, which deals only with
the choice of an appropriate value of f o In equations (13a
and b), therefore, B .r = fy + fscr is used instead of f, the
true thermal expansion coefficient of liquid glass.

The constitutive relation, being a material property, is the

same for a plate or a sphere. For the instant freezing model,
this relation is

Ve =¢6re —89e = (1/2) 7/G=0 forp=0and T= T,, (la)

Ve = &re — €ge = (1/2) - 71/G forn =ccand T< T,, (1b)
and
& = olK. (le)

For spherically symmetric cooling, the compatibility of radial
and tangential strains is given by

deg & — g
i -9 2
dr r @

and the equilibrium of stresses by

o, 9T _ g &)

dr r
The surface of the sphere must always be free of radial stress,
yielding the boundary condition:

a(l)=0. “

Since the constitutive equations (la to c) are given in terms of
shear and bulk components of stress and strain, it is advan-
tageous to cast the compatibility and equilibrium equations in
the same form. The actual shear (y) and bulk (¢) strains are
therefore expressed as sums of their respective thermal, elastic
and viscous strain components. Noting that the thermal shear
strain yy, = 0 and the viscous bulk strain ¢, = 0, it may be writ-
ten:

Y=t Wy (52)
and
E=¢gp t+ & . (5b)

By definition, the shear and bulk strains are

Y =& — & (6a)
and
e=¢ + 2¢g. (6b)

Inversion of equations (6a and b) yields

& =13 (e+2y) (7a)
and
g = (113) - (¢ — y). (7b)

Expressions similar to equations (7a and b) are obtained for
radial and tangential stresses from definitions of the shear stress
() and average stress (o) given earlier. Thus

o,=0+ @213t (8a)
and
co=0—(1/3) 7. (8b)

The compatibility condition is recast by substituting equations
(5a and b) in equations (7a and b), which, in turn, are substi-
tuted in equation (2), yielding

&_%_3ﬁ=__d£‘h+_dy"+3ﬁ_ (9a)
dr dr r dr dr r

The equilibrium equation (3) is rewritten using equations (8a
and b) and the elastic constitutive relations of equations (1b
and c), yielding

s A G e o 4 O % g, (9b)
dr 3 K dr K r
Subtracting equation (9a) from equation (9b) and introducing
the following auxiliary shear strain variable,

4G
Yaux=(1 +§) Ye+ Pv (10)

yields a simple linear differential in the unknown y, . It is

dyaux 413 Yaux — dsth . (11)
dr r dr
Applying an integrating factor of r* permits one to obtain the
following integral of equation (11)

5 deg

1 3
P |G (12
0

It is clear from equations (11 and 12) that the thermal strain
gradient is the driving force in this problem. It generates elastic
and viscous strains, which in turn produce transient and perma-
nent stresses in the glass sphere. The thermal strain itself is
given by

em = P (T—To)
&th =ﬁl'(Tg—T) +ﬁg' (T—Tg) for T < Tg.

for T = T, and (13a)

(13b)

The temperature distribution in a sphere cooled symmetrically
from the surface is given by [16]
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T(rt)=Tc+2Bi(To— To)r 'S A, exp(—d, t) - sin(o, ) (14)
2 C 12 o
Wit = [z + (Bi — 1)*] sine,

a2 [ + Bi (Bi — 1)]

and 6, = [k/(coR?)] 2.

7.3 Calculation of permanent strains

The viscous shear strain, y,, is a function of both time ¢ and
position r. Since the location of freezing front, r¢, is a mono-
tonic function of time, it can be used as a time scale. Thus

WD = plnt(rd] = pe(nry) . (15)

The viscous strain in a layer r < r; changes with the advance-
ment of the freezing front until the freezing front arrives at r.
Once this layer is frozen, there can be no further viscous flow
and no change in the viscous strain. This frozen-in viscous
strain is called the permanent (or residual) strain, yp It is, as
defined below, a function of r only, i.e.

ye(®) = p(rrp), atre=r, (162)
ye(r) =y (nr) . (16b)
The elastic shear strain is zero in the liquid core. So, using equa-

tions (10, 11 and 16a and b), one obtains the following ex-
pression for residual shear strain:

17 deg, (7', r
)= [ (L0 gy, a7
e dr

7.4 Calculation of transient and residual stresses

In the frozen shell, elastic shear strains and stresses are calcu-
lated from known values of the auxiliary and residual shear
strains.
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yaux(’: rf) v yp(’; rf)

Ye(r re) = 4G (18a)
1+ —
3K
and
o (rrp) — og(rrg) = t(nry) =2Gp(nry) . (18b)

In the liquid core, stresses are hydrostatic and uniform. Thus,

ag(r, 1)) = oc(r, 1)) = o (re,1y) (18¢c)

When the whole sphere is again isothermal, at room tempera-
ture, the thermal strain gradient is zero. Therefore, the auxiliary
shear strain is also zero (equation (11)). The permanent elastic
shear strains and stresses are then given by

Poe() = = —y"(;) G (19)
[
3K
and
7p(r) = 2Gype(r) . (19b)

Radial stresses, both transient and permanent, are obtained by
substitution for shear stress in equation (3) followed by numeri-
cal integration.
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