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The generation of permanent S T R E S S E S in glass spheres by rapid cooling is described, starting with transient S T R E S S E S that arise during 
the tempering process. The Utility of tempered glass spheres is briefly considered in the context of the permanent S T R E S S E S produced. 
Two possible effects of transient S T R E S S E S are: the risk of in-process breakage as a result of excessive tension in an already cold 
surface, and bubble formation in - or other distortion of - spheres as a result of high hydrostatic tension in their interior while 
that is still hot and fluid. In that connection, the distortion of the edges of tempered glass plates is also briefly considered. The 
mathematical model of tempering spheres, on which this discussion is based, is outlined in an appendix. 

Vorspannen von Glaskugeln und verwandte Themen 

Die durch schnelles Abkühlen bedingte Erzeugung von dauerhaften Spannungen in Glaskugeln wird beschrieben, angefangen bei 
kurzzeitigen, während des Vorspannens entstehenden Spannungen. Der Nutzen von vorgespannten Glaskugeln wird im Hinblick 
auf die dauerhaft erzeugten Spannungen kurz dargestellt. Zwei mögliche Auswirkungen von kurzzeitigen Spannungen sind die 
Gefahr von Bruch während der Fertigung aufgrund von übermäßiger Spannung in einer schon abgekühlten Oberfläche, sowie die 
Bildung von Blasen - oder anderen Verformungen - in Glaskugeln aufgrund hoher hydrostatischer Spannung in ihrem Inneren, 
während dieses noch heiß und flüssig ist. In diesem Zusammenhang wird auch die Verformung der Kanten von vorgespannten 
Flachglasscheiben kurz betrachtet. Im Anhang der Arbeit findet sich ein Abriß des mathematischen Modells für das Vorspannen 
von Glaskugeln, auf dem die Untersuchung beruht. 

1. Approach 
T h e a u t h o r s ' app roach to mode l ing the process of tem
per ing glass spheres is based on the idea of " instant 
freezing", first in t roduced by Bar tenev [1]. Accordingly, 
glass is t reated as a perfect fluid having zero viscosity 
{η = 0) above an empirically de termined "glass 
( t ransi t ion) t empera tu re" , Tg a n d as a n elastic solid 
{rj = oo) below this tempera ture . Th i s approximat ion is 
m a d e useful - for rapidly chilled bodies of glass - by 
the very rapid rise in the viscosity of all glasses with 
decreasing temperatures . 

Bar tenev p roposed a heurist ic m o d e l of instant freez
ing to calculate residual stresses in a tempered glass 
plate. Later I n d e n b o m [2] presented a r igorous analysis 
of this p rob lem based on the three fundamenta l prin
ciples of stress analysis: first, the compat ibiUty of strains, 
second, the equi l ibr ium of stresses a n d th i rd , a constitu
tive relat ion connect ing stresses a n d strains. The present 
m o d e l of t emper ing glass spheres embod ie s these same 
basic principles. However, it also deals wi th an aspect of 
the " ins tan t freezing m o d e l " n o t encoun te red in earlier 
work on tempered plates. This is discussed in section 7.1. 
T h e derivat ion of the relevant equa t ions will be found in 
section 7.2. 
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In line with the classic " instant freezing" approach, 
it is assumed that a sphere at an initial temperature 7Ό 
is subjected to quenching in a cooling med ium having a 
temperature TQ and a heat transfer coefficient h. Both 
Tc and h are taken to be uniform over the surface of the 
sphere and to remain constant until the center of the 
sphere has cooled to Tg. Dur ing this time, a "freezing 
front" will have migrated from the surface to the center, 
and some stresses will have been generated th roughout 
the sphere, which is now solid and elastic. Stresses con
tinue to develop as the sphere approaches room tem
perature and the temperature distr ibution existing at the 
end of sohdification decays. The manne r of cooling dur
ing this last stage is immaterial . 

In the past , the instant freezing model was used to 
predict residual, i.e. permanent , stresses only. With an 
appropr ia te choice of physical propert ies and process 
parameters , such predictions for tempered glass plates 
are known to be very good. In the present work, the 
au thors are adapt ing the instant freezing model to 
spheres and also using it to calculate t ransient stresses. 

Since the work of Bartenev and Indenbom, other, 
more comprehensive models of the generat ion of stresses 
in glass have been developed [3 to 8]. These take account 
of viscoelasticity and the glass transi t ion, so that they 
are applicable to a wider ränge of process condit ions; 
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Figures la and b. Radial distribution of dimensionless tangen
tial stresses, ^e/G, in a tempered glass sphere, cooled from 
Γο = 650 °C, with BI = 8; a) transient stresses during initial 
stages of tempering, b) transient stresses during tempering and 
the permanent stresses produced. G^QIG are the permanent tan
gential stresses, attained in an isothermal sphere at room tem
perature. 

indeed, to annealing as well as tempering. They are also 
better suited for t racking transient stresses. However, 
their application to spheres would have entailed much 
more work, and the use of the " instant freezing" model 
was deemed adequate for this first look at the tempering 
of glass spheres. Α further simplification was made by 
not explicitly taking account of thermal radiat ion, using 
instead an "effective" thermal conductivity of the glass 
[9]. These simplifications yielded results that afford a 
good overview of the subject: With fewer variables in
volved, the results can readily be generalized by being 
cast in dimensionless form. 

2. Results 
2.1 General 
The results of the analysis presented themselves in terms 
of two dimensionless variables: 

a) The Biot number, Bi, encompasses the variables af
fecting the rate of cooling the glass 

Bi = (R · h)/k . 

b) The dimensionless stress takes the form 

Σ / Ο , 

where G = shear m o d u l u s of the glass, a n d Σ = stress. 
This m a y be radia l or tangent ia l , t rans ient i.e. a func t ion 
of t ime a n d pos i t ion in the sphere, o r p e r m a n e n t i.e. a 
funct ion of pos i t ion only - as indicated in c o n t e x t a n d 
by subscripts . T h e tempera tures TQ, TG a n d TQ a r e kep t 
d imens iona l . 

2.2 Range of variables considered 
W h e r e quant i ta t ive results are given, they a s s u m e tha t 
the spheres are m a d e of a glass substant ia l ly s imi lar t o 
pla te glass, wi th proper t ies as given below. S o m e d a t a o n 
heat t ransfer coefficients tha t may be involved a re in
c luded. 

a) Proper t ies of p la te glass 

G = shear m o d u l u s 
= 27 G P a (at r o o m tempera ture) 

[= 3.9 · lO^psi] , 
k = "effective" t he rma l conduct iv i ty 

= 1.3 W / ( m · K)i> [= 0.003 cal / (cm · s · K) ] , 
CQ = Volumetrie specific heat 

= 2.5 MJ / (m3 · K ) [= 0.6 cal/(cm3 . j ^ ^ j ^ 
TG = "glass t e m p e r a t u r e " = 550 °C, 

ßG = coefficient of expans ion of ( " sohd") glass 
= 11.2 · 1 0 - 6 K - ^ 

ßS,EFF a s sumed "effective" s t ruc tura l expansivi ty = ßG 

(see section 6.1), 
V = Poisson's rat io = 0.22. 

b) H e a t t ransfer coefficients 
Orders -o f -magni tude of the heat t ransfer coefficients 
tha t may be of interest here are: 
/z: o r na tu ra l convect ion in air 

- 13 W/(m2 · K ) [= 0.0003 cal/(cm2 · s · K) ] , 

/I: for forced convect ion in air 

- 0 . 1 3 - 1.3kW/(m2 · K ) 
[= 0.003 - 0.03 cal/(cm2 · s · K ) ] , 

/z: for quench ing in water 

- 6.3 kW/(m2 · K) [ = 0 . 1 5 cal/(cm2 · s · K) ] . 

T h e t empera tu re of the cool ing m e d i u m , T Q , is t aken 
as 100°C. 

2.3 Generation of stresses - Transient stress 
profiles 
To begin with , it will be il lustrated h o w stresses ar ise in 
the course of t emper ing a sphere u n d e r a pa r t i cu l a r set 
of condi t ions . F igures l a and b apply to a sphere, coo led 
wi th Bi = 8 from an initial t empera tu re of 650 °C. T h e y 
are p lo ts of dimensionless tangent ia l stresses versus di
mensionless Posi t ion r wi thin the sphere (r = 0 at the 
center, r = 1 at the surface), d rawn for different " t i m e s " . 
Positive a n d negative stresses deno te tens ion a n d c o m -
press ion, respectively. T ime is represented in d i m e n 
sionless form by the co r respond ing pos i t ion of the 

This is approximately 1.5 times the "true" thermal conduc
tivity, reflecting the fact that radiation plays only a secondary 
role when glass is rapidly quenched. For simplicity's sake k was 
also taken as independent of process conditions and the size 
of spheres. 



"freezing front" , a n d it increases as runs from 1 to 0. 
These curves therefore apply to all spheres, regardless 
of size, tha t are cooled from 650 °C v^ith Bi = 8. (To 
p u t this in concreto, d imens iona l t e rms , these plots 
may be t h o u g h t of applying to a 3.2 m m diameter 
sphere quenched in water (h = 6.3 kW/(m^ K)) or to 
a 96 m m sphere cooled by forced convection in air 
(h = 0.2 k W / ( m 2 K)) . T h e ac tua l t ime intervals between 
Tf = 1 a n d = 0 for these two cases are 0.5 and 450 s, 
respectively.) 

F igure l a illustrates the initial stages of cooling, at 
first the surface a n d then layers of glass close to the sur
face "freeze". As a progressively thicker outer shell of 
the sphere becomes "sol id" , tensile stresses in the surface 
increase. Fo r " t imes" of = 0.95 a n d = 0.85, tensile 
forces in the solid ou te r sheU are ba l anced by hydrostatic 
compress ion in the fluid inter ior tha t is, as it must be, 
un i fo rm t h r o u g h o u t the interior. A s the freezing front 
penet ra tes beyond r = 0.85, tens ion in the surface dimin-
ishes, a n d the shape of stress d is t r ibu t ions changes. This 
is i l lustrated for the " t i m e " rf = 0.6. N o w tensile forces 
in the o u t e r m o s t layers are ba lanced , for the most par t , 
by compress ion in the solid layers nea re r the freezing 
front. Hydros ta t ic compress ion of the inter ior is corre-
spondingly reduced. As t ime progresses, all of the solid 
region near the surface goes in to compress ion and the 
hydrostat ic stress in the inter ior changes to tension, as 
shown by the curve for rf = 0.4. 

I t is interest ing to no t e tha t - for comparable con
di t ions of cool ing — the shape of t rans ien t stress profiles 
in plates resembles tha t for rf = 0.6 in figure la , rather 
t h a n tha t for rf > 0.85. T h e reason for this is that, in a 
sphere, the fluid inter ior is confined wi th in a solid shell, 
so tha t the inter ior can s u p p o r t hydros ta t ic tension or 
compress ion . Bo th k inds of stress profile are therefore 
possible. In plates, on the o ther h a n d , the fluid interior 
is n o t confined, so tha t it c a n n o t sus ta in stresses. Ten
sion in solid layers nea r the surface of a plate can there
fore be ba lanced only by compress ion in solid layers 
fur ther from the surface. M a t t e r s are somewhat different 
at the edges of a plate, which freeze as soon as the sur
faces. This will be t ouched u p o n later. 

F igure I b shows stresses from the sohdification of 
the surface, t h rough sohdificat ion of the center, to the 
a t t a inmen t of i so thermal cond i t ions at r o o m tempera
ture. O n this scale, the p h e n o m e n a i l lustrated in figure 
l a barely show up. But figure I b also shows the curve 
for rf = 0, which co r re sponds t o the t ime at which the 
freezing front reaches the center of the sphere. The 
fur ther deve lopment of stresses is d u e t o the decay of 
t empera tu re gradients in the n o w wholly elastic sphere, 
a n d the curve labeled O^^QIG represents the fmal and per
m a n e n t radial d is t r ibut ion of t angent ia l stresses in the 
sphere. Fo r this par t icu la r c o m b i n a t i o n of Biot number 
a n d (Γο - Tg), abou t a th i rd of the p e r m a n e n t surface 
stress arose dur ing sohdificat ion of the sphere, and two 
th i rds dur ing the subsequent stage of temperature 
equal iza t ion. 

Biot number 

Figure 2. Dimensionless permanent surface compression, SCIG, 
in tempered glass spheres as a function of Biot number, for 
various initial temperatures, TQ. 

The stress-time history represented in figures l a and 
b is typical for cooling regimes start ing from relatively 
low initial temperatures, i.e. low - but no t too low -
values of (Γο - T^. In this case, (Γο - T^ = 100 Κ was 
chosen to amphfy the development of transient tensile 
stresses in the surface. Their maximum, at t ime rf = 0.85, 
is 0.0029 · G, i.e. 78 M P a (or 11 000 psi). Transient ten-
sions in the surface of this magni tude pose a small risk 
of in-process breakage; a l though, of course, it is well 
known that , if glass is quenched from initial tempera
tures that are too low, the danger exists that it may frac
ture as a result of excessive transient tensile stresses in 
the surface, or an edge [1 and 5]. M o r e typically, quench
ing from higher initial temperatures avoids transient ten-
sions in the surface altogether: The surface then goes 
directly into compression (see curve for β^,^ίϊΐβ^ = 1 in 
figure 8a), and hydrostatic stresses in the still liquid par t 
of the sphere are tensile at all times. 

2.4 Permanent stresses as a function of process 
paranneters 
Tempered glass is of technical interest mainly because 
high compressive stresses in its surface enhance its 
strength. For some application it is also impor tan t that , 
if broken, tempered glass breaks into small, blunt - and 
therefore harmless - particles. This latter characteristic 
is at tr ibutable to high tensile stresses in its interior [10 
and 11]. Having considered how temper stresses arise, it 
will be next considered how their magni tude and distri
but ion depend on process parameters . 

2.5 Surface compression 
Figure 2 shows the dimensionless pe rmanen t surface 
compression (SC/G) as a function of Biot number, for 
various initial temperatures, Γο. These were chosen 
somewhat arbitrarily: 650 and 750 °C for larger, manu-
ally formed spheres; 900 and 1000 °C perhaps being ap
plicable for very small spheres, formed from drops of 
liquid glass by surface tension and immediately 
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peratures, Γο, 1000 and 650 °C. 
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Figure 5. Ratio of the permanent surface compression, S C 
{= -σρ,θ at r = 1), to center tension, C T { = APQ = O^R at r = 0), 
as a function of Bi and TQ. 

quenched. The figure shows that - except for the lowest 
Biot numbers , i.e. cooling rates - temper stresses dimin-
ish as the initial temperature is reduced. 

Figure 3 shows some of the same results in dimen
sional form, i.e. the pe rmanen t surface compression SC, 
in MPa , as a function of sphere diameter for various 
heat transfer coefficients, h, and initial glass tempera
tures, Γο. N o t e that not all combinat ions of the implied 

process pa rame te r s a re useful or even feasible. T h u s , for 
example, cool ing 0.5 m m spheres from 1000 ° C in a i r 
p roduces uninterest ingly low stresses, while q u e n c h i n g 
t h e m in water QI = 6.3 kW/(m^ K)) should p r o d u c e sur
face compress ions of the order of 300 M P a (45 000 psi) . 
O n the o the r h a n d , m u c h larger spheres can ne i t he r be 
b r o u g h t to so high an initial t empera tu re w i t h o u t 
r isking deformat ion , n o r quenched in water w i t h o u t r isk 
of fracture. Fo r these Γο is m o r e likely to be 650 °C, 
h<l.3 kW/(m2 K ) , a n d temper stresses ab o u t 100 M P a . 

Pr ince Ruper t ' s d rops are formed by q u e n c h i n g large 
d rops of l iquid glass in water. In falling, they a s s u m e 
their character is t ic t ea r -d rop shape, with a long tai l . A s 
a result of chang ing shape and of no t being q u e n c h e d 
uniformly, their l iquid cores are n o t confined f rom the 
onset of the sohdification of the surface. P e r m a n e n t 
stresses in t h e m will therefore be lower t h a n w o u l d be 
calculated for a sphere having a d iamete r equa l t o the i r 
bu lbous end. F igure 3 suggests tha t such spheres , 6 t o 
10 m m in diameter , migh t have a surface c o m p r e s s i o n of 
ab o u t 750 M P a (110 000 psi), which may be r e g a r d e d as 
an u p p e r b o u n d of the surface compress ion in P r ince 
Ruper t ' s drops . Indeed , a recent pape r [12] r e p o r t e d 
measu red surface compressive stresses of 90 to 170 M P a . 
If anyth ing , they seem surprisingly low - of t h e s a m e 
order as surface stresses in t empered a u t o m o t i v e glass. 
Yet, fragile t h o u g h the tails of Pr ince Ruper t ' s d r o p s m a y 
be, their bulbs c a n n o t be b roken wi th a h a m m e r . 

To p u t these results in to perspective: In smal l glass 
spheres, 0.5 to 1 m m in diameter , such as are u sed for 
shot peening, it should be possible to p roduce a surface 
compress ion of 300 to 400 M P a . This may m a k e t h e m 
as s t rong as the bulbs of Pr ince Ruper t ' s d rops . I n any 
case, it represents a significant enhancemen t of the i r 
s t rength , bear ing in m i n d tha t the surface c o m p r e s s i o n 
in t empered au tomot ive glass is only a b o u t 100 M P a . 
Temper ing may also enhance the abras ion res is tance of 
small spheres on accoun t of the greater densi ty of the 
(compressed) surface layers. 

2.6 Stress distributions 
T h e radia l d is t r ibut ion of b o t h radia l and t angen t i a l per 
m a n e n t stresses is shown in figure 4 for Bi = 8 a n d for 
two representat ive values of Γο. N o t e tha t radia l stresses 
vanish at the surface of a sphere; while, nea r its center, 
radia l a n d tangent ia l stresses are nearly equa l . A t the 
center they are perfectly hydrostat ic . 

F igure 5 shows the rat io of surface compres s ion a n d 
center tens ion as a function of Biot n u m b e r a n d initial 
glass tempera ture . Fo r all bu t the lowest initial t e m p e r a 
tures, this ra t io at first increases wi th Bi, passes t h r o u g h 
a m a x i m u m a n d then levels off - at a b o u t 1.2 for 
Γο = 1000°C a n d less t h a n 1.0 for 750 °C. T h i s is in 
m a r k e d cont ras t wi th the cor respond ing rat io for plates, 
which is exactly 2 for annealed plates (i.e. for p la tes tha t 
are cooled very slowly) and ab o u t 2.2 for t e m p e r e d 
plates, increasing slightly for higher rates of q u e n c h i n g 
[5]. Th i s m e a n s tha t , for a given surface compres s ion , 



the center tension is h igher in spheres t h a n it is in plates; 
which, in tu rn , suggests tha t the propens i ty of tempered 
spheres to b reak in to fme part icles is greater than that 
of t empered plates. 

2.7 Bubble formation as a result of tempering? 
For all bu t the lowest initial temperatures , surface 
stresses are compressive virtually t h r o u g h o u t the tem
per ing process (see curves for ßs,eff^ßg ^ 1 in figures 8a 
a n d b) . Correspondingly , hydrostat ic stresses in the still 
fluid inter ior are tensile at all times. This prompts the 
ques t ion whether such tension may cause the nucleation 
of bubbles in the glass. Fo r a given compos i t ion of glass 
a n d concent ra t ion of nucleat ion sites a n d dissolved 
gases, one might expect tha t nucleat ion would be the 
m o r e probable the m o r e the hydrostat ic tension exceeds 
the par t ia l pressure of dissolved gases, the hotter and 
less viscous the glass, a n d the longer the t ime available. 

Even wi thou t informat ion on par t ia l pressures, the 
a u t h o r s tried to give this hypothesis a tentative quant i 
tative form. For this they defined a "flow number" , 0, 
as the p roduc t of the local hydrostat ic tension and the 
local fluidity (1/^) . F igure 6 is a schematic represen-
ta t ion of 0 as a function of real t ime for various posi
t ions in the interior. T h e probabi l i ty of bubble forma
t ion, as a result of temper ing , in a glass sphere having a 
uni form dis t r ibut ion of nucleat ion sites would then be 
expected to be governed by the area u n d e r the φ versus 
t ime curves. This area is seen t o be highest for the center 
(r = 0). It would be higher still for spheres of the same 
size quenched m o r e rapidly, a n d it vanishes for posit ions 
r > 0.6. W i t h o u t relevant exper imenta l da ta , this remains 
a speculat ion for now. 

Bubbles are a c o m m o n occurrence in Prince Rupert 's 
drops . Thei r format ion may involve some mechanism 
such as tha t indicated by figure 6; a l though , of course, 
the t empera ture - a n d stress-history of Prince Rupert 's 
d rops is m o r e complex t h a n tha t of spheres. In the 
course of this work the a u t h o r s also learned of deco
rative glass spheres con ta in ing bubbles. These spheres 
are m a d e of a glass so füll of nucleat ion sites and so 
highly sa tura ted with gases tha t even very gentle cooling 
b rough t abou t the format ion of bubbles. Indeed, once 
bubbles s tar ted to appear , the spheres were annealed to 
prevent breakage. T h e process resembles annealing with 
variable cool ing rates, which c a n n o t be analyzed by the 
present " ins tan t freezing" approach . I t could be treated, 
as indeed a variety of annea l ing schedules were treated 
[13 and 14], by tak ing p rope r accoun t of the viscoelastic 
a n d s t ructura l relaxat ion processes involved. These are 
involved in b o t h anneal ing a n d temper ing ; but they can 
be approx imated by the ins tan t freezing approach only 
in the case of temper ing , no t the very m u c h slower pro
cess of anneal ing. 

3. Other effects of transient internal tension 
M a n y years ago, when he s tar ted his s tudy of tempering 
glass plates, one of the a u t h o r s (R. G a r d o n ) was in-
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Figure 6. Schematic representation of the flow number, φ, as a 
function of time for various radial positions in a sphere. 
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Figure 7. Interference fringes produced between an optical flat 
and the 6 mm wide edge of a tempered glass plate. The edge 
was optically flat before tempering. 

tr igued by the not ion of tension in the interior of a glass 
plate while its interior was still ho t and relatively fluid. 
He proceeded to explore experimentally what would 
happen if one quenched glass spheres. He found that an 
initially more-or-less perfect sphere ended up with a 
dimple in it, rather like that in a cherry at the point 
where the stem is at tached. At the time, he concluded 
that the sphere was probably not cooled uniformly and 
that the softest par t of its "sheU" was sucked in by the 
interior tension. 

To see if that Observation was relevant to tempered 
glass plates, one edge of a small, 6 m m thick annealed 
plate was made optically flat. The plate was then tem
pered and its edge examined again. It was found to be 
minutely deformed, as shown in the interferogram of fig
ure 7. This suggests a central longitudinal depression 
a long the edge - perhaps analogous to a dimple in a 
sphere - with ridges on bo th sides, about 1 m m inboard 
of the principal surfaces of the plate. This configuration 
results from an interesting interplay of t ransient stresses 
in the edge region. 

When a glass plate is tempered, its principal surfaces 
and edges "solidify" first. Initially, the surfaces also con
tract more rapidly than the interior. This would tend to 
pu t the still "fluid" interior under compression. Two 
other factors tend to pu t the interior under tension: 



First , the expansion coefficient of the Uquid is three 
times higher than that of sohd glass; and, second, the 
rate of cooling of interior layers begins to exceed that of 
outer layers while the former are still above Tg. In fact, 
far from edges of the plate, where there is n o resistance 
to the movement of the solid outer layers in the no rma l 
direction, the fluid core will no t sustain any stress, be
cause it can mainta in its desired volume. Mat te rs are 
different near the edges, where movement of the outer 
layers is restricted. Adjacent regions of the fluid core are 
thus more-or-less confined. The resulting average pres
sure or tension in these regions causes a dis tor t ion of the 
initially flat edge, which - though "sol id" in the loose 
terminology of the instant freezing model - is still de-
formable. 

It would seem that , s tart ing the quench from a high 
enough initial temperature, the edge bulges ou tward dur
ing the first instants of sohdification. Α very short while 
later, the average stress in the confined region of the still 
fluid core changes to tension. This tends to pull the edge 
inward, but - since the edge has meanwhile cooled some 
more - only a narrower, central strip responds. The pro
file of the tempered edge shown in figure 7 thus results 
from the superposit ion of a narrow, central depression 
on an earlier bulge that spans the entire width of the 
edge. 

The au thors now recognize that "d impl ing" could 
occur even if cooling was ideally uniform over the sur
face of the sphere. Which of the two phenomena - bub
ble formation or dimpling - comes into play may well 
be determined by the relative rates of increase of the 
thickness (or stiffness) of the cold outer shell and of ten
sion in the still fluid interior. Alternatively, it may also 
happen - as for example in glass with a low concen
trat ion of dissolved gases - that neither of the above 
two phenomena occurs. 

4. Summary 
The au thors have considered bo th the pe rmanen t 
stresses produced by tempering glass spheres and the 
transient stresses that arise in the course of that process. 
For their analysis, they extended the classical " instant 
freezing" model of tempering by making some allowance 
for part ial relaxation of stresses of s tructural origin, 
which is negligible in tempering glass plates but signifi
cant in the case of spheres. 

The principal findings of this analysis are: 

a) Apa r t from the physical properties of the glass, the 
pe rmanen t stresses produced in a tempered glass sphere 
depend primarily on (Γο - Tg) and the Biot number 
(Bi = (R ' h)lk) with which the sphere is quenched. 

b) The variables R, h or /c, individually, affect only the 
time scale of the sohdification of a glass sphere, which 
- in turn - governs the time dependence of transient 
stresses. 

c) If one defines a new t ime scale in t e rms of w h e n suc
cessive layers (shells) in the sphere solidify, t hen t r ans i en t 
stresses also c o m e to d e p e n d only o n Bi, a n d n o t o n R, 
H OV K individually. 

d) T h e probabi l i ty of fracture dur ing t emper ing is gov
e rned by the largest t rans ient tensile stress in the surface, 
regardless of when du r ing sohdification it occurs . 

e) Bubble fo rmat ion in a n d d i s t o r ü o n of a sphere were 
a lso considered, which depend on t rans ient stresses in a 
m o r e complex manne r . 

f) Finally, the genesis a n d dis t r ibut ion of t e m p e r stresses 
in spheres a n d plates are briefly compared . 

5. List of Symbols 

Biot number = {R · h)lk 
specific heat capacity of glass in J/(kg K) 
V O L U M E T R I E specific heat capacity of glass in J/(m^ K) 
permanent center tension in a tempered sphere, i.e. 
at r = 0 in Pa 
shear modulus of glass (at room temperature) in Pa 
heat transfer coefficient for quenching glass in 
W/(m2 K) 
"effective" thermal conductivity of glass in W/(m K) 
bulk modulus of glass (at room temperature) in Pa 
pressure in Pa 
non-dimensional radial coordinate, 0 at the center of 
the sphere and 1 at its surface 
a dimensionless measure of time, corresponding to the 
passage of the "freezing front" through the position r. 
This time runs from 1 to 0. 
an aesthetically more pleasing "dimensionless time" 
that runs from 0 to 1 
radius of sphere in m 
permanent surface compression in a tempered sphere, 
i.e. - σ ρ θ at r = 1 in Pa 

t time in s 
Τ temperature in °C 
TQ temperature of coolant in °C 
Tg glass (transition) temperature in °C 
TQ initial temperature of glass in°C 

Bi 
c 
CQ 

CT 

G 
h 

k 
Κ 
Ρ 
r 

(1-^f ) 

R 
SC 

Ps,eff 

V 
Q 

Σ 

^r, OQ 

n-ih root of the trigonometric equation 
(α · cot α Bi) = 1 
coefficient of expansion (ß^ of (solid) glass, ΒΧ of liquid 
glass) in 
= IßI ~ ßG) = structural expansivity 
assumed "effective" structural expansivity (see section 
7.1) 
actual maximum shear strain, from all sources of de
formation. Its sources are distinguished by the sub
scripts "e" for elastic and "v" for viscous. 
actual bulk strain from all sources of deformation 
actual radial (subscript r) and tangential (subscript θ 
strains. The sources ε, and εο are distinguished by 
the subscripts "e" for elastic and "th" for thermal, 
viscosity of glass in Pa s 
Poisson's ratio of glass 
density of glass in kg/m^ 
stress in Pa. Without a subscript, Σ refers to a transient 
stress, i.e. a function of time and position in the sphere. 
permanent stress, i.e. a function of position only 
radial or tangential stress. Also, in context, 
σ (1/3) · (ar + 2σθ) = average stress = - P 
(ar - OQ) = 2 · (maximum shear stress) in Pa 
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7. Appendices 

7.1 Allowing for partial relaxation of structurally induced 
stresses in an IFM 

As was noted in section 1., the application of the "Instant 
Freezing Model" (IFM) to spheres presented a problem not en
countered with plates. Instant freezing implies that, once the 
surface of a sphere is frozen, its liquid core is confined and thus 
capable of supporting hydrostatic stresses. With the liquid core 
under stress, account must be taken of the fact that liquid glass 
has a much higher coefficient of thermal expansion than the 
solid outer shell. Viscoelastic models of stress analysis allow for 
a partial relaxation of stresses that arise from such structural 
heterogeneity. The IFM, by contrast, cannot comprehend par
tial stress relaxation: By definition, stress relaxation must be 
either complete or nonexistent. 

The "structural expansivity", ß^, is the difference between 
the expansion coefficients of liquid and solid glass, respectively, 
i.e ( ß I - ßG). It has been shown to be equal to about 2 ßG. Using 
this physically correct value of the structural expansivity in an 
IFM would lead to a füll build up of stresses of structural origin 
without allowing for any relaxation. Using ßS = would sup
press all effects of the different expansivities of liquid and solid 
glass, which would be tantamount to complete relaxation 
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Figures 8a and b. Dimensionless stresses in the surface of a 
tempered sphere, GQ/G at r = 1, as calculated by the instant 
freezing model using various assumptions regarding the value 
of the effective structural expansivity, ^s , e fr ; drawn for TQ of 
1000 (figure a) and 650 °C (figure b). Sohdification occurs from 
(1 - T f ) = 0 to 1. Permanent stresses are arbitrarily shown at 
1.5. 

of structurally induced stresses. The compromise of taking 
Ä ,eff = ßG should allow the IFM to simulate partial relaxation 
of structurally induced stresses and yield realistic results. Need-
less to say, there is nothing sacrosanet about taking ßS,E(IFßG 

equal to 1. One could equally well have assumed it to be 0.8 or 
1.3. (This issue could be handled rigorously by taking proper 
account of the stress- and structural-relaxation processes in
volved in generating permanent stresses in glass. The authors 
discuss in [3 to 6] the dominant temperature-and-time-de-
pendence of these relaxation processes as they affect the tem
pering and annealing of glass plates. Manch and Jäckle [8] ex
tended these analyses by also taking account of the pressure-
and-time-dependence of relaxation. While this probably plays 
only a minor role in tempering plates, it may well be more 
significant in tempering spheres, in which larger pressures come 
into play because their interiors are confined.) 

Figures 8a and b show how the assumed value of ^s ,efr affects 
the calculated course of the development of stresses in the sur
face of a sphere. They are plots of dimensionless stresses 
{GQIG) in the surface of a sphere as a function of dimensionless 
time, now represented as (1 - rf), being the time at which the 
freezing front passes through the radial position r within the 
sphere. Thus, stresses at times from 0 to 1 are transient surface 
stresses during sohdification of the sphere. The dimensionless 
permanent surface stress {op^lG), attained when the entire 
sphere has reached room temperature, is arbitrarily shown at 
time = 1.5. 

Figure 8a, for an initial temperature of 1000°C, shows that 
taking ßS,EFTFßG as 1 or 2 gives qualitatively similar results: The 
surface is under compression, and therefore the interior under 
tension, throughout the tempering process. This is a plausible 
result and not strongly dependent on the precise value of ^s,eff-



It is also in marked contrast with results produced by the less 
plausible assumption of = 0, which would correspond to 
total structural relaxation. 

As figure 8b shows, the choice of an effective value of is 
more critical for low initial temperatures, such as 650 °C. As 
before, ^SEFF = 0 is a totally .unrealistic assumption. But now 
the choice between ßS,EIRLßG equaling 1 or 2 has a proportion-
ately greater effect on both transient and permanent stresses, 
and it also affects the proportion of time, during tempering, 
that the still fluid interior is under compression. The predicted 
propensity for bubbles to form as a result of tempering would 
clearly increase as Β^^^^ approaches 2 ß^, i.e. as the method of 
calculation, using this modified IFM, allows for less relaxation 
of structurally induced transient stresses. 

Structural heterogeneity also exists in tempered glass plates 
[15], but this is due mainly to the slightly different expansivities 
of regions of solid glass cooled at different rates. The very much 
bigger difference between the expansivities of liquid and solid 
glass is irrelevant because, as was discussed earlier, the fluid 
core of a plate is stress-free during tempering, since it is free to 
adjust its volume by changing its thickness. 

7.2 The instant freezing model of tempering glass spheres 

For a point of departure see section 1. The following derivation 
of equations is unaffected by section 7.1, which deals only with 
the choice of an appropriate value of Ŝ,EFF- In equations (13a 
and b), therefore, ßI^^ = ßG Ä,EFF is used instead of ßI, the 
true thermal expansion coefficient of liquid glass. 

The constitutive relation, being a material property, is the 
same for a plate or a sphere. For the instant freezing model, 
this relation is 

7E = ßRE ÊE = (1/2) - T/G = 0 FOTΗ = 0 and Γ > TG, (la) 

7E = FIRE " ÊE = (1/2)' T/G for // = oo and Γ < TG, (Ib) 

and 

FIE = Σ/Κ. (Ic) 

For spherically Symmetrie cooling, the compatibiUty of radial 
and tangential strains is given by 

γ = SR- SQ 

and 

ε = ε, 2SQ . 

Inversion of equations (6a and b) yields 

ε, = {Υ3)·{ε^2γ) 

and 

εβ = (1/3) · (ε - γ). 

(6a) 

(6b) 

(7a) 

(7b) 

Expressions similar to equations (7a and b) are obtained for 
radial and tangential stresses from definitions of the shear stress 
(τ) and average stress (σ) given earlier. Thus 

Σ, = Σ ^ (2/3) · Τ 

and 

ΣΟ = Σ - (1/3) · τ . 

(8a) 

(8b) 

The compatibiUty condition is recast by substituting equations 
(5a and b) in equations (7a and b), which, in turn, are substi
tuted in equation (2), yielding 

άε^ 
dr 

DY^. -2> — = - ^^'^ + 4- 3 ^ 
dr dr dr 

(9a) 

The equilibrium equation (3) is rewritten using equations (8a 
and b) and the elastic constitutive relations of equations ( Ib 
and c), yielding 

dee I 4 G dye , ^ G ye _ Q 
dr 3 ä: dr Kr 

(9b) 

Subtracting equation (9a) from equation (9b) and introducing 
the following auxiliary shear strain variable, 

dge 
dr 

£R - £Θ = 0 (2) 7AUX 1 + 
4 G 
3K 

YE + 7V (10) 

and the equilibrium of stresses by yields a simple linear differential in the unknown yaux- It is 

^ + 2 ^ L Z ^ = 0 . 
dr r 

(3) 
dr 

- + 3 7AU 
dr (11) 

The surface of the sphere must always be free of radial stress, 
yielding the boundary condition: 

Applying an integrating factor of r^ permits one to obtain the 
following integral of equation (11) 

^R(l) = 0 . (4) 

Since the constitutive equations (la to c) are given in terms of 
shear and bulk components of stress and strain, it is advan-
tageous to cast the compatibiUty and equilibrium equations in 
the same form. The actual shear (γ) and bulk (ε) strains are 
therefore expressed as sums of their respective thermal, elastic 
and viscous strain components. Noting that the thermal shear 
strain yth = 0 and the viscous bulk strain εν = 0, it may be writ
ten: 
7 = RE + 7Ν (5a) 

and 

Ε = ßTH + £E · 

By definition, the shear and bulk strains are 

(5b) 

7AUX 1 
Y.5 dr' 

(12) 

It is clear from equations (11 and 12) that the thermal strain 
gradient is the driving force in this problem. It generates elastic 
and viscous strains, which in turn produce transient and perma
nent stresses in the glass sphere. The thermal strain itself is 
given by 

FITH = ßI · (T- TO) for Γ > TG and (13a) 

£TH = ßI ' ( T G - T ) + ßG- ( T - TG) for T < T G . (13b) 

The temperature distribution in a sphere cooled symmetrically 
from the surface is given by [16] 
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T(K t) = Tc + 2Βΐ{Το - Tc) r-' Σ A„exp(-4 0 · sin(a„ r) (14) 

[a^„ + (Bi-m sma. 
with A„ = 

AUA^N + Bi(Bi-l)] 
and ö„ = [k/(cQR')]AL 

7.3 Calculation of permanent strains 

The viscous shear strain, γ^, is a function of both time ί and 
Position R. Since the location of freezing front, RF, is a mono-
tonic function of time, it can be used as a time scale. Thus 

RVIR,T) = YAR-^TIN)] = RANRR). (15) 

The viscous strain in a layer R < RF changes with the advance-
ment of the freezing front until the freezing front arrives at R. 
Once this layer is frozen, there can be no further viscous flow 
and no change in the viscous strain. This frozen-in viscous 
strain is called the permanent (or residual) strain, yp It is, as 
defmed below, a function of R only, i.e. 

YPIR) = YV(R,R{) , 
YPIR) = YAR,R) . 

at RF = R , (16a) 

(16b) 

The elastic shear strain is zero in the liquid core. So, using equa
tions (10, 11 and 16a and b), one obtains the following ex
pression for residual shear strain: 

Ρ l dr' 
(17) 

7.4 Calculation of transient and residual stresses 

In the frozen shell, elastic shear strains and stresses are calcu
lated from known values of the auxiliary and residual shear 
strains. 

κ ) - Y^N-(R,RF)-YP(R,RR) (18a) 

3K 

and 

Σ,{Κ RR) - A^IR, N) = T(r, rf) = 2 Ογ,{Κ rf) . (18b) 

In the liquid core, stresses are hydrostatic and uniform. Thus, 

ae(r, rf) = A^IR, rf) = ar(rf,rf) . (18c) 

When the whole sphere is again isothermal, at room tempera
ture, the thermal strain gradient is zero. Therefore, the auxiliary 
shear strain is also zero (equation (11)). The permanent elastic 
shear strains and stresses are then given by 

3K 
and 

T P ( R ) = 2G7p,e(r) . 

(19a) 

(19b) 

Radial stresses, both transient and permanent, are obtained by 
Substitution for shear stress in equation (3) followed by numeri
cal integration. 
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